PLANE LIKE INTERFACES IN LONG-RANGE ISING MODELS AND CONNECTIONS WITH NONLOCAL MINIMAL SURFACES

MATTEO COZZI, SERENA DIPIERRO, AND ENRICO VALDINOCI

Abstract. This paper contains three types of results:

• the construction of ground state solutions for a long-range Ising model whose interfaces stay at a bounded distance from any given hyperplane,
• the construction of nonlocal minimal surfaces which stay at a bounded distance from any given hyperplane,
• the reciprocal approximation of ground states for long-range Ising models and nonlocal minimal surfaces.

In particular, we establish the existence of ground state solutions for long-range Ising models with planelike interfaces, which possess scale invariant properties with respect to the periodicity size of the environment. The range of interaction of the Hamiltonian is not necessarily assumed to be finite and also polynomial tails are taken into account (i.e. particles can interact even if they are very far apart the one from the other).

In addition, we provide a rigorous bridge between the theory of long-range Ising models and that of nonlocal minimal surfaces, via some precise limit result.

1. Introduction

In this paper, we consider an Ising model subject to long-range interactions and we construct ground state solutions whose interfaces stay at a bounded distance from any given hyperplane. This construction extends that of [CdIL05] to kernels with slowly decaying tales at infinity and a singularity at the origin.

Also, we deduce from such construction the existence of nonlocal minimal surfaces which stay at a bounded distance from any given hyperplane. The connection between the statistical mechanics problem given by the Ising model and the calculus of variations problem given by the nonlocal minimal surfaces is based on the reciprocal approximation of ground states for

2010 Mathematics Subject Classification. 82C20, 82B05, 35R11.

Key words and phrases. Planelike minimizers, phase transitions, spin models, Ising models, long-range interactions, nonlocal minimal surfaces.

Contents

1. Introduction 1
2. Proof of Theorem 1.4 in the general setting 12
3. Proof of Theorem 1.4 for power-like interactions with no magnetic term 24
4. Interlude. Some simple facts about non local perimeter functionals 29
5. From the Ising model to the K-perimeter. Proof of Theorem 1.6 31
6. Planelike minimal surfaces for the K-perimeter. Proof of Theorem 1.7 36
7. From the K-perimeter to the Ising model. Proof of Theorem 1.8 36
8. The Γ-convergence result. Proof of Theorem 1.9 37
Appendix A. Proof of Lemma 5.3 39
Appendix B. Optimality of the width of the strip given in (1.17) 41
Conclusions 43
Acknowledgements 43
References 43

1. Introduction

In this paper, we consider an Ising model subject to long-range interactions and we construct ground state solutions whose interfaces stay at a bounded distance from any given hyperplane. This construction extends that of [CdIL05] to kernels with slowly decaying tales at infinity and a singularity at the origin.

Also, we deduce from such construction the existence of nonlocal minimal surfaces which stay at a bounded distance from any given hyperplane. The connection between the statistical mechanics problem given by the Ising model and the calculus of variations problem given by the nonlocal minimal surfaces is based on the reciprocal approximation of ground states for
long-range Ising models and nonlocal minimal surfaces, that we prove here by using methods of Γ-convergence.

To state these results, we first recall in Subsection 1.1 the basics of the Ising model, to clearly motivate the setting in which we work (of course, the reader expert in statistical physics may well skip Subsection 1.1). Then, in Subsection 1.2, we formalize and discuss the Ising model that we deal with and, in Subsection 1.3, we provide the main results concerning this type of model.

Later, in Subsection 1.4, we recall the formalism of nonlocal minimal surfaces (of course, this part can be skipped by the experts of calculus of variations and fractional equations). In Subsection 1.5, we give the results which concern the nonlocal minimal surfaces and which bridge together the two types of problems.

The organization of the technical part of the paper, which starts in Section 2 and contains the proofs of the main results, is presented at the end of the Introduction, in Subsection 1.6.

1.1. Basics of the Ising model. A very active field of research in mathematical physics focuses on a better understanding of magnetism and its relation to phase transitions.

Roughly speaking, the magnetization of a material occurs when, at a large scale, a large number of electrons has the tendency to align their spin in the same direction. The phenomenon for which these spins align, thus producing locally a net magnetic moment which can be macroscopically measured, is called in jargon ferromagnetism (the converse phenomenon in which spins have the tendency to align in opposite directions, thus producing locally a vanishing net magnetic moment, is called antiferromagnetism).

A simple, but effective, model to study the phenomenon of ferromagnetism was introduced by W. Lenz and his student E. Ising (see [L20, I25]) and can be described as follows. One considers a lattice, say \mathbb{Z}^d for the sake of simplicity, and assumes that a spin $u_i \in \{-1, +1\}$ can be associated to any element i of the lattice.

The medium is immersed into an external magnetic field, which, at any point i of the lattice, has intensity equal to h_i. The sign of h_i influences the spin u_i of the site i: namely, the energy associated to the external magnetic field can be written (up to dimensional constants) as

\[(1.1) \quad E_{\text{ext}} := \sum_{i \in \mathbb{Z}^d} h_i u_i.\]

In this sense, ground state solutions (i.e. minimizers) would have the tendency to align their spin in dependence of the external magnetic field, that is, for our sign convention, in order to make E_{ext} as small as possible, u_i would be inclined to be equal to -1 whenever $h_i > 0$ and equal to $+1$ whenever $h_i < 0$.

In this framework, the external magnetic fields with zero average cannot, in general, be responsible for the formation of large regions in which spins align (the so-called Weiss magnetic domains). Hence, in order to model spontaneous magnetization, one has to suppose that there is some type of interaction among sites. This interaction between the sites i and $j \in \mathbb{Z}^d$ is taken to be equal to J_{ij} and the corresponding internal energy is given by

\[(1.2) \quad E_{\text{int}} := -\sum_{i,j \in \mathbb{Z}^d} J_{ij} u_i u_j.\]

If J_{ij} is positive, then, to minimize the internal energy, the ground states will have the tendency to mutually align their spins (in this way, the product $J_{ij} u_i u_j$ would be positive and the energy lower). This sign assumption of J_{ij} is the one called in the literature as ferromagnetic (the opposite sign of J_{ij} is called antiferromagnetic).

In a sense, the ferromagnetic (or antiferromagnetic) behavior of a material can be seen, at a microscopic scale, as the combined effect of the Pauli Exclusion Principle and the Coulomb repulsion between electrons. Indeed, if two electrons have different spins, then they can occupy the same orbital. This allows the electrons to be closer to each other, thus having a stronger
Coulomb repulsion. Vice versa, if two electrons have the same spin, then they must occupy different orbitals, thus reducing the Coulomb repulsion. The description of the ferromagnetic or antiferromagnetic behaviors of the different materials in terms of their atomic distance is depicted by the so-called Bethe-Slater curve (see e.g. page 125 in [C97]): the elements which lie on this curve above the horizontal axis are ferromagnetic and the ones below are antiferromagnetic (for instance, iron, whose magnetic properties depend on its crystal structure, is usually located in the vicinity of the meeting point of the Bethe-Slater curve with the horizontal axis).

In our setting, the total energy of the system is then the superposition of the external energy E_{ext} produced by the magnetic field and the internal energy E_{int} due to particle interactions: then, in light of the discussions above, we know that the ground states have two types of tendencies:

- on the one hand, they are influenced by the magnetic field, and try to align their spin in dependence of it as much as possible;
- on the other hand, each site is influenced by the others, and this interaction tries to maintain the spins aligned as much as possible.

It is conceivable to imagine that, for magnetic fields with zero average, on a large scale, the first of this tendency would average out as well, and the particle interaction would then produce macroscopic regions with aligned spins, in such a way to minimize the overall energy. We refer to [G99] and [R99] for more exhaustive discussions on these topics.

In the model considered, a natural phenomenon to take into account is the possibility of a phase transition – and, in fact, two types of related, but conceptually different, transitions must be carefully analyzed. The first phase transition is mostly related to the formation of large regions in which spins are aligned: at high temperature, the interaction between sites becomes relatively lower, due to thermal fluctuations, and this phenomenon may eliminate the spin alignment; conversely, at low temperature, large regions with the same spins may spontaneously arise. The detection of this phenomenon and of the associated critical temperature is the core of the study of this type of phase transition (namely, of the transition related to spontaneous magnetization in ferromagnetic materials in dependence of the temperature, which in turn corresponds to a transition between ordered and disordered organization of the substratum, see [P36, O44]).

A second type of phase transition – or, better\(^1\) to say, phase coexistence – deals with the study of the ferromagnetic regions. This study focuses on the analysis of the interfaces between the regions with different spins, and this is the point of view adopted in this paper. This type of phase transitions can be, in our opinion, very efficiently studied in view of the limit case in which the lattice approaches a continuous medium. In such a limit, the statistical mechanics of the site is well approximated by partial differential equations, the ferromagnetic effects become related to the fact that the associated equations are (at least in some sense) elliptic, and the interface between regions of different spins can be better understood, at a large scale, from the perspective of (hyper)surfaces which minimize some sort of perimeter functional (and the goal of this paper is exactly to formalize such heuristic discussions).

Remarkably, the study of this type of problems also provides a natural bridge between different subjects. On the one hand, given the analytic difficulties created by the model (especially in high dimension), systems like the one discussed here naturally led to the development of

\(^1\)Unfortunately, there seems to be no common agreement in scientific papers about a coherent use of the terminology “phase transition” and “phase coexistence”. The present paper is, in a sense, related to the study of phase coexistence phenomena, in which the ambient spaces is separated, roughly speaking, into two regions with different phases. In most of the mathematical literature, however, the description of similar models based on partial differential equations (such as the Allen-Cahn or Ginzburg-Landau equations) is referred to with the (perhaps rather inaccurate) name of phase transition.
suitable Monte Carlo methods and appropriate algorithms for efficient numerical simulations (see e.g. [NB99]).

Furthermore, models of this type naturally arise in other contexts. Besides magnetization, the model describes spin glasses (in which ferromagnetic and antiferromagnetic behaviors may also occur randomly), see e.g. [WSAD90].

Other applications to this model are related to lattice gas, in which each site may be either occupied by an atom of the gas (which would correspond, in the discussion above, e.g. to the case $u_i = +1$) or it could be empty (which would then be the case $u_i = -1$). In this setting, the ferromagnetic property corresponds to an attractive interaction between atoms.

Similar models also arise in biology to describe binding cellular and DNA behaviors, and to model the activity (say, corresponding to $u_i = +1$) or inactivity ($u_i = -1$) of neurons in a network, see e.g. [DB99, BBNPSMB10, T07, H82].

In this sense, the model that we discuss in this paper provides a nice simplification of reality\(^2\) which is accurate enough to detect interesting and important phenomena, since the basic microscopic interactions add up and exhibit complex macroscopic effects. That is, the model is simple enough to allow a rigorous mathematical study, but it is also rich enough to allow the formation of complicated patterns of interfaces and phase transitions.

In this paper, we consider an Ising model whose Hamiltonian is obtained by the superposition of an energy of ferromagnetic type and a magnetic potential, as described in (1.1) and (1.2), and we look for the equilibria of a discrete set of variables that represent magnetic dipole moments of atomic spins that can be in one of two states (which we denote by $+1$ or -1). These spins are arranged in a d-dimensional lattice that we take to be \mathbb{Z}^d, with $d \geq 2$. Here, we consider the case in which the Hamiltonian depends periodically on the environment, that is, given $\tau \in \mathbb{N}$, both the ferromagnetic and the magnetic energy are invariant under integer translations of length τ. Of course, this type of periodicity assumption is very common in the statistical mechanics literature, especially in view of applications to crystals.

Differently from most of the existing literature, we take into account the possibility that the particle interaction is not finite-range, but it possesses a tail at infinity (in particular, tails with polynomial decays are taken into consideration).

We show that, if the magnetic potential averages to zero in the fundamental domain of such crystal, one can construct ground states in which the interface remains uniformly close to any given hyperplane. More precisely, fixed any hyperplane, we construct minimal interfaces that stay at a distance from the hyperplane of the same order of the periodicity size of the model.

We stress that the vicinity to the prescribed hyperplane is uniform in the whole of the space and that the hyperplane can have rational or irrational slope (the corresponding solutions will then have accordingly periodic and quasiperiodic features).

Of course, the fact that the oscillation of the interface is proved to be of the same order of the crystalline scale has clear physical relevance.

Furthermore, it provides an additional scale invariance that we can use to take suitable limits of the solution constructed.

More precisely, we will show that, if we scale appropriately the planelike ground states\(^3\) of the Ising model, we obtain in the limit a minimal solution for a nonlocal perimeter functional

\(^2\)As a historical remark, we also observe that the idea that simple discrete models at the atomic scale could lead to qualitative macroscopic modifications may go back, in its embryonic stages, at least to Democritus, who is alleged to claim that “by convention sweet is sweet, bitter is bitter, hot is hot, cold is cold, color is color; but in truth there are only atoms and the void”, see [D39].

\(^3\)In our setting, the terminology “ground state” is used to denote minimizers of the Ising energy functional with respect to compact perturbations. From the point of view of statistical physics, we recall that the support of the equilibrium measures at zero temperature does not necessarily coincide with the ground state configurations, and this is indeed a rather delicate issue, for which we refer the reader to [DS85] and Appendix B in [EFS93].
which has been intensively studied in the recent literature (in particular, in this way we show that there exist planelike nonlocal minimal surfaces).

To make the picture complete, we also show that any unique minimizer of the nonlocal perimeter problem can be approximated by ground states of the Ising model, thus providing a complete bridge between the long-range statistical mechanics framework and the geometric measure theory in nonlocal setting.

We recall that the construction of planelike solutions is a classical topic in several areas of pure and applied mathematics. This problem dates back, at least, to the construction of planelike geodesics on surfaces of genus greater than one, see [M24]. As pointed out in [H32], geodesics in higher dimensional manifolds fail, in general, to satisfy planelike conditions. Hence, the question of finding planelike solutions eventually led to the generalization of the notion of “orbits” with that of “invariant measures” in dynamical systems, which in turn gave a fundamental contribution to the birth of the Aubry-Mather (or weak KAM) theory, see [AD83, M89, M91].

In addition, in [M86] the problem of finding suitable planelike solutions was put in a new framework for elliptic partial differential equations, where the question of finding suitable analogues for hypersurfaces of minimal perimeter was also posed.

In turn, this question for minimal surfaces was successfully addressed in [CdLL01, AB01].

See also [CF96, RS04, V04, PV05, B08] for related results for elliptic partial differential equations, [T04, BV08] for additional results in Riemannian and sub-Riemannian settings, [CdLL05, dLV07, dLV10] for results in statistical mechanics, and [CV17a, CV17b] for results for fractional equations.

1.2. Formal setting of the Ising model. We now introduce the formal mathematical settings in which we work. Let $d \in \mathbb{N}$ with $d \geq 2$. We endow \mathbb{Z}^d (and, more generally, \mathbb{Q}^d) with its natural ℓ^1 norm, that will be simply denoted by $|\cdot|$. For simplicity of exposition and rather uncharacteristically, we adopt this notation even for vectors in \mathbb{R}^d. Thus, we write

$$|i| = |i|_1 := \sum_{n=1}^{d} |i_n| \quad \text{for any } i \in \mathbb{R}^d.$$

Of course, for the vast majority of the arguments a different norm of \mathbb{R}^d could be considered as well, with no significant changes in the computations.

We call any function $u : \mathbb{Z}^d \to \{-1, 1\}$ a configuration. Associated to any configuration u is its interface $\partial u \subset \mathbb{Z}^d$ defined by

$$\partial u := \left\{ i \in \mathbb{Z}^d : u_i = 1 \text{ and there exists } j \in \mathbb{Z}^d \text{ such that } |i - j| = 1 \text{ and } u_j = -1 \right\}.$$

Given a configuration u, we consider its (formal) Hamiltonian

$$H(u) := \sum_{i,j \in \mathbb{Z}^d} J_{ij} (1 - u_i u_j) + \sum_{i \in \mathbb{Z}^d} h_i u_i,$$

where $J : \mathbb{Z}^d \times \mathbb{Z}^d \to [0, +\infty)$ satisfies

(1.3) \quad J_{ij} = J_{ji} \quad \text{for any } i, j \in \mathbb{Z}^d,

(1.4) \quad J_{ii} = 0 \quad \text{for any } i \in \mathbb{Z}^d,

(1.5) \quad J_{ij} \geq \lambda \quad \text{for any } i, j \in \mathbb{Z}^d \text{ such that } |i - j| = 1,

(1.6) \quad \sum_{j \in \mathbb{Z}^d} J_{ij} \leq \Lambda \quad \text{for any } i \in \mathbb{Z}^d,
for some $\Lambda \geq \lambda > 0$, while $h : \mathbb{Z}^d \to \mathbb{R}$ is such that

\begin{align}
\sup_{i \in \mathbb{Z}^d} |h_i| & \leq \mu, \\
\sum_{i \in F} h_i & = 0,
\end{align}

for some $\mu > 0$ and with F denoting any fundamental domain of the quotient space $\mathbb{Z}^d / \tau \mathbb{Z}^d$, with $\tau \in \mathbb{N}$.

We observe that the Hamiltonian H is simply the sum of the external magnetic energy and the internal exchange interaction energy introduced in (1.1) and (1.2) (plus formally a constant term).

Sometimes, we will require J to fulfill the following stronger assumption, in place of (1.5) and (1.6):

\begin{align}
\frac{\lambda}{|i - j|^{d+s}} & \leq J_{ij} \leq \frac{\Lambda}{|i - j|^{d+s}} \quad \text{for any } i, j \in \mathbb{Z}^d \text{ with } i \neq j \text{ and for some } s \in (0, 1).
\end{align}

We point out that long-range Ising models like the ones described by the above requirements are well-studied in the literature (see for instance [DRAW02, CDR09, P12, BPR13] and references therein), with particular attention given to those taking into account power-like interactions as in (1.9). The array of models covered by our choice of parameters (namely, $s \in (0, 1)$) falls into the class of the so-called weak long-range interactions. Anyway, we stress that a wider generality (e.g. the case of (1.9) with $s \geq 1$) is already encompassed within the broader framework of hypotheses (1.5) and (1.6).

The potential J_{ij} may be seen as a “Kac potential” and assumption (1.9) takes into account, as a particular case, the singular, power-like potentials. We stress that, for these potentials, the integrable decay at infinity and the scale invariance force a severe singularity at the origin. In particular, the kernel is not integrable (differently from the cases dealt with in [COP02]).

Of course, integrable and non-integrable kernels have similarities for what refers to the nonlocal character of the interaction, but they present very important differences in terms of regularity theory and rigidity properties (for instance, the convolution with a smooth integrable kernel produces always a smooth function, while the action of singular kernels can only produce smooth functions if the original function is sufficiently smooth to compensate the singularity – and this is somehow the starting point of the nonlocal elliptic regularity theory). Also, singular kernels are often adopted in physics to model power-like interactions.

The periodicity of the medium is modeled by requiring that, given $\tau \in \mathbb{N}$,

\begin{align}
J_{ij} & = J_{i',j'} \quad \text{for any } i, j, i', j' \in \mathbb{Z}^d \text{ such that } i - i' = j - j' \in \tau \mathbb{Z}^d, \\
h_i & = h_{i'} \quad \text{for any } i, i' \in \mathbb{Z}^d \text{ such that } i - i' \in \tau \mathbb{Z}^d.
\end{align}

Associated to the interaction kernel J, we consider the non-increasing function

\begin{equation}
\sigma(R) := \sup_{i \in \mathbb{Z}^d} \sum_{j \in \mathbb{Z}^d} J_{ij},
\end{equation}

defined for any $R \in \mathbb{N}$. Note that we indicate with $| \cdot |_{\infty}$ the ℓ^∞ norm in \mathbb{Z}^d and \mathbb{R}^d, that is

\begin{equation}|i|_{\infty} := \sup_{n=1,\ldots,d} |i_n| \quad \text{for any } i \in \mathbb{R}^d.
\end{equation}

Observe that σ quantifies the decay of the tails of J.

Given a set $\Gamma \subset \mathbb{Z}^d$, we introduce the restricted Hamiltonian H_Γ, defined on any configuration u by

$$H_\Gamma(u) := \sum_{(i,j) \in \mathbb{Z}^d \setminus (\mathbb{Z}^d \setminus \Gamma)^2} J_{ij}(1 - u_i u_j) + \sum_{i \in \Gamma} h_i u_i$$

$$= \sum_{i \in \Gamma, j \in \Gamma} J_{ij}(1 - u_i u_j) + 2 \sum_{i \in \Gamma, j \in \mathbb{Z}^d \setminus \Gamma} J_{ij}(1 - u_i u_j) + \sum_{i \in \Gamma} h_i u_i.$$

Note that $H_\Gamma(u)$ is always well-defined when Γ is a finite set, as (1.6) is in force.

It will be useful to have a notation for the interaction energy involving two subsets of \mathbb{Z}^d. Given any two sets $\Gamma, \Omega \subset \mathbb{Z}^d$, we consider the restricted interaction term

$$(1.14) \quad I_{\Gamma,\Omega}(u) := \sum_{i \in \Gamma, j \in \Omega} J_{ij}(1 - u_i u_j).$$

We also write

$$(1.15) \quad B_\Gamma(u) := \sum_{i \in \Gamma} h_i u_i.$$

With these notations, it holds that

$$H_\Gamma(u) = I_\Gamma(u) + B_\Gamma(u).$$

Definition 1.1. We say that a configuration u is a minimizer for H in a set $\Gamma \subset \mathbb{Z}^d$ if it satisfies

$$H_\Gamma(u) \leq H_\Gamma(v),$$

for any configuration v that agrees with u outside of Γ.

Remark 1.2. We point out that, although perhaps not immediately evident from the way the interaction term I is defined, the definition of minimizer is consistent with set inclusion. With this we mean that, given two sets $\Gamma \subseteq \Omega$, a minimizer in Ω is also a minimizer in Γ.

