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Abstract

The aim of this master’s thesis is to obtain an alternative proof, using variational techniques, of an existence
result for periodic sets in R2 that minimize a non-local version of the classical perimeter functional adapted
to periodic sets. This functional was introduced by Dávila, Del Pino, Dipierro and Valdinoci [20]. Our
minimizers are periodic sets of R2 having constant non-local mean curvature.

We begin our thesis with a brief review on the classical theory of minimal surfaces. We then present the
non-local (or fractional) perimeter functional. This functional was first introduced by Caffarelli et al. [15]
to study interphase problems where the interaction between particles are not only local, but long range
interactions are also considered. Additionally, also using variational techniques, we prove the existence of
solutions for a semi-linear elliptic equation involving the fractional Laplacian.
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CHAPTER 1

Introduction

This thesis concerns the non-local (or fractional) analogue of the classical periodic
cylinders in R3 with constant mean curvature found in 1841 by the French mathemati-
cian Charles-Eugène Delaunay [22]. These surfaces are critical points of the classical
perimeter functional when a volume constraint is prescribed.

We will introduce the non-local analogue of the classical perimeter. The non-local
or fractional perimeter functional was first introduced by Caffarelli et al. [16] to study
interphase problems where the interaction between particles are not only local, but long
range interactions are also considered. If we make a blow-down on the phase transi-
tion, we obtain that in the limit the level sets will approach a surface that minimizes
the fractional perimeter functional. We will call them non-local or fractional minimal
surfaces. Moreover, in [16] they also prove that such surfaces satisfy an Euler-Lagrange
equation, namely the non-local mean curvature equation (that we call NMC equation
for short) in reference to the classical mean curvature equation.

We will therefore consider surfaces with constant NMC that are periodic and cylin-
drically symmetric. They are the non-local analogue of the Delaunay cylinders.

The first existence and regularity result for non-local Delaunay surfaces was found
by Cabré, Fall, Solà-Morales and Weth [10] where, using the implicit function theorem,
they constructed periodic sets in R2 with constant non-local mean curvature which
bifurcate from a straight band.

Another way to construct such sets is variationally. In a subsequent paper of Dávila,
Del Pino, Dipierro and Valdinoci [21] they consider a version of the fractional perimeter
functional adapted to periodic sets. Namely, for a fractional parameter α ∈ (0, 1) and
a set E ⊆ Rn, they consider the functional

Pα(E) :=
1

8

ˆ
E∩S

ˆ
S\E

∑
k∈Z

dxdy

|x− y + ke1|n+α
(1.0.1)

in the slab S := [−π, π]× Rn−1. Using variational techniques, they show the existence
of codimension 1 surfaces of any dimension that minimizes the above functional among
cylindrically decreasing symmetric competitors that are periodic in a given direction,
assuming a volume constraint. Their method relies on a compactness result on the
space of functions of bounded variation.

In their paper on constant NMC hypersurfaces in Rn [15], Cabré, Fall and Weth
pointed out that minimizers of the above periodic fractional perimeter functional (under
a volume constraint) are in fact constant NMC hypersurfaces in a certain weak sense.
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1.1. MAIN RESULT 4

Nonetheless, because in their paper [21], Dávila, Del Pino, Dipierro and Valdinoci
find minimizers among decreasing sets, their minimizers may not have constant NMC.
Indeed, one could have a periodic set with lower “energy” that is not decreasing in the
slab [0, π].

Our objective will be to construct variationally the non-local analogue of the classical
Delaunay surfaces in R3, but in R2. Throughout the thesis, we will sometimes refer to
these surfaces as bands.

The main objective of this thesis will therefore be to derive a different and simplified
approach to prove variationally the existence of such periodic surfaces in R2. As we
shall see, we do not need to consider the class of minimizers to be decreasing, and hence
we can show that the fractional perimeter functional adapted to periodic sets gives rise
to constant NMC surfaces in a weak sense.

The simplification comes from finding a suitable expression of the periodic non-
local perimeter. We can then show rather simply that a minimum exists in a particular
functional space using a compact embedding and Fatou’s lemma. The main difference
of our approach is that we do not work with the geometric problem of integrating over
the set, but instead we reduce the dimension of the problem and end up working in one
dimension.

1.1. Main result

The main result of this thesis is presented next. We consider the periodic fractional
perimeter functional for sets E := {−u(x1) < x2 < u(x1)} ⊂ R2, which now reads

Pα(u) :=
1

8

ˆ π

−π
dx1

ˆ u(x1)

−u(x1)

dx2

ˆ
R
dy1

ˆ
|y2|>u(y1)

dy2
1

|x− y|2+α
, (1.1.1)

with α ∈ (0, 1).

We consider the class of competitors A given by the sets E ⊆ R2 defined above for
some non-negative, even 2π-periodic function u : R→ [0,+∞] in the space Wα,1

per (0, π)

of even 2π-periodic functions in the fractional Sobolev space Wα,1(0, π), satisfying a
volume constraint

ffl π
0
u(x) dx = µ for some given constant µ > 0.

In this setting, we prove the existence of volume constrained minimizers of Pα in A.
The proof is new and will appear in [14].

Theorem 1.1.1. For any µ > 0 there exists a minimizer of Pα in A. More precisely, for
any µ > 0 there exists a non-negative function u∗ ∈ Wα,1

per (0, π) such that
ffl π

0
u(x) dx = µ

and, for any non-negative function u ∈ Wα,1
per with the same volume, we have that

Pα(u∗) ≤ Pα(u). Moreover, u is a solution of

H(u)(x) = a for all x ∈ R such that u(x) > 0,

for a certain constant a ∈ R, where H denotes the NMC.
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1.2. Outline of the thesis

The work is organised as follows:

• In chapter 2 we present the classical theory of minimal surfaces and, in par-
ticular, the ideas behind the minimality of the Simons’ cone, as well as that
minimal surfaces are regular up to dimension 7. This will motivate and help
to understand the subsequent chapters.
• In chapter 3 we introduce the notion of non-local perimeter functional and of

non-local minimal surfaces. We provide with an existence result of minimizers.
We compare this non-local setting with the classical theory and describe the
main differences and similarities. We also discuss about surfaces with constant
non-local mean curvature.
• In chapter 4 we study the Dirichlet problem for a semi-linear equation involving

the fractional Laplacian operator. In particular, we prove the existence of
weak solutions for the Dirichlet problem in bounded domains of Rn under
some restriction of the non-linearity, and for periodic functions defined in R2.
These results has not been considered before and are new to this thesis. On a
forthcoming work, Cabré, Mas and Solà-Morales [14] will study the semi-linear
problem for periodic functions.
• In chapter 5 we begin our study of the fractional perimeter functional (1.1.1).

We find a simplified expression of the functional and prove that, under a volume
constraint, minimizers have constant non-local mean curvature.
• In chapter 6 we prove Theorem 1.1.1. The proof is new and will appear in [14].
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CHAPTER 2

Classical minimal surfaces

This chapter is intended to be a brief survey on the classical theory of minimal
surfaces. We start with an introduction to the main developments in the study of
minimal surfaces, from the first formulation of the variational problem in the hands of
Joseph Louis Lagrange, to the measure-theoretic ideas of De Giorgi and the important
study of cones in Rn of J. Simons.

We then dive further into the ideas of De Giorgi, extending the notion of perimeter
for a larger class of sets and provide a very brief proof on the existence of minimal
surfaces in this general setting. Next we comment on the regularity of minimal surfaces
and give the ideas behind the minimality of the Simons’ cone, whose proof by Bombieri,
De Giorgi and Giusti in 1969 was the finishing line for the regularity theory of minimal
surfaces.

Furthermore, and keeping within the chronological framework, we announce a fa-
mous conjecture established by De Giorgi in 1978 and its relation to minimal surfaces
and, in particular, to the Bernstein problem.

2.1. Historical introduction

The problem of finding minimal surfaces, i.e. of finding the surface of least area
among those bounded by a given curve, was one of the first considered after the foun-
dation of the calculus of variations. It is called Plateau’s problem, after the blind
physicist who did beautiful experiments with soap films and bubbles. In his treatise
Statique expérimentale et théorétique des liquides soumis aux seules forces moléculaires
from 1873, Plateau described a multitude of experiments connected with the phenom-
enon of capillarity. Among other things, Plateau noted that every contour consisting
of a single closed wire, whatever be its geometric form, bounds at least one soap film.

Minimal surface theory originated with the work of Lagrange who, in the 18-th
century, considered the variational problem of finding the surface parametrised as x =
(x, y, h(x, y)) of least area stretched across a given close contour. He derived the Euler-
Lagrange equation for the solution

d

dx

(
hx√

1 + h2
x + h2

y

)
+

d

dy

(
hy√

1 + h2
x + h2

y

)
= 0.

Or, computing the derivatives,

(1 + h2
y)hxx − 2hxhyhxy + (1 + h2

x)hyy = 0.
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2.1. HISTORICAL INTRODUCTION 8

He did not succeed in finding any solution beyond the plane until, in 1776, French
mathematician Meusnier discovered that the helicoid and catenoid satisfy the equation,
and that the differential expression corresponds to twice the mean curvature of the
surface, concluding that surfaces with zero mean curvature are locally area minimising.

It was only in 1930 that a general solution was given to the problem of Plateau
in 3-dimensional Euclidean space, with the independent papers of Douglas and Radó.
Their methods were quite different; Radó’s work held only for rectifiable simple closed
curves, that is closed curves of finite length with no self intersections, whereas Douglas
results holding for arbitrary simple closed curves. Both relied on setting up minimisa-
tion problems; Douglas considered the Dirichlet’s integral and its relation to the area
functional (see, for instance, the survey [27] by G. Jeremy and M. Micallef). In par-
ticular, he was awarded the Fields Medal in 1936 for this work. With the subsequent
work of Courant, Morrey, etc. they extended the results to surfaces of higher genus,
with many boundary components in general manifolds.

The extension of the problem to higher dimensions turns out to be much more dif-
ficult to study. It was not until thirty years later that the problem of Plateau was
successfully attacked in its full generality using measure-theoretic methods. We will
here introduce the ideas developed by De Giorgi. In his formalism, De Giorgi consid-
ered a hypersurface in Rn as the boundary of a measurable set E whose characteristic
function ϕE has distributional derivatives that are Radon measures of locally finite total
variation, known as Caccioppoli sets. There were of course many other mathematicians
who worked on minimal surfaces. For instance, one should name the work of Federer
and Fleming, whose foundational paper Normal and Integral Currents established the
existence of solutions to the Plateau problem in a very general setting.

