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Abstract 

The aim of this research was to estimate the possibility of using synthesized hydrous iron 

oxide/aluminium hydroxide composite loaded on coal fly ash (FA3) as an efficient sorbent for Cr 

(VI) sorption from aqueous solution. In this regard, dissolution and precipitation processes were 

performed to rearrange and load the intrinsic iron and aluminum on the surface of fly ash. 

Different characterization techniques including XRD, XRF, FT-IR, SEM, LPS and BET surface 

area were applied to analyze the sorbent properties. Moreover, sorption kinetics were studied 

using Morris–Weber intra-particle diffusion, Lagergren pseudo-first-order and pseudo-second-

order models. The kinetic analyses indicated that pseudo-first-order model controlled the 

sorption process. In order to estimate the sorbent capacity, Langmuir, Freundlich and D–R 

models were applied. The thermodynamic parameters of Cr (VI) sorption were also studied. In 

addition, removal efficiency of Cr (VI) was predicted using the developed fuzzy logic model. 

The fuzzification of four input variables including pH, contact time, adsorbent dose and initial Cr 

(VI) concentration versus removal efficiency as output was carried out using an artificial 

intelligence-based approach. A Mamdani-type fuzzy interface system was employed to fulfill a 

collection of 24 rules (If-Then format) using triangle membership functions (MFS) with seven 

levels in fuzzy sets. The proposed fuzzy logic model demonstrated high predictive performance 

with correlation coefficient (R2) of 0.95 and acceptable deviation from the experimental data, 

confirming its suitability to predict Cr (VI) removal efficiency. Based on experimental data and 

statistical analysis, the synthetized sorbent was effective for treating wastewater containing Cr 

(VI). 

Keywords: Fly ash, FeOOH/Al(OH)3, Sorption, Cr (VI), Isotherm, Fuzzy logic modeling. 
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1. Introduction 

Considering the role of water and its significance in human health, the decrease in its 

quality by pollution, and the fact that the common treatment methods are not completely 

successful for removal of contaminants from wastewaters to meet the standard limits, the 

introduction of new attitudes and methods seems to be very necessary [1,2]. Nowadays, heavy 

metals are the most prominent water pollutants that are classified as the biggest threat to the 

environment and global health. Heavy metal ions are stable and non-biodegradable in the envi-

ronment, plus having high tendency to be accumulated in living organisms causing serious 

illnesses. Among all heavy metals, chromium can be found easily on the earth's surface with two 

common oxidation states of Cr+2 and Cr+6. From biological point of view, the toxicity of trivalent 

and hexavalent chromium are important to human health [2]. The hexavalent chromium Cr (VI) 

is dangerous for human health causing skin irritation, membranous mucous and special joints 

with macromolecules [3]. Human exposure to high levels of Cr (VI) may have harmful effects on 

liver, kidneys, blood, gastrointestinal and immune systems [3]. According to the International 

Agency for Research on Cancer (IARC), European Union and USA poison detection program 

[2], hexavalent chromium accompanied by arsenic, beryllium, cadmium and nickel can be a 

major cause of cancer. The global standard limits of chromium for water and drinking water are 

0.1 and 0.05 mg/L, respectively [3], and the maximum concentration of chromium in drinking 

water reported by the national standard institute of Iran is also 0.05 mg/L.  

Various physical and chemical techniques are used to remove heavy metal ions from 

aqueous solutions, most of which have some disadvantages including chemical precursor 

demand, high production costs, toxic sludge production and incomplete removal of metals [4-6]. 

Among all methods, sorption is an effective process considered as an economical and beneficial 
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method to remove heavy metals from aqueous solutions [7]. In this regard, activated carbon is 

one of the most commonly used sorbents for treatment of water and wastewater. However, the 

high application cost has dramatically restricted its widespread use [8]. Therefore, different 

natural sorbents have been introduced as alternative candidates for sorption of toxic metal ions 

from aqueous solutions. 

Application of coal as a fuel in most industries results in producing high amount of fly 

ash as by-product that leads to air pollution and disposal problems; therefore, the application and 

utilization of fly ash seems to be indispensable [7,9]. Adsorption using a variety of iron-con-

taining materials has proven to be easy, economical and effective. Thus, several iron-containing 

materials such as amorphous hydrous iron oxide (FeOOH), goethite (α-FeOOH) and akaganeite 

(β-FeOOH) have been examined and proven to be promising adsorptive materials due to their 

high removal efficiency [10]. Among these materials, amorphous hydrous iron oxide has the 

highest sorption capability due to its high surface area. However, this iron-containing sorbent is 

merely available as fine powder or exists as gel or suspension in aqueous solutions. Hence, it is 

difficult to be separated entirely from treated solution after sorption process [10]. In order to 

overcome this shortage, some matrices or platforms should be selected to support or load those 

iron oxides. Studies indicated that synthetic Fe-loaded sorbents based on matrices such as mu-

nicipal solid waste (MSW), cement, sand, activated alumina (AA), silica oxide and alginate 

beads had proper affinities for high Cr (VI) removal efficiency. Recently, we have found a new 

type of coal fly ash with iron oxide and aluminum oxide contents of approximately 18.07 and 

28.73 % which seems to be an ideal Fe and Al containing raw material to synthesize an 

adsorbent for Cr (VI) sorption.     
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            The removal parameters of heavy metals have been broadly modeled using prevalent 

artificial intelligence techniques such as Adaptive Neural Fuzzy Inference Systems (ANFIS) and 

Artificial Neural Network (ANN) [11,12]. Fuzzy Inference System (FIS) has also been one of the 

viable options to predict the removal behavior of sorbent during a sorption process. Fuzzy logic 

is known as one of the best methods to implement expert knowledge (EK) and establish an 

advanced monitoring on different treatment processes particularly where there is not applicable 

software in primary units of a wastewater treatment system as a whole. Since Fuzzy Interface 

Systems (FIS) doesn’t need to analyze the certain and exact information of a process, it has been 

vastly applied in industrial and commercial control systems [13]. The model-based fuzzy control 

systems are the latest investigational achievements conducted on fuzzy logic control, exhibiting 

acceptable stability and performance specifically in closed-loop fuzzy control systems [14]. 

