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Abstract

With recent advances in technology and emergence of affordable RGB-D sensors for a
wider range of users, markerless motion capture has become an active field of research
both in computer vision and computer graphics.

In this thesis, we designed a POC (Proof of Concept) for a new tool that enables us
to perform motion capture by using a variable number of commodity RGB-D sensors of
different brands and technical specifications on constraint-less layout environments. The
main goal of this work is to provide a tool with motion capture capabilities by using a
handful of RGB-D sensors, without imposing strong requirements in terms of lighting,
background or extension of the motion capture area. Of course, the number of RGB-D
sensors needed is inversely proportional to their resolution, and directly proportional to
the size of the area to track to.

Built on top of the OpenNI 2 library, we made this POC compatible with most of the non-
high-end RGB-D sensors currently available in the market. Due to the lack of resources on
a single computer, in order to support more than a couple of sensors working simultane-
ously, we need a setup composed of multiple computers. In order to keep data coherency
and synchronization across sensors and computers, our tool makes use of a semi-automatic
calibration method and a message-oriented network protocol.

From color and depth data given by a sensor, we can also obtain a 3D pointcloud repre-
sentation of the environment. By combining pointclouds from multiple sensors, we can
collect a complete and animated 3D pointcloud that can be visualized from any view-
point. Given a 3D avatar model and its corresponding attached skeleton, we can use an
iterative optimization method (e.g. Simplex) to find a fit between each pointcloud frame
and a skeleton configuration, resulting in 3D avatar animation when using such skeleton
configurations as key frames.
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Chapter 1

Introduction

1.1 Motivation and objectives

Despite being a big step forward over marker-based motion capture systems, markerless
setups are rarely used for professional productions such as movies or video-games. On
markerless systems, actors do not require wearing special suits or rigs that sometimes
difficult actors performance. However, these kinds of setups usually require the use of
many cameras and a studio with controlled lighting and easy removable background.

Markerless motion capture has been studied for many years both in computer vision and
computer graphics, but it is still an active field of research due to the existing room for
improvement. Additionally, with the emergence of more affordable RGB-D sensors in the
market, many other solutions to address the same problem have arisen, as both the open
source community and not-so-big research labs have been able to acquire these type of
devices.

Throughout this work, we present a new POC tool that allows to perform offline motion
capture by using a variable number of commodity RGB-D sensors of different brands
and technical specifications on constraint-less layout environments. Built on top of the
OpenNI2 library [1], we leverage its multi-sensor support in order to manage both Kinect
v1 and v2 sensors using the same API. Additionally, other sensors could be used as long
as they are supported by OpenNI2.

Our tool provides a framework that lets the user define a multi-Kinect capture environ-
ment. A calibration procedure and algorithm has been designed to find the extrinsic
parameters of all sensors so a global reference frame can be used to process their data. By
using a distributed-system model, our tool will capture color, depth, and infrared streams
from several sensors connected to different computers. Later, it lets the user post-process
the captured data in order to synchronize all recorded clips.

Then, an algorithm removes static objects in the scene, and computes a set of raw point-

13



14 CHAPTER 1. INTRODUCTION

clouds of the actor’s performance per sensor and per frame.

Finally, the processed data is merged to compute a final 3D-pointcloud clip of the captured
data.

The main goal of this work is to have a reliable 3D representation of the character that
could be then tracked in real-time to animate a virtual avatar.

As part of this project we have written an OpenNI2 driver on top of Microsoft ’Kinect
for Windows’ [2] driver and SDK in order to add Kinect v2 support to the OpenNI2
framework.

Additionally, an avatar creator plugin for MakeHuman [3] was implemented so a 3D-
pointcloud from our tool can be used as a template while creating an avatar in real-time.
Such avatar would be used in the motion capture data extraction procedure.

1.2 Document walk-through

In chapter 2, we briefly introduce OpenNI, its different versions, and discuss some of its
technical details and current status. Also, we make a general introduction of how support
for Microsoft proprietary Kinect hardware is added to the OpenNI2 framework, and discuss
some of the technical details and differences of both Microsoft Kinect v1 and v2 sensors
[2] used in our experiments.

Chapter 3 gives a brief description of the state-of-the-art of both motion capture and 3D
reconstruction fields of study.

Part II is divided into three separate chapters:

• Chapter 5: OpenNI2 Microsoft Kinect v2 driver

• Chapter 4: Capture System Prototype

• Chapter 6: Avatar Template Creator plugin for MakeHuman

In chapter 5 we give implementation details of the OpenNI2 Kinect v2 driver such as
what ’Kinect for Windows’ APIs were used or how several non-native features were sup-
ported.

A deeper description of our capture tool is found in chapter 4. Each of its modules (calibra-
tion, network layer...) and post-processing algorithms (clips synchronization, background
removal...) are presented.

In chapter 6 a brief introduction to the MakeHuman avatar template creator plugin is
given.

Finally, in part III we present some of the captured clips and resulting 3D-pointcloud
animations. Also, we propose future lines of development along the lines of this project,
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as well as a description of some of the missing parts we were not able to finish.





Chapter 2

Background

2.1 OpenNI

OpenNI (Open Natural Interaction) is an open source software widely used across the
open source community focused on providing interoperability of natural user interfaces
and organic user interfaces for natural interaction devices [4]. Thus, among other things,
it facilitates access to RGB-D sensors of many different brands and technical specifications
such as those made available by Primesense or Microsoft.

From a low-level perspective, it implements different drivers to manage each of the sup-
ported sensors. Those drivers are handled as plugins by the OpenNI library, enabling
manufacturers to easily add support for new sensors through OpenNI.

2.1.1 PrimeSense

One of the main promoters and maintainers of the OpenNI project was PrimeSense. Prime-
Sense was an Israeli 3D sensing company founded on 2005 and based in Tel Aviv [5]. It is
the company behind the depth sensing IPs Microsoft Kinect is based on.

Some of the PrimeSense proprietary RGB-D sensors available nowadays are:

• Carmine 1.08 (Kinect-like)

• Carmine 1.09 (Short range)

• Capri 1.25 (embedded)

On November 24th 2013, PrimeSense was bought by Apple. Apparently, Apple had some
plans to improve his line of living room products such as Apple TV by adding support
for natural interaction interfaces. Purchase of PrimeSense was a strategic move forward

17



18 CHAPTER 2. BACKGROUND

in order to compete with Microsoft, which first version of their Kinect device generated
huge benefits for the company (see section 2.2.1).

On April 23rd 2014, Apple shutdown the OpenNI project, discontinuing OpenNI support.
Fortunately, former partners of PrimeSense and contributors of the project kept docu-
mentation and continued giving support on their corresponding branches of the OpenNI
library (see section 2.1.2).

2.1.2 OpenNI 2

Although the main fork of the OpenNI 2 SDK was shutdown when Apple decided to
discontinue the OpenNI project, other forks were kept alive along with OpenNI documen-
tation. One of the most actively supported OpenNI 2 forks is the one owned by Occipital
[6], one of the former partners of PrimeSense which remains active in the depth sensing
business.

OpenNI 2 SDK is a good start point to base the development of this thesis off. Among
other things, it provides the following desirable features:

• Drivers for several RGB-D sensors in the market

• Complete and standardized API to:

– Access color data

– Access depth data

– Access IR (infrared) data

– Record any of the data streams above in ONI format (OpenNI-specific)

– Playback previously recorded data by creating a virtual device, with can be
handled as an actual physical device

Additionally, OpenNI 2 SDK design and documentation allows developers to easily extend
its functionality by either adding support for new sensors (add drivers) or increasing the
number of features to better suit specific use cases.

As part of this thesis, we have contributed to the OpenNI 2 project by writing a complete
OpenNI 2 driver on top of the Microsoft Kinect for Windows [2] driver in order to add
support for Kinect v2 devices. See chapter 5 for more details.