To see this, it suffices to observe that, if u and v are two configurations satisfying

$$u_i = v_i \quad \text{for any } i \in \mathbb{Z}^d \setminus \Gamma,$$

then

$$H_\Omega(u) - H_\Omega(v) = H_\Gamma(u) - H_\Gamma(v).$$

Of course, it is easy to check that such an identity is true for the magnetic term B. On the other hand, the computation of the interaction term is slightly more involved, due to the presence of a double summation. However, it becomes more apparent once one notices that $[\mathbb{Z}^d \setminus (\mathbb{Z}^d \setminus \Gamma)^2] \subseteq [\mathbb{Z}^d \setminus (\mathbb{Z}^d \setminus \Omega)^2]$ and

$$u_i u_j = v_i v_j \quad \text{for any } (i, j) \in [\mathbb{Z}^d \setminus (\mathbb{Z}^d \setminus \Omega)^2] \setminus [\mathbb{Z}^d \setminus (\mathbb{Z}^d \setminus \Gamma)^2].$$

Definition 1.3. We say that a configuration u is a ground state for H if it is a minimizer for H in any finite set $\Gamma \subset \mathbb{Z}^d$.

1.3. **Main results on the Ising model.** With this setting, we are in the position of stating our first result, which provides the existence of ground state solutions for long-range Ising models with interfaces that remain at a bounded distance from a given hyperplane (and, additionally, if J satisfies (1.9), such distance is of the same order of the size of periodicity of the medium):
Theorem 1.4. Suppose that J and h satisfy assumptions (1.3), (1.4), (1.5), (1.6), (1.10) and (1.7) (1.8), (1.11), respectively. Then, there exist a small constant $\mu_0 > 0$, depending only on d, τ and λ, and a large constant $M > 0$, that may also depend on Λ and the function σ, for which, given any direction $\omega \in \mathbb{R}^d \setminus \{0\}$, we can find a ground state u_ω for H such that its interface ∂u_ω satisfies the inclusion

$$(1.16) \quad \partial u_\omega \subset \left\{ i \in \mathbb{Z}^d : \frac{\omega}{|\omega|} \cdot i \in [0, M] \right\},$$

provided that $\mu \leq \mu_0$.

More precisely, for any $i \in \mathbb{Z}^d$ with $\frac{\omega}{|\omega|} \cdot i \geq M$ we have that $u_{\omega,i} = -1$, and for any $i \in \mathbb{Z}^d$ with $\frac{\omega}{|\omega|} \cdot i \leq 0$ we have that $u_{\omega,i} = 1$.

Furthermore, if J satisfies (1.9), in addition to the conditions already specified, and h vanishes identically, then the constant M may be chosen of the form

$$(1.17) \quad M = M_0 \tau,$$

with $M_0 > 0$ depending only on d, s, λ and Λ.

We remark that, if (1.9) is satisfied, than our estimate on the width of the strip given by (1.17) is optimal (an explicit example will be presented in Appendix B).

In the case of finite-range periodic Ising models, the result in (1.16) was obtained in [CdlL05] (see in particular formula (2) and Theorem 2.1 there). We also point the reader’s attention to the more recent [B14], where it is shown that such existence result fails when one considers coefficients that are only almost-periodic (i.e. that are the uniform limits of a family of periodic coefficients of increasing period).

We stress that the additional result that we obtain when J satisfies (1.9) plays for us a crucial role, since such scale invariance is the cornerstone to link the long-range Ising models to the nonlocal minimal surfaces (and this will be the content of the forthcoming Theorems 1.6 and 1.8).

1.4. Nonlocal minimal surfaces. In order to deal with nonlocal minimal surfaces in periodic media, it is convenient now to introduce the following auxiliary notation. Let $K : \mathbb{R}^d \times \mathbb{R}^d \to [0, +\infty]$ be a measurable function satisfying

$$(1.18) \quad K(x, y) = K(y, x) \quad \text{for a.e. } x, y \in \mathbb{R}^d,$$

and

$$(1.19) \quad \frac{\lambda}{|x - y|^{d+s}} \leq K(x, y) \leq \frac{\Lambda}{|x - y|^{d+s}} \quad \text{for a.e. } x, y \in \mathbb{R}^d,$$

for some\(^4\) exponent $s \in (0, 1)$ and for some constants $\Lambda \geq \lambda > 0$. We also assume K to be \mathbb{Z}^d-periodic, that is

$$(1.20) \quad K(x + z, y + z) = K(x, y) \quad \text{for any } z \in \mathbb{Z}^d \text{ and a.e. } x, y \in \mathbb{R}^d.$$

For any open set $\Omega \subseteq \mathbb{R}^d$ and any measurable function $u : \mathbb{R}^d \to \mathbb{R}$, we define

$$\mathcal{J}_K(u; \Omega) := \int\int_{\partial^2 \Omega \setminus (\partial^2 \Omega \setminus \Omega)^2} |u(x) - u(y)| K(x, y) \, dx \, dy,$$

where

$$\partial^2 \Omega := \mathbb{R}^{2d} \setminus (\mathbb{R}^d \setminus \Omega)^2.$$

\(^4\)We think that the restriction of the exponent of the power to be between d and $d + 1$ is not merely technical but reflects the different behavior that the problem presents at large scale: as a matter of fact, above a certain threshold, the interface of the problem “localizes” when seen from infinity, while below such threshold the interface keeps its nonlocal behavior at any scale. In this sense, the different treatment that we propose for different exponents is not a mere complication, but it reflects a real characteristic of the model considered.
Given any two measurable sets $A, B \subseteq \mathbb{R}^d$, we also write
\begin{equation}
\mathcal{K}(u; A, B) := \int_A \int_B |u(x) - u(y)| K(x, y) \, dx \, dy,
\end{equation}
so that, recalling (1.18), it holds
\begin{equation}
\mathcal{K}(u; \Omega) = \mathcal{K}(u; \Omega) + 2 \mathcal{K}(u; \Omega, \mathbb{R}^d \setminus \Omega).
\end{equation}

The K-perimeter of a measurable set $E \subseteq \mathbb{R}^d$ inside Ω is defined by
\begin{equation}
\text{Per}_K(E; \Omega) := \mathcal{L}_K(E \cap \Omega, \Omega \setminus E) + \mathcal{L}_K(E \cap \Omega, \mathbb{R}^d \setminus (E \cup \Omega)) + \mathcal{L}_K(E \setminus \Omega, \Omega \setminus E),
\end{equation}
where, for any two disjoint sets $A, B \subseteq \mathbb{R}^d$,
\begin{equation}
\mathcal{L}_K(A, B) := \int_A \int_B K(x, y) \, dx \, dy.
\end{equation}

We observe that
\begin{equation}
\text{Per}_K(E; \Omega) = \frac{1}{4} \mathcal{K} \left(\chi_E - \chi_{\mathbb{R}^d \setminus E}; \Omega \right).
\end{equation}

We recall that, when $K(x, y) = |x - y|^{d-s}$, the nonlocal perimeter in (1.22) reduces to that introduced in [CRS10]. In this sense, the nonlocal perimeter in (1.22) is a natural notion of fractional perimeter in a non-homogeneous environment. For a basic presentation of nonlocal minimal surfaces (i.e. surfaces which locally minimize nonlocal perimeter functionals), see e.g. pages 97–126 in [BV16] and [DV17]. We also recall that the fractional perimeter provides a nonlocal approximation of the classical perimeter and so minimizers of the fractional perimeters inherit several rigidity and regularity properties from the classical case when s is close to 1 (see [BBM02, D02, CV13] for general statements in this direction).

The concept of optimal set that we take into account here is rigorously described by the following definition:

Definition 1.5. Given an open set $\Omega \subseteq \mathbb{R}^d$, a measurable set $E \subseteq \mathbb{R}^d$ is said to be a minimizer (or a minimal surface\(^5\)) for Per_K in Ω if $\text{Per}_K(E; \Omega) < +\infty$ and
\begin{equation}
\text{Per}_K(E; \Omega) \leq \text{Per}_K(F; \Omega)
\end{equation}
f for any measurable set $F \subseteq \mathbb{R}^d$ such that $F \setminus \Omega = E \setminus \Omega$.

Furthermore, E is said to be a class A minimal surface for Per_K if it is a minimizer for Per_K in every bounded open set $\Omega \subseteq \mathbb{R}^d$.

By means of an argument similar to that presented in Remark 1.2 for the discrete setting, one can easily convince oneself or herself that to verify that a set E is a class A minimal surface for Per_K it is enough to check that E minimizes the K-perimeter on each set of an exhaustion of \mathbb{R}^d that consists of bounded subsets, e.g. concentric balls or cubes of increasing diameters.

1.5. Connection between the long-range Ising model and the nonlocal minimal surfaces

In order to describe the similarity between the power-like long-range Ising model and the K-perimeter, we associate to each kernel K a specific family of systems of coefficients $J^{(e)}$.

Indeed, given $\varepsilon > 0$, we set for any $i, j \in \mathbb{Z}^d$
\begin{equation}
J^{(e)}_{ij} := \begin{cases}
\varepsilon^{-d+s} \int_{Q_{\varepsilon/2}(ei)} \int_{Q_{\varepsilon/2}(ej)} K(x, y) \, dx \, dy & \text{if } i \neq j, \\
0 & \text{if } i = j.
\end{cases}
\end{equation}

As we will see in the forthcoming Lemma 5.1 in Section 5, the coefficients $J^{(e)}$ satisfy assumptions (1.3), (1.4) and (1.9), uniformly in ε.

\(^5\)Here we adopt a partially misleading terminology, as the boundary ∂E, and not the set E, should be regarded as the minimal surface, in conformity with the classical geometrical notion of perimeter. However, we have $\text{Per}_K(E; \Omega) = \text{Per}_K(\mathbb{R}^d \setminus E; \Omega)$, for any set E, and thus no confusion should arise from this slightly improper notation.
Related to \(J^{(c)}\) is then the Hamiltonian \(H^{(c)}\) with zero magnetic flux, defined on every finite set \(\Gamma \subset \mathbb{Z}^d\) and any configuration \(u\) by
\[
H^{(c)}_\Gamma(u) := \sum_{(i,j) \in \mathbb{Z}^{2d} \cap (\mathbb{Z}^d \setminus \Gamma)^2} J^{(c)}_{ij}(1 - u_i u_j).
\]
Moreover, to each configuration \(u\), we associate its extension \(\bar{u}_\varepsilon : \mathbb{R}^d \to \{-1, 1\}\) defined a.e. by setting
\[
\bar{u}_\varepsilon(x) := u_i \quad \text{where } i \in \mathbb{Z}^d \text{ is the only site for which } x \in \mathcal{Q}_{\varepsilon/2}(\varepsilon i).
\]
Note that the above family of extensions allows us to understand configurations as characteristic functions in \(\mathbb{R}^d\), via the embedding
\[
\mathbb{Z}^d \to \varepsilon \mathbb{Z}^d \hookrightarrow \mathbb{R}^d,
\]
defined by
\[
\mathbb{Z}^d \ni i \mapsto \varepsilon i \in \mathbb{R}^d.
\]
Clearly, the smaller the parameter \(\varepsilon\) is, the more densely the grid \(\mathbb{Z}^d\) is embedded in \(\mathbb{R}^d\), and so the closer the Hamiltonian \(H^{(c)}\) looks to the \(K\)-perimeter.

The following result addresses such similarity in a rigorous way, by showing that the limit of ground states for the long-range Ising models with Hamiltonians (1.26) produces a nonlocal minimal surface:

Theorem 1.6. Suppose that \(K\) satisfies assumptions (1.18) and (1.19). Let \(\{\varepsilon_n\}_{n \in \mathbb{N}} \subset (0, 1)\) be an infinitesimal sequence. For any \(n \in \mathbb{N}\), let \(u^{(n)}\) be a ground state for the Hamiltonian \(H^{(\varepsilon_n)}\) and let \(\bar{u}^{(n)} = \bar{u}_\varepsilon^{(n)}\) be its extension to \(\mathbb{R}^d\), according to (1.27).

Then, there exists a diverging sequence \(\{n_k\}_{k \in \mathbb{N}}\) of natural numbers such that
\[
\bar{u}^{(n_k)} \to \chi_E - \chi_{\mathbb{R}^d \setminus E} \quad \text{a.e. in } \mathbb{R}^d, \text{ as } k \to +\infty,
\]
where \(E \subseteq \mathbb{R}^d\) is a class A minimal surface for \(\text{Per}_K\).

It would be very desirable, but likely nontrivial, to use the theory of non-local minimal surfaces to obtain rigorous results for the problem of interfaces. Also, by combining Theorems 1.4 and 1.6, we obtain the existence of planelike minimal surfaces, as stated in the following result:

Theorem 1.7. Suppose that \(K\) satisfies assumptions (1.18), (1.19) and (1.20). Then, there exists a constant \(M_0 > 0\), depending only on \(d, s, \lambda\) and \(\Lambda\), for which, given any direction \(\omega \in \mathbb{R}^d \setminus \{0\}\), we can construct a class A minimal surface \(E_\omega\) for \(\text{Per}_K\), such that
\[
\left\{ x \in \mathbb{R}^d : \frac{\omega}{|\omega|} \cdot x < -M_0 \right\} \subseteq E_\omega \subseteq \left\{ x \in \mathbb{R}^d : \frac{\omega}{|\omega|} \cdot x \leq M_0 \right\}
\]

The result in Theorem 1.7 here positively addresses a problem presented in [C09].

In the forthcoming paper [CV17b], we plan to obtain the same result of Theorem 1.7 by a different method, namely by approaching nonlocal minimal surfaces by nonlocal phase transitions of Ginzburg-Landau-Allen-Cahn type: in this spirit, we may consider the nonlocal minimal surfaces as a natural “pivot”, which joins, in the limit, the Ginzburg-Landau-Allen-Cahn phase transitions and the Ising models in a rigorous way.

Also, as a partial counterpart to Theorem 1.6, we have the following result, which states that a unique minimizer of the nonlocal perimeter functional can be approximated by ground states of long-range Ising models:

Theorem 1.8. Suppose that \(K\) satisfies assumptions (1.18) and (1.19). Let \(E\) be an open subset of \(\mathbb{R}^d\) and suppose that it is a strict minimizer for \(\text{Per}_K\) in the cube\(^6\) \(Q_R\), with \(R \geq 1\),

\[Q_R := \left\{ x \in \mathbb{R}^d : |x|_\infty \leq R \right\}.
\]

\(^{6}\text{Throughout the whole paper, } Q_R \text{ denotes the closed cube of } \mathbb{R}^d \text{ having sides of length } 2R \text{ and centered at the origin, i.e.}\)
that is $\text{Per}_K(E; \Omega) < +\infty$ and

$$\text{Per}_K(E; \Omega) < \text{Per}_K(F; \Omega) \quad \text{for any } F \subseteq \mathbb{R}^d \text{ such that } F \setminus \Omega = E \setminus \Omega \text{ and } F \neq E.$$

Let $\{\varepsilon_n\}_{n \in \mathbb{N}} \subset (0, 1)$ be an infinitesimal sequence.

Then, for any $n \in \mathbb{N}$, there exists a minimizer $u^{(n)}$ for $H^{(\varepsilon_n)}$ in the cube Q_{R/ε_n}, such that, denoting by $\bar{u}^{(n)} = \bar{u}_n^{(n)}$ its extension to \mathbb{R}^d given by (1.27), it holds

$$\bar{u}^{(n_k)} \longrightarrow \chi_E - \chi_{\mathbb{R}^d \setminus E} \quad \text{a.e. in } \mathbb{R}^d, \quad \text{as } k \to +\infty,$$

for some diverging sequence $\{n_k\}_{k \in \mathbb{N}}$ of natural numbers.

We remark that, in view of Theorems 1.6 and 1.8, there is a perfect correspondence between the ground states of the Ising model and the minimizers of the nonlocal perimeter, provided that the latter ones are unique.

To make this correspondence even more explicit, we may rephrase it through the language of Γ-convergence. We consider the topological space

$$\mathcal{H} := \left\{ v \in L^\infty(\mathbb{R}^d) : \|v\|_{L^\infty(\mathbb{R}^d)} \leq 1 \right\},$$

as endowed with the topology given by the convergence in $L^1_{\text{loc}}(\mathbb{R}^d)$.

For any $\varepsilon > 0$, we also introduce the subspace

$$\mathcal{H}_\varepsilon := \left\{ v \in \mathcal{H} : v \text{ is constant on the cube } \bar{Q}_{\varepsilon/2}(i), \text{ for any } i \in \mathbb{Z}^d \right\}.$$

Also, given any bounded open set $\Omega \subset \mathbb{R}^d$, we consider the functionals $\mathcal{G}_K(\cdot; \Omega) : \mathcal{H} \to [0, +\infty]$ defined by

$$\mathcal{G}_K(v; \Omega) := \begin{cases} \mathcal{H}_K(v; \Omega) & \text{if } v|_\Omega = \chi_E - \chi_{\mathbb{R}^d \setminus E}, \text{ for some measurable } E \subseteq \Omega, \\ +\infty & \text{otherwise}, \end{cases}$$

and $\mathcal{G}_K^{(\varepsilon)}(\cdot; \Omega) : \mathcal{H}_\varepsilon \to [0, +\infty]$ obtained by setting $\mathcal{G}_K^{(\varepsilon)}(\cdot; \Omega) := \mathcal{G}_K(\cdot; \Omega)|_{\mathcal{H}_\varepsilon}$.

Observe that, in view of identity (1.24), when v is globally the (modified) characteristic function of a set E, then $\mathcal{G}_K(v; \Omega)$ boils down to the K-perimeter of E inside Ω.

Notice that the map defined in (1.27) is actually a homeomorphism of the space of configurations (endowed with the standard pointwise convergence topology) onto the space \mathcal{H}_ε. Moreover, given any $\ell \in \mathbb{N}$, we observe that any configuration u, together with its extension $\bar{u} \in \mathcal{H}_\varepsilon$ (as given by (1.27)), satisfies the Hamiltonian-energy relation

$$\varepsilon^{d-s} H_{Q_\ell}^{(\varepsilon)}(u) = \mathcal{H}_K(\bar{u}_\varepsilon, Q_R),$$

where $R = (\ell + 1/2)\varepsilon$. This identity completes the picture on the equivalence between the space of configurations with the associated Hamiltonian $H^{(\varepsilon)}$ and \mathcal{H}_ε with the energy \mathcal{H}_K.

Thanks to this complete identification, it is legitimate to see the next result as an appropriate Γ-convergence formulation of the asymptotic relation intervening between the ε-Ising model (1.25)-(1.26) and the K-perimeter (1.22).

Theorem 1.9. Suppose that K satisfies assumptions (1.18) and (1.19). Let $\Omega \subset \mathbb{R}^d$ be a bounded open set with Lipschitz boundary.\(^\text{8}\)

We use the same notation for cubes in \mathbb{Z}^d. That is, for $\ell \in \mathbb{N} \cup \{0\}$, we write

$$Q_\ell := \left\{ i \in \mathbb{Z}^d : |i| \leq \ell \right\} = \{-\ell, \ldots, -1, 0, 1, \ldots, \ell\}^d.$$

Cubes not centered at the origin are indicated with $Q_R(x) := x + Q_R$ and $Q_\ell(q) := q + Q_\ell$, with $x \in \mathbb{R}^d$ and $q \in \mathbb{Z}^d$.

\(^\text{7}\)As usual, we will denote by $\lceil x \rceil$ the smallest integer greater than or equal to x, and by $\lfloor x \rfloor$ the largest integer less than or equal to x.

\(^\text{8}\)Actually, the Lipschitz regularity assumption on the boundary of Ω can be omitted for the deduction of the Γ-lim inf inequality.
Then, the family of functionals \(\mathcal{G}^{(\varepsilon)}(\cdot, \Omega) \) \(\Gamma \)-converges to \(\mathcal{G}(\cdot, \Omega) \), as \(\varepsilon \to 0^+ \). More precisely, we have

- (\(\Gamma \)-lim inf inequality): for any \(u_\varepsilon \in \mathcal{X}_\varepsilon \) converging to \(u \in \mathcal{X} \), it holds
 \[
 \liminf_{\varepsilon \to 0^+} \mathcal{G}^{(\varepsilon)}(u_\varepsilon; \Omega) \geq \mathcal{G}(u; \Omega);
 \]

- (\(\Gamma \)-lim sup inequality): for any \(u \in \mathcal{X} \), there exists \(u_\varepsilon \in \mathcal{X}_\varepsilon \) converging to \(u \) and such that
 \[
 \limsup_{\varepsilon \to 0^+} \mathcal{G}^{(\varepsilon)}(u_\varepsilon; \Omega) \leq \mathcal{G}(u; \Omega);
 \]

- (Compactness): given any infinitesimal sequence \(\{\varepsilon_n\}_{n \in \mathbb{N}} \subset (0, 1) \), if \(u_n \in \mathcal{X}_{\varepsilon_n} \) satisfies
 \[
 \sup_{n \in \mathbb{N}} \mathcal{G}^{(\varepsilon_n)}(u_n; \Omega) \leq C,
 \]
 for some \(C \geq 0 \), then there exist a measurable set \(E \subseteq \Omega \) and a diverging sequence \(\{n_k\}_{k \in \mathbb{N}} \) of natural numbers such that \(u_{n_k} \) converges to \(\chi_E - \chi_{\mathbb{R}^d \setminus E} \) a.e. in \(\Omega \), as \(k \to +\infty \).

1.6. Organization of the paper. The rest of the paper follows this organization: in Section 2 and 3 we give the proof of Theorem 1.4, by considering as a special case the one of power-like interactions with no magnetic term (which leads to additional, scale invariant, results). The proof of Theorem 1.4 will first deal with the case of finite range interactions, as in [CdlL05], but uniform energy estimates will allow us to take the appropriate limit.

Then, in Section 4, we present some ancillary results on nonlocal perimeter functionals. The link between Ising models and nonlocal minimal surfaces is discussed in Sections 5 and 7, where we give the proofs of Theorems 1.6 and 1.8, respectively. In between, in Section 6, we also prove Theorem 1.7, thus obtaining the existence of planelike nonlocal minimal surfaces as a byproduct of our analysis of the Ising model.

Finally, Section 8 is devoted to the proof of the \(\Gamma \)-convergence result given by Theorem 1.9.

2. Proof of Theorem 1.4 in the general setting

In this section we include the proof of Theorem 1.4 in the general case of \(J \) and \(h \) satisfying (1.3), (1.4), (1.5), (1.6), (1.10) and (1.7) (1.8), (1.11), respectively. The more specific scenario given by hypothesis (1.9) and \(h = 0 \), described in the latter claim of the statement of Theorem 1.4, will be considered in the next Section 3.