Fuzzy inference system is composed of membership functions to determine and control 

variables, produced rules by experienced operators and a fuzzy inference engine [15]. In fact, the 

main contribution in assessing adsorption processes and finding the best solution for operational 

problems is the responsibility of professional experts. 

             The main goal of the present study was to develop a new route for effective utilization of 

a special type of fly ash to synthesize a novel sorbent containing high amount of FeOOH in a 

composite form with Al (OH)3 using simple chemical reactions. The sorbent was applied to 

remove Cr (VI) from aqueous systems at optimum conditions. The experimental data obtained 

from Cr (VI) sorption were modeled by Fuzzy Inference System (FIS) in order to predict its 

removal efficiency. Removal efficiency of Cr (VI) as a response was affected by several 

parameters consisting of pH, contact time, adsorbent dose and Cr (VI) concentration. The effect 

of each input variable on output variable was determined using sensitivity analysis. Both 
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empirical data obtained from the measured variables and expert knowledge (EK) were employed 

into the fuzzy inference system (FIS) with Mamadani method through fuzzy-based rule structure. 

The satisfactory results of the developed fuzzy logic modeling showed that it can be used to 

predict the quality of probable effluent in primary treatment units. 

1.1. Fuzzy logic modeling 

             Among different statistical analyses, fuzzy modeling is recognized as a strong technique 

to estimate the relation between input variables and output response in intricate nonlinear 

systems. Zadeh expressed that variables help to eliminate uncertainties and have important 

impacts on fuzzy numbers [16]. In fact, a fuzzy number is responsible to describe available 

relationship between an uncertain quantity x and a membership function μ changing from zero to 

one [17]. The fuzzy inference systems are divided into two distinct types including Takagi–

Sugeno models [18] and Mamdani models [19]. The relationships between output membership 

functions and input variables in Takagi-Sugeno models are designed in the form of a constant or 

linear function, while in Mamdani models, the output membership functions are fuzzy sets in 

which each linguistic information can incorporate into the model. Researches proved that the 

qualitative information can be modeled by Mamdani models with acceptable performance [20]. 

The fundamental section of fuzzy logic is a set of human language rules defined by the user. The 

procedure of fuzzy systems is the conversion of rules to their mathematical equivalents. 

Consequently, the industrial designer can easily work with accurate outputs obtained from these 

systems behaving similar to real conditions. The simplicity and flexibility properties of fuzzy 

logic are considered as its further benefits. Fuzzy logic not only solves problems regarding 

inaccurate and imperfect data, but also models nonlinear functions in each level of complexity 

[21,22]. One advantage of fuzzy logic in comparison with ANNs is the high capability of 



7 
 

handling multivariate data particularly noisy and distorted ones. The major superiority of fuzzy 

modeling is its training phase where the rules are established even without the presence of 

accurate data, merely relying on expert knowledge to constitute the rule base. According to 

relevant investigations, the interpretation of results obtained from fuzzy model and its rules can 

be comfortably performed in comparison to ANNs [23]. The relationships between the input and 

output in fuzzy model are described using fuzzy if-then rules (fuzzy propositions). In fact, the 

fuzzy sets and proximate argumentations help to find an appropriate solution for a specific 

problem without having required details regarding any domain of knowledge. The expert 

knowledge plays an important role in the formulation of fuzzy rules [24]. Mamdani design of 

fuzzy logical model is called linguistic model because each rule is defined based on If-Then 

relationship, in which both the antecedent and the consequent are fuzzy propositions [25]. The 

manual development of model structure is carried out without any need to training and 

optimizing steps for final model. The created rules in a Mamadani model strongly affect the 

outputs consisting fuzzy membership functions. This generalized model relies on adequate expert 

knowledge of a system instead of data set that makes it an effective model for future predictions 

[26]. Linguistic variables such as X, Y and Z in the structure of Mamdani models conform to the 

rule base as follows: 

Ri: if X is Ai and Y is Bi,. . . then Z is Ci,. . ., i = 1. . .n, (x0, y0) is determined as an input and the 

main purpose of the model is the determination of output (Z or C). Briefly, each fuzzy expert 

system model works through a three-step procedure including fuzzification, inference engine and 

defuzzification as exhibited in Fig. 1. 

2. Experimental 

2.1. Materials 
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Raw fly ash was collected from a combustion test furnace in Alborz-e-sharghi Coal 

Company located in Shahrood (Iran) with detailed chemical composition listed in Table 1. It was 

verified that the fly ash was environmentally-friendly with commercial utilization in traditional 

areas including concrete, pavement and dam. The standard solution of Cr (VI) was prepared by 

dissolving K2Cr2O7 (Merck) into 1000 mL of distilled water in a 1 L volumetric flask. It was 

further diluted to predetermined volumes and concentrations with distilled water depending on 

experimental conditions. All the chemical reagents used in this study were of analytical grade, 

purchased from Merck. HCl (1 M, 0.1 M), HNO3, (1 M, 0.1 M) and NaOH (1 M, 0.1 M) 

solutions were used for pH adjustment. 

2.2. Adsorbent synthesis 

According to the research investigated by Sharma et al. [7], washing samples with hot 

water could remove some alkali and alkaline earth elements such as K2O, Na2O, CaO and MgO 

from raw ash; therefore, the consumption of hydrochloric acid in the process of sorbent synthesis 

would be reduced. FA3 was prepared according to the following procedure: initially, 3 g of raw 

fly ash was added into 250 mL of water and the mixture was stirred and heated up to 95 °C for 1 

h. The insoluble part of the mixture was filtrated and rinsed repeatedly until the pH of leachate 

remained constant at approximate value of 6-7, and then the insoluble material was dried at 100 

°C for 2 h. Afterwards, 100 mL of 1 M HCl solution was added to the pretreated fly ash and the 

mixture was sonicated for 2 h and placed steadily at 60 °C for 30 min after which the transparent 

solution gradually became yellow. 1 M NaOH solution was added dropwise into the above 

solution until the final pH reached the approximate value of 6, and an orange gel appeared. This 

step was followed by continuous vibration of the mixture for 1 h, and aging at 75 °C for 3 days. 