2.2 Kinect sensor support

As previously stated, throughout the development of this project we have used both Kinect
v1 and v2 sensors. Unlike first version of OpenNI which gave support for Kinect v1 devices
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by using reversed engineered libfreenect drivers [7], OpenNI 2 supports it through an
OpenNI driver written on top of the official Microsoft Kinect v1 driver.

However, by the time this project was started, OpenNI 2 did not provide support for
Kinect v2 devices. As part of this thesis, we wrote an OpenNI 2 driver on top of the
Microsoft Kinect for Windows driver in order to add support for Kinect v2 sensors. In
chapter 5 we thoroughly describe how such driver was implemented and how we made a
contribution to the OpenNI 2 open source project.

Following subsections briefly describe some of the technical aspects of both Microsoft
Kinect v1 and v2 sensors.

2.2.1 Kinect version 1

Microsoft Kinect v1 sensor was first announced as a game controller for Xbox 360 console
on June 1st 2009 at E3 (Electronic Entertainment Expo) in Los Angeles, USA. Over the
following years, it gained interest not as a game controller device, but as a depth sensing
device by itself, allowing people all around the world to use it as mocap device or a
3D scanner, among other applications. By February 2013, 24 million units were sold by
Microsoft [8].

Some features that make it attractive and suitable to satisfy this project requirements
are:

• Generates color and depth data frames at 30 fps

• Can be used at distances up to 4.5 meters from the subject

• Price: $100

In addition to the above, multiple Kinect v1 devices can be connected to the same computer
as long as each device is plugged into a different USB 2.0 controller. See comparison table
2.1 for some more specification details.

2.2.2 Kinect version 2

Microsoft Kinect v2 sensor was first released on November 22nd 2013. Overall, it offers
an improvement over its predecessor in terms of technical specifications. Both color and
depth sensors generate higher resolution data, and from empirical testing, depth precision
is higher on the Kinect v2 device. The improvement on color and depth quality comes
at the expense of requiring GPU hardware acceleration, which makes plugging multiple
Kinect v2 devices to the same computer impossible.

Table 2.1 details the technical specifications differences between both versions of the Kinect
sensor.
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Feature Kinect v1 Kinect v2

Color 640x480 @30fps 1920x1080 @30fps
Depth 320x240 512x424

Max depth distance 4.5m 4.5m
Min depth distance 40cm (near mode) 50cm

Horizontal field of view 57 degrees 70 degrees
Vertical field of view 43 degrees 60 degrees

Tilt motor Yes No
USB standard 2.0 3.0

Requires GPU hardware acceleration No Yes
Multi-device Yes. 1 per USB controller No

OS Win 7, Win 8 Win 8
Price $100 $200

Table 2.1: Comparison between Kinect v1 and v2 sensors



Chapter 3

Previous Work

3.1 Introduction

Thanks to the emergence of RGB-D cameras, such as Microsoft Kinect or Primesense
devices, and their affordable cost, many researchers have found their way through on
different topics related to computer graphics and computer vision which make use of these
sensors.

Although different models of cameras/devices may present different features, most of them
provide real-time (30+ fps) color and depth data. It enables researchers to use such devices
for motion capture, 3D reconstruction, or gesture recognition.

While a huge amount of works have been focused on skeleton pose estimation either
by using color-only sensors or depth sensors [9], [10], [11], [12], [13], [14], [15], many
applications require the extraction of 3D surface as well. 3D estimation methods have
been also proposed [16], [17], [18], [19]. Tracking the full geometry over time is a more
complex task and most of the existing methods rely on a first individual 3D reconstruction
in order to be able to accurately estimate both pose and geometry changes.

This document briefly walks through some of the relatively recent works done in the fields
of motion capture and 3D reconstruction, both from a generic and avatar/human body
reconstructions points of view.

3.2 Motion capture

3.2.1 Model initialization

Many of the markerless motion capture techniques rely on having a first skeleton estimation
or a 3D approximation of the individuals to be tracked. These skeletons or 3D models are

21



22 CHAPTER 3. PREVIOUS WORK

commonly generated at a pre-processing stage and taken by the algorithm as an input.
Most of the algorithms for pose estimation continue to use a manually initialized generic
model. For instance, different approaches addressed this problem by estimating the body
pose from manually selected joint locations [20], [21], [22], [23].

Others have explored the extraction of the skeleton structure from 3D surfaces recon-
structed from multiple views. Cheung et al. [24] initialize the skeleton from the visual-hull
of a person moving each joint independently. A full-skeleton together with the shape of
each body part is obtained by alignment of the segmented moving body parts with the
visual-hull model in a fixed pose. Menier et al. [25] present an automated approach to
3D human pose estimation from the medial axis of the visual-hull.

With the appearance of modern and fast RGB-D sensors such as Kinect, many researchers
started to use the depth information to obtain better 3D shape approximations and skele-
ton representations. Tong et al. present a capturing system consisting in three Kinect
sensors in order to increase the overall quality of the reconstruction [26]. They use two
Kinects to capture the upper and lower parts of the body (far enough of each other in
order to avoid overlapping) while using the third one to capture the middle part from
the opposite direction. Using a single sensor to address the same problem have also been
explored [27], [28]. They basically ask the user to adopt a fixed pose from different points
of view. By leveraging the well-known KinectFusion algorithm (see subsection 3.3.1) they
obtain super-resolution scans in a very fast and efficient way. Then, they make use of
different registration methods to join the super-resolution scans.

3.2.2 Pose estimation

Pose estimation refers to the process of estimating the configuration of the underlying
skeletal articulation structure of a person. Pose estimation algorithms may be separated
into three main categories:

1. Model free: These are methods where there is no explicit a previous model. A
recent trend to overcome limitations of tracking over long sequences has been the
investigation of direct pose detection on individual image frames. Two different
approaches fall into this category: Probabilistic assemblies of parts and Example-
based methods.

Forsythe and Fleck [29] introduced the concept of “body plans” to represent people
or animals as a structured assembly of parts learned from images. Following this
direction [30], [31], [32] used pictorial structures to estimate 2D body part configu-
rations from image sequences. Combinations of body part detectors have been also
used to address the related problem of locating multiple people in cluttered scenes
with partial occlusion [33], [34].

2. Indirect model : These methods use a prior model as a reference or look-up table
to guide the interpretation of measured data. Mikic et al. [35] present an inte-
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grated system for automated recovery of both human body model and motion from
multi-view image sequences. Model acquisition is based on a hierarchical rule-based
approach to body part localization and labelling. Previous knowledge of body part
shape, relative size, and configuration is used to segment the visual-hull. A Kalman
filter is then used for human motion reconstruction between frames. A voxel labelling
procedure is used to allow large inter-frame movements. Cheung et al. [24] first re-
construct a model of the skeleton structure, shape, and appearance of a person and
then use it to estimate the 3D movement. Tracking is performed by hierarchically
matching the approximate body model to the visual-hull using color matching along
the silhouette boundary edge.

3. Direct model : These methods use an explicit 3D model representation of human
shape and skeleton structure to reconstruct the pose. Most of the approaches employ
an analysis-by-synthesis methodology to optimize the similarity between the model
projection and observed images. Most of the approaches employed deterministic
gradient descent techniques to estimate changes in pose. For instance, Plankers and
Fua [36] proposed an upper body tracking method of arm movements with self-
occlusion using stereo and silhouette cues. A common limitation of gradient descent
approaches is the use of a single pose which is updated at each time step. Thus,
if there is a rapid movement or visual ambiguities then the pose estimation may
fail. To achieve more robust tracking, techniques which employ a deterministic or
stochastic search of the pose state space have been investigated [37], [11].