We start now by presenting the problem of finding non-parametric minimal surfaces,
i.e. finding a surface E which is the graph of a function u(x) defined in some bounded
domain Ω that is of minimal area. If u : Ω → R is in the Sobolev space W 1,1(Ω) of
integrable function with weak derivatives, the area of its graph is given by

A (E) = I(u) =

ˆ
Ω

√
1 + |Du|2 dx. (2.1.1)

The fact that ∂E is prescribed reads now as u = u0 on ∂Ω, where u0 is a given function.
The variational problem is then to find

inf
{
I(u) =

ˆ
Ω

√
1 + |Du|2 dx : u ∈ u0 +W 1,1

0 (Ω)
}
, (2.1.2)

where W 1,1
0 (Ω) :=

{
u ∈ W 1,1(Rn) : u = 0 in Rn\Ω

}
⊆ W 1,1(Ω).

Notice that, even though the function f(u) =
√

1 + |Du|2 is strictly convex and
f(ξ) ≥ |ξ|p with p = 1, we cannot use the direct methods of the calculus of varia-
tions, since we are lead to work, because of the coercivity condition f(ξ) ≥ |ξ|, in a
non-reflexive space W 1,1(Ω) and we therefore cannot expect the existence of a weakly
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convergent subsequence of a minimising sequence. Indeed, in general, there is no min-
imizer of (2.1.2) in u0 + W 1,1

0 (Ω). We therefore need a different approach to deal with
this problem.

Any C2(Ω̄) function u is a minimizer of (2.1.1) if and only if it is the solution of the
minimal surface equation (also called first variation of area)

Di

{
Diu√

1 + |Du|2

}
= 0 in Ω (2.1.3)

or more briefly
div T (u) = 0, with T (u) = Du(1 + |Du|2)−1/2,

since the integrand
√

1 + |Du|2 is convex. Moreover, since it is strictly convex, the
minimizer, if it exists, is unique.

The problem of finding solutions of the Dirichlet problem (2.1.3) is not generally
solvable. When working in R2, it was proved by Bernstein that a solution exists for
arbitrary data if Ω is convex, but may fail to exist without the convexity of the domain,
even if the boundary datum u0 is C∞. In a paper of Jenkins and Serrin, it was proved
that the Dirichlet problem in n dimensions is always solvable if the mean curvature of
∂Ω is nowhere negative.

We can instead consider a generalisation of the Dirichlet problem by not imposing
the boundary condition u = u0 as a characterisation of the class of function competing
to minimise the area A , but rather we introduce it in the functional under consideration
as a penalisation, and we look for a minimum of

J (u) =

ˆ
Ω

√
1 + |Du|2 dx+

ˆ
∂Ω

|u− u0| dHn−1,

where Hn−1 stands for the (n− 1)-dimensional Hausdorff measure.

It is easily seen that a solution of the Dirichlet problem also minimizes J . On the
other hand, the new functional always has a minimum in the class BV (Ω) of functions
of bounded variation in Ω (see Definition 2.2.3), independently of the mean curvature
of the boundary. However, in general, the minimising function will not take the value
u0 on ∂Ω.

Unfortunately, the above problem is, geometrically, to restrictive. Indeed, any sur-
face can be locally represented as a graph of a function, but is not the case globally.
One is therefore lead to consider more general surfaces, known as parametric surfaces.
We refer the reader to Dacorogna’s book [20, Chapter 5] for the study of minimal
parametric surfaces.

2.2. Functions of bounded variation and Caccioppoli sets

We will now present the approach of De Giorgi. As we already said, the key idea
is to look at hypersurfaces in Rn as boundaries of sets. De Giorgi defined then the
perimeter in a more general setting. The advantage of defining the perimeter for a
larger class of sets is the compactness in the space L1 of sets with finite perimeter.
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As we shall see, it is then not difficult to show existence of solution to the problem of
Plateau in this context of minimal boundaries.

Let us start by defining the functional space of functions with bounded variation.

Definition 2.2.1. Let Ω ∈ Rn be an open set and let f ∈ L1(Ω). We defineˆ
Ω

|Df | = sup
{ˆ

Ω

f∇·g dx : g = (g1, . . . , gn) ∈ C1
0(Ω;Rn), and |g(x)| ≤ 1 for x ∈ Ω

}
,

where ∇ · g =
∑n

i=1
∂gi
∂xi

.

Remark 2.2.2. If f ∈ C1(Ω), then integration by parts givesˆ
Ω

f∇ · g dx = −
ˆ

Ω

n∑
i=1

∂f

∂xi
gi dx = 〈∇f, g〉L2(Ω)

for every g ∈ C1
0(Ω;Rn), so that, using Cauchy-Schwarz inequalityˆ

Ω

|Df | =
ˆ

Ω

|∇f |.

More generally, if f belongs to the Sobolev space W 1,1(Ω) and Ω has Lipschitz
boundary, then ˆ

Ω

|Df | =
ˆ

Ω

|∇f | dx <∞,

where ∇f is the derivative of f in the weak sense.

Definition 2.2.3 (Bounded Variation). A function f ∈ L1(Ω) is said to have bounded
variation in Ω if ˆ

Ω

|Df | <∞.

We define the space BV (Ω) as the space of all functions in L1(Ω) with bounded varia-
tion.

Remark 2.2.4. W 1,1(Ω) ⊆ BV (Ω) ⊆ L1(Ω). The fact that the two spaces are not
equal can be seen with the next example. Suppose E ⊆ Rn has C2 boundary and
consider ϕE, the characteristic function of E. If in addition E is bounded, thenˆ

Ω

ϕE dx = |E ∩ Ω| = Lebesgue measure of E ∩ Ω

and ϕE ∈ L1(Ω). However, ϕE does not belong to W 1,1(Ω).

To see this, suppose g ∈ C1
c (Ω;Rn). Then, by Gauss-Green theorem,ˆ

Ω

ϕE∇ · g dx =

ˆ
E

∇ · g dx =

ˆ
∂E

〈g, ν〉 dHn−1,

where ν(x) is the outward unit normal to ∂E at x and Hn−1 is the (n− 1)-dimensional
Hausdorff measure. Now, |ν(x)| = 1, so that, if |g(x)| ≤ 1 and g ∈ C1

0(Ω,Rn), thenˆ
∂E

〈g, ν〉 dHn−1 ≤ Hn−1(∂E ∩ Ω)
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and henceˆ
Ω

|DϕE| = sup
{ˆ

Ω

ϕE∇ · g dx : g ∈ C1
c (Ω;Rn), |g(x)| ≤ 1

}
≤ Hn−1(Ω ∩ ∂E) <∞.

Thus ϕE ∈ BV (Ω), and in factˆ
Ω

|DϕE| = Hn−1(∂E ∩ Ω).

We now state the lower semi-continuity of the semi-norm
´

Ω
|Df |. This result,

along with the compactness theorem we are going to announce shortly after, are the
key ingredients for the existence of minimal surfaces.

Theorem 2.2.5 (Semi-continuity). Let Ω ∈ Rn be an open set and {fi} a sequence of
functions in BV (Ω) which converge in L1

loc(Ω) to a function f . Thenˆ
Ω

|Df | ≤ lim
j→∞

inf

ˆ
Ω

|Dfi|. (2.2.1)

Proof. Let g ∈ C1
0(Ω;Rn) such that |g| ≤ 1. Thenˆ

Ω

f∇ · g = lim
j→∞

ˆ
Ω

fj∇ · g = lim
j→∞

inf

ˆ
Ω

fj∇ · g ≤ lim
j→∞

inf

ˆ
Ω

|Dfj|.

�

Remark 2.2.6. Under the norm ||f ||BV (Ω) = ||f ||L1(Ω) +
´

Ω
|Df |, the functional space

BV (Ω) is a Banach space.

Theorem 2.2.7 (Compactness). Let Ω be a bounded open set in Rn sufficiently reg-
ular (for instance, with a Lipschitz-continuous boundary). Then the set of functions
uniformly bounded with the BV -norm are relatively compact in L1(Ω).

Proof. See [26, Theorem 1.19]. �

We now define the perimeter of a set. As we already commented, with the above
compactness result together with the semi-continuity theorem, we will prove the exis-
tence of minimising sets.

Definition 2.2.8 (Perimeter and Caccioppoli Set). Let E be a Borel set and Ω an
open set in Rn. We define the perimeter of E in Ω as

P (E,Ω) =

ˆ
Ω

|DϕE| = sup
{ˆ

E

∇ · g dx : g ∈ C1
0(Ω;Rn), |g(x)| ≤ 1

}
. (2.2.2)

If Ω = Rn, we denote P (E) = P (E,Rn). If a Borel set has locally finite perimeter, that
is, if P (E,Ω) <∞ for every bounded open set Ω, then E is called a Caccioppoli set.

We say that a set E is of minimal perimeter in Rn if it has minimal perimeter for every
ball BR of radius R > 0.

Remark 2.2.9. Recall that, for a sufficiently regular set E, we have

P (E,Ω) = Hn−1(Ω ∩ ∂E).
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We can finally state and prove the existence of minimal surfaces for the perimeter
(2.2.2). As you can see, the proof is quite short and easy.

Theorem 2.2.10 (Existence of minimal surfaces). Let Ω be a bounded open set in Rn

and let L be a Caccioppoli set. Then there exists a set E coinciding with L outside Ω
and such that ˆ

Rn
|DϕE| ≤

ˆ
Rn
|DϕF

for every F with F = L outside of Ω.

Proof. Since Ω is bounded, there exists a real number R > 0 such that Ω ⊂⊂ BR.
Now, if F = L outside Ω, thenˆ

Rn
|DϕF | =

ˆ
BR

|DϕF |+
ˆ
Rn−BR

|DϕL|.

So we need only to show that there exists a set E in BR coinciding with L outside of Ω
such that ˆ

BR

|DϕE| ≤
ˆ
BR

|DϕF |

for each set F in BR coinciding with L outside of Ω. Obviously, we have that
´
BR
|DϕF |

is bounded below by 0 and so, if {Ej} is a minimising sequence, we must have that´
BR
|DϕEj | is uniformly bounded. Furthermore BR is bounded so

´
BR
|DϕEj | is uni-

formly bounded. Hence ϕEj is a uniformly bounded sequence in BV (Ω) and, by com-
pactness, there exists a subsequence, still denoted {ϕEj}, which converges in L1(BR)
to a function f . Since ϕEj(x) → f(x) for almost all x in BR, and ϕEj(x) is either 1
or 0 we may assume that f is the characteristic function of a set E (up to a subset of
measure 0) which coincides with L outside of Ω. Now, by the semi-continuity results,
we see that E must provide the required minimum. �

Roughly speaking, ∂E minimizes the area among all surfaces with boundary ∂L∩∂Ω.

2.3. First and second variation of area

Suppose E ⊆ Rn is a minimal set in B1, and {Ft} is a one parameter family of
diffeomorphism Rn → Rn such that F0 = I := identity and the maps Ft − I have
compact support in B1. The sets

Et = Ft(E) = {Ft(x) : x ∈ E}

must equal E outside B1 and soˆ
B1

|DϕE| ≤
ˆ
B1

|DϕEt|.