As the construction is rather involved, we split the argument into eight subsections.

First, we consider the case of a rational \(\omega \in \mathbb{Q}^d \setminus \{0\} \). For any such direction, we build a ground state for \(H \) whose interface satisfies the inclusion (1.16), for some \(M > 0 \). As will be evident by following the steps of the construction, the constant \(M \) is indeed independent of the chosen direction \(\omega \). As a result, an approximation argument displayed in the conclusive Subsection 2.8 will show that Theorem 1.4 can be extended to general directions \(\omega \in \mathbb{R}^d \setminus \{0\} \).

Although the existence of ground states will be eventually carried out in the generality announced in the statement of Theorem 1.4, we need to initially impose an additional condition on the interaction coefficients \(J \). Throughout Subsections 2.1-2.6, we always assume that \(J \) satisfies

\[
J_{ij} = 0 \quad \text{for any } i, j \in \mathbb{Z}^d \text{ such that } |i - j| > R,
\]

for some \(R > 0 \). Assumption (2.1) allows us to avoid some technical complications related to the presence of tails in the interaction term of the Hamiltonian \(H \). The estimates performed in the next subsections under hypothesis (2.1) will however turn out to be independent of the range of positivity \(R > 0 \). Therefore, in Subsection 2.7 we will be able to remove such assumption with the help of an easy limiting argument and thus recover the validity of Theorem 1.4 in its full generality.
2.1. Constrained minimizers. Let $\omega \in \mathbb{Q}^d \setminus \{0\}$ and $m \in \mathbb{N}$. We consider the \mathbb{Z}-modules

$$\mathcal{L}_\omega := \left\{ i \in \mathbb{Z}^d : \omega \cdot i = 0 \right\},$$

and

$$\mathcal{L}_{m,\omega} := m \mathcal{L}_\omega.$$

We indicate with $\mathcal{F}_{m,\omega}$ any fundamental domain of the quotient space $\mathbb{Z}^d / \mathcal{L}_{m,\omega}$. Given any two real numbers $A < B$, we divide $\mathcal{F}_{m,\omega}$ into the three subregions

$$\mathcal{F}_{m,\omega}^{A,B} := \left\{ i \in \mathcal{F}_{m,\omega} : \frac{\omega}{|\omega|} \cdot i \in [A,B] \right\},$$

$$\mathcal{F}_{m,\omega}^{A,-} := \left\{ i \in \mathcal{F}_{m,\omega} : \frac{\omega}{|\omega|} \cdot i < A \right\}$$

and

$$\mathcal{F}_{m,\omega}^{B,+} := \left\{ i \in \mathcal{F}_{m,\omega} : \frac{\omega}{|\omega|} \cdot i > B \right\}.$$

A configuration u is said to be (m,ω)-periodic if

$$u_{i+k} = u_i \quad \text{for any } i \in \mathbb{Z}^d \text{ and any } k \in \mathcal{L}_{m,\omega}.$$

We denote by $\mathcal{D}_{m,\omega}$ the set of all (m,ω)-periodic configurations. Furthermore, we consider the class $\mathcal{A}_{m,\omega}^{A,B}$ of admissible configurations, defined by

$$\mathcal{A}_{m,\omega}^{A,B} := \left\{ u \in \mathcal{D}_{m,\omega} : u_i = 1 \text{ for any } i \in \mathcal{F}_{m,\omega}^{A,-} \text{ and } u_i = -1 \text{ for any } i \in \mathcal{F}_{m,\omega}^{B,+} \right\}.$$

Recalling the notation in (1.14) and (1.15), we introduce the auxiliary functional $G_{m,\omega}^{A,B}$, defined on any configuration u by

$$G_{m,\omega}^{A,B}(u) := I_{F_{m,\omega},\mathcal{F}_{m,\omega}}(u) + B_{\mathcal{F}_{m,\omega}^{A,B}}(u)$$

$$= \sum_{i \in \mathcal{F}_{m,\omega}, j \in \mathbb{Z}^d} J_{ij}(1 - u_i u_j) + \sum_{i \in \mathcal{F}_{m,\omega}^{A,B}} h_i u_i. \quad (2.3)$$

Observe that the interaction term of this functional differs from that of $H_{F_{m,\omega}}$ for the fact that in $H_{F_{m,\omega}}$ the interactions between the regions $\mathcal{F}_{m,\omega}$ and $\mathbb{Z}^d \setminus \mathcal{F}_{m,\omega}$ are counted twice. Also note that $G_{m,\omega}^{A,B}$ is well-defined on any configuration in $\mathcal{A}_{m,\omega}^{A,B}$, as, in this case, the series defining the first interaction in (2.3) involves a sum of only a finite number of terms, thanks to (2.1) (and the second interaction is always a finite sum).

Moreover, we denote by $\mathcal{M}_{m,\omega}^{A,B}$ the subset of $\mathcal{A}_{m,\omega}^{A,B}$ composed by the minimizers of $G_{m,\omega}^{A,B}$. That is,

$$\mathcal{M}_{m,\omega}^{A,B} := \left\{ u \in \mathcal{A}_{m,\omega}^{A,B} : G_{m,\omega}^{A,B}(u) \leq G_{m,\omega}^{A,B}(v) \text{ for any } v \in \mathcal{A}_{m,\omega}^{A,B} \right\}.$$

Observe that $\mathcal{M}_{m,\omega}^{A,B}$ is non-empty, since $\mathcal{A}_{m,\omega}^{A,B}$ is made up of a finite number of configurations.

Now we introduce a couple of operations on the space of configurations. Given two configurations u, v we define their minimum $\min\{u, v\}$ and maximum $\max\{u, v\}$ by setting

$$\left(\min\{u, v\}\right)_i := \min\{u_i, v_i\},$$

$$\left(\max\{u, v\}\right)_i := \max\{u_i, v_i\},$$

for any $i \in \mathbb{Z}^d$. Analogously, one defines the minimum and maximum of a finite number of configurations.

We present the following simple result which shows that the interaction energy (1.14) always decreases when considering minima and maxima.

Lemma 2.1. Given any two subsets $\Gamma, \Omega \subseteq \mathbb{Z}^d$ and any two configurations u, v, it holds

$$I_{\Gamma,\Omega}(\min\{u, v\}) + I_{\Gamma,\Omega}(\max\{u, v\}) \leq I_{\Gamma,\Omega}(u) + I_{\Gamma,\Omega}(v). \quad (2.5)$$
Proof. Simply write m and M for $\min\{u, v\}$ and $\max\{u, v\}$. We suppose that the right-hand side of (2.5) is finite, since otherwise the inequality is trivially satisfied.

Take $i \in \Gamma$ and $j \in \Omega$. Then, one of the following four situations necessarily occurs:

(i) $u_i \leq v_i$ and $u_j \leq v_j$;
(ii) $u_i < v_i$ and $u_j > v_j$;
(iii) $u_i > v_i$ and $u_j < v_j$;
(iv) $u_i \geq v_i$ and $u_j \geq v_j$.

If either (i) or (iv) is true, then u and v are equally ordered at both sites i and j. Hence, the identity

$$(1 - m_i m_j) (1 - M_i M_j) = (1 - u_i u_j) + (1 - v_i v_j),$$

easily follows. Thus, we only need to inspect what happens when either (ii) or (iii) is verified.

By symmetry, we may in fact restrict our attention to case (ii) only. In this case, we have $m_i = u_i = -1$, $M_i = v_i = 1$, $M_j = u_j = 1$ and $m_j = v_j = -1$. Therefore,

$$(1 - m_i m_j) (1 - M_i M_j) = 0 < 2 + 2 = (1 - u_i u_j) + (1 - v_i v_j).$$

Consequently, both series on the left-hand side of (2.5) converge and the inequality follows. \(\square\)

We conclude the subsection by investigating the relationship existing between the minimizers of the functionals $G_{m,\omega}^{A,B}$ and H. The following proposition shows that the periodic minimizers of $G_{m,\omega}^{A,B}$ just described are indeed minimizers of H with respect to perturbations supported inside $\mathcal{F}_{m,\omega}^{A,B}$.

Proposition 2.2. Let $u \in \mathcal{M}_{m,\omega}^{A,B}$. Then, u is a minimizer for H in $\mathcal{F}_{m,\omega}^{A,B}$.

Proof. Let v be a configuration that coincides with u outside $\mathcal{F}_{m,\omega}^{A,B}$. We claim that

$$\tilde{H}_{m,\omega}^{A,B}(u) \leq \tilde{H}_{m,\omega}^{A,B}(v),$$

where, for any configuration w, we set\(^9\) (recall notations (1.14) and (1.15))

$$\tilde{H}_{m,\omega}^{A,B}(w) := I_{\mathcal{F}_{m,\omega}^{A,B}}(w) + 2I_{\mathcal{F}_{m,\omega}^{A,B}}(Z^d \setminus \mathcal{F}_{m,\omega}^{A,B}) + B_{m,\omega}^{A,B}(w).$$

To prove (2.6), we write $v = u + \varphi$, with $\varphi : \mathbb{Z}^d \to \{-2, 0, 2\}$ such that $\varphi_i = 0$ for any $i \in \mathbb{Z}^d$. We first restrict ourselves to the case in which φ has a sign, i.e.

$$\varphi_i \geq 0 \text{ for any } i \in \mathbb{Z}^d, \text{ or } \varphi_i \leq 0 \text{ for any } i \in \mathbb{Z}^d.$$

Define \tilde{v} and $\tilde{\varphi}$ as the (m, ω)-periodic extensions of $v|_{\mathcal{F}_{m,\omega}^{A,B}}$ and $\varphi|_{\mathcal{F}_{m,\omega}^{A,B}}$, respectively. That is,

$$\tilde{v}_{i+k} := v_i \quad \text{and} \quad \tilde{\varphi}_{i+k} := \varphi_i \quad \text{for any } i \in \mathcal{F}_{m,\omega}^{A,B} \text{ and } k \in L_{m,\omega}^{A,B}.$$

Notice that $\tilde{v} \in \mathcal{A}_{m,\omega}^{A,B}$.

We now compare the functionals $G_{m,\omega}^{A,B}$ and $\tilde{H}_{m,\omega}^{A,B}$, when evaluated at u, v and u, \tilde{v}, respectively. We claim that

$$\tilde{H}_{m,\omega}^{A,B}(u) - \tilde{H}_{m,\omega}^{A,B}(v) \leq G_{m,\omega}^{A,B}(u) - G_{m,\omega}^{A,B}(\tilde{v}).$$

To check the validity of (2.10), we begin by evaluating the contributions coming from the magnetic field. Recalling the definitions of v and \tilde{v}, we have

$$B_{m,\omega}^{A,B}(u) - B_{m,\omega}^{A,B}(v) = B_{m,\omega}^{A,B}(u) - B_{m,\omega}^{A,B}(\tilde{v}).$$

\(^9\)Note that $\tilde{H}_{m,\omega}^{A,B}$ differs from $H_{m,\omega}$ only with respect to the region over which the magnetic term B is extended. We take into account this slight modification, since $B_{m,\omega}$ might not be well-defined even under assumption (1.8), as the set $\mathcal{F}_{m,\omega}$ is not finite.

The main reason to consider the auxiliary functional $\tilde{H}_{m,\omega}^{A,B}$ is due to the presence of the magnetic term, which is not null in general but it has zero average on a particular domain. To take advantage of this feature, one can either select an appropriate order of summation, or perform a truncation argument. We chose to follow this latter strategy.
We now address the interaction terms. Let \((i,j)\) due to (2.2). Therefore, using again (2.2) and (2.9),

\[
I_{\mathcal{F}_{m,\omega},\mathcal{F}_{m,\omega}}(u) - I_{\mathcal{F}_{m,\omega},\mathcal{F}_{m,\omega}}(v) = I_{\mathcal{F}_{m,\omega},\mathcal{F}_{m,\omega}}(u) - I_{\mathcal{F}_{m,\omega},\mathcal{F}_{m,\omega}}(\tilde{v}).
\]

On the other hand, if \(i \in \mathcal{F}_{m,\omega}\) and \(j \in \mathbb{Z}^d \setminus \mathcal{F}_{m,\omega}\), then we can write \(j = j' + k\), with \(j' \in \mathcal{F}_{m,\omega}\) and \(k \in \mathcal{L}_{m,\omega} \setminus \{0\}\) uniquely determined. Notice that \(i - k \not\in \mathcal{F}_{m,\omega}\), therefore \(u_i = u_{i-k} = v_{i-k}\), due to (2.2). Therefore, using again (2.2) and (2.9),

\[
1 - v_i v_j = 1 - \tilde{v}_i \tilde{v}_j + v_i (\tilde{v}_j - u_j)
= (1 - \tilde{v}_i \tilde{v}_j) + v_i \varphi_j'
= (1 - \tilde{v}_i \tilde{v}_j) + (1 - u_i u_{j'}) - (1 - u_i v_{j'}) + \varphi_i \varphi_{j'}
= (1 - \tilde{v}_i \tilde{v}_j) + (1 - u_i u_{j'}) - (1 - v_{i-k} v_{j'}) + \varphi_i \varphi_{j'}.
\]

Then, by taking advantage of (1.10) and (2.8), we have

\[
I_{\mathcal{F}_{m,\omega},\mathcal{F}_{m,\omega}}(v) = I_{\mathcal{F}_{m,\omega},\mathcal{F}_{m,\omega}}(\tilde{v}) + I_{\mathcal{F}_{m,\omega},\mathcal{F}_{m,\omega}}(u)
- \sum_{k \in \mathcal{L}_{m,\omega} \setminus \{0\}} \sum_{i,j' \in \mathcal{F}_{m,\omega}} [J_{(i-k)j'}(1 - v_{i-k} v_{j'}) - J_{(i'j')}(1 - u_i u_{j'})] \varphi_i \varphi_{j'}
\geq I_{\mathcal{F}_{m,\omega},\mathcal{F}_{m,\omega}}(\tilde{v}) + I_{\mathcal{F}_{m,\omega},\mathcal{F}_{m,\omega}}(u) - I_{\mathcal{F}_{m,\omega},\mathcal{F}_{m,\omega}}(v),
\]

that may be in turn rewritten as

\[
2 \left[I_{\mathcal{F}_{m,\omega},\mathcal{F}_{m,\omega}}(u) - I_{\mathcal{F}_{m,\omega},\mathcal{F}_{m,\omega}}(v) \right] \leq I_{\mathcal{F}_{m,\omega},\mathcal{F}_{m,\omega}}(u) - I_{\mathcal{F}_{m,\omega},\mathcal{F}_{m,\omega}}(v) \leq I_{\mathcal{F}_{m,\omega},\mathcal{F}_{m,\omega}}(u) - I_{\mathcal{F}_{m,\omega},\mathcal{F}_{m,\omega}}(v).
\]

By this, (2.12), (2.11) and the definition (2.7) of \(\tilde{H}_{m,\omega}^{A,B}\), claim (2.10) follows immediately.

As a consequence of (2.10), since \(u \in \mathscr{M}_{m,\omega}^{A,B}\) and \(\tilde{v} \in \mathscr{A}_{m,\omega}^{A,B}\), we deduce inequality (2.6) under the sign assumption (2.8) on \(\varphi\).

In order to finish the proof of the proposition, we now only need to show that (2.8) is in fact unnecessary for the validity of (2.6). To do this, we consider a general \(v = u + \varphi\) and define \(\varphi_+ := \max\{\varphi, 0\}\) and \(\varphi_- := \min\{\varphi, 0\}\). Both \(\varphi_+\) and \(\varphi_-\) satisfy (2.8) and therefore

\[
2\tilde{H}_{m,\omega}^{A,B}(u) \leq \tilde{H}_{m,\omega}^{A,B}(u + \varphi_+) + \tilde{H}_{m,\omega}^{A,B}(u + \varphi_-).
\]

But then, by Lemma 2.1, we have

\[
\tilde{H}_{m,\omega}^{A,B}(u + \varphi_+) + \tilde{H}_{m,\omega}^{A,B}(u + \varphi_-) = \tilde{H}_{m,\omega}^{A,B}(\max\{u, v\}) + \tilde{H}_{m,\omega}^{A,B}(\min\{u, v\})
\leq \tilde{H}_{m,\omega}^{A,B}(u) + \tilde{H}_{m,\omega}^{A,B}(v),
\]

and (2.6) follows.

Thanks to (2.6), by arguing as in Remark 1.2 one can conclude the proof of Proposition 2.2.

2.2. The minimal minimizer. We now select a specific element of \(\mathscr{M}_{m,\omega}^{A,B}\) that will be proved to have further minimizing properties in the forthcoming subsections. To do this, we recall the definitions given in (2.4), and we introduce the main ingredient of this subsection and discuss its minimizing properties. We define the minimal minimizer \(u_{m,\omega}^{A,B}\) as the minimum within the (finite) class \(\mathscr{M}_{m,\omega}^{A,B}\). That is, we set

\[
(u_{m,\omega}^{A,B})_i := \min \left\{ u_i : u \in \mathscr{M}_{m,\omega}^{A,B} \right\},
\]

for any \(i \in \mathbb{Z}^d\). Clearly, \(u_{m,\omega}^{A,B}\) belongs to the class \(\mathscr{A}_{m,\omega}^{A,B}\) of admissible configurations. To check that \(u_{m,\omega}^{A,B}\) is actually a minimizer, we first need an auxiliary lemma.

More precisely, by applying Lemma 2.1 to minimizers of \(G_{m,\omega}^{A,B}\), we see that the operations of minimum and maximum are closed in the set \(\mathscr{M}_{m,\omega}^{A,B}\). A thorough proof of this fact is contained in the next result.

Lemma 2.3. Let \(u, v \in \mathscr{M}_{m,\omega}^{A,B}\). Then, \(\min\{u, v\}, \max\{u, v\} \in \mathscr{M}_{m,\omega}^{A,B}\).
Proof. Recalling (2.3), by Lemma 2.1, one has
\[G^{A,B}_{m,\omega}(\min\{u,v\}) + G^{A,B}_{m,\omega}(\max\{u,v\}) \leq G^{A,B}_{m,\omega}(u) + G^{A,B}_{m,\omega}(v). \]
Moreover, since \(\min\{u,v\}, \max\{u,v\} \in \mathcal{A}_{m,\omega}^{A,B} \), we easily deduce that
\[G^{A,B}_{m,\omega}(\min\{u,v\}), G^{A,B}_{m,\omega}(\max\{u,v\}) \geq G^{A,B}_{m,\omega}(u) = G^{A,B}_{m,\omega}(v), \]
and the thesis follows. \(\square \)

By iterating Lemma 2.3, we finally obtain the minimality of the minimal minimizer \(u^{A,B}_{m,\omega} \).

Corollary 2.4. \(u^{A,B}_{m,\omega} \in \mathcal{M}_{m,\omega}^{A,B} \).

2.3. The doubling property. The minimal minimizer introduced in the previous subsection enjoys important geometrical properties. The first of such properties is often referred to in the literature as no-symmetry-breaking or doubling property. It asserts that the minimal minimizers \(u^{A,B}_{m,\omega} \) corresponding to different multiplicities \(m \in \mathbb{N} \) do in fact all coincide.

In order to prove this result, the following notation will be helpful. Given any \(k \in \mathbb{Z}^d \), we define the translation \(T_k u \) of a configuration \(u \) along the vector \(k \) as
\[(T_k u)_i := u_{i-k},\]
for any \(i \in \mathbb{Z}^d \).

Also, from now on, we drop reference to the multiplicity \(m \) when we deal with objects for which \(m = 1 \). That is, we write e.g. \(\mathcal{F}_\omega, G^{A,B}_\omega, \mathcal{M}_{\omega}^{A,B}, u^{A,B}_\omega \) instead of \(\mathcal{F}_{1,\omega}, G^{A,B}_{1,\omega}, \mathcal{M}_{1,\omega}^{A,B}, u_{1,\omega}^{A,B} \).

The doubling property for the minimal minimizer is proved in the following result.

Proposition 2.5. \(u^{A,B}_m = u^{A,B}_\omega \), for any \(m \in \mathbb{N} \).

Proof. Let \(m \geq 2 \). We define the configuration
\[v := \min \left\{ T_k u^{A,B}_m : k \in \mathcal{L}_\omega \right\}. \]
Clearly, \(v \in \mathcal{A}_\omega^{A,B} \subset \mathcal{A}_{m,\omega}^{A,B} \). Furthermore, as \(T_k u^{A,B}_m \in \mathcal{M}_{m,\omega}^{A,B} \) for any \(k \in \mathcal{L}_\omega \), by applying Lemma 2.3 we also obtain\(^\text{10}\) that \(v \in \mathcal{M}_{\omega}^{A,B} \). Since \(u^{A,B}_\omega \in \mathcal{A}_{m,\omega}^{A,B} \), recalling the definition (2.3) of the functional \(G^{A,B}_{m,\omega} \), we compute
\[G^{A,B}_\omega(v) = \frac{1}{m^{d-1}} G^{A,B}_{m,\omega}(v) \leq \frac{1}{m^{d-1}} G^{A,B}_{m,\omega}(u^{A,B}_\omega) = G^{A,B}_\omega(u^{A,B}_\omega). \]
Accordingly, by Corollary 2.4, we deduce that
\[v \in \mathcal{M}_{\omega}^{A,B} \]
and hence \(u^{A,B}_\omega \leq v \), by definition of minimal minimizer. In particular, we conclude that
\[u^{A,B}_\omega \leq u^{A,B}_m. \]

To check the validity of the converse inequality it suffices to notice that, in light of (2.15), the first and the last terms of (2.14) are equal. Consequently, the middle inequality in (2.14) is indeed an identity and thus \(u^{A,B}_\omega \in \mathcal{M}_{m,\omega}^{A,B} \). Therefore, \(u^{A,B}_m \leq u^{A,B}_\omega \). This and (2.16) imply the desired result. \(\square \)

As a corollary of the doubling property and Proposition 2.2, we immediately deduce that the minimal minimizer is a local minimizer in the whole strip
\[S^{A,B}_\omega := \left\{ i \in \mathbb{Z}^d : \omega \cdot i \in [A,B] \right\}. \]

Corollary 2.6. The minimal minimizer \(u^{A,B}_\omega \) is a minimizer for \(H \) in every finite subset \(\Gamma \) of \(S^{A,B}_\omega \).