3.2.3 Geometry tracking

Going a bit further on “Direct model” pose estimation methods, we find recent works
that make use of actual 3D model templates of the actors in order to track motion of
both skeleton and geometry [38]. Zhang et al. [39] present a system for recovering the 3D
characters motion from multiple image sequences that supports automatic body model
acquisition. A subject-specific voxel body model that properly fits to the shape of the
subject being tracked is generated from the multi-view volume data. Then a hierarchical
pose search method is employed to estimate the pose by matching the voxel model to
image features. They use a particle-based stochastic search algorithm and introduce a
robust metric, which is incorporated with joint limits, physical constraints and combines
multiple 3D cues such as volume spatial and 3D scene flow motion information.

Other authors have also explored how segmentation may help to both pose estimation and
geometry tracking. Liu et al. [40] propose a method that supports tracking of multiple
characters by using multiview image segmentation. A probabilistic appearance, shape
and pose framework is used to segment input images to assign each pixel uniquely to one
actor. Given the articulated template models of each of the actors and the labeled pixels,
both skeleton motion and geometry changes are tracked by employing an optimization
scheme one by one to each individual. In a similar follow-on work by Wu et al. [41]
authors exploit detailed BRDF information and scene illumination to improve both pose
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tracking and surface refinement in general scenes. Their proposed system is able to work
under uncontrolled background and lighting conditions by using a single moving stereo
camera.

Using RGB-D sensors for motion capture have also been explored. Berger et al. [42] inves-
tigate on reducing or mitigating the noisy effects of using multiple RGB-D sensors, hence
allowing motion capture from all angles. They systematically evaluate the concurrent use
of one to four Microsoft Kinect sensors, including either calibration, error measures and
analysis, and present a time-multiplexing approach.

3.3 3D reconstruction

3.3.1 General reconstruction

Mu et al. performed one of the first contributions to the field [43]. In their work they
propose a complete 3D model reconstruction system by using a combination of two different
depth sensors, but using different sensor implementations: the first is based on a phase-
measuring time-of-flight principle by emitting near-infrared light, and the second is based
on ”light-wall” generation by a square laser pulse. By rotating an object in front of the
capture device, they obtain a sequence of color and depth images. They align and merge
the data of each frame into the whole 3D model by using the well-known ICP algorithm
and the volumetric method. They claim to end up having errors lower than 1% between
the reconstruction and the ground truth. The limitations of their system are problems of
specular reflections and light inter-reflection (due to the use of infrared light).

Cui et al. present a similar work using a Kinect device [44]. Either rotating an object
in front of a static Kinect or moving the Kinect around an object, they obtain the color
and depth information. First, they apply a super-resolution approach to each chunk of 10
frames. Then, each superresolution chunk is globally aligned using ICP as well. Finally,
they generate a 3D mesh by using Poisson reconstruction.

A novel interactive approach for 3D modeling of indoor environments is proposed by Du
et al. [45]. They present a tool which allows a non-expert user holding a Kinect device to
freely move around an indoor environment while a 3D reconstruction is generated. The
systems automatically detects failures in the capture process and asks the user to re-scan
the corresponding part of the environment. Moreover, the user can explore the 3D model
looking for incomplete spots and guide the application to scan those missing parts. Figure
3.1 shows a 3D reconstruction of an indoor environment provided by their tool.

A performance boost in 3D reconstruction using a Kinect sensor is given by Newcombe et
al. [46] [47]. They present a new system called KinectFusion which generates 3D recon-
structions in real-time using a single moving Kinect and commodity graphics hardware.
The overall idea is similar to the previous ones by Mu et al. and Cui et al., but they
propose a novel pipeline that uses the parallelization power of the GPU. They utilize
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Figure 3.1: 3D indoor reconstruction

coarse-to-fine ICP not only to align and merge the 3D data over time, but also to compute
the current sensor pose to allow surface prediction. These improvements allow the system
to perform in real-time and obtain even better results (see figure 3.2).

Follow-on works demonstrates KinectFusion system has several limitations. Even though
frame-to-model registration is more accurate than frame-to-frame, it is not perfect and
accumulated errors over long capture trajectories may break the 3D reconstruction due
to lack of loop closure handling (amongst others). Henry et al. apply global optimization
to minimize those errors [48]. Loop closures are detected by matching features from both
depth and color data. A graph that connects all pairs of consecutive frames and closes the
loops is built. Then, frame-to-frame registration is carried out and global optimization
is performed in order to globally distribute the errors. This method however, does not
handle complex trajectories.

Zhou et al. present an offline registration and integration pipeline based on points-of-
interest detection in order to deal with complex trajectories [49]. They detect densely
scanned points of interest and preserve the geometric detail in the surroundings during the
global optimization process. Figure 3.3 shows a results comparison between KinectFusion,
RGB-D SLAM and their approach.

3.3.2 Avatar/Human body reconstruction

Many researchers have specialized into avatar/human body 3D reconstructions. Zollhöfer
et al. present an algorithm to create personalized avatars from 3D face scans taken with
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Figure 3.2: KinectFusion 3D reconstruction

a Kinect device [50]. Basically, they obtain both depth and color data of the user’s face
and make use of it to deform and texture a morphable face model. They first register
the depth data with the average face model, then perform the corresponding deformation
which best fits to the depth map, and finally, apply the RGB texture. The result is a
high-quality personalized face model which can be analysed, animated or modified as well
as integrated into a pre-existing avatar model.

Rather than only reconstructing the human face, Tong et al. present a capturing system
consisting in three Kinect sensors in order to increase the overall quality of the reconstruc-
tion [26]. They use two Kinects to capture the upper and lower parts of the body (far
enough of each other in order to avoid overlapping) while using the third one to capture
the middle part from the opposite direction. This way they try to avoid interference be-
tween Kinect sensors. The three sensors are attached to a self-turning platform where the
user will stand (as rigid as possible) during the capture task. Figure 3.4 shows some of
the results obtained by their approach.

Trying to avoid the burden of using multiple sensors or very complex setups, and aiming
to reach a wider number of users, other authors present single-sensor capture systems.
Wang et al. present a system where the user turns in front of a fixed Kinect device [51].
They make use of a cylindrical representation of body parts in order to detect four key
poses from the captured data. These key poses are the only ones being used to generate
a 3D mesh after a registration process based on matching the nodes of the cylindrical
representation tree. The results of their work are promising but lack of fine detail.

Another work in the same line is carried out by Cui et al. [52]. They present KinectAvatar,
an automatic system to produce full human body reconstructions. As in the previous
cited work, the user turns in front of a fixed Kinect sensor. They take into account
color constraints to produce super-resolution depth scans which are then aligned by using
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(a) KinectFusion

(b) RGB-D SLAM

(c) Point-of-interest optimization

Figure 3.3: KinectFusion, RGB-D SLAM and point-of-interest optimization approaches
comparison
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Figure 3.4: Reconstruction results from Tong et al. approach

rigid and non-rigid registration procedures under a probabilistic model. Even though
super-resolution depth scans improve the results, the fact the user needs to be two meters
apart from the sensor harms the final quality of the reconstruction. Some results of their
approach are shown in figure 3.5.

Figure 3.5: Reconstruction results from Cui et al. approach

Li et al. address the single-sensor reconstruction again in [27]. They aim their work to
be used by any user at home to obtain self 3D portraits. They ask users to adopt any
desired pose in front of the Kinect. The user must turn (keeping the same pose) about
45 degrees per scan so the system captures a complete spin. A difference of this work is
they make use of the tilt motor of the Kinect device to achieve a higher field of view. This
allows the user to stand closer to the sensor, thus improving the final quality of the scans.
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They apply an ICP algorithm to fuse the different frames of a view capture and multi-
view non-rigid registration in order to align the different views. This approach generates
outstanding results as can be seen in figure 3.6, even allowing to 3D-printing the resulting
models.

