
Mobility of the environment and
architecture of the project SECURITY at

the EDGE network

Final degree project

Author:
Ferran Pérez Gutierrez

Director:
René Serral Gracià

November 26, 2018

Degree in Computer Engineering
Computer engineering

Resum

En el marc del projecte SECURED (SECURity at the network EDge),neix la necessitat
d’implementar els mecanismes de mobilitat de l’entorn de l’usuari en l’arquitectura de
con�an�ca que ofereix SECURED, de forma transparent a l’usuari. La plani�caci�o ha estat
acurada amb les necessitats del projecte i no s’han desviat gaire de la realitat. Els costos
han estan ajustats dins de la partida pressupostaria de l’equip de la UPC. Es un projecte
amb un valors de producci�o sostenible pel medi ambient, social i economic, segons la matriu
de \la econom��a del bien com�un"[16], una proposta generada des de la FIB. Finalment
la soluci�o proposada s’ha provat en el centre d’ensenyament S’Arenal, del municipi Platja
de Palma. La prova pilot ha sigut un �exit, demostrant aix�� que la soluci�o �es exportable a
qualsevol indret.

i

Resumen

En el marco del proyecto SECURED (SECURity at the network EDge), nace la necesidad
de implementar los mecanismos de mobilidad del entorno del usuari en la aqrquitectura
de con�anza que ofreze SECURED, de forma transparente al usuario. La plani�cacion
ha estado acurada con las necesidades del proyecto i se ha deviado mucho de la realidad.
Los costes han sido ajustados dentro de la partida presupostaria del equipo de la UPC.
Es un proyecto con unos valores de producci�on sostenible para el medio ambiente, social
i enomico, seg�un la matriz de "la econom��a del bien com�un"[16], una propuesta generada
des de la FIB. Finalmente la soluci�on propuesta se ha probado en el centro de ense~nanza
S’Arenal, del municipio Platja de Palma. La prueba ha sido un exito, demostrando de as��
que la soluci�on es exportable a cualquier sitio.

ii

Abstract

SECURED (security at the network edge) project full�lled the need of implementing the
user’s mobility mechanisms in the trusted architecture that SECURED o�ers, in a trans-
parent way to the user. The planning has been careful to the needs of the project and
has not deviated much from reality. The costs are adjusted within the budget items of
equipment at the UPC. It is a project with sustainable production values for the environ-
ment, social and economic, as the matrix of "la econom��a del bien com�un" [16] generated
as a proposal from the FIB. Finally, the proposed solution has been tested in the training
center of El Arenal municipality of Playa de Palma. The pilot was a success, showing that
the solution is exportable anywhere.

iii

Acknowledgments

Thanks to Diego Montero for his unconditional help, thanks to which I was able to
move forward at the critical moments of the project. Also my thanks to Al��cia Vila for
the time she has dedicated, with a server, to put together the parts of each has developed
from the project.

And �nally my thanks to Ren�e Serral Graci�a for the opportunity that he has given
me, in order to be able to do the FDP, in a great project as has been SECURED and for
the patience that has had with me.

iv

Contents

1 Introduction 1
1.1 Description of the project . 1
1.2 Actors involved . 1

1.2.1 Team leader . 1
1.2.2 UPC team . 2
1.2.3 Other partners . 2
1.2.4 Bene�ciary . 4

1.3 State of the art . 4
1.3.1 Open-Flow . 4
1.3.2 Virtualization . 4
1.3.3 VPN . 4
1.3.4 Opendaylight . 5

1.4 Document structuring . 5

2 Reach 6
2.1 Formulation of the problem . 6
2.2 Goal . 7
2.3 Requirements . 7

2.3.1 Technologies . 7
2.4 Reach . 7
2.5 Risks and possible solutions . 7

2.5.1 Increase in debugging time . 8
2.5.2 Bureaucracy . 8
2.5.3 Test machines . 8

2.6 Identi�cation of laws and regulations . 8
2.7 Work method . 8

2.7.1 Semi-presential development . 8
2.7.2 Follow-up meetings of the UPC team 9
2.7.3 Follow-up meetings of the SECURED project 9
2.7.4 Testing and integration of the environment 9

3 Planning 10
3.1 Temporary planning . 10

3.1.1 Description of tasks . 10
3.1.2 Gantt diagram . 12

v

4 Budget 16
4.1 Budget . 16
4.2 Identi�cation and estimation of costs . 16

4.2.1 Developer . 16
4.2.2 Hardware . 16
4.2.3 Indirect costs . 17
4.2.4 Cost chart . 18

5 Architecture 19
5.1 Personal Security Application (PSA) . 20

5.1.1 Tipus de PSAs . 20
5.2 TEE . 21
5.3 Personal Secured Control (PSC) . 21

5.3.1 Trusted Virtual Domain (TVD) . 22
5.4 Communication between the elements . 22
5.5 Personal Security Controller Manager (PSCM) 22
5.6 Trusted Virtual Domain Manager(TVDM) 23
5.7 Network Edge Device (NED) . 23

6 Implementation 24
6.1 Instantiation . 24

6.1.1 Before implementing the migration 24
6.1.2 NED instantiation steps . 24
6.1.3 Final stage . 26

6.2 Implementations made for mobility . 27
6.2.1 VPN Tunnel with StrongSwan . 27
6.2.2 Mobility functionalities added to the existing classes 27
6.2.3 The new implemented class: TVDMigration 29
6.2.4 New features included in the REST gunicorns API 32
6.2.5 Parallelization and
ow control of the execution of mobility 33

6.3 Final stage: Migration . 34

7 Performance tests 37
7.1 Test bench . 37
7.2 Functionalities added for the performance of the test 38
7.3 Executions . 39

8 Results 40
8.1 Graph of results . 40
8.2 Interpretation of results . 40

9 Sustainability 41
9.1 We know that sustainability is one of Sustainability Analysis 41
9.2 Project in production . 42
9.3 Lifetime and results . 44
9.4 Risks . 45
9.5 Evaluation of sustainability . 46
9.6 Conclusion . 47

vi

10 Conclusion 49
10.1 Conclusion . 49

10.1.1 Work Achieved . 49
10.1.2 Work for the future . 49

A Results of the tests 51

B Project codes 58
B.1 Codes with added functionalities . 58
B.2 Code with the new functionalities of mobility 78
B.3 Bibliography . 89

Bibliography 90

vii

List of Tables

1.1 Consortium . 2

4.1 Table of sta� costs . 17
4.2 Depreciation table (from 1/6/2015) . 17
4.3 Project cost chart . 18

7.1 Speci�cations of the equipment used . 38

9.1 Matrix of sustainability and possible scores 42
9.2 Matrix of sustainability and possible scores 46

viii

List of Figures

3.1 Table of tasks, start date, duration and end date 13
3.2 1st part of the gantt diagram . 14
3.3 2nd part of the gantt diagram . 15

5.1 NED . 19
5.2 NED . 21

6.1 Instantiation . 26
6.2 Migration of PSAs . 34
6.3 Migration of PSC . 35
6.4 Shipping of the TVD . 35
6.5 Re-instantiation of TVD . 36

