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Abstract. We generalize the notion of non-crossing partition on a disk to general surfaces

with boundary. For this, we consider a surface Σ and introduce the number CΣ(n) of non-
crossing partitions of a set of n points laying on the boundary of Σ. Our main result is

an asymptotic estimate for CΣ(n). The proofs use bijective techniques arising from map

enumeration, joint with the symbolic method and singularity analysis on generating functions.
An outcome of our results is that the exponential growth of CΣ(n) is the same as the one of

the n-th Catalan number, i.e., does not change when we move from the case where Σ is a disk

to general surfaces with boundary.

1. Introduction

In combinatorics, a non-crossing partition of size n is a partition of the set {1, 2, . . . , n}
with the following property: if 1 ≤ a < b < c < d ≤ n and a subset of the non-crossing
partition contains a and c, then no other subset contains both b and d. One can represent
such a partition on a disk by placing n points on the boundary of the disk, labeled in cyclic
order, and drawing each subset as a convex polygon (also called block) on the points belonging
to the subset. Then, the non-crossing condition is equivalent to the fact that the drawing is
plane and the blocks are pairwise disjoint. These combinatorial objects are important in many
aspects, see for instance [8, 18]. The enumeration of non-crossing partitions of size n is one of the
first nontrivial problems in enumerative combinatorics: it is well-known that the number of these
structures (either by using direct root decompositions [9] or bijective arguments [19]) corresponds
to Catalan numbers. More concretely, the number of non-crossing partitions of {1, 2, . . . , n} on a
disk is equal to the Catalan number C(n) = 1

n+1

(
2n
n

)
. This paper deals with a generalization of

the notion of non-crossing partition on surfaces of higher genus with boundary, either orientable
or not.

In the elementary case where Σ is a disk, the enumeration of non-crossing partitions can be
directly reduced by bijective arguments to the map enumeration framework (all partitions can
be realized geometrically in such a way that regions are contractible). Therefore, in this case
CΣ(n) is the n-th Catalan number. However, to generalize the notion of non-crossing partition to
surfaces of higher genus is not straightforward and needs to be defined properly (see Section 3). In
particular we are interested in non-crossing partitions of sets of size n, namely the total number of
vertices over all the boundary components is equal to n. Additionally, these vertices are marked
in the way that is described in Section 3. The main difficulty is that there is no bijection between
non-crossing partitions of a set of size n on a surface Σ and its geometric representation, which
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means that the same non-crossing partition can arise from different geometric representations
(see Figure 10 for an example).

In this paper, we study enumerative properties of these geometric representations. From this
study we deduce asymptotic estimates for the subjacent non-crossing partitions for every surface
Σ. The main result of this paper is the following: let Σ be a surface with Euler characteristic
χ (Σ) and whose boundary has β (Σ) connected components. Then the number of non-crossing
partitions on Σ, CΣ(n) = |ΠΣ(n)|, for n large enough, verifies the asymptotic upper bound

(1) |ΠΣ(n)| ≤ c(Σ)

Γ (−3/2χ(Σ) + β(Σ))
n−3/2χ(Σ)+β(Σ)−14n,

where c(Σ) is a function depending only on Σ (for a bound on c(Σ), see Section 5), and Γ is the
Gamma function: Γ(u) =

∫∞
0
tu−1e−tdt. This upper bound, together with the fact that every

non-crossing partition on a disk admits a realization on Σ (and consequently C(n) ≤ CΣ(n)),
gives the result

lim
n→∞

CΣ(n)1/n = lim
n→∞

C(n)1/n = 4.(2)

In other words, CΣ(n) has the same exponential growth as the Catalan numbers, no matter the
surface Σ.

In order to get the upper bound (1), we argue in three levels: we start from a topological
level, stating the precise definitions of the objects we want to study, and showing that we can
restrict ourselves to the study of hypermaps and bipartite maps [5]. Once we restrict ourselves
to the map enumeration framework, we use the main ideas of [2] in order to obtain combinatorial
decompositions of the dual maps of the objects under study (see also [3, 4]). Finally, once we
have explicit expressions for the generating functions of these combinatorial families, we study
generating functions (formal power series) as analytic objects. In the analytic step, we extract
singular expansions of the counting series from the resulting generating functions. We derive
asymptotic formulas from these singular expansions by extracting coefficients, using the Transfer
Theorems of singularity analysis [11, 10].

The asymptotic analysis carried out in this paper has important consequences in the design
of algorithms for graphs on surfaces: the enumeration of non-crossing partitions has been used
in [16] to build a framework for the design of 2O(k) ·nO(1) step dynamic programming algorithms
to solve a broad class of NP-hard optimization problems for surface-embedded graphs on n
vertices of branchwidth at most k. The approach is based on a new type of branch decomposition
called surface cut decomposition, which generalizes sphere cut decompositions for planar graphs
introduced by Seymour and Thomas [17] (see also [7]) and where dynamic programming should be
applied for each particular problem. More precisely, the use of surface cut decompositions yields
algorithms with running times with a single-exponential dependence on branchwidth, and allows
to unify and improve all previous results in this active field of parameterized complexity [6, 7, 16].
The key idea is that the size of the tables of a dynamic programming algorithm over a surface
cut decomposition can be upper-bounded in terms of the non-crossing partitions on surfaces with
boundary. See [16] for more details and references.

Outline of the paper. In Section 2 we include all the definitions and the required background
concerning topological surfaces, maps on surfaces, the symbolic method in combinatorics, and
the singularity analysis on generating functions. In Section 3 we state the precise definition of
non-crossing partition on a general surface, as well as the connection with the map enumeration
framework. Upper bounds for the number of non-crossing partitions on a surface Σ with boundary
are obtained in Section 4, and the main result is proved. A more detailed study of the constant
c(Σ) of Equation (1) is done in Section 5.

2. Background and definitions

In this section we state all the necessary definitions and results needed in the sequel. In
Subsection 2.1 we state the main results concerning topological surfaces, and in Subsection 2.2
we recall the basic definitions about maps on surfaces. Finally, in Subsection 2.3 we make a brief
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summary of the symbolic method in combinatorics, as well as the basic techniques in singularity
analysis on generating functions.

2.1. Topological surfaces. In this work, surfaces are compact (hence closed and bounded) and
their boundary is homeomorphic to a finite set (possibly empty) of disjoint simple circles. We
denote by β (Σ) the number of connected components of the boundary of a surface Σ. The Surface
Classification Theorem [15] asserts that a compact and connected surface without boundary is
determined, up to homeomorphism, by its Euler characteristic χ (Σ) and by its orientability.
More precisely, orientable surfaces are obtained by adding g ≥ 0 handles to the sphere S2,
obtaining a surface with Euler characteristic 2 − 2g. Non-orientable surfaces are obtained by
adding h > 0 cross-caps to the sphere, getting a non-orientable surface with Euler characteristic
2−h. Given a surface with boundary Σ, we denote by Σ the surface (without boundary) obtained
from Σ by gluing a disk on each of the β(Σ) components of the boundary of Σ. It is then easy
to show that χ

(
Σ
)

= β(Σ) + χ(Σ). In other words, surfaces under study are determined, up to
homeomorphism, by their orientability, their Euler characteristic, and the number of connected
components of their boundary.