Then, assuming appropriate smoothness, we see that

d

dt
A(t)|t=0 = 0 (2.3.1)
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and
d2

dt2
A(t)|t=0 ≤ 0. (2.3.2)

The derivatives (2.3.1) and (2.3.2) are called first and second variation of area respec-
tively.

We shall first give an expression for the first and second variation of area. We will
then consider the case where E is a cone in Rn, smooth everywhere except possibly at
the origin. In particular, we will give the ideas behind the proof for the minimality of
the Simons cone for n ≥ 8. On the other hand, it was proved by Simons in 1968 that,
for n < 8, ∂E is a hyperplane (see Theorem 2.4.2).

Figure 1. Small deformation perpendicular to the surface ∂E

Choosing a particular deformation that shifts the original set E in a direction normal
to the surface, i.e. ϕt = I + t · ξ · ν, with ξ ∈ C1

0 , supp ξ ⊂ BR, ν is the unit exterior
normal to ∂E and I stands for the identity (see Figure 1), we can obtain the following
variation formulas:{

d

dt

ˆ
A

|DϕEt|

}
t=0

=

ˆ
∂E

H ξdHn−1,{
d2

dt2

ˆ
A

|DϕEt|

}
t=0

=

ˆ
∂E

{
|δξ|2 − (c2 −H 2)ξ2

}
dHn−1

(2.3.3)

where H = H (x) is the mean curvature of the surface ∂E at x, c2 = c2(x) is the
sum of the squares of the principal curvatures of ∂E calculated at x (also the square
of the norm of the second fundamental form) and δξ is the vector (δ1ξ, . . . , δnξ), with
δi = Di − vi

∑n
h=1 vhDh the tangential derivatives at x ∈ ∂E.

The reader should refer to the book of Enrico Giusti [26, Chapter 10] for more
details.
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2.4. Regularity and minimal cones

In 1969 Bombieri, De Giorgi and Giusti proved that the Simons’ cone (2.4.3) is a
minimizer of the area, i.e. that any hypersurface which coincides with the cone outside
a compact set K must have larger area in K. Thus providing the first example of a
minimal surface with a singularity (at the origin).

The proof of Bombieri, De Giorgi and Giusti is quite involved. They use the nice tool of
calibrations which, roughly speaking, are divergence free units vector fields that extends
the normal field of a surface to the whole ambient space. Using the divergence theorem
one finds that if such a field can be found, then the surface is minimal. The problem
is then devoted to prove the existence of such vector field. Instead, we will explain the
ideas of G. De Philippis and E. Paolini [32]. It utilises the notion of sub-calibrations,
but only assumes knowledge of some basic facts about functions of bounded variation.

Since the blow-up1 (or zoom in) of a minimal surface in every point is a minimal
cone (if the point is non-singular, the cone is actually a half-space) the study of minimal
cones is very important in the theory of minimal surfaces. If we could prove the non-
existence of minimal cones with only a singularity in the origin in dimensions ≤ n, the
above would imply that the boundary of every minimal surface in dimension ≤ n is
regular. Otherwise we could blow up a singularity to arrive at some singular minimal
cone. Unfortunately, this is only true for n ≤ 7. In particular, the minimality of the
Simons cone is by himself a very important step in the theory of regularity of minimal
surfaces in higher dimension. Results of De Giorgi, Fleming, Almgren and Simons
proved that an (n− 1)-dimensional minimal surface in Rn is regular outside a singular
set whose dimension is at most n− 8. The Simons cone is an example showing that the
partial regularity results is optimal.

From now on, we will suppose that the set E is regular enough (it may not be
bounded), and consider the perimeter of E in an open ball BR as the (n−1)-dimensional
Haussdorff measure of ∂E∩BR. Therefore, a set E ⊂ Rn is of minimal perimeter if and
only if ∀BR and ∀ F ⊂ Rn such that E∩Bc

R = F ∩Bc
R, we have P (E;BR) ≤ P (F ;BR).

Figure 2. E is minimal among all F in BR

1For a set E ⊂ Rn with 0 ∈ ∂E, we call the set Et := {x ∈ Rn|tx ∈ E}, t > 0 a blow-up of E in 0.
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Remark 2.4.1. A hyperplane is a set of minimal surface. The isoperimetric inequality
states that a sphere has the smallest surface area per given volume.

We next state a very important theorem from James Simons [39] which excludes
the existence (in low dimension) of singular minimising cones possessing only a vertex
singularity.

Theorem 2.4.2 (J. Simons). Suppose E is a cone, such that ∂E is regular in Rn−{0}.
Suppose that H ≡ 0 and that the second variation of the area is non-negative. Then
either ∂E is a hyperplane or n ≥ 8.

Proof. See [26, Theorem 10.10]. �

In his work, J. Simons provided with the first example of stable surface with constant
mean curvature and with a singularity (at the origin), the Simons’ cone.

Definition 2.4.3 (Simons Cone). Let ES := {(x′, x′′) ∈ Rn×Rn : |x′|4− |x′′|4| < 0} ⊂
R2n. The boundary of E, CS := {x2

1 + · · ·+ x2
n = x2

n+1 + . . . x2
2n} is called the Simons’

cone.

The mean curvature of the Simons cone vanishes at every point outside the origin.
Therefore the first variation of the area vanishes along any deformation induced by
compactly supported smooth vector fields. It was pointed out by Simons that this cone
is also stable, meaning that the second variation of the area along smooth deformations
is non-negative.

Let us now define the notion of sub-calibration which will be a key tool in the proof
of the minimality of the Simons’ Cone.

Definition 2.4.4 (sub-calibration). Let E ⊆ Ω be a measurable set such that the
boundary ∂E ∩ Ω has C2 regularity. We say that a vector field ξ ∈ C1(Ω;Rn) is a
sub-calibration of E if it satisfies the following properties:

(1) ξ(x) = νE(x) is the exterior unit normal vector to ∂E for all x ∈ ∂E ∩ Ω.
(2) ∇ · ξ(x) ≤ 0 for all x ∈ E ∩ Ω.
(3) |ξ(x)| ≤ 1 for all x ∈ Ω.

Unlike the original approach with calibration, it is indeed very easy to find an
explicit sub-calibration for our measurable set E, as next result points out.

Proposition 2.4.5. Let u(x′, x′′) = |x′|4−|x′′|4
4

, for (x′, x′′) ∈ Rn × Rn. We have

∇ · ∇u
|∇u|

=
(|x′|4 − |x′′|4)

[
(n− 1)|x′|4 − (n+ 2)|x′|2|x′′|2 + (n− 1)|x′′|4

]
|∇u|3

. (2.4.1)

Furthermore, ∇u
|∇u| has the same sign as u(x′, x′′). Hence, we have that the vector field

ξ = ∇u
|∇u| is a sub-calibration of the set E.
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Proof. The computation of the divergence is straightforward. To prove the second
assumption, we just need to see that the term between brackets is non-negative. With

the substitution t = |x′|2
|x′′|2 we obtain the relation

(n− 1)t2 + (n+ 2)t+ (n− 1) ≥ 0

which holds true for all t if and only if the discriminant

∆ = (n+ 2)2 − 4(n− 1)2 = 3n(4− n) ≤ 0.

Which in turn holds true if and only if n ≥ 4. �

Notice that HS = ∇ ·
(
∇u
|∇u|

)
CS

= 0, i.e. the Simons cone is a critical surface of the

perimeter.

We will now announce the minimality of the Simons cone as was first stated by
Bombieri, De Giorgi and Giusti [8].

Theorem 2.4.6 (Bombieri-De Giorgi-Giusti, 1969). Let n ≥ 4. The set E ⊂ R2n

defined by

x2
1 + x2

2 + · · ·+ x2
n ≥ x2

m+1 + x2
m+2 + · · ·+ x2

2n

has an oriented boundary of least area.

Remark 2.4.7. It is easy to see that the Simons’ cone is not of minimal area in R2. A
straight line will be of less perimeter than going through the origin (see Figure 3).

Figure 3. Non-minimality of the Simons’ cone in R2

Remark 2.4.8. A very heuristic argument for the minimality of CS is the following.
We have ∂E a (n − 1)-dimensional surface. In polar coordinates the Jacobian for the
Lebesgue measure is rn−1drdθ. If r << 1, then as n − 2 increases, rn−2 decreases.
Therefore, the things we do near the origin do not account much, and we may think
that we want to go through the origin.

We shall now begin with the proof of Theorem 2.4.6.
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Figure 4. Boundary of F ′ in green and F ′′ in red

Proof of Theorem 2.4.6 (C. de Philipps, E. Paolini, 2009). Take any com-
petitor F and suppose it is regular enough. Consider the sets F ′ = F\ĒS and F ′′ =
E\F̄ c.

We claim the following:

Claim 2.4.9. P (ES, BR) ≤ P (F ′, BR) and P (ES, BR) ≤ P (F ′′, BR).

We only prove the first inequality, the other being very similar.

Proof Claim. From Proposition 2.4.5 we have ∇ · ξ ≥ 0 in Ec
S ∩BR. Hence,

0 ≤
ˆ

Ω

∇ · ξ =

ˆ
Ω

〈ξ, ν〉 =

ˆ
∂ES∩Ω̄

−1 +

ˆ
∂F ′∩Ω̄

〈ξ, ν〉 ⇒ P (ES, BR) ≤ P (F ′, BR),

where we have used the divergence theorem and the fact that ξ = ν on the boundary
of ES. �

Now, we have P (F,BR) = P (F ′, BR)+P (F ′′, BR)−P (F ′∩F ′′, BR) ≥ 2P (ES, BR)−
P (ES, BR) = P (ES, BR). �

Remember we have supposed that the class of competitors are smooth enough. For
the general case, we use the notion of sub-minimal sets, which are minimal sets among
all sets F ⊆ E such that E\F ⊂⊂ A, for all bounded open sets A ⊆ Ω. Then we prove
in a similar way as before that the sequences of sets Ek and F c

k defined as

Ek :=
{

(x′, x′′) ∈ Rn × Rn : u(x′, x′′) ≤ −1

4

}
,

Fk :=
{

(x′, x′′) ∈ Rn × Rn : u(x′, x′′) ≤ 1

4

}
are both sub-minimal in Ω and converge to CS and C c

S in L1
loc(Ω) respectively. It

turns out that the L1
loc limit of a sub-minimal set is also sub-minimal, and that if both
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E and Ec = Ω\E are sub-minimal in Ω, then E is minimal in Ω.

2.5. The Bernstein problem and a conjecture of De Giorgi

Is it true that C2 solutions f : Rn → R of the minimal surface equation

div
∇f√

1 + |∇f |2
= 0

are necessarily affine functions?