7.1 Conceptual design of the test bench . 37

8.1 Results of the tests . 40

A.1 Execution nº20 made on 11-11-2016 . 51
A.2 Execution nº21 made on 11-11-2016 . 51
A.3 Execution nº22 made on 11-11-2016 . 52
A.4 Execution nº23 made on 11-11-2016 . 52
A.5 Execution nº24 made on 11-11-2016 . 52
A.6 Execution nº44 made on 16-11-2016 . 53
A.7 Execution nº45 made on 16-11-2016 . 53
A.8 Execution nº46 made on 16-11-2016 . 53
A.9 Execution nº47 made on 16-11-2016 . 54
A.10 Execution nº48 made on 16-11-2016 . 54
A.11 Execution nº35 made on 01-12-2016 . 54
A.12 Execution nº36 made on 01-12-2016 . 55
A.13 Execution nº37 made on 01-12-2016 . 55
A.14 Execution nº38 made on 16-11-2016 . 55
A.15 Execution nº39 made on 01-12-2016 . 56
A.16 Execution nº26made on 14-12-2016 . 56
A.17 Execution nº27 made on 14-12-2016 . 56
A.18 Execution nº28 made on 14-12-2016 . 57
A.19 Execution nº29 made on 14-12-2016 . 57
A.20 Execution nº48 made on 14-12-2016 . 57

ix

Source code index

6.1 New route of TVDM functionality . 27
6.2 Added new parameter to the instantiation path 27
6.3 Institution of migration . 27
6.4 Function on post() . 28
6.5 Function on get() . 28
6.6 Funci�o SendTVD . 29
6.7 generateremote disk function . 31
6.8 Generateremote disk function . 31
6.9 Renameremoter disk . 32
6.10 Funci�o createSSHclient . 32
B.1 mainIPSEC.py . 58
B.2 Orchstrator.py . 60
B.3 GraphInstatiator.py . 62
B.4 userTVD.py . 70
B.5 TVDMigration.py . 78

x

Glossary

Antiphising Anti-phishing software consists of computer programs that attempt to iden-
tify the content of identity theft contained in web pages and email or block users from
being tricked. It often integrates with web browsers and email clients as a toolbar
that shows the real domain name of the web page that the viewer is visiting in an
attempt to prevent fraudulent websites Let's go through other legitimate websites..
20

gunicorn Gunicorn 'Green Unicorn' is a Python WSGI HTTP server for UNIX. He is a
pre-fork model worker. The Gunicorn server is widely compatible with several web
frameworks, simply implemented, low resource consumption of the server, and quite
fast.. 22

OpenFlow OpenFlow �es la primera interf��cie de comunicacions est�andard de�nit entre
les capes de control i la transmissi�o d'una arquitectura SDN.. 29

outlier In statistics, an atypical observation or atypical data is a value that di�ers so
widely from the rest of the data that we think that an error has been made.. 39

plugin A connector (in English plugin, plug-in: "plug-in"), also known as extension (in
English addin, add-in, addon or add-on) is a computer application that interacts with
another application to contribute. Have an additional function or utility, usually very
speci�c, such as serving as a controller in an application, to make this work a device
in another program. 27

timestamps Timestamping is the use of an electronic timestamp to provide a temporary
order between a set of events.. 38

VPN A virtual private network, XPV or VPN (from the initials of virtual private net-
work) is a network technology that allows an extension of the local network over a
public or non-controlled network. v, vi, 4, 7, 20, 27, 39

xi

Chapter 1

Introduction

1.1 Description of the project

This �nal degree work, within modality A, is part of a larger project funded by the Euro-
pean Union with the participation of prestigious European universities and telecommuni-
cations companies. The project is called SECURED (SECURITY at the EDGE network)
and has lasted three years of development.

One of the great contributions of the project is computer security. That's why it pro-
poses an innovative architecture to achieve protection against Internet threats through the
routing of tra�c through a series of machines where each one is responsible for �ltering it
according to the criteria that the user has con�gured.

This architecture creates a trusted and virtualized execution environment that allows
di�erent actors (for example, individual users, corporate TIC administrators) to install on
demand and run several applications on the device at the edge of the network, downloading
them mobile devices, which guarantees the compliance of ease of speci�c and independent
use of the device policies of security and uniform protection through di�erent devices and
personal networks[1].

This project aims to implement the mechanisms of mobility of the user environment
in the trusted architecture o�ered by SECURED, in a transparent way to the user. The
implementation of this new technology will be carried out progressively. The proposed
architecture will be validated initially in a controlled test bench and �nally in a real envi-
ronment.

1.2 Actors involved

In project SECURED intervened a total of 7 partners. Here we can see the table with
names of partners, the country of origin and the role inside of project.[2]

1.2.1 Team leader

Each partner has a team leader that manages the resources, the workload, marks the
short-term goals and organizes the meetings. In Ren�e Serral Graci�a is the leader of our

1

Initials Full name Country Rol

POLITO Politecnico di Torino It�alia coordinator
HPLB Hewlett-Packard LTD UK partner
PTEL Primetel PLC Xipre partner
TID Telef�onica Investigaci�on y Desar-

rollo SA
Spain partner

UNICRI United Nations Interregional Crime
and justice Research Institute

partner

UPC Universitat Polit�ecnica de
Catalunya

Spain partner

VTT VTT Technical Research Centre of
Finland

Finland partner

Table 1.1: Consortium

team and the director of my �nal degree project.

1.2.2 UPC team

The role of the UPC in the project is as follows:

ˆ De�nition of the requirements for architecture, as well as its design and evaluation.

ˆ API de�nition, ontologies and summaries policies, both the security requests and the
con�gurations required at di�erent levels, with the participation of both physical and
virtual devices.

ˆ Orchestration and development to attend mobile users.

ˆ The creation of prototypes and integration.

The roles that directly a�ect me are those of orchestration and creation of prototypes
(migration) and integration.

1.2.3 Other partners

I will now brie
y explain the role that other SECURED project partners play:

1. POLITO

ˆ Coordinator of the project SECURED.

ˆ Development and research in security policies.

ˆ Development and research in software and applications for the edge device of
the network, based on its experience in the speed of
exible processing and high
network tra�c, formal methods of veri�cation of security code, and the recent
work of the network, Explore the migration of personal network applications
from the host to the edge of the network.

2. HPLB

ˆ Carry out the general de�nition of the technical architecture to ensure that it
will be commercially relevant and realistic.

2

ˆ Conduct the development and implementation of the fundamental edge archi-
tecture network device.

3. PTEL

ˆ The development and research activities in the design and evaluation of the
architecture of SECURED, contributing to the requirements of the network
from the perspective of an operator.

ˆ Collection of information and feedback from end users.

ˆ Technical validation of SECURED.

ˆ The dissemination of project results.

4. TID

ˆ Contribution to the de�nition of the needs and options of architecture for sce-
narios of network operator.

ˆ Contributing to the design of the security service, in front of heterogeneous
scenarios, mixes legacy network equipment and new edge nodes, which also
incorporate the operator's safety regulations and internal regulations.

ˆ Provide test environments with the actual HW/SW in use within the Telef�onica,
and simulate di�erent types of tra�c mobility.

ˆ They actively participate in standardization through the TID bodies. They
do the analysis, evaluation and validation of the feasibility of proposals in the
broadest Internet environment.

5. UNICRI

ˆ Assisting in the payment requirements of the interested parties, paying special
attention to three main areas of risk: in line with the protection of children, the
�ght against computer crime, the continuous support of Internet users against
authoritarian regimes.

ˆ The execution of the evaluation process with the interested parties.

ˆ Contributing to the speci�cation of the policies on the balance of the �ght
against computer crime and privacy, the protection of children online and sup-
port the network against censorship and vigilance.

ˆ Evaluation of the ability to use the user interface for the speci�cation of the
policy.

6. VTT

ˆ The investigation in the areas of detection of intruders and anonymously.

ˆ That brings all the integration work.

ˆ Organize a lab for integration.

ˆ Di�usion and exploitation through national and international VTT networks.

3

1.2.4 Bene�ciary

The direct bene�ciaries of the projects are the telecommunications companies themselves
that are partners of the project. Indirectly, the universities involved may use part of the
project in new research channels. In addition to the project once it is �nished it will be
made public and will have access to it.

1.3 State of the art

This project aims to create a product that o�ers a guarantee of security and portability in
any environment. Therefore, much of the architecture that arises is to use virtualization
resources and routing policies based on the Open-FLow[3] standard.

1.3.1 Open-Flow

Open-Flow is an open standard that allows researchers to execute the experimental pro-
tocols on the campus networks we use every day. Open-Flow is added as a feature of
commercial Ethernet switches, routers and wireless access points, and provides a standard
to allow researchers to perform experiments, without the need of vendors to expose the
internal functioning of their network devices. Open-Flow is currently being implemented
by major suppliers.

1.3.2 Virtualization

Most user management and environment control machines are virtual machines using kvm,
a solution based on the Virtual Machine core or KVM. It is a solution to implement com-
plete virtualization with Linux, consisting of a kernel module (named kvm.ko) and tools
in the user space, being completely free software. The KVM Component for the kernel
is included in Linux from version 2.6.20.[?] KVM allows you to execute virtual machines
using images of hard drives that contain Operating Systems to Modify. Each virtual ma-
chine has its own virtualized hardware: hard drives, graphics cards, etc.