\(^{10}\) In this regard, observe that the family of configurations appearing in the definition of \(v \) is actually finite, thanks to the periodicity of \(u^{A,B}_{m,\omega} \).
Proof. Given any finite $\Gamma \subset S_{\omega}^{A,B}$, we may find a large enough $m \in \mathbb{N}$ and a fundamental region $F_{m,\omega}$ for which $\Gamma \subseteq F_{m,\omega}^{A,B}$. By Propositions 2.2 and 2.5, $u_{\omega}^{A,B} = u_{m,\omega}^{A,B}$ is a minimizer for H in $F_{m,\omega}^{A,B}$ and the result follows by recalling Remark 1.2.

2.4. The Birkhoff property. Here, we concentrate on another property of the minimal minimizer (that is also related to a similar feature in dynamical systems): the Birkhoff property. This trait essentially refers to a kind of discrete monotonicity of $u_{\omega}^{A,B}$.

Recalling the notation introduced in the previous subsection (in particular (2.13)), we may state the validity of the Birkhoff property for the minimal minimizer as follows.

Proposition 2.7. Let $k \in \tau \mathbb{Z}^d$. Then,

\begin{equation}
\mathcal{T}_k u_{\omega}^{A,B} \leq u_{\omega}^{A,B} \text{ if } \omega \cdot k \leq 0,
\end{equation}

\begin{equation}
\mathcal{T}_k u_{\omega}^{A,B} \geq u_{\omega}^{A,B} \text{ if } \omega \cdot k \geq 0.
\end{equation}

Proof. We prove only the first inequality in (2.18), the second being completely analogous.

Let $k \in \tau \mathbb{Z}^d$ be such that $\omega \cdot k \leq 0$. Observe that $\mathcal{T}_k u_{\omega}^{A,B} \in \mathcal{A}_{\omega}^{A+\omega k,B+\omega k}$ and that, actually,

\begin{equation}
\mathcal{T}_k u_{\omega}^{A,B} = u_{\omega}^{A+\omega k,B+\omega k}.
\end{equation}

Write $m := \min\{u_{\omega}^{A,B}, \mathcal{T}_k u_{\omega}^{A,B}\}$ and $M := \max\{u_{\omega}^{A,B}, \mathcal{T}_k u_{\omega}^{A,B}\}$. We have that $m \in \mathcal{A}_{\omega}^{A+\omega k,B+\omega k}$ and $M \in \mathcal{A}_{\omega}^{A,B}$. By arguing as in the proof of Lemma 2.3, we easily see that

\begin{equation}
G_{\omega}^{A,B}(m) \leq G_{\omega}^{A,B}(\mathcal{T}_k u_{\omega}^{A,B}).
\end{equation}

We now claim that

\begin{equation}
m_i = (\mathcal{T}_k u_{\omega}^{A,B})_i \text{ for any } i \in \mathcal{F}_{\omega}^{A,B} \Delta \mathcal{F}_{\omega}^{A+\omega k,B+\omega k}.
\end{equation}

Indeed $\left(\mathcal{T}_k u_{\omega}^{A,B}\right)_i = -1$ for any $i \in \mathcal{F}_{\omega}^{B+\omega k,\cdot} \supset \mathcal{F}_{\omega}^{A,B} \setminus \mathcal{F}_{\omega}^{A+\omega k,B+\omega k}$ and, on the other hand, $u_{\omega}^{A,B} = 1$ for any $i \in \mathcal{F}_{\omega}^{A,\cdot} \supset \mathcal{F}_{\omega}^{A+\omega k,B+\omega k} \setminus \mathcal{F}_{\omega}^{A,B}$, which implies (2.21).

Recalling definitions (2.3) and (1.15) and using formulas (2.20) and (2.21), we conclude that

\begin{align}
G_{\omega}^{A+\omega k,B+\omega k}(m) - G_{\omega}^{A+\omega k,B+\omega k}(\mathcal{T}_k u_{\omega}^{A,B})
&= G_{\omega}^{A,B}(m) - G_{\omega}^{A,B}(\mathcal{T}_k u_{\omega}^{A,B})
&\quad + B_{\mathcal{F}_{\omega}^{A+\omega k,B+\omega k}}(m - \mathcal{T}_k u_{\omega}^{A,B}) - B_{\mathcal{F}_{\omega}^{A+\omega k,B+\omega k}}(m - \mathcal{T}_k u_{\omega}^{A,B})
&\leq 0.
\end{align}

Therefore, by (2.19), we have that $m \in \mathcal{A}_{\omega}^{A+\omega k,B+\omega k}$ and $\mathcal{T}_k u_{\omega}^{A,B} \leq m$, as $\mathcal{T}_k u_{\omega}^{A,B}$ is a minimal minimizer. The first inequality in (2.18) then follows.

2.5. An energy estimate. We collect in this subsection a rather general proposition, that quantifies the energy of the minimizers of H inside large cubes. We stress that no periodicity of the coefficients is necessary for the validity of the results presented here. That is, (1.10) and (1.11) are not required to hold.

We begin by recalling the terminology adopted in footnote 6 at page 11 for cubes in \mathbb{Z}^d. Given $\ell \in \mathbb{N} \cup \{0\}$, we denote by Q_{ℓ} the cube having sides made up of $2\ell + 1$ sites and center located at the origin, i.e.

\begin{equation}
Q_{\ell} := \{-\ell, \ldots, -1, 0, 1, \ldots, \ell\}^d.
\end{equation}

A general cube centered at $q \in \mathbb{Z}^d$ will be indicated with $Q_{\ell}(q) := q + Q_{\ell}$. We also write S_{ℓ} for the boundary of Q_{ℓ}, that is

\begin{equation}
S_{\ell} := Q_{\ell} \setminus Q_{\ell-1} \quad \text{if } \ell \geq 1,
\end{equation}

\begin{equation}
S_0 := Q_0 = \{0\}.
\end{equation}

Again, $S_{\ell}(q) := q + S_{\ell}$.

In order to obtain the energy estimate, we plan to compare the Hamiltonian \(H_{Q,\ell}\) of a minimizer in the cube \(Q,\ell\) with that of a suitable competitor. Such auxiliary function will be modeled on the configuration \(\psi(\ell)\) defined by

\[
(\psi(\ell))_i := \begin{cases} -1 & \text{if } i \in Q,\ell, \\ 1 & \text{if } i \in \mathbb{Z}^d \setminus Q,\ell.
\end{cases}
\]

Recalling (1.12), the following lemma provides an upper bound for the energy of \(\psi(\ell)\).

Lemma 2.8. There exists a constant \(C \geq 1\), depending only on \(d, \mu\) and \(\tau\), for which

\[
H_{Q,\ell}(\psi(\ell)) \leq C\ell^{d-1} \left(1 + \sum_{m=1}^{\ell+1} \sigma(m)\right).
\]

Proof. First, observe that \(Q,\ell\) may be written as the disjoint union of a possibly empty family \(G\) of fundamental domains for the quotient \(\mathbb{Z}^d/\tau \mathbb{Z}^d\), leaving out at most \(N\) sites \(\{v^{(n)}\}_{n=1}^N\). It is not hard to see that we can take \(N \leq c_1 \tau \ell^{d-1}\), for some dimensional constant \(c_1 > 0\). Accordingly, recalling (1.15) and using (1.8) and (1.7), we have

\[
B_{Q,\ell}(\psi(\ell)) = -\sum_{F \in G} \sum_{i \in F} h_i - \sum_{n=1}^N h_{v^{(n)}} \leq 0 + \mu N \leq c_1 \mu \tau \ell^{d-1}.
\]

We now estimate the interaction term \(I_{Q,\ell}\). Recalling definition (1.12), we compute

\[
I_{Q,\ell}(\psi(\ell)) = 4 \sum_{i \in Q,\ell, j \in \mathbb{Z}^d \setminus Q,\ell} J_{ij} = 4 \sum_{m=0}^{\ell} \sum_{i \in S_m} \sum_{|j|_{\infty} \geq \ell + 1} J_{ij} \leq 4 \sum_{m=0}^{\ell} \sum_{i \in S_m} \sum_{|j|_{\infty} \geq \ell + 1 - m} J_{ij}
\]

\[
\leq 8d \sum_{m=0}^{\ell} (2m + 1)^{d-1} \sigma(\ell + 1 - m) \leq c_2 \ell^{d-1} \sum_{m=1}^{\ell+1} \sigma(m),
\]

for some dimensional constant \(c_2 > 0\). The combination of (2.24) and (2.25) leads to the thesis. \(\square\)

Now we show that each minimizer satisfies the same energy growth.

Proposition 2.9. Let \(u\) be a minimizer for \(H\) in \(Q,\ell(q)\), for some \(q \in \mathbb{Z}^d\) and \(\ell \in \mathbb{N}\). Then,

\[
H_{Q(q)}(u) \leq \bar{C}\ell^{d-1} \left(1 + \sum_{m=1}^{\ell} \sigma(m)\right),
\]

for some constant \(\bar{C} \geq 1\) depending only on \(d, \mu\) and \(\tau\).

Proof. Without loss of generality, we may assume the center \(q\) to be the origin. Let \(\psi(\ell)\) be the configuration considered in Lemma 2.8 and define \(v := \min\{u, \psi(\ell)\}, w := \max\{u, \psi(\ell)\}\). Observe that \(v\) and \(u\) agree outside of \(Q,\ell\). Consequently, the minimality of \(u\) implies that

\[
H_{Q,\ell}(u) \leq H_{Q,\ell}(v).
\]

Now we compare the energies of \(u\) and \(w\). As \(u\) coincides with \(w\) in \(Q,\ell\), we have

\[
I_{Q,\ell}(u) = I_{Q,\ell}(w) \quad \text{and} \quad B_{Q,\ell}(u) = B_{Q,\ell}(w).
\]

On the other hand, by taking advantage of the computation (2.25),

\[
I_{Q,\ell}(u) - I_{Q,\ell}(w) \leq 2 \sum_{i \in Q,\ell, j \in \mathbb{Z}^d \setminus Q,\ell} J_{ij} \leq \frac{c_1}{2} \ell^{d-1} \sum_{m=1}^{\ell+1} \sigma(m),
\]

where \(c_1 > 0\) is a dimensional constant. This completes the proof. \(\square\)
for some $c_1 > 0$. By this and (2.28), we conclude that

\begin{equation}
H_Q_t(u) \leq H_Q_t(w) + c_1 \ell^{d-1} \sum_{m=1}^{\ell+1} \sigma(m).
\end{equation}

On the other hand, using Lemma 2.1 and (2.27), we see that

\[H_Q_t(v) + H_Q_t(w) \leq H_Q_t(u) + H_Q_t(\psi(\ell)) \leq H_Q_t(v) + H_Q_t(\psi(\ell)), \]

which gives that $H_Q_t(w) \leq H_Q_t(\psi(\ell))$. This and Lemma 2.8 imply that

\[H_Q_t(w) \leq H_Q_t(\psi(\ell)) \leq c_2 \ell^{d-1} \left(1 + \sum_{m=1}^{\ell+1} \sigma(m) \right), \]

for some $c_2 > 0$. This and (2.29) imply estimate (2.26).

\[\square \]

Remark 2.10. By inspecting the proofs of Lemma 2.8 and Proposition 2.9, it is clear that when the magnetic field h vanishes in $Q_\ell(q)$, the constant \bar{C} appearing in (2.26) may be chosen to depend only on the dimension d.

2.6. Unconstrained minimizers and ground states

In this last subsection, we show that the minimal minimizer is actually a ground state, according to Definition 1.3, if the oscillation of its transition is chosen sufficiently large. This will finish the proof of Theorem 1.4 for the case of rational directions and truncated interactions.

From now on, we mostly restrict ourselves to the minimal minimizers that display a transition bounded in the strip \mathcal{S}_ω^0, M, with $M > 0$ (recall (2.17)). For this reason, we slightly simplify our notation and denote with $\mathcal{F}_\omega^M, \mathcal{S}_\omega^M, u^M, \ldots$ the quantities $\mathcal{F}_\omega^M, \mathcal{S}_\omega^M, u^M, \ldots$.

Our main goal is to show that the minimal minimizer u^M becomes *unconstrained*, provided M is large enough. To do this, we need a few auxiliar results.

First, we present a technical lemma related to the quantity σ introduced in (1.12).

Lemma 2.11. Set

\begin{equation}
\Sigma(R) := \frac{1}{R} \sum_{m=1}^{R} \sigma(m),
\end{equation}

for any $R \in \mathbb{N}$. Then, it holds

\[\lim_{R \to +\infty} \Sigma(R) = 0. \]

Proof. Let $\varepsilon > 0$ be any small number. In view of (1.6) and (1.10), we know that

\[\lim_{R \to +\infty} \sigma(R) = 0. \]

Hence, we may select $R_0 \in \mathbb{N}$ such that, for any $m \geq R_0$, it holds $\sigma(m) \leq \varepsilon/2$. Using again (1.6), we see that $\sigma(m) \leq \Lambda$, for any m. Hence, taking $R \geq 2\Lambda R_0/\varepsilon$, we have

\[\Sigma(R) = \frac{1}{R} \sum_{m=1}^{R_0} \sigma(m) + \frac{1}{R} \sum_{m=R_0+1}^{R} \sigma(m) \leq \frac{R_0}{R} \Lambda + \frac{R - R_0}{R} \frac{\varepsilon}{2} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \]

and the conclusion follows. \[\square \]

Then, we have a rigidity result for configurations that satisfy the Birkhoff property and display fat plateaux.

We remark that in the remainder of the subsection we slightly modify the notation fixed in (2.22) and denote with C_ℓ any cube of \mathbb{Z}^d with sides composed by ℓ sites, i.e.

\[C_\ell = C_\ell(q) := q + \{0, 1, \ldots, \ell - 1\}^d. \]

Note that now q denotes the lower vertex, instead of the center. The reference to q will be however often neglected.
Lemma 2.12. Let \(u \) be a configuration satisfying the Birkhoff property with respect to \(\omega \), i.e. for which inequalities (2.18) are fulfilled. Assume that there exists a cube \(C_\tau(q) \) such that
\[
 u_i = -1 \quad \text{for any } i \in C_\tau(q).
\]
Then,
\[
 u_i = -1 \quad \text{for any } i \in \mathbb{Z}^d \text{ such that } \frac{\omega}{|\omega|} \cdot i \geq \frac{\omega}{|\omega|} \cdot q + \sqrt{d}\tau.
\]

Proof. See [CdlL05, Proposition 3.5]. \(\square \)

With the aid of these lemmata and the energy estimate obtained in Subsection 2.5, we are now able to prove the key result of this subsection.

Proposition 2.13. There exist two real numbers \(\mu_0 > 0 \), depending only on \(d, \tau \) and \(\lambda \), and \(M_0 > 0 \), that may also depend on \(\Lambda \) and the function \(\sigma \), for which
\[
 (u_\omega^M)_i = -1 \quad \text{for any } i \in \mathbb{Z}^d \text{ such that } \frac{\omega}{|\omega|} \cdot i \geq M - \sqrt{d}\tau,
\]
provided \(\mu \leq \mu_0 \) and \(M \geq M_0 \).

Proof. For shortness, we write \(u = u_\omega^M \). In view of Lemma 2.12 and Proposition 2.7, it suffices to show that
\[
 u_i = -1 \quad \text{for any } i \in C_\tau(q), \quad \text{with } q \in \mathbb{Z}^d \text{ satisfying } \frac{\omega}{|\omega|} \cdot q \leq M - 2\sqrt{d}\tau.
\]

In order to check the validity of claim (2.31), we first prove a weaker fact. Take
\[
 \mu \leq \mu_0 := \lambda\tau^{-d},
\]
where \(\lambda \) is given in (1.5). Consider the strip
\[
 \tilde{S}_\omega^M := S_\omega^M \cap \{ i \in \mathbb{Z}^d : \frac{\omega}{|\omega|} \cdot i \in \left[\frac{M}{8}, \frac{7M}{8} \right] \} \subseteq S_\omega^M,
\]
and a cube \(C_{N\tau} \subseteq \tilde{S}_\omega^M \) of sides \(N\tau \), with \(N \in \mathbb{N} \). It is not hard to see that \(N \) can be taken in such a way that
\[
 \frac{M}{2} \leq N\tau \leq \frac{3M}{4}.
\]
Divide the cube \(C_{N\tau} \) in a partition \(\{ C_\tau^{(n)} \}_{n=1}^{N^d} \) of \(N^d \) non-overlapping, smaller cubes of sides \(\tau \). We claim that
\[
 \text{there exists an index } \tilde{n} \in \{ 1, \ldots, N^d \} \text{ for which}
 \begin{align*}
 \text{either } u_i = -1 & \text{ for any } i \in C_\tau^{(\tilde{n})} \text{ or } u_i = 1 & \text{for any } i \in C_\tau^{(n)}.
 \end{align*}
\]
To prove (2.33) we argue by contradiction and suppose that, for any \(n = 1, \ldots, N^d \), we can find two sites \(i^{(n)}, j^{(n)} \in C_\tau^{(n)} \) at which \(u_{i^{(n)}} = -1 \) and \(u_{j^{(n)}} = 1 \). Observe that we can take \(i^{(n)} \) and \(j^{(n)} \) to be adjacent, i.e. such that \(|i^{(n)} - j^{(n)}| = 1 \). Using (1.5), (1.7) and (2.32), we compute
\[
 H_{C_{N\tau}}(u) \geq I_{C_{N\tau}, C_\tau^{(n)}}(u) + B_{C_{N\tau}}(u) \geq \sum_{n=1}^{N^d} \sum_{i,j \in C_\tau^{(n)}} J_{ij}(1 - u_i u_j) + \sum_{i \in C_{N\tau}} h_i u_i
\]
\[
 \geq \sum_{n=1}^{N^d} J_{i^{(n)}j^{(n)}}(1 - u_{i^{(n)}} u_{j^{(n)})}) - \sum_{i \in C_{N\tau}} |h_i| \geq 2\lambda N^d - \mu (N\tau)^d \geq \lambda N^d.
\]
On the other hand, the energy estimate established in Proposition 2.9 (recall that \(u \) is a minimizer for \(H \) in \(C_{N\tau} \), thanks to Corollary 2.6) gives that
\[
 H_{C_{N\tau}}(u) \leq c_1 \left(\frac{N\tau - 1}{2} \right)^{d-1} \left[\frac{N\tau}{2} \right]^{d+1} \sum_{m=1}^{N\tau} \sigma(m) \leq c_2 N^{d-1} (\tfrac{d-1}{2} \sum_{m=1}^{N\tau} \sigma(m),
\]

where \(c_1, c_2 \) are constants.
for some constants $c_1, c_2 > 0$. By comparing this with (2.34) and recalling definition (2.30), we find that
\[\Sigma(N\tau) \geq \frac{\lambda}{c_2 \tau^d}, \]
which clearly contradicts Lemma 2.11, if N (and hence M) is chosen sufficiently large. Therefore, claim (2.33) is true, provided we take $M \geq M_0$, with M_0 only depending on $d, \tau, \lambda, \Lambda$ and the function σ.

Denote by \bar{q} the lower vertex of the cube $C_\tau(n)$, so that $C_\tau(n) = C_\tau(\bar{q})$. As $C_\tau(\bar{q}) \subset C_{N\tau} \subset \hat{S}_\omega$, we have that $\omega \cdot \bar{q} \leq 7M|\omega|/8 \leq (M - 2\sqrt{d}\tau)|\omega|$, by possibly enlarging M_0. Hence, (2.31) follows from (2.33), once we rule out the possibility that
\[(2.35) \quad u_i = 1 \quad \text{for any } i \in C_\tau(\bar{q}). \]

Assume by contradiction that (2.35) holds true. By applying Lemma 2.12 (to $-u$ instead of u, which has the Birkhoff property with respect to $-\omega$), we deduce that
\[(2.36) \quad u_i = 1 \quad \text{for any } i \in \mathbb{Z}^d \text{ such that } \frac{\omega}{|\omega|} \cdot i \leq \frac{\omega}{|\omega|} \cdot \bar{q} - \sqrt{d}\tau. \]
Again, by possibly taking a larger M_0, we see that the above fact is valid in particular for any site i satisfying $\omega \cdot i < \tau|\omega|$. Supposing with no loss of generality that $\omega_1 > 0$ (as one can relabel the axes and invert their orientation) and setting $k = (-\tau, 0, \ldots, 0) \in \tau\mathbb{Z}^d$, we have that $\omega \cdot k < 0$ and, for the observation made just before, $\tilde{T}_k u \in \mathcal{M}_\omega$. On the one hand, Proposition 2.7 implies that $\tilde{T}_k u \leq u$. On the other hand, using (1.8) one can check that $G_\omega^M(\tilde{T}_k u) = G_\omega^M(u)$. Consequently, $\tilde{T}_k u \in \mathcal{M}_\omega^M$ and $\tilde{T}_k u \geq u$, by the fact that u is the minimal minimizer. By putting together these two inequalities, we end up with the identity $\tilde{T}_k u = u$, which clearly cannot occur.

As a result, (2.35) is false and claim (2.31) plainly follows. The proof of the proposition is therefore complete. \hfill \Box

Corollary 2.14. Let μ_0 and M_0 be as in Proposition 2.13. If $\mu \leq \mu_0$, then $u_\omega^{M_0} = u_\omega^{M_0 + a}$ for any $a \in \tau\mathbb{Z}$.

Proof. Consider any $M = M_0 + n\tau$, with $n \in \mathbb{N} \cup \{0\}$. The claim of the corollary is then equivalent to show that
\[(2.36) \quad u_\omega^M = u_\omega^{M + \tau}. \]
To see that (2.36) holds true, first notice that $u_\omega^M \in \mathcal{M}_\omega^{M + \tau}$. Also,
\[(2.37) \quad u_\omega^{M + \tau} \in \mathcal{M}_\omega, \]
as one can easily check by applying Proposition 2.13 to $u_\omega^{M + \tau}$. Hence,
\[(2.38) \quad G_\omega^{M + \tau}(u_\omega^{M + \tau}) \leq G_\omega^{M + \tau}(u_\omega^M) \quad \text{and} \quad G_\omega^M(u_\omega^M) \leq G_\omega^M(u_\omega^{M + \tau}). \]
But then, for any $w \in \mathcal{M}_\omega^M$ it holds
\[(2.39) \quad G_\omega^{M + \tau}(w) - G_\omega^M(w) = B_{\mathcal{F}_\omega^{M + \tau} \setminus \mathcal{F}_\omega^M}(w) = - \sum_{i \in \mathcal{F}_\omega^{M + \tau} \setminus \mathcal{F}_\omega^M} h_i = 0, \]
where the last identity is true by virtue of hypothesis (1.8), since $\mathcal{F}_\omega^{M + \tau} \setminus \mathcal{F}_\omega^M$ may be written as a disjoint union of fundamental domains of $\mathbb{Z}^d/\tau\mathbb{Z}^d$.