A cycle on Σ is a topological subspace of Σ which is homeomorphic to a circle. We say that
a cycle S1 separates Σ if Σ \ S1 has two connected components. The following result concerning
a separating cycle is an immediate consequence of Proposition 4.2.1 in [15].

Lemma 2.1.1. Let Σ be a surface with boundary and let S1 be a separating cycle on Σ. Let
V1 and V2 be connected surfaces obtained by cutting Σ along S1 and gluing a disk on the newly
created boundaries. Then χ(Σ) = χ(V1) + χ(V2)− 2.

2.2. Maps on surfaces and duality. Our main reference for maps is the monograph of Lando
and Zvonkin [14]. A map on Σ is a partition of Σ into zero, one, and two dimensional sets
homeomorphic to zero, one and two dimensional open disks, respectively (in this order, vertices,
edges, and faces). The set of vertices, edges, and faces of a map M is denoted by V (M), E(M),
and F (M), respectively. We use v(M), e(M), and f(M) to denote |V (M)|, |E(M)|, and |F (M)|,
respectively. The degree d(v) of a vertex v is the number of edges incident with v, counted with
multiplicity (loops are counted twice). An edge of a map has two ends (also called half-edges),
and either one or two sides, depending on the number of faces which is incident with.

A map is rooted if an edge and one of its half-edges and sides are distinguished as the root-
edge, root-end, and root-side, respectively. This definition is equivalent to marking a corner
of the skeleton of the object. Observe that rooting on orientable surfaces usually omits the
choice of a root-side because the subjacent surface carries a global orientation, and maps are
considered up to orientation-preserving homeomorphism. Our choice of a root-side is equivalent
in the orientable case to the choice of an orientation of the surface. The root-end and -sides
define the root-vertex and -face, respectively. Rooted maps are considered up to cell-preserving
homeomorphisms preserving the root-edge, -end, and -side. In figures, the root-edge is indicated
as an oriented edge pointing away from the root-end and crossed by an arrow pointing towards
the root-side (this last, provides the orientation of the surface). For a map M , the Euler char-
acteristic of M , which is denoted by χ(M), is the Euler characteristic of the underlying surface.

Duality. Given a map M on a surface Σ without boundary, the dual map of M , which we
denote by M∗, is a map on Σ obtained by drawing a vertex of M in each face of M and an edge
of M across each edge of M . If the map M is rooted, the root-edge e of M is defined in the
natural way: the root-end and root-side of M correspond to the side and end of e which are not
the root-side and root-end of M , respectively. This construction can be generalized to surfaces
with boundary in the following way: for a map M on a surface Σ with boundary, notice that
the (rooted) map M defines a (rooted) map M on Σ by gluing a disk (which becomes a face of
M) along each boundary component of Σ. We call these faces of M external. Then the usual

construction for the dual map M
∗

applies using the external faces. The dual of a map M on a

surface Σ with boundary is the map on Σ, denoted by M∗, constructed from M
∗

by splitting

each external vertex of M
∗

(that is, vertices associated to external faces).
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The new vertices that are obtained are called dangling leaves, which have degree one. Observe
that we can reconstruct the map M from M∗, by pasting the dangling leaves incident with the
same face, and applying duality. An example of this construction is shown in Figure 1.

Figure 1. A map with boundary and its dual.

2.3. The symbolic method and analytic combinatorics. Our main reference in enumera-
tive combinatorics is the book of Flajolet and Sedgewick [11]. The framework introduced in this
book gives a language to translate combinatorial conditions between combinatorial classes into
equations relating the associated generating functions. This is what is called the symbolic method
in combinatorics. Later, we can treat these equations as relations between analytic functions.
This point of view gives the possibility to use complex analysis techniques to obtain information
about the combinatorial classes. This is the origin of the term analytic combinatorics.

The symbolic method. For a set A of objects, let | · | be an application (called size) from A to
N. We assume that the number of elements in A with a fixed size is always finite. A pair (A, |·|) is
called a combinatorial class. Under these assumptions, we define the formal power series (called
the generating function or GF associated with the class) A(x) =

∑
a∈A x

|a| =
∑∞
n=0 anx

n.
Conversely, we write an = [xn]A(x). The symbolic method provides a direct way to translate
combinatorial constructions between combinatorial classes into equations between GFs. The
constructions we use in this work and their translation into the language of GFs are shown in
Table 1.

Construction GF
Union A ∪ B A(x) + B(x)

Product A× B A(x)B(x)
Sequence Seq (A) 1

1−A(x)

Pointing A• x ∂
∂xA(x)

Table 1. Constructions and translations into GFs.

The union A∪B of A and B refers to the disjoint union of the classes. The cartesian product
A×B of A and B is the set {(a, b) : a ∈ A, b ∈ B}. The sequence Seq (A) of a set A corresponds
to the set E ∪ A ∪ (A×A) ∪ (A×A×A) ∪ . . ., where E denotes the empty set. At last, the
pointing operator A• of a set A consists in pointing one of the atoms of each element a ∈ A.
Notice that in the sequence construction, the expression E ∪ A ∪ (A×A) ∪ (A×A×A) ∪ . . .
translates into

∑∞
k=0 A(x)k, which is a sum of a geometric series. In the case of pointing, note

also that x ∂
∂zA(x) =

∑
n>0 nanx

n.
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Singularity analysis. The study of the asymptotic growth of the coefficients of GFs can be
obtained by considering GFs as complex functions analytic around z = 0. This is the main idea
of analytic combinatorics. The growth behavior of the coefficients depends only on the smallest
positive singularity of the GF. Its location provides the exponential growth of the coefficients,
and its behavior gives the subexponential growth of the coefficients.