Finally, the slurry was centrifuged and continuously rinsed several times with distilled water 
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until the pH of the leachate remained constant, then dried at 75 °C for 24 h. After drying, it was 

powdered and then kept in a polyethylene bottle. 

In order to examine the properties of the acidic product obtained after acid treatment of 

raw fly ash at 60 °C for 30 min using HCl solution, it was centrifuged to separate the insoluble 

materials from the mixture, washed three times with distilled water and then dried at 75 °C for 24 

h. The final product was identified as acidified fly ash (FA2).  

2.3. Analysis 

X-ray diffraction (XRD) analysis of FA1, FA2 and FA3 was performed by X-ray 

diffractometer (GBC made, Australia) using Cu Kα radioactive source in the range of 10° to 60° 

with operating conditions of 35 kV and 28.5 mA. JCPDS (Joint Committee on Powder 

Diffraction Standards) files were used to identify the crystalline compounds. Morphologies of 

FA1, FA2 and FA3 were monitored using field emission scanning electron microscopy (FE-

SEM, HITACHI, S-4160, Japan). 

The presence of functional groups on FA1, FA2 and FA3 was investigated using Fourier 

transform infrared spectroscopy (FT-IR, ECTOR-UKER, Germany) in wavenumber range of 

4000–400 cm−1. 

Particle size distribution of the three samples was obtained using laser particle size (LPS) 

technology on a laser particle sizer (Master size 2000, Malvern Co, UK).  

Brunauer-Emmet-Teller (BET) surface area was determined by fitting the linear portion 

of the N2 sorption–desorption plot to BET equation. Moreover, pore size distribution was 

calculated based on Barrett-Joyner-Halenda (BJH) method (Micrometrics ASAP 2000, USA) 

and Skeleton density and porosity of FA2 and FA3 were measured based on water displacement 

method. Porosity was calculated using the following equation [10]. 
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 (1)        

where, εp is the porosity, ρs is the skeleton density (g/cm), and ρp is the density of the sorbent 

(g/cm). After sorption experiments, the supernatants were collected and concentration of Cr (VI) 

was measured by an atomic absorption spectrophotometer (GBC 302, Australia). 

2.4. Batch sorption experiments 

The effect of experimental conditions was studied in order to achieve the maximum Cr 

(VI) removal. To optimize the sorption process, different parameters including pH, contact time, 

initial Cr (VI) concentration and sorbent dosage were considered. The solution pH was adjusted 

by HNO3 and NaOH and the experiments were performed at ±25 ºC. In each experiment, a 

desired amount of the sorbent was added into the samples, and the mixture was shaken at 250 

rpm. After the predetermined time, the sorbent was filtered and Cr (VI) concentration in the 

supernatant was determined. All experiments were carried out twice and the mean values of 

concentrations were reported with the experimental error < 4 %. The removal efficiency (%) of 

Cr (VI) was calculated using the following equation [27]: 

 (2) 

where, Ci and Cf are the initial and final concentration of Cr (VI)  (mg/L), respectively.  

The sorption capacity at time t, qt (mg/g), was obtained as follows: 

 (3) 

where, Ci and Ct (mg/L) are the concentrations of Cr (VI) at initial and at given time t, 

respectively, V (L) is the volume of the solution and M (g) is the mass of FA3. The equilibrium 

sorption capacity, qe (mg/g), can be calculated using the following equation:  
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 (4) 

where, Ce is the Cr (VI) concentration at equilibrium (mg/L). 

3. Results and discussion 

3.1. Characterization of the products  

Fig. 2 illustrates the X-ray diffraction (XRD) patterns of FA1, FA2, and FA3 in which 

the main diffraction peaks of FA1 are assigned to quartz (SiO2), hematite (Fe2O3), anhydrite 

(CaSO4), magnetite (Fe3O4) and lime (CaO).  

             In Table 1, in spite of the fact that the aluminum mineralogical phase such as mullite 

cannot be observed in the sample, the content of Al2O3 is approximately 28.73 % which differs 

from the results reported before.  

             In FA1 XRD pattern, quartz is denoted as the main crystalline phase along with minor 

contents of hematite, magnetite and anhydrite, indicating that the content of quartz increases 

while the contents of Fe containing minerals (hematite and magnetite) decrease after acidic 

treatment [28]. As can be seen in FA3 XRD pattern, no new diffraction peaks appear and no new 

crystalline phase is formed in comparison to FA2. The peaks of magnetite and anhydrite 

disappeared and the peak intensity of quartz increased, confirming that the structure of the 

material is changed and new substance loaded on the surface of final product is amorphous. [29]. 

The FT-IR spectra of FA1, FA2 and FA3 are illustrated in Fig. 3. The band located at 

1135 cm−1 is assigned to the vibration of Fe–O bond and the band at 1033 cm−1 is attributed to 

the asymmetric stretching vibration of T–O (T=Si, Al) [30]. Comparison of peaks indicates that a 

great portion of iron oxide and aluminum oxide was dissolved in HCl solution; however, the 

typical bands of quartz became more obvious, which could be attributed to quartz inertness and 

enrichment in FA2 [28]. The new bands observed at 3573 and 3379 cm−1 in the spectra of FA3 

( )
M

VCCq ei
e

×−
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and FA2 are assigned to O–H stretching vibration and deformation of O–H vibration bond, 

respectively, implying that the new substance is in the form of hydroxyl compound [31]. 

According to FT-IR spectra of FA1, FA2 and FA3, the strong broad bands located at 3511, 3573 

and 3376 cm−1 indicate the presence of hydroxyl groups on the fly ash [32,33]. 