In particular, (2.37) and (2.39) give that
\[G_\omega^{M + \tau}(u_\omega^{M + \tau}) = G_\omega^M(u_\omega^{M + \tau}). \]
Using this and the two inequalities in (2.38), we obtain that
\[G_\omega^M(u_\omega^{M + \tau}) = G_\omega^{M + \tau}(u_\omega^{M + \tau}) \leq G_\omega^{M + \tau}(u_\omega^M) = G_\omega^M(u_\omega^M) \leq G_\omega^M(u_\omega^{M + \tau}). \]
Hence, u_ω^M and $u_\omega^{M + \tau}$ belong to $\mathcal{M}_\omega^M \cap \mathcal{M}_\omega^{M + \tau}$ and (2.36) follows by the fact that they are both minimal minimizers. \hfill \Box
When used in combination with Corollary 2.6, the previous result ensures in particular that the energy H of $u^{M_0}_\omega$ is lower than that of any perturbation involving a finite number of sites that lie over the module $\{\omega \cdot i = 0\}$. For this reason, the minimal minimizer $u^{M_0}_\omega$ does not feel the upper constraint $\{\omega \cdot i = M_0_0|\omega|\}$ and extends its minimizing properties well beyond it.

In the next result, we show that the same happens for the lower constraint and that the minimal minimizer is therefore fully unconstrained.

Proposition 2.15. Let μ_0 and M_0 be as in Proposition 2.13. If $\mu \leq \mu_0$, then $u^{M_0}_\omega \in \mathcal{A}_{-a,M_0+a}$ for any $m \in \mathbb{N}$ and any $a \in \tau \mathbb{N}$.

Proof. First, we note that, by arguing as in the proof of Corollary 2.14, one may check that, given any four real numbers $A < B$ and $A' < B'$ such that $A - A', B - B' \in \tau \mathbb{Z}$, it holds

$$G^{A,B}_{m,\omega}(w) = G^{A',B'}_{m,\omega}(w),$$

for any $w \in \mathcal{A}^{A,B}_{m,\omega} \cap \mathcal{A}^{A',B'}_{m,\omega}$.

Take now any configuration $v \in \mathcal{A}^{-a,M_0+a}_{m,\omega}$ and let $k \in \tau \mathbb{Z}^d$ be a vector satisfying $\omega \cdot k \geq a|\omega|$ and $\omega \cdot k \in \tau |\omega|\mathbb{N}$. We have that

$$\mathcal{T}_k v \in \mathcal{A}^{-a,\omega k/|\omega|,M_0+a+\omega k/|\omega|,M_0+b}_{m,\omega} \subseteq \mathcal{A}^{M_0+b}_{m,\omega}$$

for some $b \in \tau \mathbb{N}$ with $b \geq a + \omega \cdot k/|\omega|$. By Corollary 2.14 and Proposition 2.5, we know that $u^{M_0}_\omega \in \mathcal{A}^{M_0+b}_{m,\omega}$ and thus $G^{M_0+b}_{m,\omega}(u^{M_0}_\omega) \leq G^{M_0+b}_{m,\omega}(\mathcal{T}_k v)$. But

$$G^{M_0+b}_{m,\omega}(\mathcal{T}_k v) = G^{-a,M_0+a}_{m,\omega}(v),$$

and

$$G^{M_0+b}_{m,\omega}(u^{M_0}_\omega) = G^{-a,M_0+a}_{m,\omega}(u^{M_0}_\omega),$$

thanks to the opening remark. Consequently, $G^{-a,M_0+a}_{m,\omega}(u^{M_0}_\omega) \leq G^{-a,M_0+a}_{m,\omega}(v)$ and the proposition is proved. \qed

A simple consequence of this fact is that the minimal minimizer is indeed a ground state. A rigorous proof of this fact is contained in the following

Corollary 2.16. Let μ_0 and M_0 be as in Proposition 2.13. If $\mu \leq \mu_0$, then $u^{M_0}_\omega$ is a ground state for H.

Proof. The proof is analogous to that of Corollary 2.6.

Given a finite set $\Gamma \subseteq \mathbb{Z}^d$, we take $m \in \mathbb{N}$ and $a \in \tau \mathbb{N}$ sufficiently large to have $\Gamma \subseteq \mathcal{F}^{-a,M_0+a}_{m,\omega}$. By Proposition 2.15, the minimal minimizer $u^{M_0}_\omega$ belongs to the class $\mathcal{A}^{-a,M_0+a}_{m,\omega}$ and then, by Proposition 2.2, it is a minimizer for H in $\mathcal{F}^{-a,M_0+a}_{m,\omega}$. The conclusion follows by recalling Remark 1.2 and since Γ can be chosen arbitrarily. \qed

We point out that, in light of this last result, the proof of Theorem 1.4 is concluded, at least for rational directions $\omega \in \mathbb{Q}^d \setminus \{0\}$ and under the finite-range hypothesis (2.1) on J.

In the next two subsections, we show that assumption (2.1) might in fact be removed and that irrational directions can be dealt with an approximation procedure. After this, Theorem 1.4 will be proved in its full generality.

2.7. Ground states for infinite-range interactions

Here we address the proof of Theorem 1.4 for models allowing infinite-range interactions. That is, we show that planelike ground states exist for Hamiltonians H whose interaction coefficients J satisfy the summability condition (1.6), but not necessarily (2.1).

Let $J : \mathbb{Z}^d \times \mathbb{Z}^d \to [0, +\infty)$ be any function satisfying assumptions (1.3), (1.5), (1.6) and (1.10). Let $\{R_n\}_{n \in \mathbb{N}}$ be an increasing sequence of positive real numbers, diverging to $+\infty$.

For any $n \in \mathbb{N}$, we define a function $J^{(n)} : \mathbb{Z}^d \times \mathbb{Z}^d \to [0, +\infty)$ by setting

$$J^{(n)}_{ij} := \begin{cases} J_{ij} & \text{if } |i - j| \leq R_n, \\ 0 & \text{if } |i - j| > R_n, \end{cases}$$
and the associated Hamiltonian \(H^{(n)} \), on any finite set \(\Gamma \subset \mathbb{Z}^d \) and any configuration \(u \), as

\[
H^{(n)}_\Gamma(u) := \sum_{(i,j) \in \mathbb{Z}^d \setminus (\mathbb{Z}^d \setminus \Gamma)^2} J^{(n)}_{ij} (1 - u_i u_j) + \sum_{i \in \Gamma} h_i u_i.
\]

Observe that \(J^{(n)} \) still satisfies (1.3), (1.5), (1.6) and (1.10). Moreover, \(J^{(n)} \) fulfills condition (2.1), with \(R = R_n \).

Let now \(\omega \in \mathbb{Q}^d \setminus \{0\} \) be a fixed direction. By the work done in the previous subsections, for any \(n \in \mathbb{N} \) we can find a ground state \(u^{(n)} \) for \(H^{(n)} \) with interface \(\partial u^{(n)} \) satisfying

\[
(2.40) \quad \partial u^{(n)} \subset \left\{ i \in \mathbb{Z}^d : \frac{\omega}{|\omega|} : i \in [0, M] \right\},
\]

for some \(M > 0 \) independent of \(n \). We stress that the uniformity of \(M \) in \(n \) is crucial for the following arguments, and is a consequence of the fact that the constant \(M_0 \) found in Proposition 2.13 is independent of the range of positivity \(R \) of (2.1).

By Tychonoff’s Theorem, we can find a subsequence of the \(u^{(n)} \)'s, that we still label in the same way, that converges to a new configuration \(u \). As a matter of fact, for any finite set \(\Gamma \subset \mathbb{Z}^d \), there exists a number \(N \in \mathbb{N} \) such that

\[
(2.41) \quad u^{(n)}_i = u_i \quad \text{for any} \quad i \in \Gamma \quad \text{and any} \quad n \geq N.
\]

We claim that \(u \) is a planelike ground state for \(H \). Obviously, (2.40) passes to the limit and the same estimate holds true for the interface of \(u \). Therefore, we are only left to verify that \(u \) is a ground state for \(H \).

To see this, let \(\Gamma \subset \mathbb{Z}^d \) be a finite set and \(v \) be a configuration for which \(v_i = u_i \) at any site \(i \in \mathbb{Z}^d \setminus \Gamma \). Write \(v = u + \varphi \), with \(\varphi : \mathbb{Z}^d \to \{-2, 0, 2\} \) and set \(v^{(n)} := u^{(n)} + \varphi \). From now on, we always assume \(n \) to be larger than the number \(N \) for which (2.41) is valid. By (2.41) and the fact that \(\varphi_i = 0 \) for any \(i \in \mathbb{Z}^d \setminus \Gamma \), we see that \(v^{(n)} \) attains only the values \(-1, 1\), at least for a large enough \(n \). That is, \(v^{(n)} \) is an admissible configuration and \(v^{(n)}_i = u^{(n)}_i \) for any \(i \in \mathbb{Z}^d \setminus \Gamma \). As \(u^{(n)} \) is a minimizer for \(H^{(n)} \) in \(\Gamma \), we have that

\[
(2.42) \quad H^{(n)}_\Gamma(u^{(n)}) \leq H^{(n)}_\Gamma(v^{(n)}).
\]

To finish the proof, we must show that (2.42) yields an analogous inequality for \(u, v \) and \(H \). For this, we first recall that \(u^{(n)}_i = u_i \) and, thus, \(v^{(n)}_i = v_i \) at any site \(i \in \Gamma \). Moreover, up to taking a larger \(N \), we have that \(J^{(n)}_{ij} = J_{ij} \) for any \(i, j \in \Gamma \), as \(\Gamma \) is finite. Accordingly,

\[
\left| H_\Gamma(u) - H^{(n)}_\Gamma(u^{(n)}) \right| = 2 \left| \sum_{i \in \Gamma, j \in \mathbb{Z}^d \setminus \Gamma} \left[J_{ij}(1 - u_i u_j) - J^{(n)}_{ij}(1 - u_i u_j^{(n)}) \right] \right|
\]

\[
\leq 2 \sum_{i \in \Gamma} \left(\sum_{j \in \mathbb{Z}^d \setminus \Gamma} J_{ij} |u_j - u_j^{(n)}| + 2 \sum_{j \in \mathbb{Z}^d \setminus \Gamma} |J_{ij} - J_{ij}^{(n)}| \right).
\]

But then, since \(J_{ij}^{(n)} \leq J_{ij} \), \(J_{ij}^{(n)} \to J_{ij} \) and \(u_i^{(n)} \to u_i \), for any \(i, j \in \mathbb{Z}^d \), we are in position to apply the Dominated Convergence Theorem for Series and conclude that the right-hand side of the above inequality goes to 0 as \(n \to +\infty \). Note that the summability hypothesis (1.6) and the finiteness of \(\Gamma \) are crucial for this argument to work. As the same reasoning can be made for the \(v^{(n)} \)'s, we obtain that

\[
\lim_{n \to +\infty} H^{(n)}_\Gamma(u^{(n)}) = H_\Gamma(u) \quad \text{and} \quad \lim_{n \to +\infty} H^{(n)}_\Gamma(v^{(n)}) = H_\Gamma(v).
\]

By this and (2.42), we conclude that \(u \) is a minimizer for \(H \) in \(\Gamma \) and, hence, a ground state.
2.8. Irrational directions. In this subsection, we complete the proof of Theorem 1.4 by showing that there exist planelike minimizers also in correspondence to irrational directions.

For a fixed irrational direction $\omega \in \mathbb{R}^d \setminus \mathbb{Q}^d$, we take a sequence $\{\omega_n\}_{n \in \mathbb{N}} \subset \mathbb{Q}^d \setminus \{0\}$ converging to ω. Associated to each ω_n, we consider the ground state $u^{(n)}$ for H constructed previously. We have

$$\partial u^{(n)} \subset \left\{ i \in \mathbb{Z}^d : \frac{\omega_n}{|\omega_n|} \cdot i \in [0, M] \right\},$$

for some constant $M > 0$ independent of n.

The proof continues as in the preceding subsection. By Tychonoff’s Theorem, $u^{(n)}$ converges (in the sense of formula (2.41)), up to a subsequence, to a configuration u. Given any finite subset $\Gamma \subset \mathbb{Z}^d$, the sequence $u^{(n)}$ actually coincides with u on Γ, provided n is large enough (in dependence of Γ). Therefore, we deduce from (2.43) that

$$\partial u \subset \left\{ i \in \mathbb{Z}^d : \frac{\omega}{|\omega|} \cdot i \in [0, M] \right\}.$$

The proof of the fact that u is a ground state for H is analogous to that displayed in the previous subsection (and easier).

Theorem 1.4 is thus now proved completely (in the general setting).

3. Proof of Theorem 1.4 for power-like interactions with no magnetic term

In this section we show that when J satisfies assumption (1.9) and no magnetic field h is incorporated in the Hamiltonian H, the width M of the strip S^M_{ω} appearing in the statement of Theorem 1.4 can be further specified. Indeed, we shall show that M can be chosen of the form $M = M_0 \tau$, for some $M_0 > 0$ only depending on d, s, λ and Λ.

To show the validity of this fact, we remark that it is enough to adapt to this specific setting the sole arguments contained in Subsection 2.6, since that is the only point of the proof displayed in Section 2 where the width M is made precise. As a first step toward this goal, we obtain some density estimates for the level sets of the minimizers of H inside cubes that intercepts their interfaces.

We stress that throughout the whole section, J is supposed to fulfill hypothesis (1.9) (in addition to (1.3), (1.4) and (1.10)) and the magnetic term h vanishes, i.e.

$$h_i = 0 \quad \text{for any } i \in \mathbb{Z}^d.$$

3.1. Density estimates. Here, we collect some results that aim to quantify the size of the level sets of a non-trivial minimizer u. The main result is Proposition 3.3, where optimal density estimates are obtained.

We begin with a few auxiliary results. The first is a purely geometrical estimate, reminiscent of the one contained in [DNPV12, Lemma 6.1].

Lemma 3.1. Let $\Gamma \subset \mathbb{Z}^d$ be any finite, non-empty set and $i \in \mathbb{Z}^d$. Then, it holds

$$\sum_{j \in \mathbb{Z}^d \setminus \Gamma} \frac{1}{|i - j|^{d+s}} \geq c (\# \Gamma)^{-s/d},$$

for some constant $c > 0$ depending only on s.

Proof. Take $\ell \in \mathbb{N}$ in such a way that

$$(2\ell - 1)^d \leq \# \Gamma < (2\ell + 1)^d,$$

and let $\Gamma^* \supset \Gamma$ be any set with cardinality $\# \Gamma^* = (2\ell + 1)^d$. Notice that

$$\#(Q_\ell(i) \setminus \Gamma^*) = \#Q_\ell(i) - \#(\Gamma^* \cap Q_\ell(i)) = \# \Gamma^* - \#(\Gamma^* \cap Q_\ell(i)) = \#(\Gamma^* \setminus Q_\ell(i)),$$

for some constant $c > 0$ depending only on s.

Proof. Take $\ell \in \mathbb{N}$ in such a way that

$$(2\ell - 1)^d \leq \# \Gamma < (2\ell + 1)^d,$$

and let $\Gamma^* \supset \Gamma$ be any set with cardinality $\# \Gamma^* = (2\ell + 1)^d$. Notice that

$$\#(Q_\ell(i) \setminus \Gamma^*) = \#Q_\ell(i) - \#(\Gamma^* \cap Q_\ell(i)) = \# \Gamma^* - \#(\Gamma^* \cap Q_\ell(i)) = \#(\Gamma^* \setminus Q_\ell(i)),$$
and hence
\[\sum_{j \in Q_t(i) \setminus \Gamma^*} \frac{1}{|i-j|_{\infty}^{d+s}} \geq \frac{\#(Q_t(i) \setminus \Gamma^*)}{\ell^{d+s}} = \frac{\#(\Gamma^* \setminus Q_t(i))}{\ell^{d+s}} \geq \sum_{j \in \Gamma^* \setminus Q_t(i)} \frac{1}{|i-j|_{\infty}^{d+s}}. \]

Thanks to the above inequality, we compute
\[
\sum_{j \in \mathbb{Z}^d \setminus \Gamma} \frac{1}{|i-j|_{\infty}^{d+s}} \geq \sum_{j \in \mathbb{Z}^d \setminus \Gamma^*} \frac{1}{|i-j|_{\infty}^{d+s}}
\]
\[= \sum_{j \in Q_t(i) \setminus \Gamma^*} \frac{1}{|i-j|_{\infty}^{d+s}} + \sum_{j \in \mathbb{Z}^d \setminus (\Gamma^* \cup Q_t(i))} \frac{1}{|i-j|_{\infty}^{d+s}}
\]
\[\geq \sum_{j \in \Gamma^* \setminus Q_t(i)} \frac{1}{|i-j|_{\infty}^{d+s}} + \sum_{j \in \mathbb{Z}^d \setminus (\Gamma^* \cup Q_t(i))} \frac{1}{|i-j|_{\infty}^{d+s}}
\]
\[= \sum_{j \in \mathbb{Z}^d \setminus Q_t(i)} \frac{1}{|i-j|_{\infty}^{d+s}}. \tag{3.3} \]

On the other hand, recalling the notation on (2.23),
\[\sum_{j \in \mathbb{Z}^d \setminus Q_t(i)} \frac{1}{|i-j|_{\infty}^{d+s}} = \sum_{k \in \mathbb{Z}^d \setminus Q_t} \frac{1}{|k|_{\infty}^{d+s}} = \sum_{m=\ell+1}^{+\infty} \frac{\#S_m}{m^{d+s}} \geq \sum_{m=\ell+1}^{+\infty} \frac{1}{m^{1+s}} \geq \frac{(\ell + 1)^{-s}}{s}. \]

Accordingly, by this, (3.3) and (3.2), we finally get
\[\sum_{j \in \mathbb{Z}^d \setminus \Gamma} \frac{1}{|i-j|_{\infty}^{d+s}} \geq \frac{(\ell + 1)^{-s}}{s} = \frac{(2\ell - 1)^{-s}}{s} \frac{(2\ell - 1)^s}{\ell + 1} \geq \frac{(\#\Gamma)^{-s/d}}{2^s s}, \]
that is (3.1). \qed

As a corollary, we immediately deduce the following discrete, non-local isoperimetric-type inequality. See e.g. [FS08, FFMMM15, DCNRV15] for similar results and further applications in a fairly related continuous setting.

Corollary 3.2. Let \(\Gamma \subset \mathbb{Z}^d \) be any finite set. Then, it holds
\[\sum_{i \in \Gamma, j \in \mathbb{Z}^d \setminus \Gamma} \frac{1}{|i-j|_{\infty}^{d+s}} \geq c \left(\frac{\#\Gamma}{d+s} \right)^{d+s}, \]
for some constant \(c > 0 \) depending only on \(s \).

With this in hand, we may now head to the main result of this subsection: the density estimates.

Proposition 3.3. Let \(u \) be a minimizer for \(H \) in \(Q_t(q) \), for some \(q \in \mathbb{Z}^d \) and \(\ell \in \mathbb{N} \). If \(q \in \partial u \), then
\[\min \left\{ \#(\{ u = -1 \} \cap Q_t(q)), \#(\{ u = 1 \} \cap Q_t(q)) \right\} \geq \bar{c} \ell^d, \]
for some constant \(\bar{c} > 0 \) depending only on \(d, s, \lambda \) and \(\Lambda \).

Proof. Of course, we can assume \(q = 0 \). We also restrict ourselves to check that
\[\#(\{ u = 1 \} \cap Q_t) \geq \bar{c} \ell^d, \tag{3.4} \]
for some \(\bar{c} > 0 \), the estimate for the set \(\{ u = -1 \} \cap Q_t \) being completely analogous.

For \(m = 0, \ldots, \ell \), we set
\[V_m := \{ u = 1 \} \cap Q_m, \quad A_m := \{ u = 1 \} \cap S_m, \]
and
\[v_m := \#V_m, \quad a_m := \#A_m. \]
We consider the configuration \(w \) defined by
\[
 w_i := \begin{cases}
 -1 & \text{if } i \in Q_m, \\
 u_i & \text{if } i \in \mathbb{Z}^d \setminus Q_m.
 \end{cases}
\]
By its definition, \(w \) coincides with \(u \) outside of \(Q_m \). Hence, by the minimimality of \(u \), we get
\[
 H_{Q_m}(u) \leq H_{Q_m}(w).
\]
Since \(h = 0 \), we may rewrite this inequality as
\[
 \sum_{i,j \in Q_m} J_{ij}(1 - u_i u_j) + 2 \sum_{i \in Q_m, j \in \mathbb{Z}^d \setminus Q_m} J_{ij}(1 - u_i u_j) \leq 2 \sum_{i \in Q_m, j \in \mathbb{Z}^d \setminus Q_m} J_{ij}(1 + u_j),
\]
and, rearranging its terms conveniently,
\[
 \sum_{i \in V_m, j \in Q_m \setminus V_m} J_{ij} + \sum_{i \in V_m, j \in \{u = 1\}\setminus Q_m} J_{ij} \leq \sum_{i \in V_m, j \in \{u = 1\}\setminus Q_m} J_{ij}.
\]
By adding to both sides the series
\[
 \sum_{i \in V_m, j \in \{u = 1\}\setminus Q_m} J_{ij},
\]
and taking advantage of (1.9), we then find
\[
 \sum_{i \in V_m, j \in \mathbb{Z}^d \setminus V_m} J_{ij} \leq c_1 \sum_{i \in V_m, j \in \{u = 1\}\setminus Q_m} \frac{1}{|i - j|^{d+s}},
\]
for some \(c_1 > 0 \).