More concretely, for real numbers R > ρ > 0 and 0 < φ < π/2, let ∆ρ(φ,R) be the set
{z ∈ C : |z| < R, z 6= ρ, |Arg(z − ρ)| > φ}. We call a set of this type a dented domain or a
domain dented at ρ. Let A(z) and B(z) be GFs whose smallest singularity is the real number
ρ. We write A(z) ∼z→ρ B(z) if limz→ρ A(z)/B(z) = 1. We obtain the asymptotic expansion
of [zn]A(z) by transfering the behavior of A(z) around its singularity from a simpler function
B(z), from which we know the asymptotic behavior of their coefficients. This is the main idea
of the so-called Transfer Theorems developed by Flajolet and Odlyzko [10]. These results allow
us to deduce asymptotic estimates of an analytic function using its asymptotic expansion near
its dominant singularity. In our work we use a mixture of Theorems VI.1 and VI.3 from [11]:

Proposition 2.3.1 (Transfer Theorem). If A(z) is analytic in a dented domain ∆ = ∆ρ(φ,R),
where ρ is unique singularity with smallest modulo of A(z), and

A(z) ∼
z∈∆,z→ρ

c ·
(

1− z

ρ

)−α
+O

((
1− z

ρ

)−α+γ
)
,

for α 6∈ {0,−1,−2, . . .}, and γ > 0 then

(3) an = c · n
α−1

Γ(α)
· ρ−n

(
1 +O(n−γ)

)
,

where Γ is the Gamma function: Γ(u) =
∫∞

0
tu−1e−tdt.

3. Non-crossing partitions on surfaces with boundary

In this section we introduce the precise definition of a non-crossing partition on a surface
with boundary. The notion of a non-crossing partition on a general surface is not as simple as
in the case of a disk, and must be stated in terms of objects more general than maps. Our
strategy to obtain asymptotic estimates for the number of non-crossing partitions on surfaces
consists of showing that we can restrict ourselves to the study of certain families of maps. More
concretely, we show that the study of non-crossing partitions is a particular case of the study of
hypermaps [5], which can be interpreted as bipartite maps.

The plan for this section is the following: in Subsection 3.1 we set up our notation and we
define a non-crossing partition on a general surface. In Subsection 3.2 we show that we can
restrict ourselves to the study of bipartite maps in which vertices belong to the boundary of the
surface.

3.1. Bipartite subdivisions and non-crossing partitions. Let Σ be a connected surface
with boundary, and let S1

1,S1
2, . . . ,S1

β(Σ) be the connected components of its boundary. For

1 ≤ r ≤ β(Σ), we denote by Vr = {1r, 2r, . . . ,mr} a set of vertices over S1
r, and |Vr| = nr. We

assume that there exists a total number of n vertices on the boundary of Σ, hence n1 + · · · +
nβ(Σ) = n. Observe that vertices are distributed among all the components of the boundary
of Σ. In particular, it is possible that a boundary component is not incident with any vertex.
Vertices on each boundary component are labeled in counterclockwise order. In particular,
boundary components are distinguishable. Observe that an equivalent way to label these vertices
is distinguishing on each boundary component an edge-root, whose ends are vertices 1r and 2r.
Hence, every connected component of the boundary of Σ is edge-rooted in counterclockwise order.

A bipartite subdivision with n vertices S of Σ is a decomposition of Σ (up to homeomorphisms
of the surface) into zero-, one-, and two-dimensional open and connected subsets, where the
set of vertices is equal to V1 ∪ · · · ∪ Vβ(Σ), and there is a proper two-coloring (namely, using
black and white colors) of the two-dimensional regions, in such a way that each vertex appears
(possibly more than once) in the boundary of a unique black region. We also demand that the
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intersection of the vertex set and the boundary of each black region contains at least one vertex.
See Figure 2 for examples of geometric representations of bipartite subdivisions on different
surfaces with boundary.

Figure 2. Geometric representation of non-crossing partitions on a disk, on a
cylinder, and on a Möbius band.

In general, a bipartite subdivision is not a map, as two-dimensional regions might not be
contractible. Given a bipartite subdivision, we define its blocks as the closures of its black faces.
The size of a block is the number of vertices appearing on its boundary, counting multiple
appearances only once. A block of size k is regular if it is incident with exactly k vertices
(namely, the contour walk along the border of the block meets each vertex exactly once) and it
is contractible (i.e., homeomorphically equivalent to a disk). A bipartite subdivision is regular
if each block is regular. A bipartite subdivision is irreducible if it is regular and all its white
faces are contractible. We denote by SΣ(n), RΣ(n), and PΣ(n) the set of general, regular, and
irreducible bipartite subdivisions with n vertices of Σ, respectively. See Figure 3 for examples of
bipartite subdivisions. In particular, the darker blocks in the first bipartite subdivision are not
regular.

Figure 3. Three bipartite subdivisions S1, S2, and S3. S2 is regular but not
irreducible, while S3 is irreducible.

Let S be a bipartite subdivision of Σ with n vertices and let X1, . . . , Xs be the set of its
blocks. Clearly, these blocks define the partition πΣ(S) of the vertex set V1 ∪ · · · ∪ Vβ(Σ). We
say that a partition of the vertex set is non-crossing on a surface Σ if it is equal to πΣ (S)
for a certain bipartite subdivision S of Σ. A non-crossing partition is said to be regular (or
irreducible) if it arises from a regular (or irreducible) bipartite subdivision. Observe that this
definition generalizes the notion of a non-crossing partition on a disk. We define ΠΣ(n) as the
set of non-crossing partitions of Σ with n vertices and we set CΣ(n) = |ΠΣ(n)|.
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3.2. Reduction to the map framework. In this subsection we show that we can restrict
ourselves to the study of bipartite maps in which vertices belong to the boundary of the surface.
Later, this reduction allow us to study non-crossing partitions in the context of map enumeration.

Let Σ1 and Σ2 be surfaces with boundary. We write Σ2 ⊂ Σ1 if there exists a continuous
injection i : Σ2 ↪→ Σ1 such that i(Σ2) is homeomorphic to Σ2 (in particular, the image by
i of the boundary of Σ2 is contained in the boundary of Σ1). If S is a bipartite subdivision
of Σ2 and Σ2 ⊂ Σ1, then the injection i induces a bipartite subdivision i(S) on Σ1 such that
πΣ2

(S) = πΣ1
(i(S)). Roughly speaking, all bipartite subdivisions on Σ2 can be realized on a

surface Σ1 which contains Σ2. One can write then that ΠΣ2
(n) ⊆ ΠΣ1

(n) if Σ2 ⊂ Σ1, and then
it holds that |ΠΣ2

(n)| ≤ |ΠΣ1
(n)|. This proves the trivial bound C(n) ≤ |ΠΣ(n)| for all choices

of Σ.
As the following lemma shows, regularity is preserved by injections of surfaces.

Lemma 3.2.1. Let M1 be a regular bipartite subdivision of Σ1, and let Σ1 ⊂ Σ. Then M1 defines
a regular bipartite subdivision M over Σ such that πΣ1

(M1) = πΣ(M).