The sharp peaks observed at 1033, 912 and 1016 cm−1 in FA1, FA2 and FA3 are due to 

the presence of Al atoms in the tetrahedral sites of silica frame work [34]. The bands at 734 and 

622 cm−1 in FA1, 574 cm-1 in FA2 and 576 cm-1 in FA3 are attributed to the quartz in fly ash 

[35]. The bands between 800 and 500 cm−1 are associated to the tetrahedral vibrations of the 

secondary building units (SBU) and fragments of alumina silicate structure. These bands are 

commonly related to the single or double rings (depending on the structure of the material) or 

TO4 (T= Si, Al) tetrahedral bonds [36]. 

The changes in the morphology of FA1, FA2, and FA3 are shown in Fig. 4a, Fig. 4b and 

Fig. 4c, respectively, with FA3 powder being drastically different from the original ash. The 

surface of FA3 is entirely covered by hydroxyl groups and gets into porous network structure, 

while the size of granule increases sharply.  

From LPS analysis, the mean particle sizes of FA1 and FA3 were calculated to be 4.18 

and 22.18 μm, respectively. The final product is nearly 5 times larger than FA1, which can 

efficiently enhance the adsorptive properties in the separation process. The pore size distribution 

analysis showed that the pore size of FA3 was in the range of 18 Å to 640 Å with average size of 

38 Å and porosity of 23.6 %. 

3.2. Loading mechanisms 

Fly ash is rich in aluminum and iron oxides, and is thought to be a very important source 

of pre-mined material. Hence, many researchers have studied the ash leachability under acidic 
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conditions for the extraction of alumina, iron and other heavy metal elements. When fly ash 

contacts with hydrochloric acid, most of the metals such as Fe and Al can leach into the solution 

through the following reactions [10]: 

Fe2O3 + 6 H+ → Fe+3 + 3 H2O                                                                            (5)  

Fe3O4 + 8 H+ → Fe+2 + 2 Fe+3 + 4 H2O                                                               (6) 

Al2O3 + 6 H+ → 2 Al+3 + 3 H2O                                                                         (7) 

During the reaction, the color of the mixture in the conical flask gradually changed to 

light yellow due to the dissolution of Fe+3 in the fly ash. When the slurry was adjusted with 

sodium hydroxide solution to raise its alkalinity, a slurry containing Fe+2, Fe+3 and Al+3 formed 

according to the following reactions. The slurry of mixture changed color from light yellow to 

orange, indicating that Fe ion precipitated from the solution. 

 (8)  

 (9) 

 (10) 

 (11) 

By adjusting solution pH to 3.0 and 3.5, Fe and Al ions precipitate in aqueous media. In 

this research, the precipitation of Fe (OH)2 was firstly observed in the solution; since the solution 

color changed from white to orange, indicating the oxidation of Fe (OH)2 to Fe (OH)3. When fly 

ash contacts with the acidic solution, the Si–O bonds on the surface of spherical glassy particles 

increase due to the dissolution of other metal elements [10,27-29]. On the other hand, when 

FeOOH is precipitated and coated on the surface of the residual fly ash, Fe–Si surface complex 

(typically, Fe–O–Si(OH)3) forms between Fe and Si which ultimately increases the physical 

strength of the sorbent. This was confirmed through Cr (VI) batch sorption experiments, where 
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no disintegration of the sorbent happened after treatment. During the filtration experiment, it was 

also revealed that FA3 sorbent was easily filtered with a filter paper (Grade 42, Whatman), with 

particle retention size of 25 μm. In contrast, a significant portion of particles passed through the 

similar filter paper during the filtration of a laboratory-made pure FeOOH suspension. This 

observation indicated that no FeOOH suspension was disintegrated from the sorbent [10]. 

Furthermore, the silica on the surface of the particle could block or retard the transformation of 

the initially formed FeOOH to crystalline iron oxides such as ferrihydrite, goethite and hematite 

[10]. Cr (VI) sorption with the crystalline form of FeOOH, e.g. goethite and ferrihydrite is not 

desired; thus, it has much less surface area than its amorphous form and reduces the Cr (VI) 

removal capability of FA3. In brief, high Cr (VI) removal efficiency of FA3 and its high physical 

strength were attained in this system during the process. 

3.3. Effect of pH 

The effect of solution pH on Cr (VI) sorption by FA3 was studied at different pH values 

in the range of 1.5 to 13. As it is demonstrated in Fig. 5, Cr (VI) is removed effectively in the 

initial pH range of 1.5 to 8. The highest amount of Cr (VI) sorption is achieved at pH=6, with 

sorption capacity of 21.22 mg/g; therefore, FA3 can be considered as an effective sorbent over a 

wide range of pH in comparison to other sorbents prepared by the addition of extra iron source. 

This wide range of pH can be attributed to the existence of aluminum hydroxide on the surface 

of the sorbent. Accordingly, the removal mechanisms of FA3 for Cr (VI) sorption include not 

only sorption but also interactions with both iron and aluminum oxides on the surface of FA3 

[29].  

  In order to compare the removal efficiency of FA3 for Cr (VI) adsorption by means of 

raw fly ash, an experiment was performed at pH=6 under the same experimental conditions. The 
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sorption capacities obtained by raw ash and FA3 for Cr (VI) sorption were 10.13 and 21.22 

mg/g, respectively, indicating that FA3 was 2 times more effective than raw ash at the same 

experimental conditions. This phenomenon could be mainly attributed to the porous structure of 

FA3 and its high specific surface area in comparison to FA1 (the BET values of FA1 and FA3 

was 8.22 and 154.12 m2/g, respectively). In this regard, the introduction of hydroxyl groups on 

the surface of the raw ash increased the specific surface area nearly 18 times; consequently, 

enhanced the sorption efficiency.  

3.4. Effect of contact time 

In order to obtain the sorption equilibrium time, Cr (VI) sorption experiments were 

conducted in which FA3 dose and initial Cr (VI) concentration were 2 g/L and 53 mg/L, 

respectively. Fig. 6 indicates that a sharp increase occurs in the first 6 h of sorption and the 

equilibrium state is achieved after 8 h.  

