Abstract. Let p be a prime number. Let C_p, the cyclic group of order p, permute transitively a set of indeterminates $\{x_1, \ldots, x_p\}$. We prove that the invariant field $\mathbb{Q}(x_1, \ldots, x_p)^{C_p}$ is rational over \mathbb{Q} if and only if the $(p-1)$-th cyclotomic field $\mathbb{Q}(\zeta_{p-1})$ has class number one.

1. Introduction

Let a finite group G act regularly on a set of indeterminates $\{x_1, \ldots, x_n\}$ and let k be a field. Noether’s problem for G over k asks whether the field extension $k(x_1, \ldots, x_n)^G/k$ is rational, i.e. purely transcendental.

The present note deals with Noether’s problem for finite cyclic groups over the field of rational numbers. The reader is referred to [3] for a brief survey of Noether’s problem for abelian groups, including the most relevant references to work of Masuda, Swan, Endo, Miyata, Voskresenski, Lenstra and others.

Let $P_\mathbb{Q}$ denote the set of prime numbers p for which $\mathbb{Q}(x_1, \ldots, x_p)^{C_p}/\mathbb{Q}$ is rational, where C_p denotes the cyclic group of order p.

Lenstra proved in [4, Cor. 7.6] that $P_\mathbb{Q}$ has Dirichlet density 0 inside the set of all prime numbers. Moreover, he suggested in [5, p. 98] that $P_\mathbb{Q}$ could be finite and that perhaps coincides with the set

$$R := \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 61, 67, 71\}.$$

It is known that $R \subseteq P_\mathbb{Q}$. This is a consequence of the fact that, by the main result in [6], R is nothing but the set of prime numbers p such that the $(p-1)$-th cyclotomic field $\mathbb{Q}(\zeta_{p-1})$ has class number one.

For prime numbers $p < 20000$, some computational evidence in favour of the equality $P_\mathbb{Q} = R$ is given by Hoshi in [3].

Our goal is to check the validity of Lenstra’s suggestion. We prove:

Theorem 1.1. $P_\mathbb{Q} = R$.

From [5, Cor. 3] and [5, Prop. 4], we get:

Corollary 1.2. Let n be a positive integer and let C_n denote the cyclic group of order n. Then $\mathbb{Q}(x_1, \ldots, x_n)^{C_n}/\mathbb{Q}$ is rational if and only if n divides

$$2^2 \cdot 3^m \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \cdot 43 \cdot 61 \cdot 67 \cdot 71,$$

for some $m \in \mathbb{Z}_{\geq 0}$.

1991 Mathematics Subject Classification. 12F10, 12F20, 13A50, 14E08, 11R18, 11R29.

Key words and phrases. Noether’s problem, rational field extension, cyclic group, cyclotomic field.

Research partially supported by grant 2014 SGR-634 and grant MTM2015-66180-R.
2. Proof

Proof of Thm. 1.1. As has already been mentioned, the inclusion \(R \subseteq P_Q \) is known. See [2, Prop. 3.4].

Let \(p \in P_Q \). This implies (actually, it is equivalent to) the existence of an element \(\alpha \in \mathbb{Z}[\zeta_{p-1}] \) with norm \(N_{\mathbb{Q}(\zeta_{p-1})/\mathbb{Q}}(\alpha) = \pm p \). See [2, Thm. 3.1].

Thus, \(p = (\alpha) \) is a principal prime ideal in \(\mathbb{Z}[\zeta_{p-1}] \) above \((p) \).

If \(\text{Gal}(\mathbb{Q}(\zeta_{p-1})/\mathbb{Q}) = \{\sigma_1, \ldots, \sigma_m\} \), then we have the prime ideal decomposition

\[
(\alpha)\mathbb{Z}[\zeta_{p-1}] = \sigma_1(p) \cdots \sigma_m(p).
\]

Here \(m = [\mathbb{Q}(\zeta_{p-1}) : \mathbb{Q}] = \phi(p-1) \), where \(\phi \) denotes Euler’s totient function. Note that \((p) \) splits completely in \(\mathbb{Q}(\zeta_{p-1}) \), hence \(\sigma_i(p) \neq \sigma_j(p) \) for \(i \neq j \).