S.N. Bernstein proved it true for n = 2. In fact, the above question is affirmative in
dimension up to 7, but is instead negative for n ≥ 8, as was shown by E. Bombieri, E.
De Giorgi and E. Giusti [8], where, using the Simons cone they constructed a non-affine
entire solution of the minimal surface equation.

Related to minimal surfaces we have a very important conjecture, named after Ennio
De Giorgi, who conjectured that entire, bounded solutions of the Allen-Cahn equation
(2.5.1) are one-dimensional, at least in dimension up to 8.

Conjecture 2.5.1 (De Giorgi). Let us consider a solution u ∈ C2(Rn) of

−∆u = u− u3 (2.5.1)

such that

|u| ≤ 1, ∂nu > 0

in the whole Rn. Is it true that all level sets {u = λ} of u are hyperplanes, at least if
n ≤ 8?

The goal is thus to establish the one-dimensional character or symmetry of u,
namely, that u only depends on one variable or, equivalently, that the level sets of
u are hyperplanes.

In 1997 Ghoussoub and Gui [25] proved De Giorgi conjecture for n = 2 using a
Liouville-type result developed by Berestycki, Caffarelli and Nirenberg in one of their
papers on qualitative properties of solutions of semi-linear elliptic equations. Using
similar techniques, Ambrosio and Cabré [4] extended these results to dimension n = 3.
In 2003 the conjecture was proved by O. Savin in [34] for n ≤ 8 under the additional
hypothesis

lim
xn→±∞

u(x′, xn) = ±1 for all x′ ∈ Rn−1.

There is an heuristic argument that connects the conjecture of De Giorgi with the
Bernstein problem for minimal graphs. Consider the functional F (u) = (1 − u2)2/4.
Note that equation (2.5.1) is just the Euler-Lagrange equation of the energy

J(u) =
1

2

ˆ
Ω

|∇u|2 +
1

4

ˆ
Ω

(1− u2)2 (2.5.2)
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for bounded domains Ω ⊂ Rn. The first integral represents the kinetic energy, while the
second one is the potential energy. With u as in the conjecture, consider the blow-down
sequence

uε(y) = u(y/ε) for y ∈ B1 ⊂ Rn,

and the penalised energy of uε in B1:

Jε(uε) =

ˆ
B1

{ ε
2
|∇u|2 +

1

ε
F (uε)

}
dy.

As ε→ 0, the functionals Jε will Σ-converge to a functional which is finite only for
characteristic functions with values {−1, 1} and equal (up to a multiplicative constant)
to the area of the hypersurface of discontinuity. Heuristically, the sequence uε is ex-
pected to converge to a characteristic function whose hypersurface of discontinuity S
has minimal area or is at least stationary. The set S describes the behaviour at infinity
of the level sets of u, and S is expected to be the graph of a function on Rn−1 (since
the level sets of u are graphs due to hypothesis ∂nu > 0). The conjecture of De Giorgi
states that the level sets are hyperplanes. The connection with the Bernstein problem
is due to the fact that every minimal graph of a function defined on Rm = Rn−1 is
known to be a hyperplane whenever m ≤ 7, i.e. n ≤ 8.

Roughly speaking, one understands the behaviour of such a minimal surface in a
neighbourhood of a point x0 by using the blow-up technique explained above. Dilating
the picture more and more we end up with a limiting minimal surface defined in the
whole space.
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CHAPTER 3

Non-local minimal surfaces

In this chapter we introduce the notion of non-local minimal surfaces, i.e. sets that
are minimizers of a non-local version of the classical perimeter. We will call it fractional
or non-local perimeter. These surfaces can be interpreted as a non-infinitesimal version
of classical minimal surfaces.

In the previous chapter we introduced the classical theory of minimal surfaces. We
saw how minimal surfaces (or more generally surfaces with constant mean curvature)
arise in physical situations where one has two phases interacting (eg. water and ice)
and the energy of interaction is proportional to the area of the interface, which is
due to the interaction between particles in both phases being negligible when they are
far apart. Non-local minimal surfaces then describe phenomena where the interaction
potential does nos decay fast enough as particles get farther and farther apart, so that
two particles on different phases contribute a non-trivial amount to the total interaction
energy even if they are away from the interface.

Within these years, there has been a surge of activity in the study of fractional or
non-local minimal surfaces. The efforts have been focused, mainly, in the regularity of
the minimizers and in finding explicit examples. Still, apart from dimension 2, there is
a lot to be understood, mainly for the classification of stable non-local minimal cones.

3.1. The fractional perimeter

The notion of fractional perimeter was first introduced by Caffarelli, Savin and
Roquejofre [16]. Their work was motivated precisely by the structure of inter-phases
that arise in classical field models when very long space correlation are present.

To introduce it in a soft way, we consider a measurable set E ⊆ Rn, with n ≥ 2 and
a bounded, open domain Ω. For simplicity, we assume that the domain Ω has smooth
boundary.

Definition 3.1.1. Let A and B be two disjoint measurable sets. For any fixed s ∈
(0, 1/2), we define the functional

J(A;B) =

ˆ
Rn

ˆ
Rn

χA(x)χB(y)

|x− y|n+2s
dxdy. (3.1.1)

Clearly

J(A;B) ≥ 0, J(A;B) = J(B;A),

J(A1 ∪ A2;B) = J(A1;B) + J(A2;B) for A1 ∩ A2 = ∅.

21
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Definition 3.1.2 (Fractional perimeter). For a bounded set Ω ⊆ Rn and for a mea-
surable set E ⊂ Rn we define the fractional perimeter (or s-perimeter when we want to
emphasise the fractional factor s)

Pers(E; Ω) := J(E ∩ Ω; Ω\E) + J(E ∩ Ω; (Rn\E) ∩ (Rn\Ω)) + J(E\Ω; Ω\E). (3.1.2)

to be the “Ω-contribution” for the Hs-norm of the characteristic function of E (see
Remark 3.1.3 below).

It is non-local in the sense that it is not determined by the behaviour of E in a
neighbourhood of ∂E. This is precisely a difficulty when studying non-local functionals.
On the other hand, the functional is well defined for every measurable set. In particular,
there is no need to introduce Caccioppoli sets in this case.

Roughly speaking, the fractional perimeter captures the interactions between a set
E and its complement. These interactions occur in the whole space and are weighted by
an homogeneous and rotationally invariant kernel with polynomial decay. We remove
possible infinite contribution to the energy which come from infinity but which do not
change the variational problem.

Figure 5. Fractional Perimeter

Remark 3.1.3. We will consider for s ∈ (0, 1/2) minimizers of the Hs semi-norm of
the characteristic function χE of a set E which is fixed outside a domain Ω ⊂ Rn;

||χE||2Hs(Rn) =

ˆ
Rn

ˆ
Rn

|χE(x)− χE(y)|2

|x− y|n+2s
dxdy

= 2

ˆ
Rn

ˆ
Rn

χE(x)χEc(y)

|x− y|n+2s
dxdy,

where the integrals are taken in the principal value sense. Note that s < 1
2
; no indicator

function is in Hs for s ≥ 1
2
. The semi-norm ||χE||Hs(Rn) makes sense if E is smooth and
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bounded. To take into account unbounded sets, we remove the non-convergent part of
||χE||Hs(Rn).

Remark 3.1.4. We remark that balls and cylinders have finite fractional perimeter on
every bounded set Ω of Rn.

The functional in (3.1.2) naturally produces a minimisation problem:

Definition 3.1.5 (Minimal set). We say that E is a minimizer for Pers in Ω if for any
set F with F ∩ Ωc = E ∩ Ωc we have

Pers(E; Ω) ≤ Pers(F ; Ω).

We say that E is s-minimal in Rn if it is s-minimal in any ball BR ⊂ Rn for any
R > 0.

Remark 3.1.6. The set E ∩Ωc plays the role of “boundary data” for E ∩Ω. If Ω is a
bounded Lipschitz domain, then Pers(E; Ω) is bounded by Pers(E\Ω; Ω) <∞.

We are now going to prove some basic properties of s-minimizers. Namely, lower
semi-continuity of the fractional perimeter and existence of s-minimizers.

Proposition 3.1.7 (Lower semi-continuity). If χEn → χE in L1
loc then

lim
n→∞

inf JΩ(En) ≥ JΩ(E).

Proof. Recall that

J(A;B) =

¨
A×B

dxdy

|x− y|n+2s
.

It is clear that if χAn → χA, χBn → χB in L1
loc(Rn) then any sequence contains a

subsequence, say nk such that for almost every (x, y)

χAn(x)χBn(y)→ χA(x)χB(y).

Fatou’s lemma implies

lim
k

inf J(Ank , Bnk) ≥ J(A,B).

�

Theorem 3.1.8 (Existence of minimizers). Let Ω be a bounded Lipschitz domain and
E0 ⊂ Ωc be a given set. There exists a set E, with E ∩ Ωc = E0 such that

inf
F∩Ωc=E0

JΩ(F ) = JΩ(E).

Proof. The infimum is bounded since JΩ(E0) < ∞. Let Fn be a minimising
sequence. The Hs norms of the characteristic functions of Fn ∩ Ω are bounded. Thus,
by compactness, there is a subsequence that converges in L1(Rn) to a set E ∩ Ω. Now
the results follows from the lower semi-continuity. �
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In [16] Caffareli et al. also proved that s-minimizers satisfy a suitable integral
equation, that is the Euler-Lagrange equation corresponding to the functional in (3.1.2).
Namely, suppose that E is s-minimal in Ω and that x ∈ Ω ∩ (∂E). Thenˆ

Rn

χE(y)− χEc(y)

|x− y|n+2s
dy = 0. (3.1.3)

From the geometric point of view, (3.1.3) states that a suitable average of E (centred
at any point of ∂E) is balanced by the average of its complement. See Figure 6 below
for a graphical interpretation. If the set is “sufficiently symmetric”, the number of 1’s
and −1’s is constant at every point of the boundary.

Definition 3.1.9. Let E be an open set in Rn with C2-boundary. Then for every
x ∈ ∂E, the non-local or fractional mean curvature of ∂E at x (that we call NMC for
short) is given by

HE(x) = −P.V.
ˆ
Rn

χE(y)− χEc(y)

|x− y|n+2s
dy := lim

ε↘0

ˆ
|x−y|≥ε

χE(y)− χEc(y)

|x− y|n+2s
dy. (3.1.4)

Figure 6. Non-local Minimal Curvature

Note that if ∂E is C2 in a neighbourhood of x, the NMC is well defined in the
principal value sense. Because of the singularity of the denominator, a weaker notion is
considered in the viscosity sense for non-smooth sets E (see [16, Theorem 5.1] for more
details). In fact, it is sufficient for the boundary ∂E to be of class C1,β for some β > 2s
(in contrast with the classical mean curvature, which needs of at least C2 regularity).