Additionally we will use Qemu, it is a software processor terminal emulator, which
allows a user to simulate a complete system within another. It's free software and it's
written by Fabrice Bellard. QEMU is a hypervisor and is similar to other projects such
as Bochs, VMware Works and PearPc.[4]

1.3.3 VPN

Connectivity between the user and the environment of SECURED will be performed by
a tunnel (VPN). Therefore, StrongSwan will be used. It is a complete implementation of
Internet Protocol Security (IPsec) for Linux 2.6, 3.x and 4.x higher. The objective of the
project is to have strong authentication mechanisms through public key certi�cates X.509
and optional secure key storage on smart cards through a standardized PKCS[5] interface.

The extension MOBIKE[18] IKEv2 (RFC 4555) will be used, which allows to change
the end of the tunnel generated in the network. And the mysql plugin to support multiple
connected users.

4

In the chapter 6, you will learn more about how it has been implemented.

1.3.4 Opendaylight

OpenDaylight[7], is a current open source SDN (Software-De�ned Networking) platform.
It will be a temporary solution used initially in the project to orchestrate a migration of
a virtual machine and to prepare the test bench.

1.4 Document structuring

Below is a brief summary of how the document is structured.

Scope: Chapter where the problem is formulated. Later, the objectives are explained
to solve it, the scope of the project, risks and possible solutions that may arise during the
course of the project and the method of work to be used.

Planning: Chapter where the tasks carried out in the development of the project and
the period devoted are de�ned.

Architecture: Chapter where a summary of the architecture of the project SECURED
will be made, functionalities prior to implementation and what was the scenario before
initiating the implementation of the mobility.

Implementation: Chapter where technical depths will be discussed in all the imple-
mentations carried out in the project.

Test suite: Chapter where all the test suite will be presented, what data will be
collected, under what conditions and the characteristics of the test environment where
they will be made.

Results: Chapter where I will show the graphs obtained from the test games explained
in the previous section.

Budget: Identi�cation and estimation of costs.

Sustainability: Chapter that will explain in detail the environmental, social and eco-
nomic advantages that the project would bring, once �nalized, applied in a real situation.

Conclusions: Final chapter where it will be shown to where the project has arrived
and future developments.

5

Chapter 2

Reach

Next, the requirements that the project must ful�ll to justify the investment of time,
economic investment and e�ort to achieve the objectives successfully will be explained.

2.1 Formulation of the problem

Protection of mobile devices from Internet threats is usually achieved through the
installation of the appropriate tools (for example, antivirus, personal �rewall, parental
control) on each device.

This, however, raises several problems, usually requires privileged access to the device,
and many times the appropriate protection tools are not available for all platforms.

Another problem observed is the software that o�ers a security service. Normally it
is speci�ed in each device. With a computer desktop computer, including laptops, the
software can usually cover the needs, as long as the connectivity is in the same network.
Therefore, just that we change the network, this application can not always guarantee
security.
On mobile devices, we note that software is usually limited. In addition, these tools can
consume many resources, especially when connected to mobile networks, currently the cost
of data consumption is high. Mobile devices are constantly changing from one network
to another, regardless of the company's wireless access point, such as the network of the
telephone operator that has been hired. The user does not know and does not know that
the network change is vulnerable to their device.

An emerging problem is to protect younger generations from threats or access to con-
tent that is not appropriate for their age. Legal guardians do not have any tools to control
and protect this sector from vulnerable society.

All this translates into insu�cient protection for users with high mobility, where in
their devices it can not be guaranteed secured or controlled connectivity, if the user is an
underaged.

6

2.2 Goal

The project SECURED proposes an innovative architecture to achieve protection against
Internet threats by downloading and implementing security applications on a programmable
device near the user's device, such as an access point or a router of the company.

The SECURED architecture creates a trusted and virtualized environment that allows
the execution of di�erent actors (for example, individual users, corporate IT administra-
tors, network providers) to install on demand and run multiple security applications on
the device that will make the point of access to the network, to protect the tra�c of a
speci�c user. This solution reduces the load and consumption in mobile devices, which
guarantees the compliance of the speci�c and independent user policies of the security
device, and uniform protection through di�erent devices and networks.

Mechanisms of transition between networks are also de�ned to support traditional
network devices and implement this new technology incrementally. It must be ensured
that any architecture of the environment that sustains the user's session can be replicated
when the user connects to another access point to the network. This implies migrat-
ing the entire virtualized environment at moment. All the routing policies of the user's
data must be regenerated in the destination where the entire user environment is migrated.

The project will also be able to enforce the security policies on demand, not only when
the employee is connected to the company's network, but also when it is in motion.

2.3 Requirements

2.3.1 Technologies

The connectivity between the user and the environment that o�ers SECURED must be
encrypted, for this reason a secure connection will be made VPN.
Kvm and Qemu virtualization technologies must allow rapid migration of the environment.
The routing rules are easy to replicate from one access point to another.
The user must be transparent and do not have to notice the changes when changing the
access point.

2.4 Reach

The result of the project is to o�er a comfortable, transparent and secure solution to
connect to the Internet. The user shouldn't be responsible for security, the environment
that would be o�ered by a telephone operator. And it will have total mobility without
worrying about losing connectivity, with the added security o�ered by the environment.

2.5 Risks and possible solutions

During the project, some problem situations may occur. For each of these an attempt will
be made to provide an appropriate solution:

7

2.5.1 Increase in debugging time

It is a research project, therefore it is made of all the newest tools possible to develop the
project, this entails a fairly high time in debugging the correct functioning of the whole
ecosystem.
Solution: Set the worst scenario and always work with the latest stable versions of the
technologies that we will use and give huge margin at the time of debugging before con-
suming the time before the next step.

2.5.2 Bureaucracy

The project depends on the �nancing of the European Union, each partner has a di�erent
budget. If UPC equipment is needed to obtain new hardware that surpasses the budget,
then we would be talking about a limitation at the same time to be able to carry out tests.

Solution: Adjust yourself to the maximum with the possibilities that give the budget
item for each partner. Justify obtaining new material to make an estimate of whether this
material will be useful until the end of the project. If necessary, recycle the equipment,
which initially had a function that they no longer need to develop, to allocate them to
other functions that yes it is necessary to prioritize to optimize resources.

2.5.3 Test machines

The whole environment must be tested in a series of hardware that must be in perfect
condition, because if it fails, a problem arises when it comes to developing.

Solution: First prove that the hardware is in perfect condition to build a test environ-
ment. With a clean operating system, without any con�guration, except what you need
to perform the tests.

2.6 Identi�cation of laws and regulations

Regarding the laws and regulations, this project does not add to the current system, since
the project is based on building a system that guarantees the security of the user's data.
Therefore, the laws of the LOPD [6] type are respected because the sensitive data of the
users are never revealed and once the user is disconnected they are destroyed.

2.7 Work method

2.7.1 Semi-presential development

Most of the project will be carried out in the o�ce, since the machines are in a test envi-
ronment that is only accessible from the UPC facilities, so that the integration tests have
been done in person.The development development has taken place at a distance, with the

8

disadvantage that the veri�cation of the new implementations have been done in person
on the test machines.

2.7.2 Follow-up meetings of the UPC team

Regular follow-up meetings are held, at the UPC internal team, with the team leader in
order to check the evolution of our part within the framework of the project SECURED.
These meetings will present both advances and possible problems that may arise and ac-
tions to solve them will be set out to achieve the objectives.

2.7.3 Follow-up meetings of the SECURED project

Monthly monitoring meetings are held, where the project leaders of each team will meet
with the director of the project to explain the work done in each part of the project. The
progress of what is still under development. Finally, the following objectives are detailed
with the next meeting.

2.7.4 Testing and integration of the environment

1. The test environment that will be mounted to integrate the mobility of the archi-
tecture SECURED, will be initially an independent environment. Therefore it will
be carried out in a controlled and limited environment.

2. Once the system is consistent, it will be integrated with the rest of the components
of the project, such as the PSAR[1] or the communication with the client. In the
architecture chapter of SECURED, we will learn more in detail.

3. Once the other components work on the process of debugging the entire architecture
to optimize the migration of virtual machines, the environment and the reconnection
of the user into the environment in a new access point.

4. Collect data to plot a graph of time in the migration.

5. Finally, there is a �nal demonstration with the entire ecosystem, in a real environ-
ment. It can be an institute, university, etc.