Now, a result of Amoroso and Dvornicich [1, Cor. 2] ensures that

\[
\frac{\log(p)}{\phi(p-1)} \geq \begin{cases}
\frac{\log(5)}{12}, & \text{for every } p, \\
\frac{\log(7/2)}{8}, & \text{for every } p \not\equiv 1 \pmod{7}.
\end{cases}
\]

It may be worth mentioning here that we are not assuming that \(\mathbb{Q}(\zeta_{p-1}) \) contains an imaginary quadratic subfield, even though this hypothesis is apparently used in the proof of [1, Cor. 2]; in fact, if \(\bar{\alpha} \) denotes the complex conjugate of \(\alpha \), then the argument in [1, Cor. 2] works whenever \((\alpha) \neq (\bar{\alpha}) \), and this holds because \((p) \) splits completely in \(\mathbb{Q}(\zeta_{p-1}) \).

On the other hand, from a result of Rosser and Schoenfeld [7, Thm. 15], we also know that

\[
\frac{\log(p)}{\phi(p-1)} < \frac{\log(p)}{p-1} \left(e^C \log(p) + \frac{5}{2 \log(p-1)} \right),
\]

where \(C \approx 0.57721 \) denotes Euler’s constant.

If \(f(p) \) denotes the right hand side of the above inequality, it is easily checked that \(f(x) \) defines a decreasing function for, say, \(x > 43 \). Since \(f(173) < \frac{\log(5)}{12} \), we conclude that \(p < 173 \).

Once we restrict ourselves to prime numbers \(p < 173 \), Hoshi’s computations [3] show that the only possible counterexamples to the inclusion \(P_Q \subseteq R \) are \(59, 83, 107 \) and \(163 \).

Finally, each \(p \in \{59, 83, 107, 163\} \) satisfies

\[
p \not\equiv 1 \pmod{7} \quad \text{and} \quad \frac{\log(p)}{\phi(p-1)} < \frac{\log(7/2)}{8},
\]

hence \(p \notin P_Q \).

\(\Box \)

Remark 2.1. Let \(n = p^r \) for some prime number \(p \geq 5 \).

Lenstra proved [5, Lemma 5] that \(\mathbb{Z}[\zeta_{\phi(n)}] \) contains no element of norm \(\pm p \) in the following cases:

(i) \(p \geq 11 \) and \(r \geq 2 \).
(ii) \(p \geq 5 \) and \(r \geq 3 \).

Then, by [2, Thm. 3.1], \(\mathbb{Q}(x_1, \ldots, x_n)^{C_n}/\mathbb{Q} \) cannot be rational in these cases [5, Prop. 4].
Arguing as in the proof of Theorem 1.1, one can easily prove Lenstra’s Lemma as follows.

If \(\alpha \in \mathbb{Z}[\zeta_{\phi(n)}] \) has norm \(\pm p \), then \(p = (\alpha) \) is a principal prime ideal above \((p) \) whose inertia degree over \((p) \) is 1. Since \((p) \) splits completely in \(\mathbb{Z}[\zeta_{p-1}] \), it must be \(p \notin \mathfrak{p} \). It follows that Amoroso and Dvornicich’s result [1, Cor. 2] applies and it ensures that

\[
\frac{\log(p)}{\phi(\phi(n))} \geq \frac{\log(5)}{12}.
\]

But it is readily seen that this inequality does not hold in cases (i) and (ii), just checking that:

1) In case (i),
\[
\frac{\log(p)}{\phi(\phi(n))} \leq \frac{\log(p)}{2(p-1)} \leq \frac{\log(11)}{2 \cdot 10} < \frac{\log(5)}{12}.
\]

2) In case (ii),
\[
\frac{\log(p)}{p(p-1)} \leq \frac{\log(p)}{5(5-1)} \leq \frac{\log(5)}{5 \cdot 4} < \frac{\log(5)}{12}.
\]

References

Departament de Matemàtiques, Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona
E-mail address: bernat.plans@upc.edu