Remark 3.1.10. As the kernel is invariant under Euclidean symmetries, we conclude
for instance that any sphere ∂Br(x) has constant non-local mean curvature. Note that
the minus sign in front of the integral makes that balls and cylinders have constant
positive NMC, in contraposition with the classical mean curvature.

With this notation, s-minimal surfaces have vanishing NMC, i.e. are critical sets
of the NMC, and the analogy with the classical perimeter case is evident. To make
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the analogy even stronger, we will see in the next section that the fractional perime-
ter converges to the classical perimeter, with good geometric and functional analytic
properties.

The following is a more geometric expression for the NMC. Using an integration by

parts on (3.1.4) and the fact that ∇y ·
{

(x − y)|x − y|−(n+2s)
}

= 2s|x − y|−(n+2s) we

arrive at

HE(x) = −1

s
P.V.

ˆ
∂E

(x− y) · ν(y)

|x− y|n+2s
dy, (3.1.5)

where ν(y) denotes the outer unit normal to ∂E. We point out that the integral is
absolutely convergent in the Lebesgue sense if ∂E is of class C1,β, β > 2s.

Another way of thinking of this is the following: using the notation χ̃E = χE − χEc
we have

HE(x) = −1

2
P.V.

ˆ
Rn

χ̃E(x+ y)− χ̃E(x− y)

|y|n+2s
dy

= −1

2
P.V.

ˆ
Rn

χ̃E(x+ y)− χ̃E(x− y)− 2χ̃E(x)

|y|n+2s
dy

=
(−∆)sχ̃E(x)

C(n, s)
,

where C(n, s) is a dimensional constant depending on s and (−∆)s denotes the frac-
tional Laplacian operator. Using this suggestive representation, the Euler-Lagrange
equation becomes

(−∆)sχ̃E = 0 along ∂E.

We will introduce the fractional Laplacian with more details in chapter 2.

As for the regularity of s-minimal surfaces, Caffarelli, Roquejoffre and Savin [16]
gave the first regularity result for these sets, stating that, up to a singular closed set of
finite Hausdorff dimension n− 2, all s-minimal surfaces are locally C1,s hypersurfaces.
When s is close to 1

2
, Caffarelli and Valdinoci [17] proved that all non-local surfaces

are smooth when the dimension of the ambient space is less o equal than 7. For n = 2,
Savin and Valdinoci [35] have proved that the only non-local minimal cones in R2 are
the trivial ones for all s ∈ (0, 1/2) (i.e. are half-planes). As a consequence, they obtain
that the closed singular set of a non-local minimal surface has at most n− 3 Hausdorff
dimension. This, together with the subsequent results of Barrios, Figalli and Valdinoci
[6], leads, for s close to 1

2
, to their C∞ regularity up to dimension n ≤ 7.

To end with this introduction to the fractional perimeter, we state an important
result by Serra et al. [18] that gives a universal perimeter estimate for stable sets of
the fractional perimeter functional. Recall that a set E is called stable if the second
variation of the functional is non-negative. In this case, a suitable weak formulation of
stability is used (see [18, Definition 1.6]).

Theorem 3.1.11. Let s ∈ (0, 1), R > 0 and E be a stable set in the ball B2R for the
non-local s-perimeter functional. Then, the classical perimeter of E in BR is bounded
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by CRn−1, where C depends only on n and s. Moreover, the s-perimeter of E in BR is
bounded by CRn−s.

Note that a universal perimeter estimate for local stable minimal surfaces is only
known for the case of two-dimensional stable minimal surfaces that are simply connected
and immersed in R3. Conversely, the perimeter estimate in Theorem 3.1.11 holds
in every dimension and without topological constraints. Another remark is that the
above estimate gives a control on the classical perimeter (i.e. the BV -norm of the
characteristic function), which is stronger, both from the geometric and functional space
perspective, than a control on the s-perimeter (recall that we have Hs(Ω) ⊆ BV (Ω) for
a bounded set Ω).

3.2. Asymptotics of the fractional perimeter and a notion of
non-local curvature

The limiting behaviour of the fractional s-perimeter as s → 1
2

−
and s → 0+ turns

out to be very interesting. Dávila, extending results by Bourgain, Brezis and Mironescu,
showed that for a Borel set E ⊂ Rn of finite perimeter in BR,

lim
s→ 1

2

−
(
1

2
− s)Pers(E;Br) = αnP (E;Br)

for almost any r ∈ (0, R), with αn a constant depending on n. This implies that surfaces
of minimal s-perimeter inherit the regularity properties of the classical minimal surfaces
for s sufficiently close to 1/2 (see [17]). See also the paper of Ambrosio et al. [5] for
an approach based of Γ-convergence.

The behaviour of Pers as s→ 0+ is slightly more involved. In principle, the limit as
s→ 0+ of Pers is, at least locally, related to the Lebesgue measure. Nevertheless, the
situation is complicated by the terms coming from infinity which, as s→ 0+ become of
greater and greater importance. We refer to the paper of Dipierro et al. [23] for more
details.

From now on we consider a set E ⊆ Rn with C2 boundary. We introduce now
the non-local objects that will play the role of directional and mean curvatures (see
the survey [2] by Abatangelo and Valdinoci for a careful analysis of non-local mean
curvature, with analogies and important differences with respect to the classical case).

Definition 3.2.1. The non-local mean curvature of ∂E at the point p ∈ ∂E is

Hs :=
1

ωn−2

ˆ
Rn

χE(x)− χEc(x)

|x− p|n+2s
dx. (3.2.1)

where ω denotes the (n− 2)-dimensional Hausdorff measure of the (n− 2)-dimensional
sphere.

Let e be any unit vector in the tangent space of ∂E at p.
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Definition 3.2.2. We define the non-local directional curvature of ∂E at the point
p ∈ ∂E in the direction e the quantity

Ks,e :=

ˆ
π(e)

|y′ − p′|n−2χE(y)

|y − p|n+2s
dy, (3.2.2)

with π(e) :=
{
y ∈ Rn : y = ρe + hν, ρ > 0, h ∈ R

}
the two-dimensional open

half-plane, ν the unit normal vector for ∂E at p. p = (p′, pn) ∈ Rn−1 × R, y = (y′, yn).

We endow π(e) with the induced two-dimensional Lebesgue measure, that is we
define the integration over π(e) by the formulaˆ

π(e)

g(y) dy :=

ˆ +∞

0

dρ

ˆ
R
dh g(ρe+ hν).

Remark 3.2.3. Since the function χE(x)/|x|n+2s is not in the space L1(Rn), the inte-
grals (3.2.1) and (3.2.2) have to be taken in the principal value sense

lim
ε↘0

ˆ
Rn\Bε(p)

χE(x)− χEc(x)

|x− p|n+2s
dx.

Theorem 3.2.4. In the above setting

Hs =
1

ωn−2

ˆ
Sn−2

Ks,e dH
n−2(e).

Namely, Theorem 3.2.4 states that the non-local mean curvature is the average
of the non-local directional curvatures, thus providing a non-local counterpart of the
classical mean curvature.

The direction that maximises the non-local directional curvature is not, in general,
orthogonal to the one that minimizes it. A further remark is that, differently from the
local case, in the non-local one it is not possible to calculate the mean curvature simply
by taking the arithmetic mean of the principal curvatures.

Theorem 3.2.5 (Asymptotics to 1
2
). For any e ∈ Sn−2

lim
s↗ 1

2

(1− 2s)Ks,e = Ke

and

lim
s↗ 1

2

(1− 2s)Hs = H,

where Ke (resp., H) is the directional curvature of E is the direction e (resp., the mean
curvature of E) at 0.

3.3. The non-local Allen-Cahn equation

We saw in the previous chapter how classical minimal surfaces arise naturally in
phase transition models. For instance, we saw that for the classical Allen-Cahn phase
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transition model, minimizers of the functional

J(u) =
1

2

ˆ
Ω

|∇u|2 +W (u(x)) dx, where W (t) :=
(1− t2)2

4
is a double-well potential

(3.3.1)
satisfy the Allen-Cahn equation (2.5.1).

Heuristically, minimizers of the above energy have a strong tendency to stay close
to ±1, which are the pure phases of the model, since these values kill the potential
energy, while the gradient term forces the transition to occur with the least possible
surface tension.

One interesting extension in the above setting is the study of long range interaction,
which naturally leads to the analysis of phase transitions and interfaces of non-local
type. To this end, we introduce an extension of the Allen-Cahn equation (2.5.1) from
a local to a non-local setting.

Given an open domain Ω ⊂ Rn and the double-well potential W , we define the
fractional Allen-Cahn equation

(−∆)su+W ′(u) = 0 in Ω, (3.3.2)

for s ∈ (0, 1). The solutions are the critical points of the non-local energy

J(u) :=
1

2

¨
R2n\(Ωc)2

|u(x)− u(y)|2

|x− y|n+2s
dxdy +

ˆ
Ω

W
(
u(x)

)
dx, (3.3.3)

up to normalisation constant. Comparing (2.5.2) and (3.3.3) we see that the kinetic
energy is modified in order to take into account long range interactions. Notice that
we have omitted the integral over Ωc × Ωc, just as we did for the fractional perimeter,
since we consider that the values of u are prescribed in this domain (in the local case,
the values are prescribed on ∂Ω). Of course, the potential energy has local features,
therefore the potential integrals are set over Ω both in the local and the non-local case.

We may now proceed as the in classical case and consider a blow-up of u, namely
uε(x) = u(x/ε). It is also necessary to normalise by a multiplicative factor that depends
on s. We end up obtaining the following functional

Jε(u) =
1

2

¨
(u(x)− u(y))2

|x− y|n+2s
dxdy +

1

ε(s)

ˆ
W
(
u(x)

)
dx.

We have a phase transition function uε whose level sets as ε ↘ 0 approach some
∂E. When s ∈ (0, 1/2) this ∂E is an s-minimal set, while for s ∈ [1/2, 1) it is a classical
minimal surface (see Savin and Valdinoci [36]).

We also consider a fractional or non-local counterpart of the conjecture of De Giorgi.
Namely, we consider the non-local Allen-Cahn equation (3.3.2) with u smooth, bounded
and monotone in one direction, and wonder if it is also true, at least in low dimension,
that u is one-dimensional. In this case, the conjecture was proved for n = 2 and
s = 1/2 by Cabré and Solà-Morales [11]. In the case n = 2 and for any s ∈ (0, 1), the
results is proved by Cabré and Sire [12] using the harmonic extension of the fractional
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Laplacian. For n = 3 a proof by Cabré and Cinti can be found in [13] for s ∈ [1/2, 1].
The conjecture is still open for n = 3 and s ∈ [0, 1/2], and for n ≥ 4. In [28] Sire et al.
proved the conjecture in n = 2 for general, compactly supported fractional operators
without using extension techniques. See also the master thesis of J.C. Felipe Navarro
[24] for the one dimensional case for more general operators.

