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Abstract

This paper deals with a characterization of nonlinear systems of the form ẋγ(t) = f (xγ(t), u(t/γ))
when the parameter γ → ∞. In particular, we are interested in the uniform convergence of the sequence
of functions xγ (γt). Necessary conditions and sufficient ones are derived for this uniform convergence to
happen.

Keywords: nonlinear systems, consistent operator, uniform convergence

1 Introduction

Hysteresis is a nonlinear behavior encountered in a wide variety of processes including biology, optics, electron-
ics, ferroelectricity, magnetism, mechanics, structures, among other areas. The detailed modeling of hysteresis
systems using the laws of Physics is an arduous task, and the obtained models are often too complex to be used
in applications. For this reason, alternative models of these complex systems have been proposed [15, 1, 8, 6, 9].
These models do not come, in general, from the detailed analysis of the physical behavior of the systems with
hysteresis. Instead, they combine some physical understanding of the system along with some kind of black-box
modeling.

This way of describing hysteresis systems led to the proliferation of hysteresis models in the last two decades. A
search in the Web of Knowledge database gives more than 2000 publications. The question that arises naturally
is: do these research works describe really hysteresis phenomena? In other words, does the researcher who
proposes a new hysteresis model have a mathematical rule to decide whether the model they propose is indeed
a hysteresis one?

Surprisingly enough, such a rule exists only for a limited number of hysteresis processes: those that possess
the so-called rate-independence property. This property states that, under a time-scale change, the relation-
ship output versus input is unchanged. Hysteresis systems that are rate-independent are listed in the survey
paper [10]. However, in the last two decades, researchers have acknowledged the importance of rate-dependent
processes in applications [4, 3, 2]. For this reason, a recent effort [5] proposed a mathematical framework that
proposes a rule to decide whether or not a system may be hysteretic. The rule proposed in [5] shows that,
for an input/output system with input u(t/γ) and output xγ(t), the convergence of the sequence of functions
t→ xγ (γt) as γ →∞ is a necessary condition for the hysteresis. The previous formulation is used to study the
hysteresis behavior of the generalized Duhem model [11] and the LuGre friction model [12].

In the present paper, we consider the differential equation ẋ = f(x, u). Our objective is to derive necessary
conditions and also sufficient ones for the uniform convergence of the sequence of functions t→ xγ (γt).

This paper is organized as follows. Section 2 presents the system of study and the assumptions under which
the study is performed. Sections 3 and 4 present; respectively, necessary conditions and sufficient ones for the
uniform convergence of the sequence of functions xγ (γt) as γ →∞. Conclusions are given in Section 5.

1E-mail addresses: mohammad.naser@bau.edu.jo (Mohammad Fuad Mohammad Naser), bdairmb@yahoo.com (Omar M. Bdair),
faycal.ikhouane@upc.edu (Fayçal Ikhouane).
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2 Problem Statement

The class of systems under study is

ẋ(t) = f
(
x(t), u(t)

)
, t ≥ 0, (1)

x(0) = x0, (2)

where initial condition x0 and state x(t) take value in Rm, and input u ∈ L∞ (R+,Rn) for some strictly pos-
itive integers n and m. The mapping f : Rm × Rn → Rm is a well-defined continuous function. Because of
the continuity of the right-hand side of (1), the system (1)-(2) has a maximal solution which is defined on an
interval of the form [0, ω), ω > 0 [14, p. 67–70]. In this paper, we assume that the system (1)-(2) has a unique
Carathéodory solution for all (u, x0) ∈ L∞ (R+,Rn)× Rm.

Consider the time scale change sγ(t) = t/γ,∀γ > 0,∀t ≥ 0. When the input u ◦ sγ is used instead of u, system
(1)-(2) becomes

ẋγ(t) = f
(
xγ(t), u ◦ sγ(t)

)
, t ≥ 0, (3)

xγ(0) = x0, (4)

which can be written for all γ > 0 as

σγ (t) = x0 + γ

t∫
0

f
(
σγ (τ) , u (τ)

)
dτ, ∀t ∈ [0, ωγ), (5)

where σγ = xγ ◦ s1/γ and [0, ωγ) is the maximal interval for the existence of solutions σγ .

We seek necessary conditions and also sufficient conditions for the uniform convergence of the sequence of
functions σγ .

3 Necessary Conditions

Our aim in this section is to derive necessary conditions for the uniform covergence of the sequence of functions
σγ .