Figure 3.6: 3D self-portrait

Shapiro et al. leveraged the previous cited work to build a rapid personalized avatar
capture system in order to use them in animation and simulation [28]. They improved the
system by only asking the user to adopt a fixed pose from four points of view 90 degrees
apart from each other. In the per-view scan step, they lifted the KinectFusion algorithm
described in the previous section in order to obtain super-resolution scans in a very fast
and efficient way. Additionally, rather than using ICP for the registration step, they make
use of a contour-coherence optimization method. They claim this approach produces a
high quality personalized avatar in about four minutes that can be animated by using
pre-existing animations.
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Chapter 4

Capture System Prototype

We have designed a motion capture tool prototype built on top of OpenNI2 in order to
support capture from multiple Kinect v1 and v2 sensors, although nothing would keep a
user from using different devices as long as they are supported by OpenNI2.

The construction of this prototype follows a modular design, where several modules with
specific functionalities each, interact with each other providing the whole sequence of steps
and features to successfully capture a 3D representation of the movement of a certain
actor.

Additionally, in order to support multi-sensor setups, multiple interconnected computers
are needed. The proposed tool also acts as a distributed system over by using a very
simple network module and protocol to synchronize several instances of the tool.

Diagram 4.1 gives an overview of all modules in our system and how they interact.

The following sections will describe each of the capture system modules in more detail,
as well as the performance script that must be followed in order to satisfy some modules’
requirements.

4.1 Performance script

In order to simplify the logic of different modules of our capture system, we imposed
several restrictions to how a performance must be recorded.

First, a user-given number of seconds of the capture area without including any actor is
recorded. These frames only including static objects of the scene will be used by the back-
ground removal module (subsection 4.4.1) in order to isolate actor’s performance.

Once the backgroud is captured, the recording is paused several seconds (user-given value)
to let the actor enter the capture area before starting the performance. Pausing the

33
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Figure 4.1: Capture system overview

recording will introduce a rather big jump in frames timestamps, resulting in several blank
frames (completely black) if we were to reproduce the whole clip timespan. Such blank
frames are used by the synchronization module (subsection 4.3.1) in order to estimate a
sync point.

Actor’s performance must always start by the actor adopting the T-pose for a few seconds.
That will help later in the post-processing stage to both generate a template avatar (see
chapter 6) and estimate the first avatar-pointcloud matching pose to be an input of the
motion capture data extraction algorithm (see section 8.1).

After the above is satisfied, the actor is free to start performing. Figure 4.2 shows a frame
of each of the mentioned script checkpoints.

4.2 Environment setup

One of the key points of our tool to support constraintless environment layouts is redun-
dancy. It must support several Kinect v1 and v2 sensors working simultaneously. However,
each sensor 3D data will be generated using its sensor local reference system.

In order to process multiple sensors 3D data, we need them to be expressed in terms of a
common reference frame. Thus, a 3D calibration module is required to find a coordinate
system common to all sensors.
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(a) Background frame (b) Blank frame

(c) T-pose (d) Performance

Figure 4.2: Performance script checkpoints

4.2.1 Calibration

In order to have all generated 3D data represented on the same common coordinate system,
we run a calibration algorithm to compute the extrinsic parameters of each sensor. The
employed calibration algorithm is based on solving the absolute orientation problem as the
well-known ICP algorithm does [53]. Given a source and target lists of 3D points S and
T where every point Si is linked to a target point Ti, the algorithm minimizes following
energy: ∑

i

||R · Si + T − Ti||2

Where R and T are the rotation matrix and translation vector that determine the extrinsic
parameters of the sensor being calibrated.

Currently, finding source and target 3D points is a manual task performed by the user.
Both depth streams of the sensor being calibrated and the reference sensor are displayed
on separate windows. The user then must select at least three different points on the
source window and the corresponding target points on the reference window.

Both source and target 3D points might be automatically found by using state-of-the-art
computer vision algorithms, but we left such integration for future work (8.3).
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In our experiments, we found that using some sort of physical setup can facilitate the
calibration task and improve the results. Figure 4.3 shows a very simple rig used in our
experiments, consisting in four styrofoam balls distributed all over the capture area at
different heights.

(a) Kinect #1 (b) Kinect #2

(c) Kinect #3

Figure 4.3: Calibration setup

4.3 Clips recording

Our proposed motion capture data extraction method from 3D generated pointclouds,
using multiple Kinect sensors, is not a doable task in real-time. Processing of a pointcloud
from a single sensor to find motion data is a time-consuming task on its own. It is
aggravated by the fact that several pointclounds are actually used from multiple sensors.
Additionally, given that multiple computers are required, centralization of the huge chunks
of generated data is required. Making all data available to the motion capture data
extraction algorithm in real-time would involve complicated compression algorithms and
network protocols.

Therefore, our prototype first records users performances in a suitable format that can
be processed offline. Making use of OpenNI2 built-in recording functionality eases such
task, producing ONI files that can be rendered later on. It allows to record color, depth,
and infrared data streams, and play the resulting ONI file by creating a virtual OpenNI2
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device which simulates a physical sensor.

Some of the additional pros of working with ONI files are:

• Playback speed can be modified to suit processing or debugging needs

• A recorded clip can be paused at any time, allowing tool users to inspect every frame
separately

• It also allows manual rendering of recorded frames, enabling frame synchronization
of several clips (4.3.1) or spending as much processing time as needed per frame

4.3.1 Synchronization

Dealing with multiple recorded clips from different sensors means a synchronization mecha-
nism is required. Given an instant of the record, we want data from all sensors to represent
such instant of time.

Although all Kinect sensors are expected to feed OpenNI2 with frames at 30fps, different
sensors have different physical clocks, and different computers may perform in a different
way. Both the rate at which frames are recorded, and when each sensor actually starts to
capture data, are affected by such differences in hardware.

For instance, in a two-Kinect setup, frame 200th of sensor 1 and sensor 2 will not represent
the same precise instant of time.

Fortunately, frame timestamps within an ONI file can be queried through the OpenNI2
set of APIs. Using frame timestamps our tool can both:

• Find a initial synchronization point across all clips, an use each of the timestamps
as T0 for each clip

• Manually update each clip to render the closest frame to a given Ti. That is, for a
two-Kinect setup:

{Fa,j , Fb,k}|a 6= b, Tj < Ti < Tj+1, Tk < Ti < Tk+1

where

– Fa,j is the jth frame of sensor a

– Tj the instant of time Fa,j was recorded

– Fb,k is the kth frame of sensor b

– Tk the instant of time Fb,k was recorded

Currently, finding the initial synchronization point across all clips is done by looking for
the first blank frame (completely black) after the background frames (see performance
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script in section 4.1). Our system also allows the user to manually synchronize the clips
if needed.

More sophisticated synchronization mechanisms are described in subsection 8.4.

4.4 Pointcloud data

Given depth and color frames from a certain sensor at a given time of the recorded actor
performance, a 3D colored pointcloud of the scene is generated. Each valid pixel from
the depth frame (depth value within the valid range according to sensor specifications)
will become a 3D point in the space. Thanks to depth-to-color image registration (see
subsection 5.3.1), corresponding pixel (same normalized image coordinates) from the color
frame, will encode the color of the 3D point.

Basically, in order to get the 3D coordinates of a given depth pixel, we apply the following
formula: xw

yw
zw

 = d× Ud ×Nd ×

xd
yd
1


where

• (xw, yw, zw)T are the 3D coordinates in world space (sensor reference frame)

• (xd, yd, 1)T are the homogeneous depth pixel coordinates

• d is the pixel’s depth value in millimeters

• Ud is the depth sensor inversed projection matrix (unprojection matrix)

• Nd is a normalization matrix to transform from pixel coordinates to normalized
depth image coordinates

- where Nd is defined in terms of depth frame width (wd) and height (hd):

Nd =

1/wd 0 −0.5
0 1/hd −0.5
0 0 1


, and Ud can be estimated from both sensor horizontal (fovh) and vertical (fovh) field of
view values:

Ud =

2 · tan(0.5 · fovw) 0 0
0 2 · tan(0.5 · fovh) 0
0 0 1


Corresponding 3D pointclouds from other sensors can also be generated. By using the pre-
viously computed extrinsic parameters matrix at calibration time (see subsection 4.2.1), we
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can then transform all generated pointclouds to be on the same reference frame, resulting
in a whole scene 3D pointcloud representation.