9

Chapter 3

Planning

3.1 Temporary planning

In this section we will brie
y explain the tasks that have been carried out during the devel-
opment of the project. The tasks are described in chronological order and fully deepened
in the implementation chapter. Finally we can graphically see the tasks with the gantt
diagram, showing the days that have been assigned to each task.

3.1.1 Description of tasks

Period of adaptation to the environment of the project SECURED

The �rst weeks are basically a study of the architecture of the project SECURED[1], to
know in what state the project is and see what the next tasks will be, such as the use of
virtual machines to work with the environment. Also what are the programming languages
that will be used. In this case it will be mainly Python to develop the entire process that
involves the migration of the user environment and the con�guration of the data routing
policies.

Preparation of the testing environment

Once the knowledge of the tools and the environment has been obtained, the hardware and
software must be prepared to carry out the development and subsequently the mobility
tests of the SECURED project. Two NUC[17] format computers and a portable computer
will be used. The NUCs are con�gured as an access point. These devices are connected to
each other, to simulate a local network, only visible between the computers. These teams
will act as NEDs.
To test the operation of the testbed, a virtual machine is used as an orchestrator to
simulate the migration of a virtual machine, with opendaylight.[7] The openvswitch is
used to perform the data routing test.[8]

Strongswan con�guration

This task is to install and con�gure Strongswan. Version 5.4.0 [5] has been used. The
Mobike module has been used, so it has been recon�gured to listen to Port 4500, instead

10

of Port 500. This task is explained in more detail in the chapter on implementation.

Integration of mobility to the project SECURED:

The most important task, which has covered most of the project, has been the implemen-
tation of the new NED class for the mobility of the user environment (TVD), with its
PSAs and the PSC.
Finally, in the destination NED, open
ow routing policies are regenerated, thanks to infor-
mation transmitted from the NED origin. And the virtual machines in destination. Much
of this block of project tasks is explained in more detail in the chapter on implementation,
however, a brief summary will be made below.

First version of the migration script for virtual machines: First of all, a simpler
version will be made to test the operation with a simple script or class with Python. It
will be tested in the testing environment. Once it works, it will be passed to the next task.

Tests with di�erent types of migrations: Proofs will be made with the previously
created script making calculations of the time it takes, making incremental copies of the
hard disk from source to destination, or creating a new hard drive. Temporary or per-
sistent migration to destination. Convert virtual machines into "readonly", etc. All this
will be used to see which is the most optimal option to carry out in the mobility of the
SECURED project.

Adaptation of the VM migration code: Once the option with the least cost of time
and resources is found, a new class will be created by the orchestra of the NED, called
TVDMigration, which will be responsible for migrating when it is time.

Schedule the migration of the TVD instance: Once migration of the virtual ma-
chines between the NEDs has been achieved, the user's TVD must be migrated and rein-
stalled. To perform tests in the test environment, a Python script is improvised to simulate
the user application, to simulate communication with the NED to perform the migration.

Integration of mobility with the user application: The user application sends
a message REST[9] json[12]. Once received, the new TVDMigration is run, which is
responsible for migrating the entire environment (PSAs, PSC, variables of the user of the
TVD user). First, PSAs begin to migrate, once migrated, the PSC is migrated and �nally
a REST json message will be sent with the user's TVD.

Once all previous events end, the response is sent, and then the application drops the
strongswan tunnel to the source, then reconnected to the new access point and �nally
generates a new connection to the destination.
This point will be explained in detail in the chapter 6.

11

Improvement and paralelization of the mobility code: Once the mobility is in-
tegrated with the application, the communication between the two parties improves, and
the process of migration of PSAs is paralleled and a stable
ow of the mobility process is
created, which will be the following. A migration thread starts up, within this primary
thread, secondary threads are started, one per PSAs, which simultaneously perform the
migration of PSAs. Once these secondary threads reach 80% of the migration, they send
an event to the main thread, this simultaneously initiates the secondary thread to realize
the migration of the PSC. At this point, the original NED sends to the destination NED,
through a message REST json the user's TVD. Once they �nish and perform the join,
all the threads with an event continue the execution to send the answer to the client's
application.

Optimization of the communication between the application and the NED:
Once the goal of optimizing migration execution time has been achieved, it is necessary to
improve the communication of the application and the NED because in the case of mul-
tiple users to work perfectly. This task is explained in more detail in the implementation
chapter.

Debug the code for the demonstration of Mallorca: In September 2016 a real
test is done in Mallorca, therefore all the resources are focused on maintaining the entire
mobility environment stable.
In the annexes there is a link to the news about the pilot test carried out in the S'Arenal,
on the website of Diario de Mallorca

Data collection to chart a time graph in migration

The code is modi�ed to add timestamps to obtain, in the most accurate way, the times
in the migration of the environment. This point is deepened in the chapter7 and in the
results section.

Debug the code for publication

Finally, the code of comments is cleared, unnecessary lines of code, the writing of the
technical documentation that is requested to be delivered to the members of POLITO is
made to put it in the public domain.

3.1.2 Gantt diagram

12

Figure 3.1: Table of tasks, start date, duration and end date

13

Figure 3.2: 1st part of the gantt diagram

14

Figure 3.3: 2nd part of the gantt diagram

15

Chapter 4

Budget

4.1 Budget

In this chapter there is an identi�cation and estimation of costs of the part of mobility of
the project SECURED.

4.2 Identi�cation and estimation of costs

Throughout the project the di�erent expenses can be grouped into three di�erent cate-
gories:

ˆ Developer

ˆ Hardware

ˆ Indirect costs to the project

4.2.1 Developer

The expenses that are collected here are related to the payment of salaries to workers.
The members of the development team participating in this project are:

ˆ The student will assume the role of developer of a part of mobility of the project
SECURED, devoting the total of his working day to this.

For the previous participants, it is necessary to consider a series of considerations:

1. For the student, a research contract is agreed upon, destined entirely for salary. In
this case, 10800e will be distributed among the 18 months of project duration.

2. In the case of the assistant, this is involved in the project SECURED, with a remu-
neration of 1000e

Considering the above considerations, the sta� costs table is as follows:

4.2.2 Hardware

Corresponding to the work tools that are made available to the student so that he can
carry out his activity within the company.

The hardware that has been made available to the student is:

16

Rol Concept Amount

Developer
Salary 10800e

Total 10800 e

Table 4.1: Table of sta� costs

ˆ Workstation, with a purchase value of 900e

ˆ Two teams for the tests, in NUC format, with a purchase value of 500e / unit

As they are goods bought for the occasion, but which will be used in more projects, the full
amount can not be attributed, otherwise the corresponding amortization will be applied
after the 18 months the project lasts.

The amortization table is as follows Taking into account the previous table, the amounts

Type of element Maximum coe�cient Maximum period of years

Electronic equipment 20% 10

Table 4.2: Depreciation table (from 1/6/2015)

attributable to each item are:

ˆ Cost attributable to the work station

900� 20%
18mesos

= 10e =mes

10e =mes� 18months = 180e

ˆ Cost attributable to the NUCs

(2 � 500e =NUC) � 20%
18months

= 11:11e =mes

11:11e =mes� 18months = 200e

4.2.3 Indirect costs

The concept of indirect costs includes all that is not directly related to the project, if not
applied to the company in general.

Indirect expenses can be classi�ed as:

ˆ Expenditures in light, water, gas, total 200e per month.

Therefore, in addition to the costs of the project, we must add an amount of 200e per
month, in terms of indirect costs.

17

4.2.4 Cost chart

The following table shows, by way of summary, the cost of the project for its 18 months
duration:

Concept Monthly Cost Total Cost

Personal
Developer 600e 10800e

Hardware
Work station 10.0 e 180e
NUCs 11.11e 200e

Infrastructure
Several expenses 200e 3600e

Total 14780 e

Table 4.3: Project cost chart

18

Chapter 5

Architecture

The purpose of the SECURED project is to provide an innovative architecture for the
protection of external threats to devices, through the execution of the most common se-
curity applications in a programmable device in the access points to the network. In this
chapter, we will describe in detail the overall architecture of the components that make it
up, with particular emphasis on the acrshort PSC, acrshort PSCM, PSAs and the acrshort
TVD of the user and the NED that encompass all of these elements

In the Figure 5.1 we observe the general photography of the NED with the internal
components that will be described next.