Proof. Let i : Σ1 ↪→ Σ be the corresponding injective application, and consider M = i (M1). In
particular, a block X of M1 is topologically equivalent to the block i (X): i is a homeomorphism
between Σ and i(Σ). Hence i (X) is regular (this is easily verified: if the size of X is equal to k,
then i (X) is contractible and its closure intersects the boundary exactly in k points, hence it is
regular) and M is regular. �

The following proposition allows us to reduce the problem to the study of regular bipartite
subdivisions.

Proposition 3.2.2. Let S ∈ SΣ(n) be a bipartite subdivision of Σ and let πΣ(S) be the associated
non-crossing partition on Σ. Then, there exists a regular bipartite subdivision R ∈ RΣ(n) such
that πΣ(R) = πΣ(S).

Proof. Let X be a block of S of size k. If X is not regular, then either its boundary meets at
least one vertex several times or X is not contractible. We show that, in each of the previous
cases, we can apply local operations –that may simplify the surface– and transform X into a new
block with the same vertices. Hence the associated non-crossing partition remains the same.

Assume that the first case happens. Let v be a vertex incident several times with X. In this
case we define the operation of cutting a vertex as follows: consider the intersection of a small ball
of radius ε > 0 centered at v with the block X, namely Bε(v)∩X. Observe that (Bε(v) ∩X) \{v}
has several connected components (the same as the number of times the closure of X intersects
v). We define the new block by deforming all except one of these components in such a way that
they do not intersect the boundary of Σ. Next, we paste the vertex v to the unique component
which has not been deformed (see Figure 4). Then the resulting bipartite subdivision has the
same associated non-crossing partition, and v is incident with the corresponding block exactly
once. Applying this argument for each vertex of X we get a block which is incident once (as we
move along its border) with every one of the vertices which define it.

Figure 4. The operation of cutting the vertex v.

Applying this operation at most n times the resulting block intersects each vertex either one or
zero times. We can apply then this operation to all the blocks. Without loss of generality, using
this operation the number of times needed, we can assume that our initial bipartite subdivision
satisfies that each vertex appears at most once on the boundary of a block.

Assume now that X is a non-contractible block of S. Let S1
X be a non-contractible cycle

contained in X. Two situations may happen: either X \ S1
X is connected or disconnected. We

analyze both cases.
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Assume first that S1
X disconnects X. We may assume that each component contains, at least,

one boundary component (if not, the corresponding connected component of X \ S1
X could be

substituted by a disk). In particular, invoking the Jordan’s curve Theorem, there exists a pair of
vertices in each connected component (and also the corresponding boundary components where
these vertices belong). We define the operation of joining boundaries in the following way (see
Figure 5 in order to clarify this construction): we consider a path between these two vertices (in
Figure 5 it is the line joining the two vertices). This path exists as X is a connected open subset
of Σ. Consider also two new paths inside X that join these two vertices around the initial path.
We then define a new block X ′ by deleting from X the open region defined by these two paths
(the region which contains the initial path between the two vertices).

Figure 5. The operation of joining boundaries.

Applying the cut vertex operation over these two vertices we get a new block X ′′, and the
non-crossing partition associated with this new bipartite subdivision is the same as the initial
one. Observe that there does not exist a cycle which disconnects the block in such a way that
the considered boundary components lay, each of them, in a different connected component. As
the number of boundary components is finite, we can apply these operations a finite number of
times in order to get a new block without separating cycles.

Suppose now that X \ S1
X is connected. We cut the surface along S1

X and we paste either a
disk or a pair of disks along its border, depending on whether S1

X is one- or two-sided on Σ. This
operation decreases the genus of the surface and does not alter the vertices incident with the
block (as the operation does not change the set of vertices met by each block). As the genus of
the surface is bounded, we can apply this operation a finite number of times until the resulting
block becomes contractible.

To conclude, after converting each block to a regular one, the resulting surface is Σ1 ⊂ Σ. The
resulting bipartite subdivision S′ on Σ1 is regular (since all the blocks are regular), and then by
Lemma 3.2.1 there exists a regular bipartite subdivision R over Σ such that πΣ (R) = πΣ1

(M ′),
as claimed. �

Notice that from Proposition 3.2.2 we also see that

|ΠΣ(n)| ≤ |RΣ(n)|.(4)

In the next section we reduce our study to the family of irreducible bipartite subdivisions. This
permits us to upper-bound |PΣ(n)| instead of dealing with the more complicated task of upper-
bounding |RΣ(n)|. The reason why this also gives an asymptotic bound for |ΠΣ(n)| is that the
subfamily PΣ(n) provides the main contribution to the asymptotic estimates for RΣ(n).

4. Upper bounds for non-crossing partitions on surfaces

The plan for this section is the following: in Subsection 4.1 we introduce families of plane
trees that arise by duality on non-crossing partitions on a disk. These combinatorial structures
are used in Subsection 4.2 to obtain a tree-like decomposition which provides a way to obtain
asymptotic estimates for the number of irreducible bipartite subdivisions of Σ with n vertices,
namely |PΣ(n)|. These asymptotic estimates are found in Subsection 4.3 for irreducible bipar-
tite subdivisions. Finally, we prove in Subsection 4.4 that the number of irreducible bipartite
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subdivisions is asymptotically equal to the number of regular bipartite subdivisions, hence the
estimate obtained in Subsection 4.2 is an upper bound for the number of non-crossing partitions
on surfaces. All previous steps are summarized in Subsection 4.5.

4.1. Planar constructions. The dual map of a non-crossing partition on a disk is a tree, which
is called the non-crossing partition tree associated with the non-crossing partition. To abbreviate
this notation, we simply say tree associated to the corresponding non-crossing partition. This tree
corresponds to the notion of dual map for surfaces with boundary introduced in Subsection 2.2.
Recall that vertices of degree one are called the dangling leaves of the tree. In trees associated
to non-crossing partitions we have three types of vertices: vertices of the tree are called block
vertices if they are associated with a block of the non-crossing partition. The remaining vertices
are either non-block vertices or danglings. By construction, all vertices adjacent to a block vertex
are non-block vertices. Conversely, each vertex adjacent to a non-block vertex is either a block
vertex or a dangling. Graphically, we use the symbols � for block vertices, � for non-block
vertices, and ◦ for danglings. Non-crossing partitions trees are rooted: the root of a non-crossing
partition tree is defined by the root of the initial non-crossing partition on a disk (i.e, the root
from vertex 1 to vertex 2). The block vertex which carries the role of the root vertex of the tree is
the one associated with the block containing vertex with label 2 (or equivalently, the end-vertex
of the root). See Figure 6 for an example of this construction.

Figure 6. A non-crossing partition on a disk and the associated tree.