Lemma 3.1. Assume that the maximal solution of system (1)-(2) is defined on R+ for all (u, x0) ∈ L∞ (R+,Rn)×
Rm. Suppose that there exists a function h : R+ × R+ → R+ such that

|x (t)| ≤ h
(
|x0| , ‖u‖∞

)
,∀t ≥ 0, (6)

for each initial state x0 ∈ Rn and each input u ∈ L∞ (R+,Rn). Assume that there exists a function qu ∈
L∞ (R+,Rm) ∩ C0 (R+,Rm) such that limγ→∞ ‖σγ − qu‖∞ = 0. Then, we have f

(
x0, u(0)

)
= 0, qu(0) = x0,

and f
(
qu (t) , u (t)

)
= 0, ∀t ≥ 0.

Proof. From the fact that ‖u‖∞ = ‖u ◦ sγ‖ ,∀γ > 0 and Inequality (6) it comes that

‖xγ‖∞ ≤ h (|x0| , ‖u‖∞) = a. ∀γ > 0,

Thus, we get from the continuity of σγ that

|σγ (t)| ≤ a, ∀t ≥ 0, ∀γ > 0. (7)

Inequality (7) along with the continuity of function f and the boundedness of the input u imply that there
exists a constant r > 0 independent of γ, such that |f (σγ (τ) , u (τ))| ≤ r, ∀τ ≥ 0, ∀γ > 0. This means that we
can apply the Dominated Lebesgue Theorem in Equation (5) and get

lim
γ→∞

∫ t

0

f (σγ (τ) , u (τ)) dτ =

∫ t

0

f (qu (τ) , u (τ)) dτ, ∀t ≥ 0, (8)

2



where the continuity of f and the fact that limγ→∞ ‖σγ − qu‖∞ = 0 are used. By Equation (7) we have
‖σγ − x0‖∞ /γ → 0 as γ →∞. Thus, we obtain from (5) and (8) that∫ t

0

f (qu (τ) , u (τ)) dτ = 0, ∀t ≥ 0,

which gives f
(
qu (t) , u (t)

)
= 0 for almost all t ≥ 0. From the continuity of functions f , qu, and u it comes that

f
(
qu (t) , u (t)

)
= 0, for all t ≥ 0. (9)

Since σγ(0) = x0, ∀γ > 0 it comes that
qu (0) = x0. (10)

Finally, taking t = 0 in (9) and using (10) provides the necessary condition

f
(
x0, u(0)

)
= 0, (11)

which completes the proof.

Remark 1. Once chosen an input u, the term u(0) is given so that any initial condition x0 for which we
have limγ→∞ ‖σγ − qu‖∞ = 0 should satisfy (11).

4 Sufficient Conditions

In this section, we derive sufficient conditions to ensure that the sequence of functions σγ converges uniformly
as γ →∞.

Definition 4.1. [7] A continuous function β : R+ → R+ is said to belong to class K∞ if it is strictly increasing,
satisfies β (0) = 0, and limt→∞ β (t) =∞.

Lemma 4.1. [11] Consider a function z : [0, ω) ⊂ R+ → R+, where ω may be infinite. Assume the following

(i) The function z is absolutely continuous on each compact subset of [0, ω).

(ii) There exist z1, z2 ≥ such that z1, z (0) < z2 and ż (t) ≤ 0 for almost all t ∈ [0, ω) that satisfy z1 < z (t) < z2.

Then, z(t) ≤ max
(
z (0) , z1

)
, ∀t ∈ [0, ω).

Corollary 4.1. Consider a function z : [0, ω) ⊂ R+ → R+, where ω may be infinite. Assume the following

(i) The function z is absolutely continuous on each compact subset of [0, ω).

(ii) There exist a class K∞ function β : R+ → R+ and z1, z2, z3 ≥ 0 such that max
(
β−1 (z3) , z1, z (0)

)
< z2,

and ż (t) ≤ −β (z (t)) + z3 for almost all t ∈ [0, ω) that satisfy z1 < z (t) < z2.

Then, z (t) ≤ max
(
z (0) , z1, β

−1 (z3)
)
, ∀t ∈ [0, ω).

Proof. We have ż (t) ≤ 0 for almost all t ∈ [0, ω) that satisfy max
(
β−1 (z3) , z1

)
< z (t) < z2, and hence the

result follows directly from Lemma 4.1.

Lemma 4.2. Assume that there exists qu ∈W 1,∞ (R+,Rn) such that

f
(
qu (t) , u (t)

)
= 0, ∀t ≥ 0, (12)

qu(0) = x0. (13)

Define yγ : R+ → Rm as
yγ (t) = σγ (t)− qu (t) = xγ (γt)− qu (t) ,∀γ > 0, (14)

for all t ∈ [0, ωγ). Suppose that we can find a continuously differentiable function V : Rm → R+ that satisfies
the following:

(i) V is positive definite, that is V (0) = 0 and V (α) > 0,∀ 0 6= α ∈ Rm.