Figure 5.1: NED

19

5.1 Personal Security Application (PSA)

The Personal Security Application is the atomic entity of the SECURED architecture. It's
responsible for enforcing one or multiple security policies for users. Each PSA is composed
of a series of security controls. This performs a series of primitive operations oriented to
the processing of the network, such as the �ltering, segmentation, loading and reassembly
of the packages.

A complex security policy can be applied to a single PSA or by connecting multiple
PSAs. The chain could be between the PSAs that are executed within the same TEE or
between PSAs that are executed in di�erent TEEs but belonging to the same TVD. A
series of PSAs correctly connected to the application of a security service implements the
beam concept of PSAs.

The PSA architecture internally must be divided into two plans: Control-management
and data.

1. Control & Management plane : is the part of the software that provides the in-
terfaces to the control and the part of management of the TEE for the con�guration,
monitoring and requests of signaling from and towards the PSC.

2. Data plane : is the part of the PSA that is in charge of the processing in the tra�c
of entrance/exit of line, providing interface for the layer of communication of the
execution environment and allowing interchange of packages between the di�erent
announcements of public service and also externally. The internal logic of the PSA
can be divided into di�erent modules.

5.1.1 Tipus de PSAs

Antiphising

PSA anti-phishing [10], as its name suggests, attempts to identify the content of imper-
sonation contained in web pages and email or block users from being tricked.

VPN corporate

In PSA VPN corporate, it allows you to connect to your company's network and go to
the Internet by emulating that you are in the network of it.

Control Parental

The PSA parental control is the most powerful service for parents to control the devices
of their children and prevent them from entering adult and unwanted content sites.

Others

There are more types of PSAs, despite the mobility project, it worked with these three.
Therefore we only mention that there are more types of functionalities.

20

5.2 TEE

Each compartment of a user contains a runtime environment. This environment must
be safe and reliable enough to separate competing applications without interfering with
each other. Private access is required to manage, con�gure and start applications. The
applications are deployed as we see in the �gure, in an area without privileges of the TEE.

Figure 5.2: NED

5.3 Personal Secured Control (PSC)

The personal security driver (PSC) is the component that controls and manages the TVD,
user agents, con�gurations and network interfaces in the name of a single user. Each user
has his own instance of a PSC within his TVD, which captures the entire state of the user
and the context of his session. Since the PSC has the privilege of loading applications
and enforcing the con�gurations, because of the design requirements it's isolated from
the applications. Therefore, all user-related applications must communicate to their PSC
through an interface of Control and Administration restricted.

However, changes in the global TVD (such as the creation of a new TEE) require the
sending of a request to the orchestrator, which is an external privileged entity outside the
TVD.

Funcions principals:

1. Store the abstract service graph (PSA) and user interconnections;

2. Determines the TVD topology (completion of the service graph) of the PSA require-
ments (this may change depending on the NED resources);

21

3. Sends the TVD topology to the TVDM (the latter contains the entire TVD topology
and how 1 TVD is connected to another);

4. Oversee the status of the TVD (detect for example if the TEE has crashed and needs
to reset);

5. PSC receives the manifests of all public service announcements and is assigned to
each PSA to perfection.

5.3.1 Trusted Virtual Domain (TVD)

The Trusted Virtual Domain is a logical abstraction that is not assigned to any physical
component of the NED. However, it provides the way to identify all the components that
are associated to a user. TVD represents an isolated portion of the NED that is dedicated
to a single user and that includes the di�erent execution environments, instances of log-
ical interfaces associated to a user, to implement all the data plane and the chain of the
services that it has con�gured

The user TVD is a logical partition within the host, therefore it can not be assigned to
a particular component from the perspective of the implementation. On the other hand,
the TVD can be considered as a set of components that belong to a speci�c user.

5.4 Communication between the elements

The communication between the PSC, PSCM, TVDM and the client is carried out with
a REST Gunicorn API.
'Green Unicorn' which is a HTTP server for Python Web Server Gateway Interface for
UNIX. The server gunicorn is widely compatible with several web frameworks, simply
implemented, low resource consumption of the server, and quite fast.
We will enter in detail about the di�erent APIs that have been modi�ed in the chapter of
6

5.5 Personal Security Controller Manager (PSCM)

The Personal Security Controller Manager is the set of components responsible for com-
municating the user with the level of control (therefore the tra�c the users who will be
processed by a PSA does not pass through the PSCM). Internally, it is connected mainly
to the control and management network that also connects the NED to the SPM and the
repositories.

The PSCM takes advantage of two main components: the remote con�rmation agent
and the authentication module, which are used in the early stages of the user connection,
which are the establishment of a secure connection between the user terminal and the
NED, user authentication

Once these steps are completed and user access is granted, the PSCM transfers the
user's session record to the TVDM, which will continue the creation of the user TVD
instance. Finally, the PSCM reports the initial response of the creation of TVD to the

22

user after receiving the TVDM.

5.6 Trusted Virtual Domain Manager(TVDM)

The orchestrator is the decision-making component that assigns resources from a user's
TVD, creates the connections of this TVD, its connectors and the con�guration of its data
plane. It doesn't store the user's context, but it must be able to easily retrieve its internal
topology in the NED (for example, network con�guration and virtual machines that it
had previously instantiated).

5.7 Network Edge Device (NED)

This component hosts all the components described in this chapter, and security appli-
cations running concurrently, providing a uniform control point for all connected devices.
This independent, secure and trusted administrator can act in several di�erent scenarios,
such as residential walkways, company routers, mobile points or public access points.

The architecture allows di�erent users (for example individual users, corporate TIC
administrators and network providers) to install on demand and execute Personal Security
Applications (PSA) within their own trusted and virtualized execution environment. NED
hosts and isolates user environments, as well as isolation from tra�c
ows from di�erent
users. Users are able to con�gure their services through their own Personal Secured Con-
trol (PSC) of the NED. Therefore, the security architecture of the NED must be carefully
designed to deal with the di�erent needs in a secure way.

In addition to the NED, it should be mentioned that there are also external entities,
such as the PSAs (PSAM) manager, the PSA repository (PSAR) and the Security Policy
Manager (SPM): they are the centralized services of users download or manage Your con-
tracted services and con�gured security policies. Users can register with and access these
guaranteed services and be able to choose the high level policies they need to be con�gured.

23

Chapter 6

Implementation

This chapter will deal with all modi�cations made to the SECURED project to carry out
the implementation of the mobility.

6.1 Instantiation

We will start talking about the instantiation of a user in the environment of SECURED.

6.1.1 Before implementing the migration

At the moment of the development and implementation phase of the mobility of the project
of SECURED, we are facing the next scenario. The user can, via a web interface, connect
to the NED, create a strongswan tunnel, to create a trusted channel. However, once the
possibility of portability and replication of the TVD and the rest of the user environment
that has just been instantiated does not exist. You can navigate, in a controlled and secure
way, only in the NED that authenticates your user.

6.1.2 NED instantiation steps

Here is a detailed explanation of the main steps of a user to connect to the Internet using
a NED:

1. Establish a trusted channel: This step consists of two phases: First phase,
the user establishes a secure communication with the NED. Second phase, the user
veri�es the identity of the NED and the user's independent components (PSCM,
Administrator of directives, TVDM , NED management, etc.).

2. User authentication: NED authenticates the user using their credentials, if au-
thentication is successful, PSCM receives subsequent session signal.

3. Request for TVD instances: PSCM asks the TVDM for a basic TVD instance
for the user (and the session's testimonial is passed). Initially, the TVD will only
include the PSC and will then be expanded depending on the user's graph of service.

4. PSC Consultation: TVDM uses the session identi�er to search the user pro�le
(PSC for its corresponding section).

5. Creation of TVD and PSC start: The TDVM of the NED creates the TVD and
the PSC of the user starts.

24

6. View user pro�le: TVDM retrieves the user pro�le (that is, the graphical user
service graph) of the SPM using the session token.

7. Translate policies, upload user pro�le and con�guration of PSAs: If nec-
essary, then just in time, policy setting is carried out by the Policy Administrator.
Subsequently, with the infrastructure graph, the con�guration of the pro�le of PSAs
and the user is sent to the PSC of the user.

8. Get public service announcements: Before requesting the TVD expansion, PSC
questions ask TVDM for PSA. The TVDM download PSA from the user using the
provided session token. While the PSA manifests are always returned to the PSC,
PSAs can also be charged to the latter if they need to be manually loaded into the
TEES.