Let T be the set of non-crossing partitions trees, and let T = T(z, u) =
∑
n,m≥0 tn,mz

num

be the corresponding generating function, where the variable z marks danglings and u marks
block vertices. We use an auxiliary family B, defined as the set of trees which are rooted at a
non-block vertex. Let B = B(z, u) =

∑
n,m≥0 bn,mz

num be the associated generating function.
The next lemma gives the exact enumeration of T and B. In particular, this lemma implies the
well-known Catalan numbers for non-crossing partitions on a disk.

Lemma 4.1.1. The number of non-crossing trees counted by the number of danglings and block
vertices is enumerated by the generating function

(5) T(z, u) =
1− z(1− u)−

√
(z(1− u)− 1)2 − 4zu

2zu
.

Furthermore, B(z, u) = zT(z, u).

Proof. We establish combinatorial relations between B and T from which we deduce the result.
Observe that there is no restriction on the number of vertices incident with a given block. Hence
the degree of every block vertex is arbitrary. This condition is translated symbolically via the
relation

T = {�} × Seq (B) .
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Similarly, B can be written in the form

B = {◦} × Seq (T × {◦}) .
These combinatorial conditions translate using Table 1 into the system of equations

T =
u

1−B
, B =

z

1− zT
.

Substituting the expression of B in the first equation, one obtains that T satisfies the relation
zT2 + (z(1 − u) − 1)T + u = 0. The solution to this equation with positive coefficients is (5).
Solving the previous system of equations in terms of B brings B = zT, as claimed. �

Observe that writing u = 1 in T and B we obtain that T(z) = T(z, 1) = 1−
√

1−4z
2z , and

B(z) = B(z, 1) = zT(z), deducing the well-known generating function for Catalan numbers.
We introduce another family of trees related to non-crossing partitions, which we call double

trees. A double tree is defined in the following way: consider a path where we concatenate block
vertices and non-block vertices. We consider the internal vertices of the path. A double tree is
obtained by pasting on every block vertex of the path a pair of elements of T (one at each side
of the path), and a pair of elements of B for non-block vertices. We say that a double tree is of
type either �−�, �−�, or �−� depending on the ends of the path. An example of a double
tree of type �−� is shown in Figure 7.

Figure 7. A double tree and its decomposition.

We denote these families by T�−�, T�−�, and T�−�, and the corresponding generating func-
tion by T1(z, u) = T1, T2(z, u) = T2, and T3(z, u) = T3, respectively. Recall that in all cases
z marks danglings and u marks block vertices. A direct application of the symbolic method
provides a way to obtain explicit expressions for the previously defined generating functions.
The decomposition and the GFs of the three families are summarized in Table 2.

Family Specification Development Compact expression

T�−� Seq
(
B2 × T 2

)
1 + 1

uB2T2 + 1
u2 B4T4 + . . . 1/(1−T2B2/u)

T�−� B2 × Seq
(
B2 × T 2

)
B2 + 1

uB4T2 + 1
u2 B6T4 + . . . B2/(1−T2B2/u)

T�−� T 2 × Seq
(
B2 × T 2

)
1
uT2 + 1

u2 B2T4 + 1
u3 B4T6 + . . . 1

uT2/(1−T2B2/u)

Table 2. GFs for double trees.

To conclude, the family of pointed non-crossing trees T • is built by pointing a dangling on each
non-crossing partition tree. In this case, the associated GF is T• = z ∂

∂zT. Similar definitions can
be done for the family B. Pointing a dangling defines a unique path between this distinguished
dangling and the root of the tree.
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4.2. The scheme of an irreducible bipartite subdivision. In this subsection we generalize
the construction of non-crossing partition trees introduced in Subsection 4.1. In order to char-
acterize it, we exploit the dual construction for maps on surfaces (see Subsection 2.2). More
concretely, for an element M ∈ PΣ(n), let M∗ be the dual map of M on Σ. By construction,
there is no incidence in M∗ between either pairs of block vertices or pairs of non-block vertices.

From M∗ we define a new rooted map (a root for each boundary component of Σ) on Σ in
the following way: we start by deleting recursively vertices of degree one which are not roots.
Then we continue dissolving vertices of degree two, that is, replacing the two edges incident to
a vertex of degree two with a single edge. The resulting map has β(Σ) faces and all vertices
have degree at least three (apart from root vertices, which have degree one), and vertices of two
colors (vertices of different colors could be end-vertices of the same edge). The resulting map is
called the scheme associated with M ; we denote it by sM . See Figure 8 for an example of this
construction.

Figure 8. The construction of the scheme of an element in PΣ. We consider
the dual of an irreducible bipartite subdivision (leftmost figure). After deleting
vertices of degree one recursively and dissolving vertices of degree two, we obtain
the associated scheme (rightmost figure).

The previous decomposition can be constructed in the reverse way: duals of irreducible bi-
partite subdivision are constructed from a generic scheme s in the following way.

(1) For an edge of s with both end-vertices of type �, we paste a double tree of type �−�
along it. Similar operations are done for edges with end-vertices {�,�} and {�,�}.

(2) For vertex v of s of type � we paste d(v) elements of T (identifying the roots of the trees
with v), one on each corner of v. The same operation is done for vertices of s of type �.

(3) We paste an element of T • along each one of the roots of s (the marked leaf determines
the dangling root).

To conclude, this construction provides a way to characterize the set of schemes. Indeed, if we
denote by SΣ the set of maps on Σ with β(Σ) faces with a root on each face and with vertices
of two different colors (namely, vertices of type � and �), then |SΣ| is finite, since the surface
is fixed, the number of faces of each element in SΣ is equal to β(Σ) and we are not dealing
with vertices of degree 1 and 2. In fact, SΣ is the set of all possible schemes: from an arbitrary
element s ∈ SΣ we can construct a map on Σ with β (Σ) faces by pasting double trees along
each edge of s (according to the end-vertices of each edge). In other words, given M ∈ PΣ(n)
and sM , M∗ can be reconstructed by pasting on every edge of sM a double tree, depending on
the nature of the end-vertices of each edge of sM . See Figure 9 for an example.

4.3. Asymptotic enumeration. The decomposition introduced in Subsection 4.2 can be ex-
ploited in order to get asymptotic estimates for |PΣ(n)|, and consequently upper bounds for
|ΠΣ(n)|. In this subsection we provide estimates for the number of irreducible bipartite subdivi-
sions. We obtain these estimates directly for the surface Σ, while the usual technique consists in
reducing the enumeration to surfaces of smaller genus, and returning back to the initial one by
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Figure 9. The decomposition into bicolored trees and the associated scheme.

topological “pasting” arguments. The main point consists in exploiting tree structures of the dual
graph associated with an irreducible bipartite subdivision. The main ideas are inspired by [2],
where the authors find the asymptotic enumeration of simplicial decompositions of surfaces with
boundaries without interior points.

We use the notation and definitions introduced in Subsection 4.1 (i.e., families of trees, double
trees and pointed trees, and the corresponding GFs), joint with the decomposition introduced
in Subsection 4.2. Let us now introduce some extra notation.