Figure 4.4 shows pointclouds generated from three different sensors and the resulting
combination of them.

(a) Kinect #1 (b) Kinect #2 (c) Kinect #3

(d) Combined 3D-pointcloud

Figure 4.4: 3D-pointclouds

4.4.1 Background removal

Kinect sensors will capture the whole scene geometry of the environment. In order to
isolate dynamic objects (actor), we apply a simple background removal algorithm based
on discarding depth values.
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Since the first frames of a clip only contain static geometry (see section 4.1), i.e. back-
ground, a mask of minimum depth values can be pre-computed at clip loading time. Such
mask basically encodes the closest-to-the-camera depth value per pixel when only static
objects are captured. Around 50 frames are used in order to minimize errors due to noise
produced by sensor scan patterns.

Whenever background removal is enabled in our tool, static objects are filtered out from
every generated depth frame according to the following equation:

fdi,j =

{
di,j , if t · bi,j > di,j

0, otherwise

where

• fdi,j is the filtered depth pixel (i, j)

• bi,j is the background mask pixel (i, j)

• di,j is the original depth pixel (i, j)

• t is a background removal factor controlled by the user. From our experiments, a
factor compressed within [0.9, 1.1] range will give best results.

Figure 4.5 shows the resulting depth frame after applying the background removal algo-
rithm.

4.5 Distributed capture system

Due to lack of resources on a single computer, in order to support more than a couple
of sensors working simultaneously, we run into the need of using several instances of the
tool, running on different computers. To work around this issue, our tool uses a message-
oriented network layer to synchronize different instances of the application.

We opted for a master-slave scheme. One of the application instances will take the master
role, and all others will be slaves. Slaves will be configured to connect to the master, which
will be the only instance they will be able to communicate with.

4.5.1 Network protocol

Upon application initialization, two different TCP sockets are opened:

• Socket at port 5560 is configured in a one-way communication fashion using a
publisher-subscriber pattern. Slaves will subscribe to this port, and master (the
publisher) will send commands over this socket.
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(a) Background color (b) Background depth

(c) Foreground color (d) Foreground depth

(e) Removed background from depth frame

Figure 4.5: Background removal
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• Socket at port 5561 uses a two-way communication request-reply pattern instead.
Slaves will send command requests to master over this socket, and master will ac-
knowledge received requests when it forwards the command to all slaves.

All command messages have a very simple structure:

• Command token: a 4-byte field that indicates what command the message encodes.

• Size: a 4-byte field that indicates the byte-length of the command data.

• Data: an arbitrary length field that contains specific data of the command.

Thus, decoding commands would be as simple as identifying the command token and
passing its data along to the proper handling method.

Current implementation of the network protocol includes following 0-data commands:

• ACK : Acknowledge slave requests when they are processed.

• START RECORD : Start a new recording session.

• PAUSE RECORD : Pause the current recording session.

• STOP RECORD : Stop current recording session and dump the generated ONI file.

In section 8.6, we propose several extensions of the network protocol in order to improve
interaction between master and slaves application instances.



Chapter 5

OpenNI2 Microsoft Kinect v2
driver

As mentioned in section 2.1.2, as part of this project we were required to write an
OpenNI2[1] driver for Microsoft Kinect v2 sensor[2].

As of the time this tool was developed, only the Microsoft ’Kinect for Windows’ driver
and SDK were available in order to manage a Kinect v2 sensor. Therefore, the OpenNI2
driver was written on top of the Microsoft one, which implies it only has support for
Windows.

Nowadays, there seems to also be an open-source reversed-engineered driver out there with
support for Linux[54]. This document does not cover details about such driver.

This chapter describes some of the implementation details of the driver and how the
underlying Microsoft ’Kinect for Windows’ API has been used to implement the required
OpenNI2 set of internal structures and functions.

5.1 Kinect for Windows API

Microsoft ’Kinect for Windows’ driver and SDK offer a set of structures and methods for
managing Kinect v2 sensors. Following, a brief description of the minimal set of structures
and methods required to provide support for Kinect v2 through OpenNI2 is given.

5.1.1 IKinectSensor

IKinectSensor object represents a physical Kinect v2 sensor. It is the top level structure
and entry point to manage a Kinect sensor and all its different data streams (color, depth,
and infrared).

43
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Unlike drivers and SDKs for previous versions of the Kinect sensor, with Kinect v2 driver
and SDK we can manage only a single Kinect sensor connected to the computer. Thus, a
global API is provided to retrieve the corresponding IKinectSensor instance:

• ::GetDefaultKinectSensor(IKinectSensor* sensor /* Out */)

Once the sensor object is obtained, among others, it offers several APIs to connect
to/disconnect from the physical device

• IKinectSensor::Open()

• IKinectSensor::Close()

, get its unique string identifier

• IKinectSensor::get_uniqueKinectId(UINT stringSize /* In */,

WCHAR* stringId /* Out */)

, obtain the global coordinate mapper instance

• IKinectSensor::get_CoordinateMapper(ICoordinateMapper* mapper /* Out */)

, and get the different frame sources

• IKinectSensor::get_{Color,Depth,Infrared}FrameSource(

IColorFrameSource** source /* Out */)

5.1.2 I{Color,Depth,Infrared}FrameSource

A frame source (color, depth and infrared) gives access to the corresponding data stream.
It allows to perform several queries on the given source, but most importantly, it lets
clients access the specific frame reader to acquire frames with.

Within the OpenNI2 driver implementation, frame sources are only used to both obtain
corresponding frame description and frame reader objects:

• I{Color,Depth,Infrared}FrameSource::get_FrameDescription(

IFrameDescription** desc /* Out */)

• I{Color,Depth,Infrared}FrameSource::OpenReader(

I{Color,Depth,Infrared}FrameReader** reader /* Out */)

5.1.3 IFrameDescription

The IFrameDescription object lets us query several details about a specific data stream
such as bytes per pixel, height and width, or the horizontal and vertical field of view
values.

Within the OpenNI2 driver implementation following self-explanatory methods were used:
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• IFrameDescription::get_HorizontalFieldOfView(float* hfov /* Out */)

• IFrameDescription::get_VerticalFieldOfView(float* vfov /* Out */)

5.1.4 I{Color,Depth,Infrared}FrameReader

Frame readers and sources are closely related, but while a frame source offers more general
APIs over a specific data stream, a frame reader provides the means to acquire and read
the individual generated frames from the stream.

Although frame readers offer both callback-based and query-based frame acquisition mech-
anisms, the OpenNI2 driver implementation only makes use of the query-based one.
’Kinect for Windows’ clients will call into the following set of functions whenever they
want to retrieve a new frame:

• I{Color,Depth,Infrared}FrameReader::AcquireLatestFrame(

I{Color,Depth,Infrared}Frame** frame /* Out */)

It is a blocking call, i.e. it will block until a new non-already-acquired frame is avail-
able.

5.1.5 I{Color,Depth,Infrared}Frame

Encapsulates the underlying buffer of a generated frame. It offers different buffer-related
APIs such as data format queries or format conversion methods.

Color frames handling is a bit trickier than depth or infrared due to supporting different
color formats. While depth and infrared buffers are accessed by simply calling into

• I{Depth,Infrared}Frame::AccessUnderlyingBuffer(

UINT* bytes /* Out */,

UINT16** buffer /* Out */)

, color frame object provides methods to query the color format and access the underlying
buffer directly if it is of desired format, or convert to other formats otherwise:

• IColorFrame::get_RawColorImageFormat(ColorImageFormat* format /* Out */)

• IColorFrame::AccessRawUnderlyingBuffer(

UINT* bytes /* Out */,

UINT16** buffer /* Out */)

• IColorFrame::CopyConvertedFrameDataToArray(

UINT bytes /* In */,

BYTE* buffer /* Out */,

ColorImageFormat format /* In */)
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5.1.6 ColorImageFormat

Color format enumeration. It can be one of:

• None

• Rgba

• Yuv

• Bgra

• Bayer

• Yuy2

5.1.7 ICoordinateMapper

ICoordinateMapper represents a global object that provides means to translate 2D points
from one reference system to another. E.g. translate coordinates from color image space
to depth image space in order to fetch the color pixel corresponding to a certain depth
pixel.