3.4. Surfaces with constant non-local mean curvature

We are now concerned with hypersurfaces of Rn with constant non-local mean cur-
vature. The first result we would like to point out is the non-local or fractional counter-
part of the classical result by Alexandrov on the characterisation of spheres as the only
closed embedded constant mean curvature hypersurface. This result was first stated
and proved independently by Cabré et al. [10] and Ciraolo et al. [19]. The precise
statement is the following (see [10, Theorem 1.1]).

Theorem 3.4.1. Suppose that E is a non-empty bounded open set with C2,β-boundary
for some β > 0 and with the property that HE is constant on ∂E. Then E is a ball.

This result states that every bounded (and a priori not necessarily connected) hy-
persurface without boundary and with constant nonlocal mean curvature must be a
sphere.

In [10] they also prove the non-local counterpart of the classical results of Delaunay
[22] on periodic cylinders with constant non-local mean curvature. They study sets
E ⊂ R2 with constant non-local mean curvature which have the form of bands or
“cylinders” in the plane

E = {(s1, s2) ∈ R2 : −u(s1) < s2 < u(s1)},
where u : R → (0,∞) is a positive function. They prove the existence of a continuous
branch of periodic bands that do not differ much from a straight band, all of them
with the same constant NMC. Therefore they show that, in the non-local setting, these
objects already exists in dimension 2. While they only exist in dimension 3 and higher
in the classical constant mean curvature setting. In [15] Cabré, Fall and Weth prove
the existence of such “perturbed” cylinders for dimension n ≥ 2. Furthermore, they
prove that they are indeed C∞.

Another way to construct such sets is variationally. This will be done in the subse-
quent chapters.
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CHAPTER 4

The Dirichlet problem for the fractional Laplacian

Consider for simplicity a smooth and bounded function u (or more generally a
function in the Schwartz space S(Rn) of rapidly decreasing functions). The fractional
Laplacian operator is defined as

(−∆)su(x) := Cn,s

ˆ
Rn

u(x)− u(x+ y)

|y|n+2s
dy, s ∈ (0, 1). (4.0.1)

Notice that the above integral is well defined in the principal value sense. That is,

(−∆)su(x) = Cn,s lim
ε↘0

ˆ
Rn\Bε

u(x)− u(x+ y)

|y|n+2s
dy.

Note also that the integral above is well defined pointwise if, for instance, one
considers u ∈ L∞(Rn) ∩ Cγ

loc(Rn) for γ > 2s.

This operator, or more generally integro-differential operator of the form

−Lu(x) =
∑
i,j

aij∂iju+
∑
j

bj∂ju+

ˆ
Rn

{
u(x+ y)− u(x)− y · ∇u(x)χB1(y)

}
dν(y)

arise naturally in the study of stochastic processes with jumps, or more precisely as
the infinitesimal generator of a Lèvy process. In particular, when the process has
no diffusion or drift part, it is symmetric and the Lèvy measure ν(y) is absolutely
continuous, the operator L can be written as

Lu(x) = P.V.

ˆ
Rn

{
u(x)− u(x+ y)

}
K(y) dy

for some symmetric kernel K. The fractional Laplacian is the infinitesimal generator of
a radially symmetric and stable Lèvy process of order 2s. Roughly speaking, a Lèvy
process represents the random motion of a particle whose successive displacements are
independent and statistically identical over different time intervals of the same length.

The reader may refer to the author’s bachelor thesis [3] and the nice survey of
Bucur and Valdinoci [9, Chapter 1] for a more detailed introduction to the fractional
Laplacian. See also the introductory paper by Valdinoci [41] for a presentation of the
fractional Laplacian using a very intuitive probabilistic argument.
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4.1. The Dirichlet semi-linear problem

We consider here the semi-linear Dirichlet problem for a smooth bounded domain
Ω ⊆ Rn {

(−∆)su = f(u) in Ω

u = g in Rn\Ω.
(4.1.1)

We shall prove that equation (4.1.1) is the Euler-Lagrange equation of the energy

E(u) =
1

4

¨
(Rn×Rn)\(Ωc×Ωc)

|u(x)− u(y)|2

|x− y|n+2s
dxdy −

ˆ
Ω

F (u), (4.1.2)

where F is the primitive of f , i.e. F ′ = f (we may consider f to be continuous). Note
that E is well defined for all regular enough functions u which are bounded at infinity.

Remark 4.1.1. The first integral plays the role of the kinetic energy while the second
integral is the potential energy.

Proposition 4.1.2. Let u be a minimum of the functional (4.1.2). Then

(−∆)su = f(u) in Ω. (4.1.3)

Notice that we have not specified any regularity for the function u. We can suppose
u to be regular enough.

Proof. Let ϕ ∈ C∞c (Ω) and consider (small) perturbations u + εϕ, with ε small.
If u is a minimizer of (4.1.1), then differentiating with respect to ε at 0 we have

0 =
d

dε
∣∣ε=0

{1

4

¨
(Rn×Rn)\(Ωc×Ωc)

∣∣u(x)− u(y) + ε
(
ϕ(x)− ϕ(y)

)∣∣2
|x− y|n+2s

dxdy −
ˆ

Ω

F (u+ εϕ)
}

=
1

2

¨
(Rn×Rn)\(Ωc×Ωc)

(
u(x)− u(y)

)(
ϕ(x)− ϕ(y)

)
|x− y|n+2s

dxdy −
ˆ

Ω

f(u)ϕ

=

¨
(Rn×Rn)\(Ωc×Ωc)

ϕ(x)
u(x)− u(y)

|x− y|n+2s
dxdy −

ˆ
Ω

f(u)ϕ

=

ˆ
Ω

dx ϕ(x)
{ˆ

Rn

u(x)− u(y)

|x− y|n+2s
dy − f

(
u(x)

)}
=

ˆ
Ω

dx ϕ(x)
{

(−∆)su(x)− f
(
u(x)

)}
.

In the 3rd equality we have used the symmetry of the domain of integration in (x, y).
In the 4th equality we have used the fact that ϕ(x) ≡ 0 if x ∈ Ωc. �

The minimizer of the functional E among all functions with u = g in Rn\Ω will
therefore be a solution of (4.1.1) in a weak sense. In [37] Ros proves the existence and
uniqueness of weak solutions of (4.1.1) when f only depends on the spacial variable x
using Riesz representation theorem, assuming homogeneous Dirichlet conditions.
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We will here show the existence of a weak solution when the non-linear term is
sub-linear at infinity (assuming also homogeneous Dirichlet conditions). We start by
defining the functional space in which we will work.

Definition 4.1.3. Let u ∈ Hs(Rn). We define the subspace Hs
0(Ω) as

Hs
0 :=

{
u ∈ Hs(Rn) : u ≡ 0 in Rn\Ω

}
. (4.1.4)

Equipped with the inner product

(u, v)Hs
0

:=
1

2

ˆ
Rn

ˆ
Rn

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|n+2s

dxdy, (4.1.5)

the space Hs
0(Ω) is a Hilbert space.

Remark 4.1.4. Notice that the functional E can now be written as

E(u) =
1

2
||u||Hs

0
−
ˆ

Ω

F (u). (4.1.6)

Theorem 4.1.5. Let f be a continuous and sub-linear function at infinity, i.e.

lim
|t|→∞

f(t)

t
= 0. (4.1.7)

There exists a minimum u ∈ Hs
0(Rn) of the functional E in (4.1.2).

Essentially, the only assumption which is needed in order to prove the existence of
minimizer is the fractional Poincaré inequality.

Proposition 4.1.6 (Fractional Poincaré inequality). Let Ω ⊂ Rn be any bounded do-
main, and let u ∈ Hs

0(Ω). Thenˆ
Ω

u2 ≤ C

ˆ
Rn

ˆ
Rn

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|n+2s

dxdy.

Proof. The result follows from Hölder’s inequality and the fractional Sobolev em-
bedding for p = 2 and q = 2n

n−2s
. �

Proof of Theorem 4.1.5. We will use a direct method of the calculus of varia-
tions to prove the existence of a minimizer.

Due to (4.1.7), there exists c > 0, which we consider small enough, such that

|f(t)| ≤ c(1 + |t|) ∀t ∈ R. (4.1.8)

Now, using (4.1.8) and Proposition 4.1.6 we have

E(u) =
1

2
||u||2Hs

0
−
ˆ

Ω

F (u)

≥ 1

2
||u||2Hs

0
− c||u||L1(Ω) −

c

2
||u||2L2(Ω) dx

≥ 1

2
||u||2Hs

0
− c1||u||Hs

0
− c2||u||2Hs

0

= c3||u||2Hs
0
− c1||u||Hs

0
.
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Hence, E is bounded from below and coercive. Consider a minimising sequence
{um}m∈N ⊂ Hs

0(Ω) of E . Taking account of the coercivity of E , the sequence {um}m∈N
is necessarily bounded in Hs

0(Ω). Since the space Hs
0(Ω) is reflexive, we can extract

a subsequence, which for simplicity we still denote {um}m∈N, such that um weakly
converges to u in Hs

0(Ω), i.e.

(um, ϕ)Hs
0(Ω) → (u, ϕ)Hs

0(Ω) for all ϕ ∈ Hs
0(Ω).

It is straightforward to prove that the functional
´

Ω
F (u) is continuous from Hs

0(Ω)
with the weak topology to R. For this, consider a weakly converging sequence vm ⇀ v.
The sequence is uniformly bounded, i.e. ||vm||Hs

0(Ω) ≤M for all m ∈ N. Using now the
compact embedding Hs(Ω) ⊂⊂ L1(Ω), the sequence {vm} is still uniformly bounded
and moreover convergences to v in L1(Ω). Therefore, using Lebesgue’s dominated
convergence theorem and the fact that the function F is continuous, we haveˆ

Ω

F (vm)→
ˆ

Ω

F (v).

Moreover, by Hahn-Banach the norm || · ||Hs
0(Ω) is weakly lower semi-continuous.

Therefore, the functional E is lower semi-continuous with the weak topology, i.e.

um ⇀ u in Hs
0(Ω)⇒ lim

n→∞
inf E(um) ≥ E(u).

Hence u ∈ Hs
0(Ω) is a minimum of E . �

Using a similar argument one can prove the existence of minimizers for the linear
case (see the book of Molica, Radulescu and Servadei [7, Section 3.2]). Furthermore,
in [7, Chapter 6], they show the existence of minimizers when the non-linear term f
satisfies super-linear and sub-critical growths conditions at zero and at infinity. See
also Abatangelo [1] for more general non-linearities using some sub- and super-solution
methods.