9. The TVD topology is determined: the user's PSC the in frastructure graph,
con�gured and manifest PSA to determine the topology required for the instantiation
of the user's service.

10. TVD expansion request: PSC sends a request for TVD expansion to TVDM to
create new interfaces for PSAs. This request is issued through the TVD MGMT
interface.

11. Enlarge TVD: TVDM creates the TEEs requested in the user's TVD, in accordance
with the request for the TVD's expansion of the user.

12. TEE TVD setup: PSC will set the tees properly and send them to the network
con�guration (using the Ctrl/Mgmt interface). This is necessary to properly connect
the multiple public service announcements that are executed in the same ETE.

13. Low level con�guration of PSAs: PSC will charge PSAs and their low level
settings in the respective TEE. PSC public service announcements will then start.

14. Type of report: PSC reports on its status to the management of the NED and the
second is the second stage certi�cation of the PSC and public service announcements.
Then NED management generates a global status report and sends it to the PSCM.

15. User evaluation: User terminal receives status report from the PSCM, veri�es
status report is �ne, disconnects the PSCM connection.

25

Figure 6.1: Instantiation

6.1.3 Final stage

Once the implementation of the mobility has been completed, everything explained in the
previous point, except for point 1 and also adds a new point:

1. Establish a trusted channel: It will now be done with an application that works on
the client's computer (implementation by my partner Alicia). Along with all the new
implementations in StrongSwan, the application makes the communication with the
NED to start the trust channel.

2. All points, minus number 1, described in the previous section.

3. Signal veri�cation: The application looks at all the signals of the NEDs nearby, and
sends REST calls to the PSC to indicate that if the migration process is necessary
or not.

After explaining in detail all implementations made at the code level and internal func-
tionalities of the NED. We will detail the following functional points of the migration.

26

6.2 Implementations made for mobility

6.2.1 VPN Tunnel with StrongSwan

First of all the connection had to be safe, it is decided to use StrongSwan, a solution based
on virtual protocol network. Version 5.5 was compiled with the following extensions or
plugins:

MOBIKE: The MOBIKE[19] IKEv2 extension (RFC 4555) allows an already generated
tunnel to change its anchorage point of the network. StrongSwan implements MOBIKE ob-
serving the interfaces, addresses and routes. If the con�guration changes, route queries are
performed to �nd a better path than the current one and, if necessary, the path is changed
by means of a MOBIKE update. strongSwan must switch to the UDP 4500 port from
which the MOBIKE extension uses this port for the communication of this port because
from the request of IKE AUTH, which includes a noti�cation MOBIKE SUPPORTED,
although NAT was not detected.

Plugin SQL: The SQL plugin for Charon allows you to store the complete link con-
�guration in a relational database. In addition, the daemon reads the credentials, such as
certi�cates, private keys or passwords in the database to do all kinds of authentication.
Logging in to the database is also possible. With these two elements we obtain the way
to preserve the tunnel in a change of initial con�guration, at the time of the migration of
the user's environment and with the mysql plugin we can have a user registry, to support
multiple users connected simultaneously in a single NED. We generate users with the ips
that will be assigned. Each user will have a 10.2.1.x/32 rank ip.

6.2.2 Mobility functionalities added to the existing classes

mainIPSEC.py A route has been added for the migration functionality of the TVD
gunic API.

Code snippet 6.1: New route of TVDM functionality

1 app . add_route (' / migration ' , orch)

The route that initiated the installation has been modi�ed, with a new parameter. It is
the
ag of activation of migration. This
ag controls whether the entire user environment
should be scratched or regenerated

Code snippet 6.2: Added new parameter to the instantiation path

1 orch = Orchestrator (instantiator , migrat ion)

And the instantiation of migration

Code snippet 6.3: Institution of migration

1 migrat ion = TVDMigrat ion (instantiator , conf , logger)

Orchestrator.py It's the TVD orchestra, that is to say, the aforementioned TVDM in
the chapter 5, is the TVDM gunicorn API. New features have been added. Now when you
capture a REST POST call, it starts with client migration with a REST POST call that
you receive from the PSC.

27

Code snippet 6.4: Function onpost()

1 def on_post (self , request , response):
2 ' ' '
3 exclusive for migrat ion
4 ' ' '
5 try :
6 self . instant iator . tvdm_receives_migrat ion_request =

datet ime . utcnow () . str f t ime ("%Y -%m -%d %H:%M:%S.%f")
7 args = request . stream . read ()
8 self . TVDMigrat ion . instant iator . logger . info (request .

method + " " + request .uri + " " + args)
9 session = json . loads (args , ' utf -8 ')

10
11 self . eventList [session [" token "]] = Event ()
12 self . handoverEvents [session [" token "]] = Event ()
13 migrat ion = Thread (name= session [" token "] , target = self .

TVDMigrat ion . ini t_migrat ion ,
14 args =(self . eventList [session [" token

"]] , self . handoverEvents [
session [" token "]] ,) , kwargs ={"
session ": session })

15 migrat ion . start ()
16 response . status = falcon . HTTP_200
17 except :
18 self . TVDMigrat ion . instant iator . logger . exception (sys .

exc_info () [0])
19 response . status = falcon . HTTP_500

Additionally, the functionality that captures REST GET calls to respond to the PSC
has been added if you have to notify the client if you can change the access point.

Code snippet 6.5: Function onget()

1 def on_get (self , request , response):
2 ' ' '
3 Exclusive for migration , non - bloking query migrat ion
4 ' ' '
5 try :
6 self . TVDMigrat ion . instant iator . logger . info (request .

method + " " + request .uri)
7 user = request . get_param (" user ")
8 action = request . get_param (" action ")
9

10 obj = {}
11 if act ion == " migrat ion ":
12 if user in self . eventList . keys () :
13 self . TVDMigrat ion . instant iator . logger . info ("

user : %s, eventList : %s" % (str (user) , str
(self . eventList [user]. isSet ())))

14 obj = {" status ": self . eventList [user]. isSet () }
15 if self . eventList [user]. isSet () is True :
16 self . instant iator .

tvdm_sends_migrat ion_f in ished =
datet ime . utcnow () . str f t ime ("%Y -%m -%d %
H:%M:%S.%f")

17 self . handoverEvents [user]. set ()
18 else :

28

19 obj = {" status ": False }
20 else :
21 obj [" t imestamps "] = self . instant iator . t imestamps
22 response .body = json . dumps (obj)
23
24 self . instant iator . logger . info (str (response .body))
25 response . status = falcon . HTTP_200
26
27 except Except ion as e:
28 self . instant iator . logger . exception (sys . exc_info () [0])
29 self . instant iator . logger . exception (str (e))
30 response . status = falcon . HTTP_501

Graphinstantiator.py The migration
ag, mentioned in the preceding subsections, is
added to control whether the installation of the TVD must be performed from scratch
or collect the data given for the session that receives the product from the migration
to regenerate the policies The PSC's Open
ow routing and PSAs of the user, virtual
interfaces are to say the entire data plane.

userTVD.py There is a
ag of migration, this
ag controls whether the TVD con�g-
uration should be generated from scratch or given by a migration, so you just have to
regenerate interfaces and OpenFlow policies.

In annexes B, commented with###migration code### to indicate the modi�cations
that have been made in the already existing classes.

6.2.3 The new implemented class: TVDMigration

Below we will give a brief explanation of some of the main functions of the new implemented
class that is responsible for the migration of the user's environment

SendTVD function

It is responsible for preparing in the �le JSON the entire user environment that was gen-
erated in the source NED (TVD). Includes names of virtual machines (PSAs and PSCs),
names of the virtual interfaces generated, ip assigned to the PSC and the con�guration
of the "data plane" of the uusari. Also activate the migration
ag and also save it in gls
JSON. And �nally the user's token.

All of this information is entered in a message JSON and sends a REST call to NED
destination where this message and destination receives a function that performs the re-
intanciation of this whole environment.