3.5. Effect of sorbent dose  

The effect of sorbent dose on Cr (VI) sorption is illustrated in Fig .7. It is observed that 

Cr (VI) removal efficiency sharply increases when adsorbent dose is increased. Cr (VI) sorption 

rises slowly by the addition of more sorbent, until it is fully adsorbed.  

3.3.4. Effect of Cr (VI) initial concentration   

2 g/L of sorbent was added into Cr (VI) solutions at pH=6 with various initial 

concentrations in the range of 1 to 100 mg/L. The effect of different Cr (VI) concentrations on 

the removal efficiency is illustrated in Fig. 8.  It is observed that Cr (VI) removal efficiency 

decreases by increasing its initial concentration, indicating that Cr (VI) sorption on FA3 is 

dependent on the availability of binding sites; for instance, when initial Cr (VI) concentration is 
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1 mg/L, its removal efficiency is above 99 % and the final concentration decreases to below 0.01 

mg/L. 

3.6. Sorption kinetics 

Various kinetic models including Morris–Weber intra-particle diffusion, Lagergren 

pseudo-first-order, and pseudo-second-order were used to verify the validity of experimental data 

regarding Cr (VI) sorption on FA3. Sorption kinetics describe the solute uptake rate of a system, 

which controls the residence time of adsorbate uptake at solid-solution interface including the 

diffusion process. It is assumed that there is no mass transfer resistance (both external and 

internal) in the overall sorption process; therefore, residual metal ion concentration in the 

solution can be used to study the sorption kinetics. 

3.6.1. Morris–Weber model 

Morris–Weber was applied to the data obtained from Cr (VI) sorption onto FA3 in order 

to investigate the concentration change of Cr (VI) in the solution [37]: 

 (12) 

In Table 2, the correlation coefficient is 0.89 and the rate constant, Kid, calculated from the slope 

of the linear plot is 7.679 1/h. 

    Internal-particle diffusion may involve pore and/or surface diffusion. Its plot indicates 

multi-linearity in the process indicating three operational steps. The first stage with high slope 

can be attributed to the diffusion of adsorbate through the external surface of the sorbent or the 

boundary surface diffusion of sorbate molecules, while the second stage describes the gradual 

sorption, where intra-particle diffusion is rate-limiting. The third stage is the final equilibrium 

due to the reduction of sorbate concentration in the solution and also the interior active sites of 

( ) CtKq idt += 5.0
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sorbent. The three stages in the plot suggest that the sorption process occurs through surface 

sorption and intra-particle diffusion. 

3.6.2. Pseudo-first-order model 

In 1898, Lagergren presented a pseudo-first-order equation for sorption of liquid/solid 

systems based on solid capacity. In this equation, the change in the rate of sorption uptake with 

time is directly proportional to the difference in saturation concentration and the amount of solid 

uptake. Lagergren model is the most widely used rate equation in sorption processes which is 

expressed by the following equation [38]: 

  (13) 

where, qe is the sorption capacity at equilibrium and K is the pseudo-first-order rate constant. 

The applicability of the model for Cr (VI) sorption onto FA3 was investigated by plotting log 

(qe−qt) versus time ‘t’. The correlation coefficient and rate constant calculated from the slope of 

the linear plot were 0.985 and -0.244 1/h, respectively. 

3.6.3. Pseudo-second-order model 

Pseudo-second-order model was applied to fit the data obtained from Cr (VI) sorption 

onto FA3 by the following equation [39, 40]:  

 (14) 

The rate constant and correlation coefficient from linear plot of t/qt versus t were found to 

be 9.15×10-3 1/h and 0.97, respectively. 

The results revealed that the sorption process was controlled by pseudo-first-order 

equation. The basic assumption of pseudo-second-order model suggests that the rate-limiting 

step in sorption process might be due to the chemisorption involving valence forces through 
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sharing or exchanging electrons between sorbent and sorbate [41,42]. The statistical results and 

kinetic constants are given in Table 2. 

3.7. Adsorption isotherm models 

Isotherm models are the mathematical representation of the relationship between metal 

concentration in solution and the amount of metal adsorbed onto the equivalent sorption sites at a 

constant temperature [43]. 

3.7.1. Langmuir model  

Langmuir model is valid for monolayer sorption onto surfaces containing finite number 

of identical sorption sites. It is presented by the following equation [44,45]: 

 (15) 

where, qm is the maximum sorption capacity of sorbent for the metal ion (mg/g). The linear form 

of Eq. (15) is commonly used to determine qm and KL values from the plot of Ce/qe versus Ce 

[46, 47]. 

  (16) 

3.7.2. Freundlich model  

While Langmuir isotherm assumes that the enthalpy of sorption is independent of the 

amount of metal adsorbed, Freundlich model basically assumes that sorption is done on 

heterogeneous surfaces with a logarithmic decrease in sorption enthalpy, when the fraction of 

occupied sites increases. It is given as follows [48, 49]: 

  (17) 

where KF and (1/n) are the Freundlich constant and sorption intensity, respectively. Freundlich 

equation is generally linearized in logarithmic form to determine the constants as follows [50]: 
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    (18) 

Equilibrium constants are evaluated from the intercept and slope of the linear plot of log 

qe versus log Ce. 

3.7.3 Dubinin–Radushkevich isotherm  

In order to determine the physical or chemical nature of sorption, Dubinin–Radushkevich (D–R) 

model is commonly used by the following linearized form [51]: 

     (19) 

where, β is the activity coefficient related to the mean sorption energy and ε is the Polanyi 

potential with the following equation: 

     (20) 

The values of β and qm can be determined from the slope and intercept of the linear plot 

of ln qe versus ε2. The statistical results along with isotherm constants are given in Table 3 from 

which it can be concluded that Cr (VI) sorption by FA3 is well fitted using Freundlich, Langmuir 

and D–R models with considerable correlation coefficients. By comparing the correlation 

coefficients, it is clear that Freundlich model fits the experimental data better than the other two 

isotherm models. Although Freundlich model predicts the exponential distribution of active sites 

with their energies and provides information about the surface heterogeneity, it does not predict 

any saturation point for sorption sites by sorbate; thus, infinite surface coverage can be predicted 

mathematically. In contrast, D–R isotherm relates the heterogeneity of energies close to the 

sorbent surface [42,51]. 