Now we deal with the two sides of (3.5) separately. On the one hand, we apply Corollary 3.2 (with \(\Gamma := V_m \)) and obtain that
\[
 \sum_{i \in V_m, j \in \mathbb{Z}^d \setminus V_m} \frac{1}{|i - j|^{d+s}} \geq c_2 v_m^{-d},
\]
for some \(c_2 > 0 \). On the other hand, we compute
\[
 \sum_{i \in V_m, j \in \{u = 1\}\setminus Q_m} \frac{1}{|i - j|^{d+s}} \leq \sum_{i \in V_m, j \in \mathbb{Z}^d \setminus Q_m} \frac{1}{|i - j|^{d+s}} \sum_{n=0}^{m} \sum_{i \in A_n} \sum_{j \in \mathbb{Z}^{d+1} \setminus \{u = 1\}} \frac{1}{|i - j|^{d+s}}
\]
\[
 \leq c_3 \sum_{n=0}^{m} (m + 1 - n)^{-s} a_n,
\]
for some \(c_3 > 0 \). The combination of this, (3.6) and (3.5) yields
\[
 \frac{d-s}{v_m^d} \leq c_4 \sum_{n=0}^{m} (m + 1 - n)^{-s} a_n,
\]
for some \(c_4 > 0 \). We now sum up the above inequality on \(m = 0, \ldots, \ell \). We get
\[
 \sum_{m=0}^{\ell} \frac{d-s}{v_m^d} \leq c_4 \sum_{m=0}^{\ell} \sum_{n=0}^{m} (m + 1 - n)^{-s} a_n = c_4 \sum_{n=0}^{\ell} a_n \sum_{m=n}^{\ell} (m + 1 - n)^{-s}
\]
\[
 = c_4 \sum_{n=0}^{\ell} a_n \sum_{r=1}^{\ell+1-n} r^{-s} \leq c_5 \sum_{n=0}^{\ell} (\ell + 1 - n)^{1-s} a_n \leq c_5 (\ell + 1)^{1-s} \sum_{n=0}^{\ell} a_n.
\]
that is

$$
(3.7) \quad \sum_{m=0}^{\ell} \frac{v_m}{d_m} \leq c_5(\ell + 1)^{1-s}v_\ell,
$$

for some constant $c_5 > 0$.

We now claim that (3.7) implies the validity of (3.4), with

$$
(3.8) \quad \bar{c} := \left[\frac{4^{-d-1+s}}{c_5(d + 1 - s)}\right]^{d/s}.
$$

To see this, we argue by induction. Of course, the claim holds true for $\ell = 0, 1$, as $0 \in \partial u$. Therefore, we take $\ell \geq 2$ and assume that

$$
v_m \geq \bar{c}m^d \quad \text{for any } m \in \{0, \ldots, \ell - 1\}.
$$

Using (3.7) and (3.8), we have

$$
v_\ell \geq \frac{(\ell + 1)^{s-1}}{c_5} \sum_{m=0}^{\ell-1} \frac{d_m}{v_m} \geq \frac{\bar{c}^{d/s}}{c_5} \frac{d^{d-s}}{(\ell + 1)^{s-1}} \sum_{m=0}^{\ell-1} m^{d-s}
$$

$$
\geq \frac{\bar{c}^{d/s}}{c_5(d + 1 - s)} (\ell + 1)^{s-1}(\ell - 1)^{d+1-s} \geq \frac{\bar{c}^{d/s}}{c_5(d + 1 - s)} (2\ell)^{s-1} \left(\frac{\ell}{2}\right)^{d+1-s}
$$

$$
\geq \frac{\bar{c}^{d/s}}{c_5(d + 1 - s)} d^d = \bar{c} \ell^d,
$$

that is our claim. Hence, the proof of the proposition is concluded.

A first application of the estimates just proved is contained in the next corollary, that establishes a bound from below for the interaction energy of non-trivial minimizers.

Corollary 3.4. Let u be a minimizer for H in $Q_\ell(q)$, for some $q \in \mathbb{Z}^d$ and $\ell \in \mathbb{N}$. If $q \in \partial u$, then

$$
(3.9) \quad I_{Q_\ell(q), Q_\ell(q)}(u) \geq c_* \ell^{d-s},
$$

for some constant $c_* > 0$ depending only on d, s, Λ and Λ.

Proof. We simply apply hypothesis (1.9) and Proposition 3.3 to deduce that

$$
I_{Q_\ell(q), Q_\ell(q)}(u) \geq \frac{\lambda}{d^{d+s}} \sum_{i,j \in Q_\ell(q)} \frac{1 - u_i u_j}{|i - j|^{d+s}}
$$

$$
\geq \frac{4\lambda}{(2\ell)^{d+s}} \left[\#(\{u = -1\} \cap Q_\ell(q))\right] \cdot \left[\#(\{u = 1\} \cap Q_\ell(q))\right]
$$

$$
\geq c_* \ell^{d-s},
$$

for some $c_* > 0$, as desired.

Remark 3.5. The bound (3.9) can be seen as a counterpart to the estimate from above obtained in Proposition 2.9. More specifically, Corollary 3.4 shows that the energy estimate (2.26) gives an optimal bound for the energy of a non-trivial minimizer u in a cube $Q_\ell(q)$, as a function of ℓ. Indeed, notice that under hypothesis (1.9), we can make the choice

$$
\sigma(R) = c_d \Lambda\frac{d}{s} R^{-s},
$$

for some dimensional constant $c_d > 0$. Thanks to this observation and recalling Remark 2.10, estimate (2.26) becomes in this setting just

$$
(3.10) \quad H_{Q_\ell(q)}(u) \leq \bar{C} \ell^{d-s},
$$

for some constant $\bar{C} \geq 1$ depending only on d, s and Λ. As a result, both estimates (3.9) and (2.26) (in its form (3.10) just deduced) show the same dependence on ℓ.

We conclude the subsection with a result that sharpens the density estimates of Proposition 3.3: the so-called clean ball condition. We obtain it by applying both Corollary 3.4 and Proposition 3.3 itself.

Proposition 3.6. Suppose that J satisfies condition (1.9) and that $h = 0$. Let u be a minimizer for H in $Q_t(q)$, for some $q \in \mathbb{Z}^d$ and $\ell \in \mathbb{N}$. If $q \in \partial u$, then there exist two sites $q_-, q_+ \in Q_t(q)$ and a constant $\kappa \in (0, 1)$, depending only on d, s, λ and Λ, such that

$$Q_{|\kappa\ell|}(q_-) \subseteq \{u = -1\} \cap Q_t(q) \quad \text{and} \quad Q_{|\kappa\ell|}(q_+) \subseteq \{u = 1\} \cap Q_t(q).$$

Proof. We prove the statement concerning the level set $\{u = 1\} \cap Q_t(q)$, the other one being completely analogous. Moreover, we restrict ourselves to consider $\ell \geq \ell_0$, for a large value $\ell_0 \geq 2$ to be later specified, as for the case $\ell < \ell_0$ one can simply choose $\kappa = 1/\ell_0$ and $q_+ = q$.

Fix $k \in \mathbb{N}$, with

$$k \leq \frac{\ell}{2},$$

and let $N \in \mathbb{N}$ be the only integer for which

$$(2k + 1)N \leq 2\ell + 1 < (2k + 1)(N + 1).$$

In view of (3.12), there is a family $Q = \{Q^{(n)}\}_{n=1}^{N'}$ of N^d non-overlapping cubes $Q^{(n)} = Q^{(n)}(q^{(n)})$ each contained in $Q_t(q)$, having center $q^{(n)} \in Q_t(q)$ and sides composed by $2k + 1$ sites. Observe that we may choose Q so that the union of its elements covers $Q_{t-k}(q)$. Let then $\tilde{Q} \subseteq Q$ be the subfamily of Q made up of those cubes having non-empty intersection with the level set $\{u = 1\}$. That is,

$$\tilde{Q} := \{Q \in Q : \text{there exists } i \in Q \text{ at which } u_i = 1\}.$$

Denoting by $\tilde{N} \in \mathbb{N}$ the cardinality of \tilde{Q}, we claim that

$$(3.13) \quad \tilde{N} \geq c_1 N^d,$$

for some $c_1 > 0$ independent of N and ℓ. To check (3.13), we simply apply the density estimate of Proposition 3.3 to the cube $Q_{t-k}(q)$ and compute

$$\tilde{c}(\ell - k)^d \leq \#(\{u = 1\} \cap Q_{t-k}(q)) \leq \sum_{n=1}^{N'} \#(\{u = 1\} \cap Q^{(n)}) \leq \tilde{N}(2k + 1)^d.$$

This, (3.12) and (3.11) then imply that

$$\frac{\tilde{c}}{2^d} \ell^d \leq \tilde{c}(\ell - k)^d \leq \frac{\tilde{N}}{N^d}(2\ell + 1)^d \leq \frac{\tilde{N}}{N^d} 3^d \ell^d,$$

which gives (3.13).

We relabel the cubes of the family \tilde{Q} in order to write $\tilde{Q} = \{\tilde{Q}^{(n)}\}_{n=1}^{\tilde{N}}$, with $\tilde{Q}^{(n)} = Q_k(\tilde{q}^{(n)})$, with $\tilde{q}^{(n)} \in Q_t(q)$. To finish the proof, we shall show that we can find a cube $\tilde{Q}^{(\tilde{n})}$, for some $\tilde{n} \in \{1, \ldots, \tilde{N}\}$, such that $u_i = 1$ at any $i \in \tilde{Q}^{(\tilde{n})}$. For this, we argue by contradiction and in fact suppose that, for any $n \in \{1, \ldots, \tilde{N}\}$, there exists a site $i^{(n)} \in \tilde{Q}^{(n)}$ at which $u_{i^{(n)}} = -1$. By the definition of \tilde{Q}, it is then clear that there also exist sites $j^{(n)} \in \tilde{Q}^{(n)} \cap \partial u$, for any $n \in \{1, \ldots, \tilde{N}\}$.

Up to modifying the family \tilde{Q} and reducing its cardinality \tilde{N} by a factor 3^d, we may also assume that $j^{(n)} = \tilde{q}^{(n)}$. By applying Proposition 2.9, Corollary 3.4 and estimate (3.13), we then get

$$\tilde{C} \ell^d \geq H_{Q_t(q)}(u) \geq \sum_{n=1}^{\tilde{N}} I_{Q_k(\tilde{q}^{(n)}), Q_k(\tilde{q}^{(n)})}(u) \geq c_2 \tilde{N} k^d \geq c_2 c_1 N^d k^d,$$

that, combined with (3.12) and (3.11), yields

$$k \geq c_2 \ell,$$
for some $c_2 > 0$ independent of ℓ. But this leads to a contradiction, since we are free to take $k \in \{1, \ldots, \lfloor c_2 \ell/2 \rfloor \}$ and $\ell \geq \ell_0 := 4/c_2$.

We stress that the argument adopted in the above proof is a refined version of the one displayed in Proposition 2.13, in light of the now available density estimates and the optimal energy bound (3.9). Indeed, Proposition 3.6 is the main tool that will be used in the next subsection to improve the result of Proposition 2.13 and finish the proof of Theorem 1.4.

3.2. Completion of the proof of Theorem 1.4. As discussed at the beginning of the present section, to finish the proof of Theorem 1.4 we only need to show that in Proposition 2.13 we can take

\begin{equation}
M_0 := M_0 \tau,
\end{equation}

for some $M_0 > 0$ depending only on d, s, λ and Λ.

From now on, we freely use the notation adopted in Section 2 with no further explanation.

In order to prove that Proposition 2.13 holds true with M_0 given by (3.14), it suffices to show that the minimal minimizer $u = u^M_\omega$ satisfies

\begin{equation}
M \geq M_0, \quad u_i = -1 \text{ for any } i \in Q_{2d\tau}(\bar{q}), \quad \text{for some } \bar{q} \in S^M_\omega \text{ such that } Q_{2d\tau}(\bar{q}) \subset S^M_\omega,
\end{equation}

provided $M \geq M_0$, with M_0 as in (3.14). Note that (3.15) is indeed stronger than the claim (2.31) that was proved in Proposition 2.13. By arguing as in the proof of Proposition 2.13, we can reduce (3.15) to the weaker claim that

\begin{equation}
either u_i = -1 \text{ for any } i \in Q_{2d\tau}(\bar{q}) \text{ or } u_i = 1 \text{ for any } i \in Q_{2d\tau}(\bar{q}).
\end{equation}

To check (3.16), we first notice that there are a site $q \in S^M_\omega$ and a dimensional constant $c_* > 0$ such that $Q_{\ell}(q) \subset S^M_\omega$, with $\ell = [c_* M]$. Now, either

\begin{equation}
Q_\ell(q) \cap \partial u \neq \emptyset,
\end{equation}

or u is identically equal to -1 or 1 in the whole of $Q_\ell(q)$. By taking $M \geq M_0 := (4d\tau)/c_*$, this latter fact would imply (3.16) and the proof would then be over. Therefore, we suppose that (3.17) is verified and, thus, that there exists a site $q_* \in Q_\ell(q) \cap \partial u$.

By Corollary 2.6, the minimal minimizer u is a minimizer for H in $Q_\ell(q_*) \subset Q_{2\ell}(q)$ and, hence, Proposition 3.6 implies that, say,

\begin{equation}
u_i = -1 \quad \text{for any } i \in Q_{\lceil \kappa \ell \rceil}(\bar{q}),
\end{equation}

for some site $\bar{q} \in Q_{\lceil \kappa \ell \rceil}(q_*)$ and some constant $\kappa \in (0, 1)$, depending only on d, s, λ and Λ. But then, (3.16) follows once again by choosing $M \geq M_0 := (4d\tau)/(c_* \kappa)$.

Claim (3.16) is thus fully proved and so is Theorem 1.4.

4. Interlude. Some simple facts about non local perimeter functionals

In this intermediate section, we present a couple of results regarding the set functions L_K and Per_{K}, introduced in (1.23) and (1.22), respectively.

Throughout most of the section, $K : \mathbb{R}^d \times \mathbb{R}^d \to [0, +\infty]$ is a general non-negative kernel, not necessarily satisfying any of conditions (1.18) or (1.19). In particular, K is never required here to fulfill the periodicity assumption (1.20).

We begin by presenting a lemma that establishes the lower semicontinuity of L_K with respect to L^1 convergence. As a byproduct, we also obtain the lower semicontinuity of the K-perimeter functional.

Lemma 4.1. Let $\{A_n\}$ and $\{B_n\}$ be two sequences of measurable sets in \mathbb{R}^d. Suppose that there exist two measurable sets $A, B \subseteq \mathbb{R}^d$ such that $A_n \to A$ and $B_n \to B$ in L^1_{loc}, as $n \to +\infty$. Then,

\begin{equation}
L_K(A, B) \leq \liminf_{n \to +\infty} L_K(A_n, B_n).
\end{equation}
In particular,

\[(4.2) \quad \text{Per}_K(A; B) \leq \liminf_{n \to +\infty} \text{Per}_K(A_n; B_n). \]

Proof. Let \(\{n_k\} \) be a subsequence along which the \(\liminf \) on the right-hand side of (4.1) is attained as a limit. By a standard diagonal argument and up to selecting a further subsequence (that we do not relabel), we have that \(\chi_{A_{n_k}} \to \chi_A \) and \(\chi_{B_{n_k}} \to \chi_B \) a.e. in \(\mathbb{R}^d \), as \(k \to +\infty \). Then, Fatou’s Lemma implies that

\[
\mathcal{L}_K(A, B) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \chi_A(x) \chi_B(y) K(x, y) \, dx \, dy \leq \liminf_{k \to +\infty} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \chi_{A_{n_k}}(x) \chi_{B_{n_k}}(y) K(x, y) \, dx \, dy = \lim_{k \to +\infty} \mathcal{L}_K(A_{n_k}, B_{n_k}) = \liminf_{n \to +\infty} \mathcal{L}_K(A_n, B_n),
\]

that is (4.1).

The validity of (4.2) follows at once from (4.1) after one notices that the convergences of \(A_n \) and \(B_n \) imply that

\[
\begin{align*}
A_n \cap B_n & \to A \cap B \\
A_n \setminus B_n & \to A \setminus B \\
B_n \setminus A_n & \to B \setminus A \\
\mathbb{R}^d \setminus (A_n \cup B_n) & \to \mathbb{R}^d \setminus (A \cup B)
\end{align*}
\]

as \(n \to +\infty \).

Next is a simple computation that may be seen as a generalized Coarea Formula. See e.g. [V91] and the very recent [CSV16, L16] for similar results. More precisely, we recall (1.21) and we prove the following:

Lemma 4.2. Let \(\Omega \subseteq \mathbb{R}^d \) be an open set and \(u : \Omega \to \mathbb{R} \) a measurable function. Then,

\[(4.3) \quad \mathcal{H}_K(u; \Omega, \Omega) = \int_{-\infty}^{+\infty} \mathcal{H}_K(\chi_{\{u > t\}}; \Omega, \Omega) \, dt. \]

Proof. First of all, notice that, for any \(x, y \in \Omega \), we may write

\[(4.4) \quad |u(x) - u(y)| = \int_{-\infty}^{+\infty} |\chi_{\{u > t\}}(x) - \chi_{\{u > t\}}(y)| \, dt. \]

Indeed, notice that

\[
\chi_{\{u > t\}}(x) - \chi_{\{u > t\}}(y) = \begin{cases}
1, & \text{if } u(x) > t \geq u(y), \\
-1, & \text{if } u(y) > t \geq u(x), \\
0, & \text{otherwise}.
\end{cases}
\]

From this, formula (4.4) easily follows.

Hence, by (4.4) and Fubini’s Theorem, we simply obtain

\[
\mathcal{H}_K(u; \Omega, \Omega) = \int_{\Omega} \int_{\Omega} |u(x) - u(y)| K(x, y) \, dx \, dy = \int_{\Omega} \int_{\Omega} \left(\int_{-\infty}^{+\infty} |\chi_{\{u > t\}}(x) - \chi_{\{u > t\}}(y)| \, dt \right) K(x, y) \, dx \, dy = \int_{-\infty}^{+\infty} \left(\int_{\Omega} \int_{\Omega} |\chi_{\{u > t\}}(x) - \chi_{\{u > t\}}(y)| K(x, y) \, dx \, dy \right) \, dt,
\]

and (4.3) follows. \(\square \)
We conclude the section with the following basic integrability result.

Lemma 4.3. Suppose that \(K \) satisfies (1.19) and let \(\Omega \subset \mathbb{R}^d \) be a bounded open set with Lipschitz boundary. Then,

\[
K \in L^1(\Omega \times (\mathbb{R}^d \setminus \Omega)).
\]

Proof. By using polar coordinates and (1.19), we compute

\[
\int_{\Omega} \int_{\mathbb{R}^d \setminus \Omega} K(x, y) \, dx \, dy \leq \Lambda \int_{\Omega} \int_{\mathbb{R}^d \setminus \Omega} \frac{dx \, dy}{|x - y|^{d+s}} \leq \Lambda \int_{\Omega} \left(\int_{\mathbb{R}^d \setminus B_{\text{dist}(x, \partial \Omega)}} \frac{dz}{|z|^{d+s}} \right) \, dx
\]

\[
= d\Lambda |B_1| \int_{\Omega} \left(\int_{\text{dist}(x, \partial \Omega)}^{+\infty} \frac{dt}{t^{1+s}} \right) \, dx = \frac{d\Lambda |B_1|}{s} \int_{\Omega} \frac{dx}{\text{dist}(x, \partial \Omega)^s}.
\]

Then, (4.5) follows, as the last integral is finite, due to the Lipschitzianity of \(\partial \Omega \). This last fact may be for instance deduced from [M00, Lemma 3.32], applied with \(u = 1 \) there. \(\square \)

5. FROM THE ISING MODEL TO THE K-PERIMETER. PROOF OF THEOREM 1.6

In this section, we give a proof of Theorem 1.6. The argument is rather articulated and thus will be split into various lemmata, most of which deal with convergence issues.

Notice that throughout the section, we always assume the kernel \(K \) to satisfy assumptions (1.18) and (1.19), but not (1.20), in accordance with the hypotheses made in the statement of Theorem 1.6.

We begin by checking that the coefficients \(J^{(\varepsilon)} \) yield a power-like interaction term, bounded independently of \(\varepsilon \).

Lemma 5.1. Given any \(\varepsilon > 0 \), the interaction \(J^{(\varepsilon)} \) defined in (1.25) satisfies conditions (1.3) and (1.4). Moreover, it fulfills (1.9) uniformly in \(\varepsilon \). That is,

\[
\frac{\lambda_*}{|i - j|^{d+s}} \leq J^{(\varepsilon)} \leq \frac{\Lambda_*}{|i - j|^{d+s}} \quad \text{for any } i, j \in \mathbb{Z}^d \text{ with } i \neq j,
\]

for some constants \(\Lambda_* \geq \lambda_* > 0 \) that depend only on \(\lambda, \Lambda, d \) and \(s \).

Proof. The fact that \(J^{(\varepsilon)} \) satisfies (1.3) and (1.4) is a simple consequence of its definition and hypotheses (1.18) on \(K \). Thus, we focus on the proof of (5.1).

By changing variables, for \(i \neq j \) we have

\[
J^{(\varepsilon)}_{ij} = \varepsilon^{d+s} \int_{Q_{1/2}(i)} \int_{Q_{1/2}(j)} K(\varepsilon x, \varepsilon y) \, dx \, dy.
\]

To obtain the left-hand side inequality in (5.1), we observe that, for \(x \in Q_{1/2}(i) \) and \(y \in Q_{1/2}(j) \), it holds

\[
|x - y| \leq |i - j| + |x - i| + |y - j| \leq |i - j| + \sqrt{d} \leq 2\sqrt{d} |i - j|,
\]

and hence, by (1.19),

\[
J^{(\varepsilon)}_{ij} \geq \lambda \int_{Q_{1/2}(i)} \int_{Q_{1/2}(j)} \frac{dx \, dy}{|x - y|^{d+s}} \geq \frac{(2\sqrt{d})^{-d-s} \lambda}{|i - j|^{d+s}},
\]

which gives the first inequality in (5.1).