4.2. The periodic semi-linear problem

Let u be a 2π-periodic function in R. We study the periodic problem

(−∆)su = f(u) in R. (4.2.1)

Namely, we prove that the energy associated with this problem is

E(u) =
1

4

ˆ π

−π
dx

ˆ
R
dy
|u(x)− u(y)|2

|x− y|1+2s
−
ˆ π

−π
F (u), (4.2.2)

for F ′ = f .

Note that, in this case and following the semi-linear problem (4.1.1), the domain of
integration for the kinetic energy would be

(
R×R

)
\
(
(−π, π)c× (−π, π)c

)
. In our case,

we do not consider the second contribution of (−π, π)×
(
R\(−π, π)

)
.
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Proposition 4.2.1. Assume u is a minimizer of the functional (4.2.2) among all 2π-
periodic functions defined in R. Then

(−∆)su = f(u) in R.

Note that, just as before, the above equation will be a priori satisfied only in a weak
sense.

Proof. Let ϕ be a 2π-periodic function (note that we do not need to consider
ϕ ∈ C∞c since we now work with a base) and consider u+ εϕ, with ε small. We have

0 =
d

dε
∣∣ε=0

ˆ π

−π
dx

ˆ
R
dy

∣∣u(x)− u(y) + ε
(
ϕ(x)− ϕ(y)

)∣∣2
|x− y|1+2s

−
ˆ π

−π
F (u+ εϕ)

=
1

2

ˆ π

−π
dx

ˆ
R
dy

u(x)− u(y)

|x− y|1+2s

(
ϕ(x)− ϕ(y)

)
−
ˆ π

−π
f(u)ϕ

=

ˆ π

−π
dx ϕ(x)

{1

2

ˆ
R
dy

u(x)− u(y)

|x− y|1+2s

(
ϕ(x)− ϕ(y)

)}
+

ˆ π

−π
dy ϕ(y)

{1

2

ˆ
R
dx

u(y)− u(x)

|x− y|1+2s

(
ϕ(x)− ϕ(y)

)}
−
ˆ π

−π
f(u)ϕ

= A+B

where A and B are the last integrals.

Now, making the change of variables{
y − 2kπ = z

dy = dz

}
,

{
x− 2kπ = z̄

dx = dz̄

}
we can see that the expressions A and B above are equivalent:

B =
∑
k∈Z

ˆ (2k+1)π

(2k−1)π

dy ϕ(y)
{1

2

ˆ π

−π
dx

u(y)− u(x)

|x− y|1+2s

}
=
∑
k∈Z

dz ϕ(z)
{1

2

ˆ −(2k−1)π

−(2k+1)π

dz̄
u(z)− u(z̄)

|z − z̄|1+2s

}
=

ˆ π

−π
dz ϕ(z)

{1

2

ˆ
R
dz̄

u(z)− u(z̄)

|z − z̄|1+2s

}
= A.

Therefore,

0 =

ˆ π

−π
dx ϕ(x)

{ˆ
R
dy

u(x)− u(y)

|x− y|1+2s
− f(u)

}
=

ˆ π

−π
dx ϕ(x)

{
(−∆)su− f(u)

}
.

In particular, we can extend the equality in the whole R because of the periodicity
of u. �
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For the periodic case, the reader may refer to the author’s bachelor thesis [3, Chap-
ter 6] for the existence of a family of even and periodic solutions of the semi-linear
problem under certain conditions for the non-linearity.
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CHAPTER 5

The periodic fractional perimeter functional

In this chapter we consider sets E = {−u(x1) < x2 < u(x1)} ⊂ R2, for non-negative
(i.e. u ≥ 0), even 2π-periodic functions u. We consider the periodic fractional perimeter
functional

Pα(E) :=
1

8

ˆ
E∩{−π<x1<π}

ˆ
Ec

dxdy

|x− y|n+α
, (5.0.1)

for 0 < α < 1.

This functional was introduced by Dávila et al. [21] to study periodic sets that are
decreasing and cylindrically symmetric in a given direction. In their paper, they prove
variationally the existence of a 1-periodic minimizer for every fixed volume within the
slab {(x, x′) ∈ R× Rn−1 : −π < x < π} and for any dimension n ≥ 2.

In this chapter we will prove that, in fact, the fractional perimeter functional adapted
to periodic sets gives rise to constant NMC surfaces in a weak sense. For this, we
consider periodic sets E defined above and the functional (5.0.1), which now reads

Pα(u) :=
1

4

ˆ π

0

dx1

ˆ u(x1)

−u(x1)

dx2

ˆ
R
dy1

ˆ
|y2|>u(y1)

dy2
1

|x− y|2+α
, (5.0.2)

Remark 5.0.1. Note that circles and bands have finite energy. To see this, consider
a circle B centered at the origin of radius 0 < r ≤ π/2. Computing the functional
evaluated at the ball using polar coordinates we obtain:

Pα(B) ≤ 1

4

ˆ
B

ˆ
R2\B

dxdy

|x− y|2+α
= πr2−α < +∞.

Using the same idea, we can bound the integral over a band with the integral above
and see that bands also have finite energy.

Before that, let us give a simplified expression for the functional Pα. This will
considerably reduce our incoming work.

Proposition 5.0.2. Consider the functions

G(q) :=

ˆ q

0

dτ(q − τ)(1 + τ 2)−
2+α
2 , (5.0.3)

and

H(q) := G′(∞)q −G(q). (5.0.4)
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The functional (5.0.1) can be expressed as

Pα(u) =
1

2

ˆ π

0

dx

ˆ
R
dy|x− y|−α

{
G
(u(x)− u(y)

|x− y|

)
+H

(u(x) + u(y)

|x− y|

)}
. (5.0.5)

Notice that we have reduced the dimension of the problem. Instead of two doubles
integrals in R2, we are now left with two integrals in R.

Proof. We split the functional into two parts; an integration below and above the
periodic bands, respectively:

Pα(u) =
1

4

ˆ π

0
dx1

ˆ u(x1)

−u(x1)
dx2

ˆ
R
dy1

ˆ u(y1)

−∞
dy2 |x1 − y1|−(2+α)

(
1 +

( y2 − x2

|x1 − y1|

)2
)− 2+α

2

+
1

4

ˆ π

0
dx1

ˆ u(x1)

−u(x1)
dx2

ˆ
R
dy1

ˆ +∞

u(y1)
dy2dy2 |x1 − y1|−(2+α)

(
1 +

( y2 − x2

|x1 − y1|

)2
)− 2+α

2

.

Making the change of variables

τ =
y2 − x2

|x1 − y1|
, dτ =

1

|x1 − y1|
dy2 (5.0.6)

and considering the continuous function

F (q) :=

ˆ q

0

dτ

(1 + τ 2)
2+α
2

(5.0.7)

we obtain

Pα(u) =
1

4

ˆ π

0

dx1

ˆ u(x1)

−u(x1)

dx2

ˆ
R
dy1 |x1 − y1|−(1+α)

ˆ −u(y1)+x2|x1−y1|

−∞
dτ (1 + τ 2)−

2+α
2

+
1

4

ˆ π

0

dx1

ˆ u(x1)

−u(x1)

dx2

ˆ
R
dy1 |x1 − y1|−(1+α)

ˆ +∞

u(y1)−x2
|x1−y1|

dτ (1 + τ 2)−
2+α
2

=
1

4

ˆ π

0

dx1

ˆ u(x1)

−u(x1)

dx2

ˆ
R
dy1 |x1 − y1|−(1+α)

{
F
(
− u(y1) + x2

|x1 − y1|

)
− F (−∞)

+ F (+∞)− F
(u(y1)− x2

|x1 − y1|

)}
.

The function F is odd and bounded at infinity (τ 2+α is integrable at infinity).

Moreover, the function F
(x2−u(y1)
|x1−y1|

)
−F

(
u(y1)+x2
|x1−y1|

)
is even with respect to x2. Combining

all this we obtain

Pα(u) =
1

2

ˆ π

0

dx1

ˆ u(x1)

0

dx2

ˆ
R
dy1 |x1 − y1|−(1+α)

{
F
(x2 − u(y1)

|x1 − y1|

)
− F

(x2 + u(y1)

|x1 − y1|

)
+ 2F (+∞)

}
.

(5.0.8)
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Consider now the function

G(q) :=

ˆ q

0

F (p) dp =

ˆ q

0

dp

ˆ p

0

dτ (1 + τ 2)−
2+α
2

=

ˆ q

0

dτ +

ˆ q

τ

dp (1 + τ 2)−
2+α
2

=

ˆ q

0

dτ(q − τ)(1 + τ 2)−
2+α
2 ,

(5.0.9)

and the changes of variables
σ1 =

x2 − u(y1)

|x1 − y1|

dσ1 =
dx2

|x1 − y1

 ,


σ2 =

x2 + u(y1)

|x1 − y1|

dσ1 =
dx2

|x1 − y1

 . (5.0.10)

Notice thatG′ = F . Therefore, the functionG has bounded derivative and thusG′(+∞)
is defined and equal to F (+∞). Moreover, the function G is even. Plugging all this
into (5.0.8) we obtain

Pα(u) =
1

2

ˆ π

0

dx1

ˆ
R
dy1 |x1 − y1|−α

{
G
(u(x1)− u(y1)

|x1 − y1|

)
−G

(u(x1) + u(y1)

|x1 − y1|

)
+ 2F (+∞)

u(x1)

|x1 − y1|

}
=

1

2

ˆ π

0

dx1

ˆ
R
dy1 |x1 − y1|−α

{
G
(u(x1)− u(y1)

|x1 − y1|

)
−G

(u(x1) + u(y1)

|x1 − y1|

)
+G′(∞)

u(x1) + u(y1)

|x1 − y1|

}
.

To obtain the expression (5.0.5) we have only left to consider the function

H(q) := G′(∞)q −G(q). (5.0.11)

�

Let us briefly comment on the functions G and H that we have just used. We
have G(0) = 0, limx→+∞G

′(x) = G′(+∞) < +∞ (G′ = F which is bounded) and

G′′(x) = (1 + x2)−
2+α
2 > 0. Therefore, G is a positive, even, strictly increasing and

decreasing in the positive and negative axis respectively, and strictly convex function
which starts as a quadratic function near the origin and becomes linear as we get
away from it. On the other hand, we have H(0) = 0, H ′′(x) = −G′′(x) < 0 and
G(x) = G(x)−G(0) = G′(ξ)x < G′(+∞)x. So H is an strictly increasing, bounded at
+∞ and concave function.
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From now on, we will only consider the simplified expression (5.0.5). The next
results shows that the Euler-Lagrange equation for the periodic fractional perimeter
(5.0.1) is the non-local mean curvature (3.1.4).