We denote by PΣ(n,m) the set of irreducible bipartite subdivisions of Σ with n vertices and
m blocks. We write pΣ

n,m for the cardinality of this set and PΣ(z, u) =
∑
n,m≥0 p

Σ
n,mz

num. Let

pΣ
n =

∑
m≥0 p

Σ
n,m = [zn]PΣ(z, 1). Let s ∈ SΣ. Denote by v1(s) and v2(s) the set of vertices of

type � and � of s, respectively. Write b(s), w(s) for the number of roots which are incident with
a vertex of type � and �, respectively. In particular, b(s) + w(s) = β(Σ). Denote by e1(s) the
number of edges in s of type �−�. We similarly define e2(s) and e3(s) for edges of type �−�
and �−�, respectively. Observe that e1(s) + e2(s) + e3(s) + b(s) +w(s) is equal to the number
of edges of s, namely e(s). For a vertex v of s, denote by r(v) the number of roots which are
incident with it. Finally, denote by CΣ ⊂ SΣ the set of maps on SΣ whose vertex degree is equal
to three (namely, cubic maps on Σ with β(Σ) faces).

The decomposition discussed in Subsection 4.2 together with Proposition 2.3.1 give the fol-
lowing:

Lemma 4.3.1. Let Σ be a surface with boundary. Then

(6) [zn]PΣ(z, 1) = pΣ
n =

c(Σ)

Γ (−3χ(Σ)/2 + β(Σ))
n−3χ(Σ)/2+β(Σ)−14n

(
1 +O

(
n−1/2

))
,

where c(Σ) is a nonzero value depending only on Σ.

Proof. If Σ is the disk we obtain the well known asymptotic estimate for Catalan numbers, which
fits into the general expression in (6). Let us assume that Σ it is a surface with boundary different
from the disk.

According to the decomposition introduced in Subsection 4.2, PΣ(z, u) can be written in the
following form: for each s ∈ SΣ, we replace edges (not roots) with double trees, roots with
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pointed trees, and vertices with sets of trees. More concretely,

PΣ(z, u) =
∑
s∈SΣ

u|v1(s)|T
e1(s)
1 T

e2(s)
2 T

e3(s)
3

(
T

u

)∑
x∈v1(s)(d(x)−2r(x))

×(7)

B
∑

y∈v2(s)(d(y)−2r(y))

(
T•

u

)B(s)

(B•)
W (s)

.

Observe in the previous expression that terms T and T• appear divided by u: blocks on the
dual map are considered in the term u|v1(s)|, so we do not consider the root of the different
non-crossing trees.

To obtain the asymptotic behavior in terms of the number of danglings, we write u = 1 in
Equation (7). To study the resulting GF, we need the expression of each factor of Equation (7)
when we write u = 1; all these expressions are shown in Table 3. This table is built from the
expressions for T and B deduced in Lemma 4.1.1 and the expressions for double trees in Table 2.

GF Expression

T1(z, 1) 1/16(1− 4z)−1/2 − 1/8(1− 4z)1/2 + 1/16(1− 4z)3/2

T2(z, 1) 1/4(1− 4z)−1/2 + 1/2 + (1− 4z)1/2

T3(z, 1) z2
(
1/16(1− 4z)−1/2 − 1/8(1− 4z)1/2 + 1/16(1− 4z)3/2

)
T(z, 1) (1− (1− 4z)1/2)/(2z)

B(z, 1)
(
1− (1− 4z)1/2

)
/2

T•(z, 1) (1− 4z)−1/2/z − (1− (1− 4z)−1/2)/(2z2)

B•(z, 1) (1− 4z)−1/2

Table 3. Univariate GF for all families of trees.

The GF in Equation (7) is a finite sum (a total of |SΣ| terms), so its singularity is located at
z = 1/4 (since each addend has a singularity at this point). For each choice of s,

(8) T(z, 1)
∑

x∈v1(s)(d(x)−2r(x))B(z, 1)
∑

y∈v2(s)(d(y)−2r(y)) =

f(s)∑
n=0

fn(z)(1− 4z)n/2,

where the positive integer f(s) depends only on s, fn(z) are functions analytic at z = 1/4, and
f0(z) 6= 0 at z = 1/4. For the other multiplicative terms, we obtain

(9) T1(z, 1)e1(s)T2(z, 1)e2(s)T3(z, 1)e3(s)T•(z, 1)B(s)B•(z, 1)W (s) = Gs(z)(1− 4z)−
e(s)

2 + . . . ,

where Gs(z) is a function analytic at z = 1/4. The reason for this fact is that each factor in
Equation (9) can be written in the form p(z)(1− 4z)−1/2 + . . . , where p(z) is a function analytic
at z = 1/4, and e1(s) + e2(s) + e3(s) + b(s) + w(s) is the total number of edges. Multiplying
Expressions (8) and (9) we obtain the contribution of a map s in PΣ(z, 1). More concretely, the
contribution of a single map s to Equation (7) can be written in the form

gs(z)(1− 4z)−e(s)/2 + . . . ,

where gs(z) is a function analytic at z = 1/4. Looking at (3) from Proposition 2.3.1, we deduce
that the maps giving the main contribution to the asymptotic estimate of pΣ

k are the ones
maximizing the value e(s). Applying Euler’s formula (recall that all maps in SΣ have β(Σ)
faces) on Σ gives that these maps are precisely the maps in CΣ. In particular, maps in CΣ have
2β(Σ)− 3χ(Σ) edges. Hence, the singular expansion of PΣ(z, 1) at z = 1/4 is

(10) PΣ(z, 1) ∼z→1/4 c(Σ)(1− 4z)3χ(Σ)/2−β(Σ)
(

1 +O((1− 4z)1/2)
)
,

where c(Σ) =
∑

s∈CΣ
gs(1/4) counts the number of such maps (so, in particular, this value is not

zero). Applying Proposition 2.3.1 on this expression yields the result as claimed. �
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4.4. Irreducibility vs reducibility. For conciseness, in this subsection we write

a(Σ) =
c(Σ)

Γ (−3χ(Σ)/2 + β(Σ))

to denote the constant term which appears in Equation (6) from Lemma 4.3.1. Observe that for
a non-irreducible bipartite subdivision M of RΣ, there is a non-contractible cycle S1 contained
in a white two-dimensional region of M . Additionally, M induces a regular bipartite subdivision
on the surface Σ\S1 = Σ′, which can be irreducible or not. By Lemma 3.2.1, each element
of RΣ′ defines an element of RΣ. To prove that irreducible bipartite subdivisions over Σ give
the maximal contribution to the asymptotic, we apply a double induction argument on the
pair (χ(Σ), β(Σ)). The critical point is the initial step, namely genus equal to 0 and several
boundaries, which corresponds to the case where Σ is the sphere. The details are shown in the
following lemma.