(ii) V is proper, that is V (α)→∞ as |α| → 0.
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(iii) There exist δ > 0 and β ∈ K∞ satisfying:
dV (α)
dα

∣∣∣∣
α=yγ(t)

· f
(
yγ (t) + qu (t) , u (t)

)
≤ −β

(
|yγ (t)|

)
,

for all t ∈ [0, ωγ) and ∀γ > 0 that satisfy |yγ (t)| < δ.

(15)

Then,

• ωγ = +∞,∀γ > 0. Furthermore, there exist E, γ∗ > 0 such that ‖xγ‖∞ ≤ E,∀γ > γ∗, for any solution xγ
of the system (3)-(4).

• limγ→∞ ‖σγ − qu‖∞ = 0.

Proof. Since V is positive definite and proper, there exists β1, β2 ∈ K∞ such that (see [7, p. 145])

β1 (|α|) ≤ V (α) ≤ β2 (|α|) ,∀α ∈ Rm. (16)

From (5), we get for almost all t ∈ [0, ωγ), ∀γ > 0 that

ẏγ (t) = γ f
(
yγ(t) + qu(t), u(t)

)
− q̇u(t), (17)

yγ (0) = 0. (18)

For any γ > 0, define Vγ : R+ → R+ as Vγ(t) = V
(
yγ(t)

)
,∀t ∈ [0, ωγ). Note that the function Vγ is absolutely

continuous on each compact subset of [0, ωγ) as a composition of a continuously differentiable function V and
an absolutely continuous function yγ . Then, we get for almost all t ∈ [0, ωγ) and all γ > 0 that

V̇γ (t) =
dV (α)

dα

∣∣∣∣
α=yγ(t)

· ẏγ (t) =
dV (α)

dα

∣∣∣∣
α=yγ(t)

·
[
γf
(
yγ (t) + qu (t) , u (t)

)
− q̇u (t)

]
. (19)

Let Ω =
(
0, β1 (δ)

)
. By (16) we have for any γ > 0, and for almost all t ∈ [0, ωγ) that

Vγ (t) ∈ Ω⇒ |yγ (t)| < δ. (20)

We conclude from (15), (19), and (20) that

V̇γ (t) ≤ −γ β (|yγ (t)|) + ‖q̇u‖∞

∣∣∣∣dV (α)

dα

∣∣∣
α=yγ(t)

∣∣∣∣, for almost all t ∈ [0, ωγ),∀γ > 0 that satisfy Vγ (t) ∈ Ω.

Thus, we deduce from the continuity of dV (α)
dα , the boundedness of q̇u, and (20) there exists some b > 0

independent of γ such that

V̇γ (t) ≤ −γ β (|yγ (t)|) + b, for almost all t ∈ [0, ωγ),∀γ > 0 that satisfy Vγ (t) ∈ Ω.

Hence, (16) implies

V̇γ (t) ≤ −γ β ◦ β−12

(
Vγ (t)

)
+ b, for almost all t ∈ [0, ωγ),∀γ > 0 that satisfy Vγ (t) ∈ Ω.

Thus, Corollary 4.1 and the fact that Vγ (0) = 0,∀γ > 0, imply that Vγ (t) ≤ β2 ◦β−1
(
b
γ

)
, ∀γ > γ0,∀t ∈ [0, ωγ)

where γ0 = b
β◦β−1

2 ◦β1(δ)
. Therefore, (16) implies that

|yγ (t)| ≤ β1 ◦ β2 ◦ β−1
(
b

γ

)
, ∀γ > γ0,∀t ∈ [0, ωγ). (21)

Thus, ωγ = +∞,∀γ > γ1 for some γ1 > 0, and limγ→∞ ‖yγ‖∞ = 0, which is equivalent to limγ→∞ ‖σγ − qu‖∞ =
0. On the other hand, (21) and the fact that σγ = yγ + qu imply that there exists some E, γ∗ > 0 such that
‖σγ‖∞ ≤ E,∀γ > γ∗, and hence ‖xγ‖∞ ≤ E,∀γ > γ∗.
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Lemma 4.3. Consider the nonlinear system [13]

ẋ = f (x, u) = Ax+ Φ (x) +R (u) , (22)

x (0) = x0, (23)

y = Dx, (24)

where x0 ∈ Rm, A is an m×m Hurwitz matrix2, D is an m×m matrix, input u ∈ L∞ (R+,Rn), state x, output
y take values in Rm, function R ∈ C0 (Rn,Rm), and a locally Lipshitz function Φ ∈ C0 (Rm,Rm). Assume the
following:

(i) The exists qu ∈W 1,∞ (R+,Rm) such that qu (0) = x0 and

Aqu (t) + Φ
(
qu (t)

)
+R

(
u (t)

)
= 0,∀t ≥ 0.