In the OpenNI2 driver, only mapping from depth points to color points is required. Such
translation is achieved by using

• ICoordinateMapper::MapDepthFrameToColorSpace(

UINT depthPointsCount, /* In */

const UINT16* depthBuffer, /* In */

UINT colorPointsCount, /* In */

ColorSpacePoint* colorCoordinates /* Out */)

5.1.8 ColorSpacePoint

Trivial object that represents a 2D-space point.

5.1.9 Miscellaneous methods

Other methods from the Microsoft SDK are used as well. For instance, in order to perform
time measuring for timestamps computation, CPU counters are used:

• ::QueryPerformanceCounter(LARGE_INTEGER* ticks /* Out */)

• ::QueryPerformanceFrequency(LARGE_INTEGER* freq /* Out */)
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Thus, a given instant of time in second units can be computed like

ti = ticksi/freqi

and the elapsed time between two events would be

elapsed = ti − tj , i > j

5.2 OpenNI2 minimal required features

OpenNI2 accommodates a set of base driver classes and methods a specific driver imple-
mentation must be based off in order to provide support for a certain hardware. Kinect
v2 driver case is no different. The minimal logic and set of structures that must be
implemented to add support for Kinect v2 is composed by:

• Driver class

– Driver initialization and shutdown functions

– Device enumeration mechanism

– Device connection and disconnection methods

• Device class

– Data stream enumeration mechanism

– Data stream connection methods

• Data streams classes

– Data buffer acquisition and handling functions

Following subsections describe in more detail each of the implemented classes and meth-
ods.

5.2.1 Kinect2 driver implementation

The Kinect2 driver class implements the required logic to enumerate and connect to the
available Kinect v2 sensors.

Upon driver initialization, the available sensors are enumerated and identifiers are cached
into a device information array.

The ’Kinect for Windows’ driver only allows connecting to a single Kinect v2 sensor.
Therefore, in order to fill up the device information array with sensor information, it is
temporarily fetched and open to query its unique sensor identifier.
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Following snippet of code demonstrates how it is done using the APIs described in section
5.1.1 (note that some parts of the code were omitted in favor of readability):

OniStatus Kinect2Driver::initialize(...) {

...Initialize base driver...

// Get sensor instance and connect

::GetDefaultKinectSensor(&pKinectSensor);

pKinectSensor->Open();

pKinectSensor->get_IsAvailable(&available);

if (!available) {

return ONI_STATUS_NO_DEVICE;

}

// Get sensor info

pKinectSensor->get_UniqueKinectId(ONI_MAX_STR, sensorId);

...Cache sensor vendor, name, and URI (unique ID)...

pKinectSensor->Close();

return ONI_STATUS_OK;

}

Later on, a specific device connection can be requested from the application by using the
corresponding URI (unique ID). The driver will check the given URI against the cached
ones at initialization time, and if a match is found, it opens the corresponding sensor,
leaving it opened this time though, and returns a OpenNI2 device instance wrapping the
native sensor:

DeviceBase* Kinect2Driver::deviceOpen(const char* uri, ...) {

’for_all_cached_device_uris’ {

if (iterator->uri == uri) {

::GetDefaultKinectSensor(&pKinectSensor);

pKinectSensor->Open();

...Make sure the sensor ID actually matches the given URI...

return new Kinect2Device(pKinectSensor);

}

}

return NULL;

}
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Upon device disconnection request or driver shutdown, all native sensor resources are
properly closed and the OpenNI2 objects destroyed.

5.2.2 Kinect2 device implementation

The Kinect2 device class is in charge of listing available sensor data streams and provide
means to connect to each of them.

At device creation time, supported sensor data streams and their supported video-modes
(frame buffer size, format, and stream output rate in frames per second) lists are initial-
ized.

Although it is not an OpenNI2 driver requirement, the Kinect2 device implementation
supports infrared data streaming along with color and depth.

See subsection 5.3.2 for more information about supported video-modes.

Whenever an application wants access to a certain data stream, the following device func-
tion will create and return an instance of an OpenNI2 Kinect2 stream:

StreamBase* Kinect2Device::createStream(OniSensorType type) {

if (type == color) return new Kinect2ColorStream();

if (type == depth) return new Kinect2DepthStream();

if (type == infrared) return new Kinect2IRStream();

}

5.2.3 Kinect2 stream implementation

The base Kinect2 stream class implements several functions and mechanisms common to
all specific streams. It will basically implement the whole stream logic but the frame
handling.

First, at initialization time, it allocates the frame buffer where generated frames will be
dumped, opens the corresponding frame reader by calling into the appropriate ’Kinect for
Windows’ API, and sets the default video-mode settings. Following code snippets give
some hints about how frame buffers and frame readers are created (note that declarations
and error handling were omitted in favor of readability):

void Kinect2BaseStream::createFramebuffer() {

m_framebuffer = new BYTE[<max_width>*<max_height>*<bpp>];

}

Where:

• <max_width>: 1920 pixels for color streams and 512 pixels for depth and IR streams

• <max_height>: 1080 pixels for color streams and 424 pixels for depth and IR streams
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• <bpp>: 4 bytes (BGRA) for color streams and 2 bytes for depth and IR streams

void Kinect2BaseStream::openFrameReader()

if (m_sensorType == ONI_SENSOR_COLOR) {

m_pKinectSensor->get_ColorFrameSource(&frameSource);

frameSource->OpenReader(&m_pFrameReader.color);

}

else if (m_sensorType == ONI_SENSOR_DEPTH) {

m_pKinectSensor->get_DepthFrameSource(&frameSource);

frameSource->OpenReader(&m_pFrameReader.depth);

}

else { // ONI_SENSOR_IR

m_pKinectSensor->get_InfraredFrameSource(&frameSource);

frameSource->OpenReader(&m_pFrameReader.infrared);

}

}

Second, it implements several common property setter and getter functions. The common
properties list includes:

• Video-mode settings: Hard-coded as-per device specifications (see subsection 5.3.2
for more details).

• Data stream type: OpenNI2 inherent property.

• Horizontal and Vertical field of view: Queried through IFrameDescription (5.1.3).

• Cropping settings: OpenNI2 inherent property.

Finally, in order to acquire frames as they are generated by corresponding data streams,
Kinect2BaseStream provides the means to start and stop a separate thread that will be in
charge of calling into the blocking AcquireLatestFrame() function from the correspond-
ing frame reader (5.1.4), and properly handling the given fram by passing control to the
specific stream implementation. Whenever an OpenNI2 stream is created by the applica-
tion, a new thread will be launched and kept running as long as its associated stream is
valid.

5.2.4 Kinect2 color frame handling

Whenever a color frame needs to be handled, the Kinect2ColorStream class jumps in.
Currently, BGRA format is used by ’Kinect for Windows’ driver for its underlying color
buffer. Thus, if generated frame format matches BGRA (most problably), the underlying
buffer is accessed directly and copied to the previously allocated frame buffer; otherwise,
it is converted to BGRA format first to ease the frame handling process:

frame->get_RawColorImageFormat(&imageFormat);

if (imageFormat == ColorImageFormat_Bgra) {
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frame->AccessRawUnderlyingBuffer(&bufferSize, &data);

memcpy(m_pFrameBuffer.color, data, 1920*1080*sizeof(RGBQUAD));

}

else {

frame->CopyConvertedFrameDataToArray(1920*1080*sizeof(RGBQUAD),

m_pFrameBuffer.color,

ColorImageFormat_Bgra);

}

Thereafter, a new OpenNI2 color frame is created and emitted so the application can use
it. OpenNI2 color frame creation involves the following:

• Setting frame metadata

– Frame size

– Cropping region

– Video-mode settings

– Frame index

– Timestamp

• Cropping the frame buffer if needed

• Converting the BGRA frame buffer to RGB format (only color format offered by the
OpenNI2 Kinect2 driver).