Code snippet 6.6: Funci�o SendTVD

1 def sendTVD (self , session) :
2 ' ' '
3 Obtain user ' s TVD and migrate this
4 ' ' '
5
6 self .TVD[' token '] = self . instant iator . userTVDs [session ['

token ']]. userName
7 self .TVD[' IP '] = session [' IP ']
8 self .TVD[' userInterface '] =

29

9 self . instant iator . userTVDs [session [' token ']].
userInterface

10 self . instant iator . logger . info (" userIsessionnterface " +
11 str (self .TVD[' userInterface ']))
12 self .TVD[' vlanID '] = self . instant iator . userTVDs [session ['

token ']]. vlanID
13 self .TVD[' pscAddr '] =
14 self . instant iator . userTVDs [session [' token ']]. pscAddr
15 self .TVD[' psc '] = self . instant iator . userTVDs [session ['

token ']]. psc
16 self .TVD[' pscName'] =
17 self . instant iator . userTVDs [session [' token ']]. psc [' name']
18 self .TVD[' generatedFlows '] =
19 self . instant iator . userTVDs [session [' token ']].

generatedFlows
20 self .TVD[' PSAs'] = self . instant iator . userTVDs [session ['

token ']]. psaList
21 self .TVD[' psaIPaddresses '] =
22 self . instant iator . userTVDs [session [' token ']].

psaIPaddresses
23 self .TVD[' migration '] = "True "
24 self .TVD[' action '] = "TVD"
25
26 try :
27 TVD = json . dumps (self .TVD)
28 self . logger . info (" TVD: " + str (TVD))
29 except :
30 self . logger . info (" Error to created TVD json ")
31
32 try :
33 cmd = " ip netns exec orchNet curl -X PUT --header \
34 Accept : appl icat ion / json --header Content -Type :

appl icat ion / json -d\
35 ' " + TVD + "' http : / /192.168.1.1:8080/ migrat ion "
36 (results , errors) = self . execute_command (self .ssh , cmd

, False)
37 self . instant iator . tvdm_sends_TVD =
38 datet ime . datet ime . utcnow () . str f t ime ("%Y -%m -%d %H:%M:%

S.%f")
39
40 except :
41 self . logger . info (errors)

Migration function

Start the migration thread of the PSC and the PSAs, this function will launch di�erent
theards that will be controlled by a gls
ag to know when to send the message rest with the
usurri con�guration, which names can be made when all virtual machines have migrated
to their destination.

The code part is in the annex B

30

Obtain disk base function

Get the base disk of virtual machines

Code snippet 6.7: generateremote disk function

1 def obtain_disk_base (self , path) :
2 ' ' '
3 obtain path VM disk base
4 ' ' '
5 try :
6 proc = subprocess . Popen (" qemu - img info " + path ,
7 stdout = subprocess .PIPE , shell

=True)
8 (out , err) = proc . communicate ()
9 returnedValue = str (out)

10 start = ' f i le : '
11 end = ' \n '
12 disk_base = ((returnedValue . spl i t (start)) [1]. spl i t (end

) [0])
13
14 except subprocess . Cal ledProcessError as e:
15 self . logger . info (" Cal ledprocerr :" + e)
16
17 return disk_base

generate remote disk function

Check �rst that there is a virtual machine disk in your destination but creates it and
migrates it. This solution was carried out to see that it depends on what scenarios the
migration of the disk was giving error. This did not entail either a penalty in time since
the virtual machine disk was very small.

Code snippet 6.8: Generateremote disk function

1 def generate_remote_disk (self , original , disk_type , path , vm):
2 """
3 Generate remote disk
4 """
5 stderr = ""
6
7 try :
8 cmd = "[-f " + path + "/" + vm + "] || qemu - img

create -b "
9 + original + " -f " + disk_type + " " + path

10 stdin , stdout , stderr = self . ssh . exec_command (cmd)
11 stdin . close ()
12 except Except ion as e:
13 self . logger . info (" Error to create remote disk " + str (

e) + " "
14 + str (stderr))

31

Rename remote disk function

If the previous function generated the remote hard disk, it checks that the name is the
one of the machine that will be migrated.

Code snippet 6.9: Renameremoter disk

1 def rename_remote_disk (self , path , vm):
2
3 stderr = ""
4
5 try :
6 cmd = "mv " + path + "/" + vm + " " + path + "/" + vm

+ " backup "
7 stdin , stdout , stderr = self . ssh . exec_command (cmd)
8 stdin . close ()
9

10 except Except ion as e:
11 self . logger . info (" Error to create remote disk "
12 + str (e) + " " + str (stderr))

CreateSSHclient function

The function implemented makes you the paramiki library, for the creation of an SSHClient
object. For more direct control, it uses a socket (or socket-like object) for transport, and
uses start server or start client to negotiate with the remote host as a server or client.
In this way the NEDs are communicated between them to start, maintain and end the
migration of virtual machines.

Code snippet 6.10: Funci�o createSSHclient

1 def createSSHClient (self , server , port , user , password) :
2
3 cl ient = paramiko . SSHClient ()
4 cl ient . load_system_host_keys ()
5 cl ient . set_missing_host_key_pol icy (paramiko . AutoAddPol icy

())
6 cl ient . connect (server , port , user , password)
7 return cl ient

TVDMigration super class

This class that executes the migration of virtual machines (PSASs and PSC). With the
use of the libvirt library, the connection with the remote NED begins, by using the socket
created with the function createdSSHclient, explained above, once it is established, start
the hot migration of the virtual machine. Once �nished, it removes the machine that has
remained in standby, to avoid excessive consumption of memory.

The code part of the super class is in the annex B

6.2.4 New features included in the REST gunicorns API

As explained in the chapter 5, the NED is running multiple API REST gunicorns. To
implement the migration a series of new features was implemented. The communication
between the client and the server was also done by capturing REST JSON messages.

32

Mobility extensions to the NED basically cover three di�erent parts, and) migration
interfaces of virtual machines in the PSCM, ii) of the network status migration API on
TVDM and iii) of the API of signal reports to the PSC.

The main
ow of migration work is as follows:

1. The customer informs the Wi-Fi signals of the access points. PSC evaluates the
signal status, which is correlated with the past. In case you do not need to migrate,
the system returns.

2. If migration is necessary, the system invokes the migration process of virtual ma-
chines within the PSCM.

3. At the same time as they request the migration of the status of the TVDM network.

4. The mobile node is informed to shoot the tunnel change.

Changes to the TVDM API The TVD migration is based on the replication of
the network con�guration in the destination system add-ons made in the TVDM, which
provides the necessary logic for the migration of the TVDM to the other NED. To this
end, we add a new call to the API: migration, which assumes in the TVDM migration, and
another one must capture the migration, instantiateTVD , which provides re-instantiation
capabilities of a TVD. The detailed explanation of the added code is in the subsection??.

Changes in the API for the PSC Finally, to allow the client to provide information
about the signal strength of the mobile node we have provided a new method that allows
these reports, and also provides a suitable response to the client with two options:

ˆ FORCE HANDOVER: It allows the client to complete the migration, as necessary,
as soon as possible.

ˆ NO HANDOVER: Blocking option, so that the client must remain associated at the
same access point.

6.2.5 Parallelization and
ow control of the execution of mobility

As explained in the chapter 3. Once it proved that the integration of the migration worked,
the optimization of this one was carried out. The solution chosen, with the Events class
of the Threaring library. When calling an Event(), this function returns a new Event.
An event is managed by a gls
ag, by default it is false. And it is set to true with the
Event.set() method. The Event.wait() method, a thread is blocked until the
ag is true.

To optimize migration, we use events to control the
ow of mobility execution. As
already seen above, threads are already used to start the migration. However the thread
is unique to each user and is iterative. Now an event is incorporated to know when the
migration of PSAs ends and to pass the customer testimony to make the change of NED.
Therefore, once the event has been created, we keep a list of events hash, the key will be
the user's testimonial. Once saved, a migration instance is generated, where we pass the
session parameters (where the user's testimonial is located) and the event.

Within the migration instance of each user, the migration of all PSAs is started in
parallel: each one will generate an event, which will be saved in the list. After launching
all migration threads of PSAs.

33

A thread was prepared to migrate the PSC, it will not begin to migrate until all PSAs
have not migrated. It will also create a user's TVD thread. This thread will be blocked
waiting for the migration of the PSC to be started, then the TVD will be sent.
While the primary thread of migration is running, the PSC is launching REST calls
on get(), this process is repeated, until the initial event is not put to true. Each of these
PSAs also has an event, therefore When all the events of the PSAs are true, the main
event is unlocked. At this point the PSC is unlocked to send the con�rmation message of
change of access point to the client.