(ii) There exist c1 > 0, c2 > 0, ξ > 0 and r > 2 such that∣∣α · [Φ(α+ qu(t)
)
− Φ

(
qu (t)

)]∣∣ ≤ c1 |α|2 + c2 |α|r , for almost all t ≥ 0,∀α ∈ Rm that satisfy |α| < ξ.

(iii) One has c1 <
1

2 λmax
, where λmax is the largest eigenvalue for the m×m positive-definite symmetric matrix

P that satisfies3

PA+ATP = −Im×m. (25)

Let xγ , yγ be respectively the state and the output of (22)-(24) when we use the input u ◦ sγ instead of u.

Then,

• All solutions of (22)-(24) are bounded. Furthermore, there exist E, γ∗ > 0 such that ‖xγ‖∞ ≤ E,∀γ > γ∗,
for any solution xγ of the system (3)-(4).

• limγ→∞ ‖Fγ −Dqu‖∞ = 0, where Fγ : R+ → Rm is defined as Fγ (t) = yγ (γt) ,∀t ≥ 0,∀γ > 0.

Proof. Since Φ is locally Lipschitz, the right-hand side of (22) is locally Lipschitz relative to x and hence the
system (22) has a unique solution. The function qu satisfies (12)-(13) in Lemma 4.2 because of (i).

Consider the continuously differentiable quadratic Lyapunov function candidate V : Rm → R such that V (α) =
αTPα, ∀α ∈ Rm. Since P is symmetric, we have ∀α ∈ Rm that

λmin |α|2 ≤ V (α) = αTPα ≤ λmax |α|2 ,

where λmin is the smallest eigenvalue of the matrix P . Thus V is positive definite and proper. Since P is
symmetric we have ∣∣∣∣dV (α)

dα

∣∣∣∣ = 2 |P α| ≤ 2λmax |α| ,∀α ∈ Rm. (26)

We have by (25) that

dV (α)

dα
·Aα = 2Pα ·Aα = αT

(
PA+ATP

)
α = − |α|2 ,∀α ∈ Rm. (27)

From Condition (i) we get for all γ > 0 that

dV (α)

dα

∣∣∣
α= yγ

· f (yγ + qu, u) =
dV (α)

dα

∣∣∣
α=yγ

·
[
Ayγ +Aqu + Φ (yγ + qu) +R (u)

]
=
dV (α)

dα

∣∣∣
α=yγ

·
[
Ayγ + Φ (yγ + qu)− Φ (qu)

]
.

(28)

where yγ is defined in (14).

2that is each eigenvalue of A has a strictly negative real part.
3the existence of the matrix P in (25) is guaranteed because A is Hurwitz [7, p.136].

5

https://www.researchgate.net/publication/224372808_Nonlinear_feedback_models_of_hysteresis?el=1_x_8&enrichId=rgreq-ec3c61e259612676c803c4619875ef2e-XXX&enrichSource=Y292ZXJQYWdlOzMwMTgwNjc4MjtBUzozNTc4MDEyMTA3Mjg0NDhAMTQ2MjMxNzg2NDc0Mg==


We get from (28), (27), (26) and Condition (ii) that

dV (α)

dα

∣∣∣∣
α=yγ(t)

·f
(
yγ (t) + qu (t) , u (t)

)
≤ (−1 + 2c1 λmax) |yγ (t)|2 + 2c2 λmax |yγ (t)|r ,

∀γ > 0 for almost all t ∈ [0, ωγ) that satisfy |yγ (t)| < ξ,

(29)

where [0, ωγ) is the maximal interval of existence of σγ and yγ . This leads to

dV (α)

dα

∣∣∣∣
α=yγ(t)

· f
(
yγ (t) + qu (t) , u (t)

)
≤ −1− 2c1 λmax

2
|yγ (t)|2 ,

∀γ > 0, for almost all t ∈ [0, ωγ) that satisfy |yγ (t)| < min

(
r−2

√
1− 2c1 λmax

4c2 λmax
, ξ

)
.