Following code snippet shows the unified loop to both apply cropping settings and convert
to RGB:

const int xStride = width/m_videoMode.resolutionX;

const int yStride = height/m_videoMode.resolutionY;

const int frameX = pFrame->cropOriginX * xStride;

const int frameY = pFrame->cropOriginY * yStride;

const int frameWidth = pFrame->width * xStride;

const int frameHeight = pFrame->height * yStride;

for (int y = frameY; y < frameY + frameHeight; y += yStride) {

for (int x = frameX; x < frameX + frameWidth; x += xStride) {

RGBQUAD* iter = data_in + (y*width + x);

data_out->b = iter->rgbBlue;

data_out->r = iter->rgbRed;

data_out->g = iter->rgbGreen;

data_out++;

}

}
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5.2.5 Kinect2 depth frame handling

Unlike color frame case (5.2.4), whenever a depth frame needs to be handled, the under-
lying can be directly accessed (no format conversion required).

Additionally, besides cropping and setting frame metadata, the frame buffer might need
special treatment if depth-to-color image registration is set. See 5.3.1 for more de-
tails.

5.2.6 Kinect2 Infrared frame handling

Handling infrared frames is easier than either color or depth frames: The underlying
frame buffer can be directly accessed with no format conversion required, and creation of
an OpenNI2 infrared frame will only involve cropping and setting metadata (no special
treatment of the frame buffer data).

5.3 OpenNI2 extra features

Some non-OpenNI2-essential features were also implemented in order to simplify the tool
written on top of the OpenNI2 driver for this project.

The most important one implements depth-to-color image registration, but other minor
features such as addition of non-natively supported video-modes were also required to
overcome performance challenges.

5.3.1 Depth-to-color image registration

A tool using both color and depth data streams from a Kinect device will likely want to
access both RGB and depth values of a certain pixel (x, y) in order to generate a colored
3D point of the captured scene.

However, generated color and depth frames have different resolutions as well as different
local reference systems due to physical location of the sensors within the Kinect v2 device.
That means Color(x,y) and Depth(x,y) will not correspond to color and depth of the same
point in the real scene.

Depth-to-color image registration will allow OpenNI2 clients to generate depth frames
with same local reference system used by color frames.

In order to achieve the above, whenever openni::IMAGE_REGISTRATION_DEPTH_TO_COLOR
image registration mode is set through openni::Device::setImageRegistrationMode()

API, following conversion is applied to depth frames prior to emmiting them:
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DRI = DCM ×DIDCM = Pc × Ud

where

• DRI represents the resulting ”Depth Registered Image”

• DI represents the source ”Depth Image”

• Pc is the color sensor projection matrix

• Ud is the depth sensor inversed projection matrix (unprojection matrix)

We could compute both Pc and Ud from both color and depth sensors intrinsic parameters
(focal length, image sensor format, and principal point). However, those are hard-coded
within the ’Kinect for Windows’ driver.

Alternatively, we could estimate both projection matrices from horizontal and vertical
field of view values, but ’Kinect for Windows’ offers a coordinate mapper class that will
make the translation from one reference system to another easier (5.1.7).

By using ICoordinateMapper::MapDepthFrameToColorSpace(), we can obtain the array
of corresponding color coordinates from a depth frame.

Following code snippet shows how a depth frame is generated with depth-to-color image
registration:

coordinateMapper->MapDepthFrameToColorSpace(width*height,

data_in,

width*height,

m_colorSpaceCoords);

const ColorSpacePoint* mappedCoordsIter = m_colorSpaceCoords;

for (int y = 0; y < height; y++) {

for (int x = 0; x < width; x++) {

const float fX = mappedCoordsIter->X*xFactor;

const float fY = mappedCoordsIter->Y*yFactor;

const int cx = static_cast<int>(fX + 0.5f);

const int cy = static_cast<int>(fY + 0.5f);

if (cx >= 0 && cy >= 0 && cx < width && cy < height) {

unsigned short* iter = data_in + (y*width + x);

const unsigned short d = *iter;

unsigned short* const p = data_out + cx + cy * width;

if (*p == 0 || *p > d) *p = d;

}

mappedCoordsIter++;

}

}
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where

• data_in is the source depth frame buffer

• data_out is the registered depth frame buffer

• xFactor is widthdepth/widthcolor

• yFactor is heightdepth/heightcolor

Note that above algorithm produces both horizontal and vertical gaps in the resulting
depth frame due to the different aspect ratios between color and depth frames. An extra
image dilation morphological step is performed to fill all empty pixels with the average
value of its 1-neighboring pixels.

5.3.2 Non-native color videomodes

’Kinect for Windows’ driver provides native support for a single video-mode per sensor
data stream. That is:

• Color sensor

– Resolution: 1920x1080 (FullHD)

– FPS: 30

• Depth sensor

– Resolution: 512x424

– FPS: 30

• Infrared sensor

– Resolution: 512x424

– FPS: 30

Recording of the color stream through the OpenNI2 record module is nevertheless low-
performant at FullHD resolutions, even making the whole driver to randomly crash.

In order to work around the performance issue, an extra non-native color video-mode was
added to the OpenNI2 Kinect2 driver:

• Resolution: 960x540

• FPS: 30

which will generate color images of 1/4 the original size, allowing the OpenNI2 recording
module to perform normally.
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In order to produce 960x540 frames, a scale down step without interpolation is also per-
formed along with cropping and format conversion in the unified color frames handling
loop (5.2.4). Note that lines

const int xStride = width/m_videoMode.resolutionX;

const int yStride = height/m_videoMode.resolutionY;

define the pixel increment applied at each iteration and will discard pixels whenever the
video-mode resolution is lower that the original (m_videoMode.resolutionX < width or
m_videoMode.resolutionY < height).





Chapter 6

Avatar Template Creator plugin
for MakeHuman

MakeHuman is an open-source 3D computer graphics tool designed for the prototyping
of photo-realistic humanoid avatars [3]. As part of this project we have developed a
MakeHuman plugin to import 3D-pointclouds in PLY format [55] generated by our motion
capture tool (see chapter 4).

The goal of this plugin is to provide hints about an actor’s complexion to the avatar
designer by importing the actor’s generated 3D-pointcloud of a certain frame of the per-
formance animation. A designer will most likely import a T-pose 3D-pointclound. Using
the imported 3D-pointcloud, the designer will be able to better estimate actor’s complex-
ion attributes in order to create a template avatar that could be used to generate motion
capture data to animate random avatars.

The avatar template creator plugin consists of three different parts, all written in python
language:

• PLY format importer. A externally developed ply loader is used to import the
3D-pointclouds.

• User interface elements to help the designer editing the avatar template (see figure
6.1):

– Load button to import a certain PLY file.

– Checkbox to show/hide the imported pointcloud.

– Point size controller

– Apply geometric transformations (translations and rotations only) to the im-
ported pointcloud so it can be moved around.

– Reset button to restore geometric transformations to their defaults.
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– Save and load transformation buttons so the designer can save the work and
continue later on.

Figure 6.1: MakeHuman avatar template creator user interface controls

• OpenGL renderer interaction. The plugin must interact with MakeHuman’s OpenGL
engine in order to render the imported 3D-pointcloud.