All threads will end and the memory space is freed with a general join(). To ensure
that no thread is open.

6.3 Final stage: Migration

1. PSC captures client migration message: The PSC captures the REST mi-
gration start call, passes the testimony to the TVDM with a variable session that
contains among other things the user's key and the ip of the NED where it must
migrate.

2. TVDM captures the message from the PSC: The TVDM hunter receives a
message REST onpost () with the session variable, generates the user migration
event and launches the migration thread.

3. Migration PSAs: First all the PSAs of the user begin to migrate

Figure 6.2: Migration of PSAs

4. PSC migration: When the migration of all PSAs is at 80%, the migration of the
PSC begins

34

Figure 6.3: Migration of PSC

5. TVDM responds to the PSC: The PSC once the migration has begun, sends
REST calls to on get () to receive a positive response from the TVDM. When the
TVDM responds, the PSC collects the testimonial.

6. PSC responds to the client: The PSC responds to the client that he can make
the change

7. TVD Shipping: Instant after the PSC migration begins, it is sent with a REST
message, a json with all the user's TVD to be re-instantiated at the destination.

Figure 6.4: Shipping of the TVD

8. Re-instantiation of the entire environment: The entire user's data-plane is
re-instated, all user interfaces and their con�guration are regenerated.

35

Figure 6.5: Re-instantiation of TVD

9. The client changes from AP and the end of the tunnel: The customer drops
the StrongSwan tunnel from the NEd source, connects to the new access point and
raises the tunnel in the destination NED.

36

Chapter 7

Performance tests

In this chapter we will discuss the environment that has been con�gured to perform the
performance tests of the mobility implementation carried out in the SECURED project.

7.1 Test bench

The con�gured environment consists of two computers in NUC[17] and a portable format,
the two nodes are connected to each other by a local network, with a single Internet
connection, as we saw in the �gure 7.1 How is a conceptual design.

Figure 7.1: Conceptual design of the test bench

Since the NAT element is nothing more than a gunicorn running on the ned 1 test.
This machine is physically the only one that leaves you on the Internet. Therefore every
time the change of NED is made, you receive a request with the information necessary
to �nd out where to re-direct transit to a ned or another. This solution was taken to
save resources and Add a third physical machine, with the economic and energy costs
involved, only to perform this function. Finally we have the following table with the ba-

37

sic hardware and software information installed on the machines that are used for the tests.

Equipment
Name test ned 1 test ned 2 client

System/manufacturer NUC5i5RYBAF NUC5i5RYBAF ASUS
CPU Intel Core i5-5250U Intel Core i5-5250U Intel Core i5-2430M

Memory 8GB 8GB 4GB
Distribution Debian GNU/Linux 8

kernel 3.16.0-4-amd64 3.16.0-4-amd64 4.7.0-1-686-pae

Table 7.1: Speci�cations of the equipment used

7.2 Functionalities added for the performance of the test

The datetime library has been added, making use of the feature:

1 datet ime . utcnow () . str f t ime (\"\%Y -\%m -\%d \%H:\%M:\%S.\%f \")

Where we return this date with this format: 2016-11-11 09:37:50.391198

With this function we have compiled the exact time of the actions of the elements that
intervene in the migration, without noticing any penalty of performance.
Therefore timestamps have been added throughout the execution stream, since the client
reports that he must migrate until the StrongSwan tunnel has been recreated at destina-
tion:

1. CLIENT SENT REPORT: Instant of time when the client sends a message to the
PSC that must initiate the migration process

2. PSC RECEIVED REPORT: Instant of time in which PSC receives the client's mes-
sage.

3. PSC SENT MIGRATION REQUEST: Instant after the capture the client's message
sends the migration start request to the TVDM.

4. TVDM RECEIVED MIGRATION REQUEST: Time Instant on TVDM receives the
migration request.

5. TDVM PSA INI / FIN: The following brands are performed in parallel, for so many
PSAs the user has instantiated.

(a) TVDM PSA INI: Instant of time in which it starts with the migration of n
PSA.

(b) TVDM PSA FIN: Instant of time at which the migration of n PSA ends.

6. TVDM PSC INI: Instantly, the PSC began its migration to the destination NED

7. TVDM SENDS TVD: Instant of time in which the TVDM sends the TVD of the
user

38

8. TVDM PSC FIN: Instantly, the PSC has �nished its migration to the destination
NED

9. TVDM FINISHED MIGRATION: Instant of time that the entire migration process
has ended by the origin NED

10. TVDM SENT MIGRATION FINISHED: Time Instant on TVDM sends an ending
message

11. TVDM2 RECEIVED TVD: Instant of time when the TVDM of the destination NED
receives the TVD that has sent the TVD of the NED origin.

12. TVDM2 FINISHED INSTANTIATION PSAs: Instant of time in which you have
just re-instantiated all PSAs in the destination NED.

13. TVDM2 FINISHED INSTANTIATION PSC: Instant of time in which the PSC
�nishes re-instantiating itself in the destination NED.

14. PSC RECEIVED MIGRATION FINISHED: Instant of time in which the PSC re-
instantiated receives the message of completion of the migration, previously sent by
the TVDM of the NED origin.

15. PSC SENT HANDOVER ORDER: Instantly, just after receiving the end of the
migration message, send the order to the customer to do the "handover".

16. CLIENT RECEIVED HANDOVER ORDER: Instant where you send the order to
the customer to do the "handover".

17. CLIENT CLOSED TUNNEL: Instant where the customer removes the tunnel with
the source NED.

18. CHANGED CLIENT APS: Instant where the customer is making the change of
access point (it is disconnected from the source NED and is connected to the desti-
nation NED).

19. CLIENT CREATED TUNNEL: Instant where the customer raises the tunnel with
the destination NED. And here is the entire migration process.

7.3 Executions

The test that has been done has been done with a user with two PSAs instantiated, one
with the corporate VPN service and the second one with the �rewall service. The collec-
tion of data has been initiated when a total of 5 migrations were carried out between the
two NEDs.

Each time stamp, calls the function already shown above and then the client collects
these marks and generates a resulting �le with all the data. Multiple executions have
been performed, in the course of a month, and groups of 5 have been selected, to get the
data loyalty to the fullest possible and we have no outlier that could di�er greatly. The
resulting �les can be seen in the Annexes.

In the next chapter we will show the results and analyze them.

39

	Front page
	Introduction
	Description of the project
	Actors involved
	Team leader
	UPC team
	Other partners
	Beneficiary

	State of the art
	Open-Flow
	Virtualization
	VPN
	Opendaylight

	Document structuring

	Reach
	Formulation of the problem
	Goal
	Requirements
	Technologies

	Reach
	Risks and possible solutions
	Increase in debugging time
	Bureaucracy
	Test machines

	Identification of laws and regulations
	Work method
	Semi-presential development
	Follow-up meetings of the UPC team
	Follow-up meetings of the SECURED project
	Testing and integration of the environment

	Planning
	Temporary planning
	Description of tasks
	Gantt diagram

	Budget
	Budget
	Identification and estimation of costs
	Developer
	Hardware
	Indirect costs
	Cost chart

	Architecture
	 Personal Security Application (PSA)
	Tipus de PSAs

	TEE
	 Personal Secured Control (PSC)
	Trusted Virtual Domain (TVD)

	Communication between the elements
	 Personal Security Controller Manager (PSCM)
	Trusted Virtual Domain Manager(TVDM)
	Network Edge Device (NED)

	Implementation
	Instantiation
	Before implementing the migration
	NED instantiation steps
	Final stage

	Implementations made for mobility
	VPN Tunnel with StrongSwan
	Mobility functionalities added to the existing classes
	The new implemented class: TVDMigration
	New features included in the REST gunicorns API
	Parallelization and flow control of the execution of mobility

	Final stage: Migration

	Performance tests
	Test bench
	Functionalities added for the performance of the test
	Executions

	Results
	Graph of results
	Interpretation of results

	Sustainability
	We know that sustainability is one of Sustainability Analysis
	Project in production
	Lifetime and results
	Risks
	Evaluation of sustainability
	Conclusion

	Conclusion
	Conclusion
	Work Achieved
	Work for the future

	Results of the tests
	Project codes
	Codes with added functionalities
	Code with the new functionalities of mobility
	Bibliography

	Bibliography