3.8. Effect of temperature on Cr (VI) sorption and thermodynamic parameters  
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              Since most effluents containing heavy metals are produced at high temperature, 

temperature is an important factor in the real applications of sorption process. It has two main 

effects on sorption process. Increasing temperature enhances the sorbate diffusion rate across the 

external boundary layer and the internal pores of sorbent due to a decrease in the viscosity of 

solution. In addition, for a specific sorbate, temperature is directly proportional to the 

equilibrium capacity of sorbent. To study the effect of temperature on Cr (VI) removal 

efficiency, the experiments were carried out using 25 mL of solutions with 53 mg/L initial Cr 

(VI) concentration at different temperatures ranging from 25 ºC to 45 ºC. The results in Table 4 

show that the removal efficiency increases when temperature is increased, revealing the 

endothermic nature of the sorption process.  

             In any sorption system, the values of thermodynamic parameters are important for 

practical applications. The spontaneity of sorption process can be specified by evaluating both 

energy and entropy. In this regard, the equilibrium sorption capacity of 53 mg/L initial Cr (VI) 

concentration at different temperatures from 25 ºC to 45 ºC was examined to obtain the 

thermodynamic parameters by the following equation [52]: 

                                                                                                                    (21) 

                                                                                                   (22) 

                                                                                                           (23) 

where, , ∆H, ∆S, ∆G, R and T are thermodynamic equilibrium constant, enthalpy change 

(J/mol), entropy change (J/mol), Gibbs free energy, universal gas constant (8.314 J/mol K), and 

temperature (K), respectively. Fig. 9 shows a linear relationship between ln  versus 1/T. The 

thermodynamic parameters of Cr (VI) sorption onto FA3 at various temperatures are summarized 

in Table 5. The enthalpy change (ΔH) is positive, indicating that Cr (VI) sorption onto FA3 is 
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endothermic and increases at higher temperatures. The positive value of ΔS indicates the 

increasing randomness at solid-liquid interface during the sorption process. The negative values 

of ΔG and decrease in its values at higher temperatures indicate the feasibility and spontaneity of 

Cr (VI) sorption onto FA3. 

3.9. Cr (VI) desorption from the sorbent  

                 Regeneration of sorbent is considered as a main factor in its industrial applications for 

treatment of wastewater. In this study, desorption of Cr (VI) from FA3 was performed using a 

batch system in which the ability of NaOH to desorb Cr (VI) was investigated. The sorbent 

loaded with initial concentration of 53 mg/L of Cr (VI) was placed in the desorption medium 

containing 25 mL of 0.2 M NaOH and finally the amount of desorbed Cr(VI) was measured after 

8 h. Table 6 clearly demonstrates that FA3 can be repeatedly used without significant reduction 

in the sorption capacity toward Cr (VI). The ability of 0.2 M NaOH to desorb Cr (VI) ions may 

be attributed to its ion exchange ability. It can be suggested that the high concentration of OH 

ions at high pH via ion exchange mechanism is the reason for the replacement of the adsorbed 

ions. After three consecutive cycles of adsorption-desorption, the uptake capacity of FA3 

decreased because the binding sites on the surface of the sorbent are destroyed or 

morphologically changed. 

3.10. Cost of sorbent production  

                 The cost of the precursor or the adsorbent depends on various factors including the 

availability of initial waste material, the processing required, the treatment conditions and both 

recycle and lifetime issues. Since raw fly ash is available at the power plant, hence, there are 

only transportation, laying and rolling costs. The production costs of various sorbents based on 

fly ash are rarely reported in the literatures; for example, the waste bagasse fly ash price was 
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reported 0.002 US$ per kg, and with considering the transportation cost, chemicals, electrical 

energy, etc., used in the process, the final product would cost approximately 0.009 US$ per kg. 

Investigations on different fly ash sorbents illustrated that the cost of materials was ≤ 0.3 US$ 

per kg making them useful sorbents in terms of cost in comparison with commercial activated 

carbons which normally cost more than 3 US$ per kg. The expected outcomes of the sorbent 

production would be economical given any increase in the costs of synthesis process. According 

to the primary assessments, in the worst conditions, the product would have at least four times 

interest per Kg. As mentioned before, the sorbent studied in this work is eco-friendly, reusable 

and cost-effective in comparison with other commercialized products.       

3.11. Fuzzy modeling for Cr (VI) sorption prediction 

                 Fuzzy logic modeling applied in this study had four input variables including pH, 

contact time, adsorbent dose, and Cr (VI) concentration whose ranges were [1,13], [1,10], [0,10] 

and [0,100] respectively. The designed fuzzy inference system has an output named removal 

efficiency of Cr (VI) in the ranges of [0,100] as shown in Fig. 10. Multiple membership 

functions consisting of VVL, VL, L, M, H, VH and VVH were considered for input variables 

(pH, t, D, C). The names of these seven fuzzy sets were defined “very very low”, “very low”, 

“low”, “medium”, “high” “very high” and “very very high”. Several membership functions such 

as VVL, VL, L, M (1-8), H, VH (1-2), VVH (1-2) were used to call the output variables “very 

very low”, “very low”, “low”, “moderate”, “high”, “very high” and “very very high” (Fig. 10). 