Lemma 4.4.1. Let Σ be a surface obtained from the sphere by deleting β disjoints disks. Then

|RΣ(n)\PΣ(n)| = o (|PΣ(n)|) .

Proof. We apply induction on β (in this proof the genus of Σ is always equal to 0). The case
β = 1 corresponds to a disk, where T(z, u) in Equation (5) is the same as PΣ(z, u). In this case,
the equality RΣ(n) = PΣ(n) holds for every value of n.

Let us proceed with the inductive step. Let β > 1 be the number of boundary connected
components of Σ. Applying Jordan’s Theorem in the sphere, a non-contractible cycle always
separates Σ into two connected components, namely Σ1 and Σ2. By induction hypothesis,

|RΣj
(n)\PΣj

(n)| = o
(∣∣PΣj

(n)
∣∣) ,

for j = 1, 2. Hence, we only need to deal with irreducible decompositions of Σ1 and Σ2 (as the
number of boundary components of Σ1 and Σ2 is smaller than β and its genus is 0). The GF of
the regular bipartite subdivisions that reduce to decompositions over Σ1 and Σ2 has the same
asymptotic as PΣ1(z, 1) ·PΣ2(z, 1). The estimate of its coefficients is

[zn]PΣ1(z, 1)PΣ2(z, 1) = a(Σ1)a(Σ2)[zn](1− 4z)−5/2β(Σ1)+3(1− 4z)−5/2β(Σ2)+3.

Applying Proposition 2.3.1 gives the estimate [zn]PΣ1
(z, 1)PΣ2

(z, 1) = O
(
n5/2β−74n

)
. Conse-

quently, when n is large enough the above term is smaller than pΣ
n = O

(
n5/2β−44n

)
, and the

result follows. �

The next step consists in adapting the previous argument to surfaces of arbitrary genus but
with just one boundary component. This is proved in the next lemma:

Lemma 4.4.2. Let Σ be a surface such that the number of connected components of its boundary
is equal to 1. Then,

|RΣ(n)\PΣ(n)| = o (|PΣ(n)|) .

Proof. We apply induction on the Euler genus of the surface. For Euler genus 0 the result is
the one in the disk, and the claim is obvious. Let us assume the induction hypothesis and
suppose that the Euler genus of the surface is greater than or equal to 1. For a regular (but not
irreducible) bipartite subdivision, consider a non-contractible cycle C on one of its white faces.
Observe that C can be either one- or two-sided. Let Υ be the surface obtained from Σ\C by
pasting a disk (or two disks) along the cut (depending on whether C is one- or two-sided). As
the boundary has exactly one connected component, either the resulting surface Υ is connected
and we set Σ′ = Υ or Υ has two connected components and we define Σ′ as the one that contains
the boundary. Hence, we have the relation

RΣ(n)\PΣ(n) ⊆
⋃
Σ′

RΣ′(n),

where the union runs over all connected surfaces Σ′ with one boundary component with genus
strictly smaller than the one of Σ. By induction hypothesis, |RΣ′(n)\PΣ′(n)| = o (|PΣ′(n)|), and
|RΣ′(n)| ∼ |PΣ′(n)|.
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The main contribution to the asymptotic of |
⋃

Σ′ PΣ′(n)| arises from the surface whose genus
is a unit less than the one of Σ, which corresponds to

|PΣ′(n)| = a(Υ)n−3/2χ(Υ)−3/24n
(

1 +O
(
n−1/2

))
= o

(
n−3/2χ(Σ)4n

)
,

and the result holds. �

This last step is done in the following proposition, in which we deal with the general situation:

Proposition 4.4.3. Let Σ be a surface with boundary. Then

|RΣ(n)\PΣ(n)| = o (|PΣ(n)|) .

Proof. Let Σ be a surface with boundary and Euler characteristic χ(Σ). Consider a non-
contractible cycle C contained in a two-dimensional white region. Observe that C can be either
one- or two-sided. Let Υ be the surface obtained from Σ\C by pasting a disk (or two disks) along
the cut (depending on whether C is one- or two-sided). The two situations that could occur are
the following:

(1) Υ is connected and β(Υ) = β(Σ). In this case, the Euler characteristic has been increased
by either one if the cycle is one-sided or by two if the cycle is two-sided (see Lemma 4.2.4
in [15]).

(2) The resulting surface has two connected components, namely Υ = Υ1 t Υ2. In this
case, the total number of boundaries is β(Υ) = β(Υ1) + β(Υ2). By Lemma 2.1.1,
χ(Σ) = χ(Υ1) + χ(Υ2)− 2.

Clearly, the base of the induction is given by Lemmas 4.4.1 and 4.4.2. The induction argument
distinguishes between the following two cases:

Case 1. Υ is connected, by induction on the genus, |RΥ(n)\PΥ(n)| < |PΥ(n)| when n → ∞.
Additionally, by Relation (6), an upper bound for |PΥ(n)| is

[zn]PΥ(z, 1) = a(Υ)n−3/2χ(Υ)+β(Υ)−1−3/24n
(

1 +O
(
n−1/2

))
= o

(
n−3/2χ(Σ)+β(Σ)−14n

)
.

Case 2. Υ is not connected. Then Υ = Υ1 t Υ2, β(Σ) = β(Υ) = β(Υ1) + β(Υ2), and
χ(Σ) = χ(Υ1) + χ(Υ2) − 2. Again, by induction hypothesis we only need to consider, in both
surfaces, irreducible bipartite subdivisions (which are the ones with the main contribution in the
asymptotic). Consequently,

[zn]PΥ1(z, 1)PΥ2(z, 1) = a(Υ1)a(Υ2)[zn](1− 4z)3/2(χ(Υ1)+χ(Υ2))−(β(Υ1)+β(Υ2))+3.

The exponent of (1−4z) in the last equation can be written as 3/2χ(Σ)−β(Σ)+3. Consequently,
the value [zn]PΥ1(z, 1)PΥ2(z, 1) is bounded, for n large enough, by

n−3/2χ(Σ)+β(Σ)−3−14n = n−3/2χ(Σ)+β(Σ)−44n = o
(
n−3/2χ(Σ)+β(Σ)−14n

)
.

Hence the contribution is smaller than the one given by |PΣ(n)|, as claimed. �

4.5. Upper bounds for non-crossing partitions. In this subsection we summarize all the
steps in the previous subsections of this section. Our main result is the following:

Theorem 4.5.1. Let Σ be a surface with boundary. Then the number |ΠΣ(n)| verifies, for
n→∞

(11) |ΠΣ(n)| ≤ c(Σ)

Γ (−3/2χ(Σ) + β(Σ))
n−3/2χ(Σ)+β(Σ)−14n

(
1 +O

(
n−1/2

))
,

where c(Σ) is a function depending only on Σ.