On the other hand, to get the second inequality in (5.1), we deal with the two cases \(|i - j|_\infty \geq 2 \) and \(|i - j|_\infty = 1 \) separately. If \(|i - j|_\infty \geq 2 \), we recall the notation in (1.13) and we simply have

\[
|x - y| = \left(\sum_{k=1}^d (x_k - y_k)^2 \right)^{1/2} \geq |x - y|_\infty \geq |i - j|_\infty - |x - i|_\infty - |y - j|_\infty \geq |i - j|_\infty - 1 \geq \frac{|i - j|_\infty}{2},
\]
for any \(x \in Q_{1/2}(i) \) and \(y \in Q_{1/2}(j) \). Thus, using (1.19),

\[
J_{ij}^{(\varepsilon)} \leq \Lambda \int_{Q_{1/2}(i)} \int_{Q_{1/2}(j)} \frac{dx \, dy}{|x-y|^{d+s}} \leq \frac{2^{d+s} \Lambda}{|i-j|^{d+s}},
\]

which proves the second inequality in (5.1) in this case.

When instead \(|i-j|_{\infty} = 1 \), by applying twice Coarea Formula and using again (1.19), we compute

\[
J_{ij}^{(\varepsilon)} \leq \Lambda \int_{Q_{1/2}(i)} \int_{Q_{1/2}(j)} \frac{dx \, dy}{|x-y|^{d+s}} \leq \Lambda \int_{Q_{1/2}} \int_{Q_{1/2}} \frac{dx \, dy}{|x-y|_{\infty}^{d+s}} \\
\leq \Lambda \int_{Q_{1/2}} \left(\int_{Q_{1/2} \setminus Q_{1/2} \setminus |x|_{\infty}^{d+s}} \frac{dz}{|z|^{d+s}} \right) dx = 2^{d}d\Lambda \int_{Q_{1/2}} \left(\int_{\frac{1}{2} - |x|_{\infty}}^{1} \frac{dt}{t^{1+s}} \right) dx \\
\leq \frac{2^{d+s}d\Lambda}{s} \int_{Q_{1/2}} \frac{dx}{(1 - 2|x|_{\infty})^{s}} = \frac{2^{d+s}d^{2}\Lambda}{s} \int_{0}^{1/2} \frac{t^{d-1}}{(1 - 2t)^{s}} dt \\
\leq \frac{C_{d,s} \Lambda}{|i-j|^{d+s}},
\]

for some constant \(C_{d,s} > 0 \) depending only on \(d \) and \(s \). This completes the proof of the second inequality in (5.1). \qed

Now that we know from Lemma 5.1 that \(J_{ij}^{(\varepsilon)} \) is a well-behaved power-like interaction term, with ferromagnetic constants independent of \(\varepsilon \), we may use the estimate contained in Proposition 2.9 (in its form (3.10)) to deduce uniform-in-\(\varepsilon \) bounds for the Hamiltonian \(H_{Q_{\ell}}^{(\varepsilon)} \) defined in (1.26). More precisely, if \(u \) is a minimizer for \(H_{Q_{\ell}}^{(\varepsilon)} \) in a cube \(Q_{\ell} \) of sides \(\ell \in \mathbb{N} \), then

\[
H_{Q_{\ell}}^{(\varepsilon)}(u) \leq C\ell^{d-s},
\]

for some constant \(C \geq 1 \), depending only on \(d, s \) and \(\Lambda \).

Moreover, recall that to any configuration \(u \) and any \(\varepsilon > 0 \) we associated an (a.e.) extension \(\bar{u}_{\varepsilon} \) of \(u \) to \(\mathbb{R}^{d} \), via definition (1.27). We now consider the measurable set

\[
E(u, \varepsilon) := \left\{ x \in \mathbb{R}^{d} : \bar{u}_{\varepsilon}(x) = 1 \right\}.
\]

By the definitions of \(E(u, \varepsilon) \) and \(J_{ij}^{(\varepsilon)} \), recalling (1.24) and (1.31), we see that the identities

\[
\text{Per}_{K}(E(u, \varepsilon); Q_{R}) = \frac{1}{4} \mathcal{H}_{K}(\bar{u}_{\varepsilon}; Q_{R}) = \frac{\varepsilon^{d-s}}{4} H_{Q_{\ell}}^{(\varepsilon)}(u),
\]

hold true for any \(R = (\ell + 1/2)\varepsilon \), with \(\ell \in \mathbb{N} \).

Formula (5.4) is crucial in building a rigorous bridge between the discrete setting of the Hamiltonian \(H_{Q_{\ell}}^{(\varepsilon)} \) and the continuous one given by \(\text{Per}_{K} \). In particular, we will shortly use it, in combination with (5.2), to obtain a uniform bound for the \(K \)-perimeter.

Let now \(\{ \varepsilon_{n} \}_{n \in \mathbb{N}} \subset (0, 1) \) be an infinitesimal sequential and, for any \(n \in \mathbb{N} \), let \(u_{n} \) be the ground state for the Hamiltonian \(H^{(\varepsilon_{n})} \) considered in the statement of Theorem 1.6. Let \(\bar{u}^{(n)} = \bar{u}^{(n)}_{\varepsilon_{n}} \) be the extension of \(u_{n} \) to \(\mathbb{R}^{d} \), defined as in (1.27), and \(E_{n} := E(u_{n}, \varepsilon_{n}) \) be the corresponding measurable set introduced in (5.3).

It is not hard to see that (5.2) and (5.4) imply the following result:

Lemma 5.2. There exists a constant \(C \geq 1 \), depending on \(d, s \) and \(\Lambda \), but not on \(n \), such that

\[
\text{Per}_{K}(E_{n}; Q_{R}) \leq CR^{d-s},
\]

for any \(R \geq 1 \).
Thanks to Lemma 5.2 and hypothesis (1.19), we know that the $W^{s,1}(Q_R)$ norm of χ_{E_n} is bounded uniformly in n, for any $R \geq 1$. Hence, by the compact embedding of $W^{s,1}(Q_R)$ into $L^{d/(d-s)}(Q_R)$ (see e.g. [DNPV12, Corollary 7.2]) and a standard diagonal argument (in n and R), we conclude that, up to a subsequence (that we omit in the notation), χ_{E_n} converges in L^1_{loc} and a.e. to χ_E, for some measurable set $E \subseteq \mathbb{R}^d$, as $n \to +\infty$.

In what follows, we show that E is a class A minimal surface for Per_K, thus completing the proof of Theorem 1.6.

To check this, we fix a cube Q_R with sides $R \geq 2$. Of course, it is enough to prove that E is a minimal surface for Per_K in each such cube. For any $n \in \mathbb{N}$, let $\ell_n \in \mathbb{N}$ be defined by

$$\ell_n := \left\lfloor \frac{1}{2} \left(\frac{2R}{\varepsilon_n} - 1 \right) \right\rfloor. \tag{5.5}$$

Also set

$$R_n := \left(\ell_n + \frac{1}{2} \right) \varepsilon_n, \tag{5.6}$$

and notice that

$$R - \varepsilon_n < R_n \leq R. \tag{5.7}$$

In particular, $R_n \to R$ as $n \to +\infty$.

By taking advantage of Lemma 4.1 in Section 4 and (5.4), we have that

$$\text{Per}_K(E; Q_R) \leq \liminf_{n \to +\infty} \text{Per}_K(E_n; Q_{R_n}) = \frac{1}{4} \liminf_{n \to +\infty} \varepsilon_n^{d-s} H_{Q_{\ell_n}} (u(n)). \tag{5.8}$$

Now, let F be a competitor for E in Q_R, i.e. a measurable set with $F \setminus Q_R = E \setminus Q_R$ and $\text{Per}_K(F; Q_R) < +\infty$. In view of the following lemma, we may assume without loss of generality that the boundary of F is smooth inside Q_R.

Lemma 5.3. Let $\Omega \subset \mathbb{R}^d$ be a bounded open set with Lipschitz boundary and let $F \subset \mathbb{R}^d$ be a measurable set such that $\text{Per}_K(F; \Omega) < +\infty$. Then, there exists a sequence $\{F_n\}_{n \in \mathbb{N}}$ of measurable subsets of \mathbb{R}^d such that, for any $n \in \mathbb{N}$,

$$\partial F_n \cap \overline{\Omega} \text{ is smooth,} \tag{5.9}$$

$$F_n \setminus \overline{\Omega} = F \setminus \overline{\Omega}, \tag{5.10}$$

and

$$\lim_{n \to +\infty} |F_n \Delta F| = 0, \tag{5.11}$$

$$\lim_{n \to +\infty} \text{Per}_K(F_n; \Omega) = \text{Per}_K(F; \Omega). \tag{5.12}$$

The proof of Lemma 5.3 is inspired by the one of the analogous result for the classical perimeter (see e.g. [G84, Theorem 1.24]) and is similar to those of [CSV16, Proposition 6.4] and [L16, Theorem 1.1]. As it is rather technical but by now sufficiently standard, we defer it to Appendix A.

For such competitor F and a given $n \in \mathbb{N}$, we consider the partition (up to a negligible set) of the cube Q_{R_n} into the family of open subcubes

$$Q_n := \left\{ \dot{Q}_{\ell_n/2}(\varepsilon_n i) : i \in Q_{\ell_n} \right\}, \tag{5.13}$$

As usual, Q denotes the interior of Q.\footnote{As usual, Q denotes the interior of Q.}
with \(\ell_n \) as in (5.5), and its further subdivision into the three disjoint subfamilies
\[
G^+_n := \{ Q \in Q_n : Q \subset \hat{F} \},
\]
\[
G^-_n := \{ Q \in Q_n : Q \subset \mathbb{R}^d \setminus \hat{F} \}
\]
and
\[
B_n := \{ Q \in Q_n : Q \subset \partial F \neq \emptyset \} = Q_n \setminus (G^+_n \cup G^-_n).
\]

We also write
\[
G^{\pm}_n := \bigcup_{Q \in G^{\pm}_n} Q \quad \text{and} \quad B_n := \bigcup_{Q \in B_n} Q.
\]

We then define a configuration \(v(n) \) by setting
\[
v^{(n)}_i := \begin{cases}
1 & \text{if } Q_{\varepsilon_n/2}(\varepsilon_n i) \in G^+_n, \\
-1 & \text{if } Q_{\varepsilon_n/2}(\varepsilon_n i) \in G^-_n \cup B_n, \\
u^{(n)}_i & \text{if } i \in \mathbb{Z}^d \setminus Q_{\ell_n},
\end{cases}
\]
and, as in (5.3), the corresponding set
\[
F_n := \bigcup_{i \in \{v^{(n)}_i = 1\}} Q_{\varepsilon_n/2}(\varepsilon_n i).
\]

By definition, \(v^{(n)} \) coincides with \(u^{(n)} \) outside \(Q_{\ell_n} \) and \(F_n \setminus Q_{R_n} = E_n \setminus Q_{R_n} \). Notice that (5.6) implies that
\[
F_n \setminus Q_R = E_n \setminus Q_R.
\]

Moreover, by (5.6) and (5.4), we see that
\[
\text{Per}_K(F_n; Q_R) \geq \text{Per}_K(F_n; Q_{R_n}) = \frac{\varepsilon_n^{d-s}}{4} H_{Q_{\ell_n}}^{(\varepsilon_n)}(v^{(n)}).
\]

Hence, by (5.7) and the minimality of \(u^{(n)} \) in \(Q_{\ell_n} \), we deduce that
\[
\text{Per}_K(E; Q_R) \leq \liminf_{n \to +\infty} \text{Per}_K(F_n; Q_R).
\]

To conclude the proof of the minimality of \(E \) it now suffices to verify the validity of the following result:

Lemma 5.4. There exists a diverging sequence \(\{n_k\}_{k \in \mathbb{N}} \) of natural numbers for which
\[
\lim_{k \to +\infty} \text{Per}_K(F_{n_k}; Q_R) = \text{Per}_K(F; Q_R).
\]

Proof. Given any set \(\Omega \) and any \(\delta > 0 \), we denote by \(N^\Omega_\delta(\hat{F}) \) the \(\delta \)-neighborhood of \(\hat{F} \) in \(\Omega \), that is
\[
N^\Omega_\delta(\hat{F}) := \{ x \in \Omega : \text{dist}(x, \hat{F}) \leq \delta \}.
\]

Since \(\partial F \cap Q_R \) is smooth (recall Lemma 5.3), we have that
\[
|N^\delta_{Q_R}(\hat{F})| \leq C\delta,
\]
for any small \(\delta > 0 \) and some constant \(C > 0 \) independent of \(\delta \). Moreover, recalling (5.12), we notice that
\[
B_n \subseteq N^Q_{\delta_{\varepsilon_n}}(\hat{F}),
\]
and thus
\[
|B_n| \leq c_1 \varepsilon_n,
\]
for some \(c_1 > 0 \) independent of \(n \).
After these preliminary considerations, we now head to the proof of (5.14). First of all, we observe that

\[F_n \rightarrow F \text{ in } L^1_{\text{loc}}, \text{ as } n \rightarrow +\infty. \]

Indeed, the convergence outside \(Q_{R_n} \) comes from the fact that \(F_n \setminus Q_{R_n} = E_n \setminus Q_{R_n} \) and \(E_n \rightarrow E \) in \(L^1_{\text{loc}} \). On the other hand, \((F_n, \Delta F) \cap Q_{R_n} \subset B_n \) and the conclusion follows by (5.15).

Up to considering a suitable subsequence (that we neglect to keep track of in the notation), we also have that

\[\chi_{F_n} \rightarrow \chi_F \text{ and } \chi_{B_n} \rightarrow 0 \text{ a.e. in } \mathbb{R}^d, \text{ as } n \rightarrow +\infty. \]

Concerning the inner contributions to the \(K \)-perimeters of \(F_n \) and \(F \), we recall the notation in (5.12) and we compute

\[
\begin{aligned}
|\mathcal{L}_K(F_n \cap Q_R, Q_R \setminus F_n) - \mathcal{L}_K(F \cap Q_R, Q_R \setminus F)| \\
\leq |\mathcal{L}_K(G_n^+, G_n^- \cup (B_n \setminus F)) - \mathcal{L}_K(F \cap Q_R, Q_R \setminus F)| + \mathcal{L}_K(G_n^+, B_n \cap F) \\
\leq \mathcal{L}_K((F \cap Q_R) \setminus G_n^+, Q_R \setminus F) + \mathcal{L}_K(G_n^+, B_n \cap F) \\
= \mathcal{L}_K(B_n \cap F, Q_R \setminus F) + \mathcal{L}_K(G_n^+, B_n \cap F).
\end{aligned}
\]

Now, on the one hand,

\[\mathcal{L}_K(B_n \cap F, Q_R \setminus F) = \int_{F \cap Q_R} \int_{Q_R \setminus F} \chi_{B_n}(x) K(x, y) \, dx \, dy, \]

so that, by taking advantage of the Lebesgue’s Dominated Convergence Theorem, (5.16) and the fact that \(F \) has finite \(K \)-perimeter in \(Q_R \), we deduce that

\[\lim_{n \rightarrow +\infty} \mathcal{L}_K(B_n \cap F, Q_R \setminus F) = 0. \]

On the other hand, we use hypothesis (1.19), a suitable change of variables and the Coarea Formula to obtain

\[
\begin{aligned}
\mathcal{L}_K(G_n^+, B_n \cap F) &\leq \Lambda \sum_{Q \in B_n} \int_Q \int_{\mathbb{R}^d \setminus Q} \frac{dx \, dy}{|x - y|^{d+s}} = \Lambda \left(\# B_n \right) \int_{Q_{\varepsilon_n/2}} \int_{\mathbb{R}^d \setminus Q_{\varepsilon_n/2}} \frac{dx \, dy}{|x - y|^{d+s}} \\
&= \frac{\Lambda |B_n|}{\varepsilon_n^s} \int_{Q_{1/2}} \int_{\mathbb{R}^d \setminus Q_{1/2}} \frac{dx \, dy}{|x - y|^{d+s}} \leq \frac{\Lambda |B_n|}{\varepsilon_n^s} \int_{Q_{1/2}} \left(\int_{\mathbb{R}^d \setminus Q_{1/2}} \frac{dz}{|z|^{d+s}} \right) dx \\
&\leq c_2 \frac{|B_n|}{\varepsilon_n^s},
\end{aligned}
\]

for some \(c_2 > 0 \) independent of \(n \). By this and (5.15), we conclude that

\[\lim_{n \rightarrow +\infty} \mathcal{L}_K(G_n^+, B_n \cap F) = 0, \]

and thus, recalling (5.17) and (5.18),

\[\lim_{n \rightarrow +\infty} \mathcal{L}_K(F_n \cap Q_R, Q_R \setminus F_n) = \mathcal{L}_K(F \cap Q_R, Q_R \setminus F). \]

In regards to the outer contributions, using (5.13), we have

\[
\begin{aligned}
|\mathcal{L}_K(F_n \setminus Q_R, Q_R \setminus F_n) - \mathcal{L}_K(F \setminus Q_R, Q_R \setminus F)| \\
\leq |\mathcal{L}_K(F_n \setminus Q_R, Q_R \setminus F) - \mathcal{L}_K(F \setminus Q_R, Q_R \setminus F)| + \mathcal{L}_K(E_n \setminus Q_R, B_n \cap F) \\
\leq \mathcal{L}_K((F_n \Delta F) \setminus Q_R, Q_R) + \mathcal{L}_K(\mathbb{R}^d \setminus Q_R, B_n) \\
= \int_{\mathbb{R}^d \setminus Q_R} \left(\int_{Q_R} (\chi_{F_n \Delta F}(x) + \chi_{B_n}(y)) K(x, y) \, dy \right) dx.
\end{aligned}
\]
Notice that, by (1.19), the kernel K belongs to $L^1(\mathbb{R}_R \times (\mathbb{R}^d \setminus Q_R))$, thanks to Lemma 4.3. Therefore, we can use (5.16) and the Lebesgue’s Dominated Convergence Theorem once again to get
\begin{equation}
\lim_{n \to +\infty} \mathcal{L}_K(F \setminus Q_R, Q_R \setminus F_n) = \mathcal{L}_K(F \setminus Q_R, Q_R \setminus F).
\end{equation}
Analogously, one also checks that
\begin{equation}
\lim_{n \to +\infty} \mathcal{L}_K(F_n \cap Q_R, \mathbb{R}^d \setminus (F_n \cup Q_R)) = \mathcal{L}_K(F \cap Q_R, \mathbb{R}^d \setminus (F \cup Q_R)).
\end{equation}
By putting together this, (5.20) and (5.19), the thesis immediately follows. \qed

6. PLANELIKE MINIMAL SURFACES FOR THE K-PERIMETER. PROOF OF THEOREM 1.7

Here, we address the validity of Theorem 1.7. Thanks to the link, established in Theorem 1.6, between the discrete structure of the Hamiltonian H and the continuous character of the perimeter Per_K, Theorem 1.7 is an almost immediate consequence of Theorem 1.4.

Proof of Theorem 1.7. Fix any direction $\omega \in \mathbb{R}^d \setminus \{0\}$. Let $\{\varepsilon_n\}$ be the infinitesimal sequence of positive numbers defined by setting $\varepsilon_n := 1/n$, for any $n \in \mathbb{N}$. Let $J^{(\varepsilon_n)}$ be the interaction kernel associated to ε_n introduced in (1.25) and observe that, thanks to (1.20), it satisfies the periodicity condition (1.10) with $\tau = n$. Moreover, Lemma 5.1 ensures that $J^{(\varepsilon_n)}$ also fulfills hypotheses (1.3), (1.4) and (1.9).

In view of this, we may deduce from Theorem 1.4 the existence of a ground state $u^{(n)}$ for the Hamiltonian $H^{(\varepsilon_n)}$ associated to $J^{(\varepsilon_n)}$ (see (1.26) for the precise definition) for which
\begin{equation}
\left\{ \begin{array}{l}
i \in \mathbb{Z}^d : \frac{\omega}{|\omega|} \cdot i \leq 0 \\
M_0 \end{array} \right\} \subset \left\{ \begin{array}{l}
i \in \mathbb{Z}^d : u_i^{(n)} = 1 \\
M_0 n \end{array} \right\} \subset \left\{ \begin{array}{l}
x \in \mathbb{R}^d : \frac{\omega}{|\omega|} \cdot x \leq M_0 \\
0 \end{array} \right\},
\end{equation}
for some constant $M_0 > 0$ independent of n.

But then, Theorem 1.6 implies that a subsequence of the extensions $\bar{u}^{(n)} = \bar{u}_{\varepsilon_n}^{(n)}$ of the $u^{(n)}$’s, as given by (1.27), converges in L^1_{loc} and a.e. in \mathbb{R}^d to the characteristic function χ_{E_ω} of a class A minimal surface $E_\omega \subseteq \mathbb{R}^d$ for Per_K. Also, it can be readily checked from definition (1.27) that inclusion (6.1) implies the analogous
\begin{equation}
\left\{ x \in \mathbb{R}^d : \frac{\omega}{|\omega|} \cdot x \leq -M_0 \right\} \subset \left\{ x \in \mathbb{R}^d : \bar{u}^{(n)} = 1 \right\} \subset \left\{ x \in \mathbb{R}^d : \frac{\omega}{|\omega|} \cdot x \leq M_0 \right\},
\end{equation}
up to possibly taking a larger M_0, still independent of ε. Hence, this and the convergence of the $\bar{u}^{(n)}$’s establish the validity of the planelike condition (1.28) for the set E_ω.

The proof of Theorem 1.7 is therefore complete. \qed

7. FROM THE K-PERIMETER TO THE ISING MODEL. PROOF OF THEOREM 1.8

In this section we prove Theorem 1.8.

Similarly to what we did in the proof of Theorem 1.6, for any $n \in \mathbb{N}$ we consider the (almost) partition of \mathbb{R}^d into the family
\begin{equation}
Q_n := \left\{ \bar{Q}_{\varepsilon_n/2}(\varepsilon_n i) : i \in \mathbb{Z}^d \right\},
\end{equation}
and we divide it into the two disjoint subfamilies
\[Q_n \setminus \mathcal{G}_n, \quad Q_n \subset \mathcal{G}_n, \]
Write
\[G_n := \bigcup_{Q \in \mathcal{G}_n} Q. \]
and notice that $G_n \subseteq E$. We then define a configuration $v^{(n)}$ by setting

$$v_i^{(n)} := \begin{cases} 1 & \text{if } Q_{\varepsilon/2}(\varepsilon i) \in G_n, \\ -1 & \text{if } Q_{\varepsilon/2}(\varepsilon i) \in Q_n \setminus G_n, \end{cases}$$

and denote by $	ilde{v}^{(n)} = \tilde{v}_{\varepsilon_n}^{(n)}$ its extension to \mathbb{R}^d, as in (1.27). Note that $	ilde{v}^{(n)} = \chi_{G_n} - \chi_{\mathbb{R}^d \setminus G_n}$. We claim that

$$\tilde{v}^{(n)} \rightarrow \chi_E - \chi_{\mathbb{R}^d \setminus E} \quad \text{a.e. in } \mathbb{R}^d, \quad \text{as } n \to +\infty. \tag{7.2}$$

Indeed, since $G_n \subseteq E$ for any $n \in \mathbb{N}$ and E is open by hypothesis, we have that $\chi_{E \Delta G_n} \to 0$ a.e. in \mathbb{R}^d, as $n \to +\infty$. Hence, (7.2) follows.