(30)

Thus, (15) in is satisfied with β (v) = 1−2c1 λmax

2 v2, ∀v ≥ 0 and δ = min
(
r−2

√
1−2c1 λmax

4c2 λmax
, ξ
)

. Hence all

conditions of Lemma 4.2 are satisfied so that the solution of (22) is bounded. Morover, there exist E, γ∗ > 0
such that ‖xγ‖∞ ≤ E,∀γ > γ∗. Futhermore, we have limγ→∞ ‖σγ − qu‖∞ = 0. Thus, we deduce from (24) that
limγ→∞ ‖Fγ −Dqu‖∞ = 0.

Example. Consider the system

ẋ = −x+ x3 − u, (31)

x (0) = 0. (32)

where state x takes values in R and input u ∈W 1,∞ (R+,R) is defined as u(t) = 0.1 sin (t),∀t ≥ 0. The system
(31)-(32) has the form (22)-(24), with x = y, m = n = 1, A = −1, Φ (α) = α3, R(α) = −α, ∀α ∈ R, and
D = 1. Observe that P in (25) equals 1/2 which mean that λmin = λmax = 1/2. We have u (0) = 0 and u is
bounded with

u(·) ∈ [umin, umax] = [−0.1, 0.1] . (33)

Define the function χ :
[
− 1√

3
, 1√

3

]
→
[
− 2

3
√
3
, 2
3
√
3

]
as χ (v) = −v + v3,∀v ∈

[
− 1√

3
, 1√

3

]
. The function χ

is strictly decreasing, bijective and its inverse function is continuous. Hence, there exists a function qu ∈
C0 (R+,R) ∩ L∞ (R+,R) such that qu(·) ∈

[
− 1√

3
, 1√

3

]
, qu(0) = 0 and

χ
(
qu (t)

)
= −qu (t) + q3u (t) = u (t) ,∀t ≥ 0. (34)

It can be checked using (33) that ‖qu‖∞ < 0.11 (see Figure (1b)). Thus qu (·) 6= 1√
3
. This fact and (34) implies

that the function q̇u = u̇/
(
1− 3q2u

)
is bounded so that qu ∈ W 1,∞ (R+,R). Hence Condition (i) of Lemma 4.3

is satisfied.

On the other hand, we have for all α ∈ R that

α (Φ (α+ q
u
)− Φ (q

u
)) = 3q2

u
α2 + 3q

u
α3 + α4. (35)

Since ‖qu‖∞ < 0.11, one has
∥∥3q2u

∥∥
∞ < 0.0363 = c1. Hence it follows from (35) that for any ξ > 0 we have

α
[
Φ
(
α+ qu (t)

)
− Φ

(
qu (t)

)]
≤ c1α2 + (3 ‖qu‖∞ + ξ)α3

∀α ∈ Rm that satisfy |α| < ξ, for almost all t ≥ 0.
(36)

Thus, Condition (ii) in Lemma 4.3 is satisfied with c2 = 3 ‖q
u
‖∞ + ξ. Moreover, we have c1 < 1 = 1

2 λmax
which

implies that Condition (ii) in Lemma 4.3 is also satisfied. Therefore, the solution of (31)-(32) is bounded, that
there exist E, γ∗ > 0 such that ‖xγ‖∞ ≤ E,∀γ > γ∗, and that limγ→∞ ‖σγ − qu‖∞ = limγ→∞ ‖Fγ − qu‖∞ = 0
(observe that σγ(·) = Fγ(·) because x (·) = y (·)). This is illustrated in Figure 1a.
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Figure 1: Simulations.

5 Conclusion

In [5] a rule for deciding whether a process may or may not be a hysteresis is proposed for causal operators such
that a constant input leads to a constant output. That rule involves checking whether the so-called consistency
and strong consistency properties hold. In this paper we derived necessary conditions and sufficient ones for
the uniform convergence of the shifted solutions σγ : t → xγ (γt) of the system ẋ = f(x, u ◦ sγ). This uniform
convergence is related to consistency. Does this mean that the concept of consistency can be extended to study
operators for which the property that a constant input leads to a constant output, that property does not hold?

This paper explores this issue for systems of the form ẋ = f(x, u), however, no clear cut answer may be
drawn for the obtained results.

Indeed, the necessary conditions alone cannot guarantee whether the uniform convergence of σγ when γ →∞
happens or not. The sufficient conditions do imply that convergence but do not guarantee that the hysteresis
loop of the operator is not trivial. In the example, we have seen that qu is a function of u so that the hysteresis
loop is a curve and we cannot acertain from this whether system (31) is a hysteresis or not. This is a future
research line.
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