Proposition 5.0.3. Let u be a positive, even 2π-periodic function in R which mini-
mizes the functional (5.0.5) among all positive, even 2π-periodic functions satisfying
the following volume constraint:

1

π

ˆ π

0

u(x)dx = µ, for some positive real number µ.

Then u is a solution of

H(u)(x) = a for all x ∈ R, (5.0.12)

for some constant a ∈ R, where H denotes the non-local mean curvature (3.1.4).

Proof. Let ϕ be an even 2π-periodic function in R with
´ π

0
ϕ = 0 and consider a

perturbation u+ εϕ so that
´ π

0
u+ εϕ = 0 and still u+ εϕ > 0 (if ε is small). Because

u is a minimum we have

0 =
d

dε
∣∣ε=0

Pα(u+ εϕ) =
1

2

d

dε
∣∣ε=0

ˆ π

0
dx

ˆ
R
dy |x− y|−α

{
G
(u(x)− u(y) + ε

(
ϕ(x)− ϕ(y)

)
|x− y|

)
+H

(u(x) + u(y) + ε
(
ϕ(x) + ϕ(y)

)
|x− y|

)}

=
1

2

ˆ π

0
dx

ˆ
R
dy |x− y|−α

{
F
(u(x)− u(y)

|x− y|

)ϕ(x)− ϕ(y)

|x− y|
+ F (+∞)

ϕ(x) + ϕ(y)

|x− y|

− F
(u(x) + u(y)

|x− y|

)ϕ(x) + ϕ(y)

|x− y|

}

=

ˆ π

0
dx ϕ(x)

1

2

ˆ
R
dy |x− y|−(1+α)

{
F
(u(x)− u(y)

|x− y|

)
−

(
F
(u(x) + u(y)

|x− y|

)
− F (+∞)

)}

+

ˆ
R
dy ϕ(y)

1

4

ˆ π

−π
dx |x− y|−(1+α)

{
F
(u(y)− u(x)

|x− y|

)
−

(
F
(u(x) + u(y)

|x− y|

)
− F (+∞)

)}
= A+B

where A and B are the last two integrals. Note that the factor 1/4 in B comes from
the fact that we are now integrating in (−π, π).

We shall now see that these two expressions are in fact equivalent:

B =
∑
k∈Z

ˆ (2k+1)π

(2k−1)π
dy ϕ(y)

1

2

ˆ π

0
dx |x− y|−(1+α)

{
F
(u(y)− u(x)

|x− y|

)
−

(
F
(u(x) + u(y)

|x− y|

)
− F (+∞)

)}
.
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Making the change of variables{
ȳ = y − 2kπ

dȳ = dy

}
,

{
x̄ = x− 2kπ

dx̄ = dx

}
(5.0.13)

we obtain

B =

ˆ π

−π
dȳ ϕ(ȳ)

{
1

4

∑
k∈Z

ˆ (2k+1)π

(2k−1)π

dx̄ |x̄− ȳ|−(1+α)

{
F
(u(x̄)− u(ȳ)

|x̄− ȳ|

)
−

(
F
(u(x̄) + u(ȳ)

|x̄− ȳ|

)
− F (+∞)

)}}
,

which is equal to A.

Hence, using the expression in [10, Lemma 4.1] for the non-local mean curvature,
we finally arrive at

0 =

ˆ π

0
dx ϕ(x)

ˆ
R
dy |x− y|−(1+α)

{
F
(u(x)− u(y)

|x− y|

)
−

(
F
(u(x) + u(y)

|x− y|

)
− F (+∞)

)}

=

ˆ π

0
dx ϕ(x)

1

2
H(u)(x)

for all ϕ with
´ π

0
ϕ = 0. This gives us H(u)(x) = a for all x ∈ (0, π) in some weak

sense, for some constant a ∈ R. The result follows from the periodicity of u. �

Therefore, minimizers of (5.0.5) are surfaces with constant non-local mean curvature,
at least in a weak sense; we do not know a priori if the minimizers of this functional are
of class C1,β for some β > α/2. Note that the volume constraint excludes the trivial
case u ≡ 0.
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CHAPTER 6

Delaunay cylinders with constant non-local mean curvature

We consider the new functional, which we still denote Pα for simplicity

Pα(u) :=
1

2

ˆ π

0
dx

ˆ
R
dy |x− y|−α

{
G
( |u(x)| − |u(y)|

|x− y|

)
+H

( |u(x)|+ |u(y)|
|x− y|

)}
≥ 0. (6.0.1)

In this case, if a function u minimizes the above functional, then the function |u| will
also be a minimizer (and, in particular, we can take out the absolute values and recover
our periodic fractional perimeter functional). Hence, we can consider non-negative
minimizers u and thus the set

E = {−u(x1) < x2 < u(x1)} ⊂ R2 (6.0.2)

makes sense.

Remark 6.0.1. For functions u that are minimizers of the above functional, the Euler-
Lagrange equation (5.0.12) holds at points x ∈ R such that u(x) > 0.

We will look for non-negative, even 2π-periodic minimizers in the fractional Sobolev
space

Wα,1(0, π) :=
{
u ∈ L1(0, π) :

|u(x)− u(y)|
|x− y|1+α

∈ L1
(
(0, π)× (0, π)

)}
i.e. and intermediary Banach space between L1(0, π) and W 1,1(0, π), endowed with the
natural norm

||u||Wα,1(0,π) :=

ˆ π

0
|u| dx+

ˆ π

0

ˆ π

0

|u(x)− u(y)|
|x− y|1+α

dxdy,

where the term

[u]Wα,1(0,π) :=

ˆ π

0

ˆ π

0

|u(x)− u(y)|
|x− y|1+α

dxdy (6.0.3)

is the so-called Gagliardo semi-norm of u. We denote Wα,1
per (0, π) the space of even

2π-periodic functions in R such that u ∈ Wα,1(0, π).

The space Wα,1(0, π) can be compactly embedded into the Lebesgue space L1(0, π)
as the next (more general) result points out.
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Theorem 6.0.2. Let α ∈ (0, 1), p ∈ [1,+∞), q ∈ [1, p], Ω ⊂ Rn be a bounded extension
domain1 for Wα,p and J be a bounded subset of Lp(Ω). Suppose that

sup
f∈J

ˆ
Ω

ˆ
Ω

|f(x)− f(y)|p

|x− y|n+α
dxdy < +∞.

Then J is pre-compact in Lq(Ω).

Proof. See [31, Theorem 7.1]. �

Thanks to this result we see that the subspace of non-negative functions is closed
with the Wα,1 norm.

We have already proved that positive minimizers of (5.0.1) are critical points of the
non-local mean curvature equation (5.0.12) (see Proposition 5.0.3). Let us now prove
the existence of minimizers.

Proof Theorem 1.1.1. We denote by V the subspace of non-negative functions
in Wα,1

per (0, π). Let {uk} ⊆ V be a minimising sequence of Pα, i.e.

lim
k→∞

Pα(uk) = inf
v∈Wα,1(0,π)

Pα(v).

We may assume that, for k sufficiently large, there exists a constant C > 0 such that
P (uk) ≤ C1. In particular,ˆ π

0

dx

ˆ π

−π
dy |x− y|−αG

(uk(x)− uk(y)

|x− y|

)
≤ C1.

Because of the integrability of |t|−α near the origin, there exists a constant C2 ≥ C1

such that ˆ π

0

dx

ˆ π

−π
dy |x− y|−α

{
1 +G

(uk(x)− uk(y)

|x− y|

)
≤ C2.

Now, the function G is positive, even and strictly convex. Moreover, near the origin
it acts as a quadratic function but quickly converges to a linear function. This can be
seen by studying the derivative G′ = F in (5.0.7); the function F is bounded and gets
closer to the upper bound fast, so that G′(x) approaches F (+∞) quickly. The same
happens in the negative axis since F is an odd function. Therefore, for a sufficiently
large constant β > 0 we have that

1 +G(x) ≥ 1

β
|x|. (6.0.4)

That is, our function can be bounded below by the linear function 1
β
|x|.

Thus, we arrive at

1

β

ˆ π

0

dx

ˆ π

−π
dy |x− y|−αuk(x)− uk(y)

|x− y|
≤ C2.

1An open set Ω ⊆ Rn is an extension domain for Wα,p if there exists a positive constant C :=
C(n, p, α,Ω) such that for every function u ∈ Wα,p(Ω) there exists ũ ∈ Wα,p(Rn) with ũ(x) = u(x)
for all x ∈ Ω and ||ũ||Wα,p(Rn) ≤ C||u||Wα,p(Ω).
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Which, in particular, means that the sequence {uk}k has uniformly bounded semi-
norm [uk]1,Wα,1(0,π) ≤ C3 for some positive constant C3. Furthermore, because of the
volume constraint the L1 norm is equal to µπ. Therefore, we can bound the Wα,1

norm of the minimising sequence, i.e. ||uk||Wα,1(0,π) ≤ C, with some constant C > 0
and some k ∈ N sufficiently large. We can now use the compact embedding to extract
a subsequence {ukj} strongly converging to a function u∗ ∈ L1(0, π). In particular,

since {ukj} converges almost everywhere to u∗, then
ukj (x)−ukj (y)

|x−y|1+α also converges almost

everywhere. Moreover, the limit u∗ satisfies the volume constraint µ > 0.

Here comes the tricky part. We can not use a direct method to show that the limit
u∗ is indeed in the space Wα,1. This is because the functional space W s,1(0, π) is not
reflexive (see, for instance, Triebel’s book [38, page 180] where the Besov space notation
Bs,1 is used). Fortunately for us, we can use Fatou’s lemma to bound the semi-norm

[u∗]π,Wα,1 =

ˆ π

0

ˆ π

−π

|u∗(x)− u∗(y)|
|x− y|1+α

dxdy ≤ lim
k→+∞

inf

ˆ π

0

ˆ π

−π

|ukj(x)− ukj(y)|
|x− y|1+α

dxdy ≤ C.

Since u∗ is even, we have [u∗]Wα,1 = 2[u∗]π,Wα,1 ≤ C, which implies that ||u∗||Wα,1 is
bounded, i.e. u∗ ∈ Wα,1(0, π). Hence, since the subspace V of non-negative functions
is closed in Wα,1

per (0, π), we have that u∗ ∈ V .

We have left to prove that the functional evaluated u∗ is indeed a minimum. For
this, we can still use Fatou’s lemma noticing that, since the functions G and H are
both continuous from R to [0,+∞], then

|x− y|−αG
(ukj(x)− ukj(y)

|x− y|

)
and |x− y|−αH

(ukj(x) + ukj(y)

|x− y|

)
converge almost everywhere in (0, π) × R. Therefore, applying Fatou’s lemma once
again we obtain the lower semi-continuity of the functional Pα in L1, i.e.

Pα(u∗) ≤ lim
k→∞

inf Pα(ukj).

�
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