In addition, all membership functions (MFs) used for both input and output variables were 

selected in triangle shapes. Therefore, the prevalent mathematical definition of triangular MFs is 

admissible for this modeling. It states that the triangular curve is a function of vector x that 

depends on three scalar parameters a, b and c as follows: 
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 𝑓𝑓(𝑥𝑥,𝑎𝑎, 𝑏𝑏, 𝑐𝑐) =

⎩
⎪
⎨

⎪
⎧

0              𝑥𝑥 ≤ 𝑎𝑎
                  𝑜𝑜𝑜𝑜

                𝑥𝑥 ≥ 𝑐𝑐
𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎
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𝑐𝑐−𝑥𝑥
𝑐𝑐−𝑏𝑏

       𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐⎭
⎪
⎬

⎪
⎫

                                             (24) 

The compact form of function (24) is represented as follows: 

 𝑓𝑓(𝑥𝑥,𝑎𝑎, 𝑏𝑏, 𝑐𝑐) = max (min (𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎

, 𝑐𝑐−𝑥𝑥
𝑐𝑐−𝑏𝑏

), 0)                                          (25)  

                 Parameter ‘b’ is located at the peak of triangle while ‘a’ and ‘c’ are at its both sides 

named triangle feet [53]. Practically, local inferences play significant role in modeling a fuzzy 

inference system. In other words, each rule is initially inferred and thereafter the results of 

individual rules inferences would be gathered. There are several inference methods in fuzzy 

systems including the max-min, the max-product and the sum-product methods. In these 

methods, max or sum are indicative of the aggregation factor while min or prod are indicative of 

the fuzzy implication operator. From relevant literatures, the best method to calculate the fuzzy 

relations is the max-min method which computationally presents a good and expressive setting 

for constraint propagation [25,54]. In the defuzzification step, the results of fuzzy are defuzzified 

to obtain an obvious output. Maximum matching and centroid defuzzification are the most 

famous defuzzification methods usually used in this step. In the present study, the max-min 

aggregation and centroid defuzzification methods are used to design the fuzzy rules. Moreover, 

the aggregation operation of fuzzy sets of input variables is conducted and ultimately the fuzzy 

reasoning results of outputs are obtained. The schematic of the fuzzy inference system for Cr 

(VI) removal efficiency is shown in Fig. 11. 

                 The relationship between the input variables including pH, contact time, adsorbent 

dose, and initial concentration of Cr (VI) versus the removal efficiency as output is formed by 

fuzzy model rules. In fact, the expectations from adsorption process were considered in the form 
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of fuzzy rules and three-dimensional surfaces are shown in Fig. 12. The removal efficiency of Cr 

(VI) as a response was calculated for each input variable using fuzzy modeling in Matlab 

software. Fig. 13 clearly demonstrates that the predicted data obtained from dynamic simulation 

have a little deviation from the experimental data. In fact, fuzzy inference system presents an 

acceptable performance in the prediction of removal efficiency with good agreement between the 

predicted and experimental data. The correlation coefficient (R2) is greater than 0.95 by the liner 

regression as shown in Fig. 14. Also, several important parameters including average relative 

error (ARE), absolute average relative error (AARE) and standard deviation (SD) were 

calculated in order to measure the accuracy of the predicted data obtained by fuzzy model. Table 

7 exhibits the computation results of ARE, AARE and SD obtained from the proposed fuzzy 

model which approve its considerable ability in the prediction of Cr (VI) removal efficiency. The 

values of ARE, AARE and SD are computed by the following equations:        

                  𝐴𝐴𝐴𝐴𝐴𝐴 = 1
𝑁𝑁
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The performance of fuzzy logic model applied in the present study was compared with other 

usable models in the prediction of removal efficiency. Table 8 represents the experimental and 

statistical results reported in the literatures, confirming that the developed statistical model used 

in the present work reasonably demonstrates precise predictions in comparison with 
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experimental observations. In addition, a sensitivity analysis was employed to find the effect of 

each input parameter on output variable in fuzzy model (Fig. 15). To produce the sensitivity 

response for each parameter, one of the input variables was varied at identical intervals and the 

other variables were kept unchanged.  The results show that although all parameters have 

remarkable effects on the output variable, solution pH was found to be the most effective 

parameter in Cr (VI) removal efficiency among others. In summary, fuzzy logic model was 

highly effective to find complex non-linear relationships available in the sorption process. 

4. Conclusions 

In this research, hydrous iron oxide/aluminum hydroxide composite loaded on coal fly ash (FA3) 

was synthesized as a potential sorbent for Cr (VI) sorption. XRF. XRD, FT-IR, SEM, LPS and 

BET surface area were used to characterize the sorbent. The FA3 mean particle sizes were 5 

times greater than the original fly ash, thus, it could be easily separated from the aqueous 

solution after Cr (VI) sorption. Moreover, the sorbent had porous structure with specific surface 

area of 154 m2/g that was 18 times greater than the original fly ash. The maximum removal 

percentage of Cr(VI) was 84.9 % with a maximum sorption capacity of 33.3 mg/g at optimum 

conditions of pH=6, 2 g/L adsorbent dose, 8 h contact time and 53 mg/L initial Cr (VI) 

concentration. According to the correlation coefficient (R2) values obtained from the sorption 

kinetic and isotherm models, it can be mentioned that the sorption process was controlled by 

pseudo-first-order model and equilibrium data were fitted well to Freundlich model. 

Thermodynamic results revealed that the sorption was endothermic, feasible and spontaneous. Cr 

(VI) desorption from FA3 was investigated using 0.2 M NaOH. The maximum desorption 

efficiency was 81 % that clearly confirmed the appropriate performance of FA3. Furthermore, 

based on experimental data, the fuzzy logic model was applied to predict the removal 
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performance of the sorbent. The Mamdani model of fuzzy interface system was developed by 

using 24 If-Then rules based on triangular membership functions for both input variables and 

output. Removal efficiency of Cr (VI) was successfully predicted by the proposed fuzzy logic 

model. The correlation coefficient, average relative error (ARE), absolute average relative error 

(AARE) and standard deviation (SD) were 0.95, 1.36, 6.48 and 9.68, respectively. In order to 

reach the real and precise prediction of Cr (VI) removal efficiency by fuzzy logic model, 

additional input and output variables can be evaluated considering the effects of unexpected 

input alterations on outputs. Meanwhile, various types of membership functions or their 

combinations can be used to enhance the prediction performance of the proposed diagnosis 

system based on fuzzy logic model. 
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Table 1.  XRF analysis of the fly ash. 

Properties LIO SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O Na2O 

Percentage (mass, %) 0.98 37.88 28.73 18.07 11.54 1.79 0.38 0.34 0.29 

Table 2. Kinetic constants for Cr (VI) sorption. 