Figure 6.2 shows a created avatar template and the corresponding pointcloud in MakeHu-
man.
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(a) Overlapped

(b) Side-by-side

Figure 6.2: MakeHuman avatar template creation
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Chapter 7

Results

The proposed tool provides an easy way to set up multi-sensor motion capture environ-
ments. The capturing and visualization algorithms are efficient and permit both real-time
raw data recording and inspection of the resulting 3D point-cloud animation. Thus, the
user can easily evaluate the quality of the captured clips and restart the recording session
if needed.

The result of our framework is a 3D-pointcloud animation clip of an actor’s performance.
Such animation can be reproduced, inspected or processed at a later stage.

Figure 7.1 presents several renders from different camera view points of a frame extracted
from a recorded performance session. Despite having some remaining outliers, the point-
cloud rendered could be used as-is for far away visualizations.

(a) (b) (c) (d) (e)

Figure 7.1: Resulting 3D-pointcloud performance frame from different view points

It is worth mentioning the main areas or error are concentrated around actor’s feet when
they are in contact with the floor. It is hard for our background removal algorithm to
correctly discriminate between static and dynamic objects at such small distances.

Nevertheless, the achieved results are good enough for avatar fitting (section 8.1) or avatar
reconstruction (section 8.2) as described in the future work chapter.

Two different captured performances can be watched on video by clicking on the image
previews of figure 7.2 (digital version only). Aside from the 3D-pointcloud performance
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animation, all three color and depth streams of the sensors employed are also played in
sync.

(a) https://youtu.be/EGu34K5ck7c (b) https://youtu.be/x50rutqoedA

Figure 7.2: Resulting 3D-pointcloud performance animations of two different actors

Note that with the proposed setup based on three strategically located sensors, we can
capture the 3D-pointcloud to render it later on from any view point. Our setup allows us
to correctly eliminate self-occlusion problems that typically arise in optical mocap systems.
Therefore, despite the early stage of our results, we can predict the potential of this system
to develop affordable mocap systems.

https://youtu.be/EGu34K5ck7c
https://youtu.be/x50rutqoedA
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Future Work

8.1 Avatar fitting to extract motion capture data

One of the biggest enhancements to be done to our tool is the addition of a motion
capture data extraction algorithm so random avatars can be animated according to the
actor’s performance.

In order to extract motion capture data, we would perform an optimized fitting of a
3D avatar template model (with its corresponding skeleton) on the per-frame pointclouds.
The resulting skeleton configuration would be used as key-frames to animate other avatars
in real-time.

Our proposal is to use a variation of the well-known Simplex iterative optimization method
[56]. Using our tool, a user would provide a set of avatar templates with different com-
plexities. The algorithm would automatically find the most suitable one for the current
pointcloud as a preliminary step. The user would interactively position the selected avatar
to overlap the pointcloud on the first frame, which would be the input for the first iteration
of the Simplex algorithm. For frames other than the first one, the resulting pose of the
previous frame would be taken.

The Simplex method would run once per frame in order to find the most suitable skeleton
configuration (joint angles plus root position) that minimizes the least squares distance
between each point of the pointcloud and resulting avatar mesh (or any other fitting
metric). Along with the resulting previous frame fitting, each of the free variables of the
skeleton configuration can be given some noise perturbation. This method is expected to
rapidly converge into an optimal solution according to a certain epsilon value provided by
the user.
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8.2 Avatar mesh reconstruction

Another enhancement to our tool would be the ability to generate real-life avatars from
the resulting 3D-pointclouds animations. Generating an avatar close enough to the actor’s
appearance, and then animating it with motion capture data from the avatar-fitting step,
would add realism to the virtual reproduction a performance.

8.3 Automatic calibration

Currently, our calibration mechanism is not fully automatic as it requires some user in-
teraction in order to select correspondence points between two sensors to calibrate. Once
the correspondence points are selected the algorithm to find the extrinsic parameters of a
camera runs in a fully automatic way.

By using visual computing algorithms we could make our calibration module to automat-
ically find the correspondence points: Instead of using white styrofoam balls to assist on
the calibration process, we would use colored balls. An image processing algorithm could
easily distinguish corresponding balls on sensor color streams. Since we use depth-to-image
registration in order to make both color and depth images use the same local coordinate
systems, the algorithm would easily fetch the depth values to compute each ball 3D-space
coordinates. The rest of the calibration algorithm would remain the same, taking all balls
3D positions as input.

Additionally, better calibration results could be achieved by using the center of mass of
every ball instead of a random point on their surfaces.

8.4 Synchronization

In order to synchronize the different recorded clips from different sensors we look for the
first blank frame on all of them as a initial estimation of a syncpoint. Then the user can
manually refine such approximation. Note that our approach assumes that frames will
arrive at a steady rate, so a single syncpoint will suffice. That is not always the case
as different hardware configurations and the system load at a given time will affect the
processing of frames in the driver.

To better handle this problem, we should re-synchronize all clips every few seconds. A
possible solution would be to use a blinking LED powerful enough to be seen by all
sensors as part of the setup. Setting the LED to blink at a steady rate would give reliable
syncpoints at a constant rate. By using state-of-the-art image processing algorithms,
we could automatically detect all syncpoints on the color streams from all sensors, and
re-synchronize all clips accordingly.



8.5. BACKGROUND REMOVAL 67

8.5 Background removal

Even though we obtained very good results with a very simple algorithm using only depth
data, our background removal technique is not flawless. In areas where dynamic object are
in contact with static objects, we have seen a portion of the dynamic object goes missing.
For instance, the feet of an actor standing on the floor.

We believe that a more elaborated approach using state-of-the-art background removal
techniques using color images as input, and combining the results with our approach,
would lead to a more accurate description of the static geometry in the scene. We could
then detect those false positives and recover the missing parts, while also helping to reduce
some of the outliers caused by depth noise.

8.6 Network protocol

Of course, in order to improve the user interaction with our distributed tool, new com-
mands could be added to our network protocol design. Keeping the user interface and
settings of all application instances in sync would be useful. If the user wanted to make an
adjustment to any of the settings before a recording session, it could be done on one of the
instances of the tool and it would broadcast to the rest. Currently, only start/pause/stop
recording actions are spread across the distributed system.





Chapter 9

Conclusions

In this project we have presented a proof-of-concept tool that performs offline motion
capture from a variable number of commodity RGB-D sensors on constraintless layout
environments. Our approach starts by capturing a set of synchronized color and depth
clips from different sensors. Then, an algorithm computes a set of raw pointclouds per
sensor and per frame. Static objects are filtered out by using a simple background removal
algorithm using depth data as the only input. Finally, per frame processed 3D data
is merged, using previously computed calibration data. The result is a 3D-pointcloud
animation of an actor’s performance.

Additionally, as part of this project we have written an OpenNI2 Kinect v2 driver on top
of Microsoft ’Kinect for Windows’ driver. All three color, depth, and infrared streams are
processed to comply with the OpenNI2 framework requirements. We have extended the
basic driver functionality by implementing depth-to-color image registration so both color
and depth generated frames are advertised using the same local coordinate system.

We have contributed with our driver implementation to the OpenNI2 open-source project,
which has been greatly appreciated by the community [57]. For the time our implemen-
tation has been publicly available, many other researchers and Kinect enthusiasts have
made use of the OpenNI2 Kinect v2 driver.

Ultimately, we have also provided a MakeHuman plugin to create humanoid avatars us-
ing 3D-pointclouds as a template. This was in preparation for implementing an avatar
fitting optimization algorithm to extract motion capture data to animate random virtual
characters, as noted in the future work chapter.

Despite the inability of completing all our initially considered milestones for this project,
and come up with a fully featured motion capture tool, we believe our work will pave the
way for future lines of development regarding both motion capture and 3D reconstruc-
tion.

Our system provides a low-budget alternative to high-end mocap setups such as VICON
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systems [58] at the expense of losing some precision. While VICON setups costs may
amount to hundreds of thousands of euros, our 3-sensor capture system would only cost
around 3,500 euros (150e/sensor plus 1000e/computer).
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