Proof. We have seen in Proposition 3.2.2 that in fact |ΠΣ(n)| ≤ |RΣ(n)|, as each bipartite
subdivision can be reduced to a regular bipartite subdivision. We partition the set RΣ(n) using
the notion of irreducibility in the form

RΣ(n) = PΣ(n) ∪ (RΣ(n)\PΣ(n)) .
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Estimates for |PΣ(n)| are obtained in Lemma 4.3.1, getting the bound stated in Equation (6). In
Lemma 4.4.3 we prove that |RΣ(n)\PΣ(n)| = o (|PΣ(n)|), hence the estimate in Equation (11)
holds. �

5. Bounding c(Σ) in terms of cubic maps

In this section we obtain upper bounds for c(Σ) by doing a more refined analysis over functions
gs(z) (recall the notation used in Subsection 4.3). This is done in the following proposition.

Lemma 5.0.2. The function c(Σ) defined in Lemma 4.3.1 satisfies

(12) c(Σ) ≤ 2β(Σ)|CΣ|.

Proof. For each s ∈ CΣ, we obtain bounds for gs(1/4). We use Table 4, which is a simplification
of Table 3. Now we are only concerned about the constant term on each GF. Table 4 brings the
following information: the main contribution from double trees, trees, and families of pointed
trees comes from T�−�, T , and T •, respectively. The constants are 1/4, 2, and 4, respectively.
Each cubic map has −3χ(Σ) + 2β(Σ) edges (β(Σ) of them being roots) and −2χ(Σ) + β(Σ)
vertices (β(Σ) of them being incident with roots). This characterization provides the following
upper bound for gS(1/4):

(13) gs(1/4) ≤
(

1

4

)2β(Σ)−3χ(Σ)−β(Σ)

2−3·2χ(Σ)+β(Σ)4β(Σ) = 2β(Σ).

�

GF Expression Development at z = 1/4

T1(z) (1− 4z)−1/2/16 + . . . 1/16(1− 4z)−1/2 + . . .

T2(z) (1− 4z)−1/2/4 + . . . 1/4(1− 4z)−1/2 + . . .

T3(z) z2/16(1− 4z)−1/2 + . . . 1/256(1− 4z)−1/2 + . . .

T(z) 1/(2z) + . . . 2 + . . .

B(z) 1/2 + . . . 1/2 + . . .

T•(z) (1− 4z)−1/2/z + . . . 4(1− 4z)−1/2 + . . .

B•(z) (1− 4z)−1/2 (1− 4z)−1/2

Table 4. A simplification of Table 3 used in Lemma 4.3.1.

The value of CΣ can be bounded using the results in [1, 12]. Indeed, Gao shows in [12] that the
number of rooted cubic maps with n vertices in an orientable surface of genus1 g is asymptotically
equal to

tg · n5(g−1)/2 · (12
√

3)n,

where the constant tg tends to zero as g tends to infinity [1]. A similar result is also stated

in [12] for non-orientable surfaces. By duality, the number of rooted cubic maps on a surface Σ

of genus g(Σ) with β(Σ) faces is asymptotically equal to tg(Σ) · β(Σ)5(g(Σ)−1)/2 · (12
√

3)β(Σ).
To conclude, we observe that the elements of CΣ are obtained from rooted cubic maps with

β(Σ) faces by adding a root on each face different from the root face. Observe that each edge is
incident with at most two faces, and that the total number of edges is −3χ(Σ). Consequently,

the number of ways of rooting a cubic map with β(Σ)−1 unrooted faces is bounded by
(−6χ(Σ)
β(Σ)−1

)
.

Lemma 5.0.2, together with the discussion above, yields the following bound for c(Σ).

1the genus g(Σ) of an orientable surface Σ is defined as g(Σ) = 1 − χ(Σ)/2 (see [15]).
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Proposition 5.0.3. The constant c(Σ) verifies, for −χ(Σ)→∞

c(Σ) < t1−χ(Σ)/2 · β(Σ)−5χ(Σ)/2 · (12
√

3)β(Σ) ·
(
−6χ(Σ)

β(Σ)− 1

)
· 2β(Σ).

Further research. In this article, we provided upper bounds for |ΠΣ(n)|. This upper bound
is exact for the exponential growth (recall Section 1). However, we cannot assure exactness for
the subexponential growth. The main problem in order to state asymptotic equalities is that
|ΠΣ(n)| 6= |PΣ(n)|: there exist different irreducible bipartite subdivisions with n vertices which
define the same non-crossing partition (see Figure 10 for an example). However, we conjecture
that the upper bound we have obtained is tight.

A natural strategy to find lower bounds with the same subexponential growth could be to
consider only a subset of irreducible subdivisions giving rise to different non-crossing partitions.
On surfaces obtained from the sphere this subset might be defined as the irreducible subdivisions
such that there are at least two black vertices on each edge of the corresponding scheme (intu-
itively, such irreducible subdivisions do not allow the rotational symmetry around a boundary
that occurs in the example of Figure 10). However, this condition seems not to be sufficient on
surfaces of higher genus. Hence, an open problem in this context is finding precise definitions of
subfamilies of irreducible subdivision whose enumeration matches our asymptotic upper bound.

Figure 10. Two different representations of the same partition.

Another interesting problem is based on generalizing the notion of k-triangulation to the par-
tition framework and getting the asymptotic enumeration: the enumeration of k-triangulations
on a disk was found using algebraic methods in [13]. This notion can be easily translated to
the non-crossing partition framework on a disk, and the exact enumeration in this case seems to
be more involved. In the same way as non-crossing partitions on surfaces play a crucial role for
designing algorithms for graphs on surfaces (see [16]), it turns out that the enumeration men-
tioned above is of capital importance in order to design algorithm for families of graphs defined
by excluding minors.
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18 J. RUÉ, I. SAU, AND D. M. THILIKOS
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[16] Rué, J., Sau, I., and Thilikos, D. M. Dynamic programming for graphs on surfaces. To appear in ACM

Transactions on Algorithms. Available on-line at http://arxiv.org/abs/1104.2486.

[17] Seymour, P., and Thomas, R. Call routing and the ratcatcher. Combinatorica 14, 2 (1994), 217–241.

[18] Simion, R. Combinatorial statistics on noncrossing partitions. Journal of Combinatorial Theory, Series A
66, 2 (1994), 270–301.

[19] Stanley, R. P. Enumerative combinatorics. Vol. 2, vol. 62 of Cambridge Studies in Advanced Mathematics.

Cambridge University Press, Cambridge, 1999.
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