R2 )mg/g(qe  K (1/h) Lagergren pseudo-first-order  

0.9851 33.3 0.244- 

R2 )mg/g(qe  K (1/h) Pseudo-second-order 

0.971 31.79 9.15×10-3 

R2 ------------ Kid (1/h) Morris-Weber 

0.8991 ------------ 7.679 

Table 3. Isotherm constants for Cr (VI) sorption.  

R2 )mg/g(qm  Kl (1/h) Langmuir 

0.9575 70.028 0.048 

R2 n K (1/h) Freundlich 

0.98 1.402 3.981 

R2 β )mg/g(qm   D-R 

0.815 -2×10-6 27.385 
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Table 4. Effect of temperature on Cr (VI) removal efficiency. 

   Temperature (ºC)  

 25 35 45 

Removal Efficiency (%) 85 89 94 
 

 

Table 5. Thermodynamic parameters for Cr (VI) sorption. 

Thermodynamic parameters 

Cr (VI) ΔH (kj/kmol) ΔS (kj/kmol) ΔG (kj/mol) 

39.92 0.147 25 ºC 35 ºC 45 ºC 

   -4.298 -5.467 -7.273 

 
Table 6. Reusing FA3 after desorption. 

Cr (VI) Removal efficiency (%) 

 First time application 
of FA3 after desorption 

Second time application 
of FA3 after desorption 

Third time application 
of FA3 after desorption 

 81 76 69 

 

Table 7. ARE, AARE and SD modeled by fuzzy for Cr (VI) removal efficiency. 

Response variable Method % ARE % AARE % SD 
Removal efficiency Fuzzy 1.36 6.48 9.68 
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Table 8. Comparison between the method used in this study and other methods reported in the 

literatures. 

 

 

 

Fig. 1. Fuzzy inference system. 

Type of process  Experimental results 
(Maximum efficiency)  

Method Response variable Statistical index Ref. 

Cr(VI) removal by ZVINs 
 

> 88 % ANN Cr(VI) removal 
efficiency  

R2= 0.9803 [55] 

Cd(II) removal by hematite  
 

103 μmol/L ANN 
and 
ANFIS 

Cd(II) adsorption  R2= 0.96 
Average Errors < 1% 

[56] 

BOD removal by free-water 
surface (FWS) 
 

> 98 % Fuzzy BOD and COD 
removal 

R2
BOD= 0.82 

R2
COD= 0.78 

[57] 

Lead removal by MEUF 
 

> 99 % Fuzzy Permeate flux and the 
rejection rate 

R2 = 0.9185 
R2 = 0.9796 
 

[58] 

As(III) removal by Ce-HAHCl 
 

> 98 % ANN As(III) removal 
prediction 

R2 = 0.975 [59] 

Cr(VI) removal by DPOC 
 
 

> 184 mg/g ANN 
and 
RSM 

Cr(VI) uptake tare  R2
ANN= 0.99 

R2
RSM= 0.93 

[60] 

As(III) and Cr(VI) removal by 
ZEDA 
 

97 % for As(III) 
91 % for Cr(VI) 

ANFIS As(III) and Cr(VI) 
removal 

R2
As(III)= 0.94 

R2
Cr(VI)= 0.99 

[61] 

As(III) and As(V) removal by B. 
braunii biomass 
 

> 85 %  for As(III) 
> 88 % for As(V) 
  

ANN As(III) and As(V) 
removal 

R2
As(III)= 0.99 

R2
As(V)= 0.99 

[62] 

Adsorption of Cu(II) by pumice 
 

> 98 % ANN Cu(II) removal R2
Cu(II)= 0.999 [63] 

Cr(VI) removal by ZFA 
 

> 90 % ANN Cr(VI) removal 
efficiency 

R2= 0.98 [64] 

This study > 84 % Fuzzy Cr(VI) removal 
efficiency 

R2= 0.9551  
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Fig. 2. X-ray diffraction patterns of FA1, FA2 and FA3 
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Fig. 3. FT-IR spectra of FA1, FA2 and FA3 
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Fig. 4. SEM images of (a) FA1 (b) FA2 and (c) FA3 
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Fig. 5. Effect of pH on the Cr (VI) removal efficiency (Conditions: 53 mg/L initial Cr (VI) 

concentration, 250 rpm rotating speed, 10 h contact time, 25 mL solution volume and 2 g/L 

sorbent). 

 

Fig. 6. Effect of contact time on Cr (VI) removal efficiency (Conditions: 53 mg/L initial Cr (VI) 

concentration, 250 rpm rotating speed, pH=8, 25 mL solution volume and 2 g/L sorbent). 
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Fig. 7. Effect of sorbent dose on Cr (VI) removal efficiency (Conditions: 53 mg/L initial 

concentration, 250 rpm rotating speed, pH=8, 25 mL solution volume and 8 h contact time). 

 

Fig. 8. Effect of initial concentration on Cr (VI) removal efficiency (Conditions: 2 g/L sorbent, 

250 rpm rotating speed, pH=8, 25 mL solution volume and 8 h contact time). 
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Fig. 9. Ln KC versus 1/T for enthalpy and entropy changes of the sorption process. 
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Fig. 10. Membership functions of input (pH, contact time, adsorbent dosage and initial Cr (VI) 

concentration) and output (Cr (VI) removal efficiency (%)) variables. 
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Fig. 11. Graphical representation of fuzzy model structure for Cr (VI) removal efficiency. 

 

Fig. 12. Three-dimensional surfaces of fuzzy model rules for Cr (VI) removal efficiency (R %). 
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Fig. 13. Response of fuzzy inference model to Cr (VI) removal efficiency; (a) effect of pH, (b) 

effect of contact time, (c) effect of adsorbent dosage and (d) effect of initial Cr(VI) 

concentration. 

 

Fig. 14. Comparison of the experimental and predicted data for Cr (VI) removal efficiency. 
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Fig. 15. Relative importance of each input variable on the Cr (VI) removal efficiency. 
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