Let now

$$\ell_n := \left\lfloor \frac{R}{\varepsilon_n} \right\rfloor,$$

and set

$$R_n := \left(\ell_n + \frac{1}{2} \right) \varepsilon_n.$$

Clearly, $R \leq R_n \leq R + 2\varepsilon_n$, so that $R_n \to R$, as $n \to +\infty$.

We consider the minimizer $u^{(n)}$ for $H^{(n)}$ in Q_{ℓ_n}, with datum $v^{(n)}$ outside of Q_{ℓ_n}, that is a configuration $u^{(n)}$ for which

$$H_{Q_{\ell_n}}^{(n)}(u^{(n)}) \leq H_{Q_{\ell_n}}^{(n)}(w) \quad \text{for any configuration } w \text{ such that } w_i = v_i^{(n)} \text{ for any } i \in \mathbb{Z}^d \setminus Q_{\ell_n}.$$

As in (5.3), we associate to each $u^{(n)}$ the set

$$E_n := \bigcup_{i \in \{u_i^{(n)} = 1\}} Q_{\ell_n/2}(\varepsilon_n i).$$

By arguing as for Lemma 5.2, we use the uniform Hamiltonian estimate given by Proposition 2.9 (in its refined form (3.10)) and the identity (5.4) to obtain that

$$\text{Per}_K(E_n; Q_R) \leq \text{Per}_K(E_n; Q_{R_n}) \leq C_1 R_{n-s}^{d-s} \leq C_2 R^{d-s},$$

for some constants $C_2 \geq C_1 \geq 1$ independent of n (and R). By this, we may then extract a subsequence $\{n_k\}$ in such a way that $\chi_{E_{n_k}}$ converges a.e. in Q_R to $\chi_{\tilde{E}}$, for some measurable set $\tilde{E} \subseteq Q_R$, as $k \to +\infty$.

Set now

$$\hat{E} := \tilde{E} \cup (E \setminus Q_R).$$

By (7.2) and the definition of \hat{E}, we see that

$$\tilde{u}^{(n_k)} = \chi_{E_{n_k}} - \chi_{\mathbb{R}^d \setminus E_{n_k}} \rightarrow \chi_{\tilde{E}} - \chi_{\mathbb{R}^d \setminus \tilde{E}} \quad \text{a.e. in } \mathbb{R}^d, \quad \text{as } k \to +\infty,$$

where $\tilde{u}^{(n)} = \tilde{u}_{\varepsilon_n}^{(n)}$ denotes as usual the extension of $u^{(n)}$ to \mathbb{R}^d as of definition (1.27). Moreover, by arguing as in Section 5, one checks that the set \hat{E} is a minimizer for Per_K in Q_R. But then, since E is a strict minimizer and $\hat{E} \setminus Q_R = E \setminus Q_R$, we conclude that $\hat{E} = E$, and so Theorem 1.8 follows.

8. THE Γ-CONVERGENCE RESULT. PROOF OF THEOREM 1.9

In this section we show Theorem 1.9. For this, notice that the Γ-lim inf inequality is a trivial consequence of Fatou’s Lemma.

We can also easily check the validity of the third statement by applying the compact fractional Sobolev embedding (see e.g. [DNPV12, Corollary 7.2]) and recalling definition (1.30).

The proof of the Γ-lim sup inequality is slightly more involved. To begin with, observe that we may restrict ourselves to assuming that $\mathcal{G}_K(u; \Omega) < +\infty$ and thus that $u = \chi_E - \chi_{\mathbb{R}^d \setminus E}$ in Ω, for some measurable set $E \subseteq \mathbb{R}^d$ with finite K-perimeter in Ω.

We first prove the statement under the additional hypothesis that
\begin{align}
\tag{8.1}
\begin{cases}
u = \chi_E - \chi_{\mathbb{R}^d \setminus E} \text{ in } \Omega', \\
\partial E \cap \Omega' \text{ is smooth for some open bounded Lipschitz set } \Omega' \supset \Omega.
\end{cases}
\end{align}

We fix \(\varepsilon > 0 \) and, as in (7.1), we consider the (almost) partition of \(\mathbb{R}^d \) given by the family
\[Q_\varepsilon := \left\{ \tilde{Q}_{\varepsilon/2}(\varepsilon i) : i \in \mathbb{Z}^d \right\}. \]

We define the set
\[\Omega_\varepsilon := \bigcup_{Q \in Q_\varepsilon, Q \cap \Omega \neq \emptyset} Q, \]
and, recalling (1.29), the function \(u_\varepsilon \in X_\varepsilon \), by setting for a.e. \(x \in \mathbb{R}^d \)
\[u_\varepsilon(x) := \inf_{Q_{\varepsilon/2}(\varepsilon i)} u, \quad \text{where } i \in \mathbb{Z}^d \text{ is the only site for which } x \in \tilde{Q}_{\varepsilon/2}(\varepsilon i). \]

Note that \(\Omega \subseteq \Omega_\varepsilon \subset \Omega' \) for any \(\varepsilon \) sufficiently small and, consequently, that \(u_\varepsilon = \chi_E - \chi_{\mathbb{R}^d \setminus E} \) in \(\Omega_\varepsilon \), for some measurable set \(E_\varepsilon \).

Let now \(\{\varepsilon_n\}_{n \in \mathbb{N}} \subset (0, 1) \) be any infinitesimal sequence for which
\[\limsup_{\varepsilon \to 0^+} \mathcal{G}_K(u_\varepsilon; \Omega) = \lim_{n \to +\infty} \mathcal{G}_K^{(\varepsilon_n)}(u_{\varepsilon_n}; \Omega) . \]

Thanks to the regularity assumptions on \(E \) and \(u \), we see that \(u_{\varepsilon_n} \to u \) a.e. in \(\mathbb{R}^d \) and thus in \(L^1_{\text{loc}}(\mathbb{R}^d) \), as \(n \to +\infty \). Furthermore, by arguing as for (5.15) we can strengthen such convergence inside \(\Omega \) and obtain that
\[|(E_{\varepsilon_n} \Delta E) \cap \Omega| \leq C\varepsilon_n, \]
for some constant \(C > 0 \) independent of \(n \). As in the proof of Lemma 5.4, from this we then easily deduce
\[\lim_{n \to +\infty} \mathcal{K}(u_{\varepsilon_n}; \Omega, \Omega) = \mathcal{K}(u; \Omega, \Omega) . \]

On the other hand, by Lemma 4.3 we may use the Lebesgue’s Dominated Convergence Theorem to get that
\[\lim_{n \to +\infty} \mathcal{K}(u_{\varepsilon_n}; \Omega, \mathbb{R}^d \setminus \Omega) = \mathcal{K}(u; \Omega, \mathbb{R}^d \setminus \Omega) . \]

By combining this with (8.3) and (8.2), we conclude that the \(\Gamma \)-lim sup inequality holds true under hypothesis (8.1).

To finish the proof, we show that the \(\Gamma \)-lim sup inequality may be proved without assuming (8.1). Recall that \(u \in X \) is such that \(\mathcal{G}_K(u; \Omega) < +\infty \) and \(u = \chi_E - \chi_{\mathbb{R}^d \setminus E} \) in \(\Omega \), for some measurable \(E \subset \mathbb{R}^d \).

We first apply Lemma 5.3 to obtain a sequence of measurable sets \(\{E_k\}_{k \in \mathbb{N}} \) that satisfy
\[\tag{8.4} \partial E_k \cap \Omega_{1/k} \text{ is smooth, } E_k \setminus \Omega_{1/k} = E \setminus \Omega_{1/k}, \quad \lim_{k \to +\infty} |E_k \Delta E| = 0, \]
where, for any \(t \geq 0 \), we set \(\Omega_t := \{ x \in \mathbb{R}^d : \text{dist}(x, \Omega) \leq t \} \), and
\[\tag{8.5} \lim_{k \to +\infty} \text{Per}_K(E_k; \Omega) = \text{Per}_K(E; \Omega) . \]

Next, we consider a sequence \(\{\varphi_k\}_{k \in \mathbb{N}} \subset C^0(\mathbb{R}^d \setminus \Omega) \) such that \(\varphi_k \to u \) a.e. in \(\mathbb{R}^d \setminus \Omega \), as \(k \to +\infty \). Note that, to obtain such approximating sequence, one may argue as follows. Fix \(N \in \mathbb{N} \) in such a way that \(\Omega_1 \subset B_N \). Set \(F_0 := B_N \setminus \Omega \) and \(F_j := B_{N+j} \setminus B_{N+j-1} \), if \(j \in \mathbb{N} \).

To be extremely precise, Lemma 5.3 gives a sequence of sets \(\{\tilde{E}_k\}_{k \in \mathbb{N}} \) with smooth boundaries such that
\[\left| (E_k \cap \Omega) \Delta E \right| \to 0 \quad \text{and} \quad \text{Per}_K \left((E_k \cap \Omega) \cup (E \setminus \Omega) ; \Omega \right) \to \text{Per}_K(E; \Omega), \quad \text{as } k \to +\infty. \]

Then, it is not hard to check that the sets \(E_k := (E_k \cap \Omega_{1/k}) \cup (E \setminus \Omega_{1/k}) \) fulfill (8.4) and (8.5).
For any fixed $j \in \mathbb{N} \cup \{0\}$, we can find a sequence of functions $\{\varphi_k^{(j)}\}_{k \in \mathbb{N}} \subset C_0^\infty(F_j)$ such that $\varphi_k^{(j)} \to u$ in $L^1(F_j)$, as $k \to +\infty$. We then define

$$\varphi_k(x) := \sum_{j=0}^{+\infty} \chi_{F_j}(x) \varphi_k^{(j)}(x) \text{ for any } x \in \mathbb{R}^d \setminus \Omega.$$

Up to a subsequence, the sequence $\{\varphi_k\}$ has the desired convergence properties.

For any $x \in \mathbb{R}^d$, we define

$$u^{(k)}(x) := \begin{cases}
\chi_{E_k}(x) - \chi_{\mathbb{R}^d \setminus E_k}(x) & \text{if } x \in \Omega_{1/k}, \\
\varphi_k & \text{if } x \in \mathbb{R}^d \setminus \Omega_{1/k}.
\end{cases}$$

Observe that

$$u^{(k)} \to u \text{ a.e. in } \mathbb{R}^d \text{ and } \mathcal{H}_{K}(u^{(k)}; \Omega) \to \mathcal{H}_{K}(u; \Omega), \quad \text{as } k \to +\infty.$$

These facts are true thanks to (8.4), (8.5), the definition of $u^{(k)}$ and an application of the Lebesgue’s Dominated Convergence Theorem together with Lemma 4.3.

Moreover, each $u^{(k)}$ satisfies assumption (8.1). Hence, for any $\varepsilon > 0$ we deduce the existence of $u_\varepsilon^{(k)} \in \mathcal{X}_{\varepsilon}$ such that $u^{(k)} \to u^{(k)}$ a.e. in \mathbb{R}^d and $\mathcal{H}_{K}(u_\varepsilon^{(k)}; \Omega) \to \mathcal{H}_{K}(u^{(k)}; \Omega)$, as $\varepsilon \to 0^+$. More precisely, we can find a strictly decreasing, infinitesimal sequence $\{\varepsilon_k\}_{k \in \mathbb{N}}$ of positive numbers such that

$$d_{L^1_{\text{loc}}} (u_\varepsilon^{(k)}, u^{(k)}) + |\mathcal{H}_{K}(u_\varepsilon^{(k)}; \Omega) - \mathcal{H}_{K}(u^{(k)}; \Omega)| < \frac{1}{k} \text{ for any } \varepsilon \in (0, \varepsilon_k), \ k \in \mathbb{N},$$

where $d_{L^1_{\text{loc}}}$ is some metric on $L^1_{\text{loc}}(\mathbb{R}^d)$ inducing the standard L^1_{loc} topology, e.g.

$$d_{L^1_{\text{loc}}}(v, w) := \sum_{j=1}^{+\infty} \frac{1}{2^j} \frac{\|v - w\|_{L^1(B_j)}}{1 + \|v - w\|_{L^1(B_j)}} \text{ for any } v, w \in L^1_{\text{loc}}(\mathbb{R}^d).$$

For $\varepsilon \in (0, \varepsilon_1]$, we set $u_\varepsilon := u_\varepsilon^{(k)}$ where $k \in \mathbb{N}$ is the only integer for which $\varepsilon_{k+1} < \varepsilon \leq \varepsilon_k$.

Clearly, $u_\varepsilon \in \mathcal{X}_\varepsilon$. Moreover, $u_\varepsilon \to u$ in $L^1_{\text{loc}}(\mathbb{R}^d)$ and $\mathcal{H}_{K}(u_\varepsilon; \Omega) \to \mathcal{H}_{K}(u; \Omega)$, as $\varepsilon \to 0^+$. Indeed, given any $\delta > 0$, we may select $k = k_\delta \in \mathbb{N}$ large enough to have

$$d_{L^1_{\text{loc}}} (u^{(j)}, u) < \frac{\delta}{2}, \ |\mathcal{H}_{K}(u^{(j)}; \Omega) - \mathcal{H}_{K}(u; \Omega)| < \frac{\delta}{2} \text{ and } \frac{1}{j} < \frac{\delta}{2} \text{ for any } j \geq k.$$

Let now $\varepsilon \leq \varepsilon_k$ and select the only integer $j \geq k$ for which $\varepsilon \in (\varepsilon_{j+1}, \varepsilon_j]$. By combining (8.7) with (8.6), we conclude that

$$d_{L^1_{\text{loc}}} (u_\varepsilon, u) = d_{L^1_{\text{loc}}} (u_\varepsilon^{(j)}, u) \leq d_{L^1_{\text{loc}}} (u_\varepsilon^{(j)}, u^{(j)}) + d_{L^1_{\text{loc}}} (u^{(j)}, u) < \frac{1}{j} + \frac{\delta}{2} < \delta,$$

and, analogously,

$$|\mathcal{H}_{K}(u_\varepsilon; \Omega) - \mathcal{H}_{K}(u; \Omega)| \leq |\mathcal{H}_{K}(u_\varepsilon^{(j)}; \Omega) - \mathcal{H}_{K}(u^{(j)}; \Omega)| + |\mathcal{H}_{K}(u^{(j)}; \Omega) - \mathcal{H}_{K}(u; \Omega)| < \delta.$$

This concludes the proof of the Γ-lim sup inequality and, hence, of Theorem 1.9.

Appendix A. Proof of Lemma 5.3

In the present appendix, we provide a proof of Lemma 5.3 in full details. As mentioned right after its statement in Section 5, our argument is based on the strategies already followed in e.g. [G84, CSV16, L16].

Throughout the section, we implicitly suppose conditions (1.18) and (1.19) to be in force. Although the result may in fact hold under weaker hypotheses, we always suppose for simplicity that K satisfies both these assumptions. However, we stress that none of the steps of the proof require the periodicity hypothesis (1.20) to be valid, that we therefore do not suppose to hold.
After these introductory remarks, we may now head to the proof of Lemma 5.3.

Proof of Lemma 5.3. First, notice that, by (1.19) and the fact that F has finite K-perimeter, the characteristic function χ_F belongs to the fractional Sobolev space $W^{s,1}(\Omega)$. Hence, by standard density results (see e.g. [G85, Theorem 1.4.2.1]), there exists a sequence $\{\varphi_n\}_{n \in \mathbb{N}} \subset W^{s,1}(\Omega) \cap C^\infty(\overline{\Omega})$ such that

(A.1) \[\varphi_n \to \chi_F \text{ in } W^{s,1}(\Omega), \text{ as } n \to +\infty. \]

By using again (1.19), this ensures that

(A.2) \[\lim_{n \to +\infty} \mathcal{H}_K(\varphi_n; \Omega, \Omega) = \mathcal{H}_K(\chi_F; \Omega, \Omega). \]

For $t \in (0, 1)$, we let

\[F_n := (\{\varphi_n > t\} \cap \overline{\Omega}) \cup (F \setminus \overline{\Omega}). \]

Clearly, $F_n \setminus \overline{\Omega} = F \setminus \overline{\Omega}$, which proves (5.9).

Also, Morse-Sard’s Theorem tells that, for a.e. $t \in (0, 1)$, the boundary of the level set $\{\varphi_n > t\}$ is a smooth hypersurface. Hence ∂F_n is smooth inside $\overline{\Omega}$, which gives (5.8).

We now claim that for a.e. $t \in (0, 1)$ fixed,

(A.3) \[\lim_{n \to +\infty} |F_n \Delta F| = 0, \]

and

(A.4) \[\lim_{n \to +\infty} \text{Per}_K(F_n; \Omega) = \text{Per}_K(F; \Omega), \]

up to a subsequence, that is (5.10) and (5.11), respectively.

We begin by checking (A.3). Let $\tau \in (0, 1)$ and notice that

\[\varphi_n - \chi_F > \tau \quad \text{in } (\{\varphi_n > \tau\} \setminus F) \cap \Omega \]

and

\[\chi_F - \varphi_n \geq 1 - \tau \quad \text{in } (F \setminus \{\varphi_n > \tau\}) \cap \Omega. \]

From this, we deduce that

\[\|\varphi_n - \chi_F\|_{L^1(\Omega)} \geq \int_{(\{\varphi_n > \tau\} \setminus F) \cap \Omega} (\varphi_n(x) - \chi_F(x)) \, dx + \int_{(F \setminus \{\varphi_n > \tau\}) \setminus \Omega} (\chi_F(x) - \varphi_n(x)) \, dx \]

\[\geq \tau |(\{\varphi_n > \tau\} \setminus F) \cap \Omega| + (1 - \tau)|\{\varphi_n > \tau\} \setminus F \setminus \Omega| \]

\[\geq \min\{\tau, 1 - \tau\} \|\{\varphi_n > \tau\} \Delta F\| \cap \Omega|. \]

Therefore, using this and (A.1),

(A.5) \[\{\varphi_n > \tau\} \to F \quad \text{in } L^1(\Omega), \quad \text{for a.e. } \tau \in (0, 1). \]

Claim (A.3) follows as a particular case by taking $\tau = t$ in formula (A.5) above and recalling that $F_n \setminus \overline{\Omega} = F \setminus \overline{\Omega}$.

Next, we address the convergence of the perimeters stated in (A.4). Thanks to (A.5) and Lemma 4.1, we have

\[\mathcal{L}_K(F \cap \Omega, \Omega \setminus F) \leq \liminf_{n \to +\infty} \mathcal{L}_K(\{\varphi_n > \tau\} \cap \Omega, \Omega \setminus \{\varphi_n > \tau\}) \quad \text{for a.e. } \tau \in (0, 1), \]

or, equivalently,

(A.6) \[\mathcal{H}_K(\chi_F; \Omega, \Omega) \leq \liminf_{n \to +\infty} \mathcal{H}_K(\chi_{\{\varphi_n > \tau\}}; \Omega, \Omega) \quad \text{for a.e. } \tau \in (0, 1). \]

By applying, in sequence, (A.2), the generalized Coarea Formula of Lemma 4.2, Fatou’s Lemma and (A.6), we compute

\[\mathcal{H}_K(\chi_F; \Omega, \Omega) = \lim_{n \to +\infty} \mathcal{H}_K(\varphi_n; \Omega, \Omega) = \lim_{n \to +\infty} \int_{-\infty}^{+\infty} \mathcal{H}_K(\chi_{\{\varphi_n > \tau\}}; \Omega, \Omega) \, d\tau \]

\[\geq \int_{0}^{1} \liminf_{n \to +\infty} \mathcal{H}_K(\chi_{\{\varphi_n > \tau\}}; \Omega, \Omega) \, d\tau \geq \int_{0}^{1} \mathcal{H}_K(\chi_F; \Omega, \Omega) \, d\tau = \mathcal{H}_K(\chi_F; \Omega, \Omega). \]
By this and, again, (A.6) we conclude that
\[
\liminf_{n \to +\infty} \mathcal{K}(\chi_{\{\varphi_n > \tau\}}; \Omega, \Omega) = \mathcal{K}(\chi_F; \Omega, \Omega)
\]
for a.e. \(\tau \in (0, 1) \),
and thence
(A.7)
\[
\lim_{n \to +\infty} \mathcal{L}_K(F_n \cap \Omega, \Omega \setminus F_n) = \mathcal{L}_K(F \cap \Omega, \Omega \setminus F).
\]
On the other hand, we claim that
(A.8)
\[
\lim_{n \to +\infty} \mathcal{L}_K(F_n \setminus \Omega, \Omega \setminus F_n) = \mathcal{L}_K(F \setminus \Omega, \Omega \setminus F)
\]
and
\[
\lim_{n \to +\infty} \mathcal{L}_K(F_n \cap \Omega, \mathbb{R}^d \setminus (F_n \cup \Omega)) = \mathcal{L}_K(F \cap \Omega, \mathbb{R}^d \setminus (F \cup \Omega)),
\]
up to subsequences. To check the validity of (A.8), we first notice that, by (A.3), \(\chi_{F_n} \to \chi_F \) a.e. in \(\mathbb{R}^d \) (up to extracting a subsequence), as \(n \to +\infty \). Therefore, in view of Lemma 4.3 we may apply the Lebesgue’s Dominated Convergence Theorem to get
\[
\lim_{n \to +\infty} \mathcal{L}_K(F_n \setminus \Omega, \Omega \setminus F_n) = \lim_{n \to +\infty} \int_{\Omega} \chi_{\mathbb{R}^d \setminus F_n}(x) \left(\int_{\mathbb{R}^d \setminus F_n} \chi_{F_n}(y) K(x, y) \, dy \right) \, dx
= \int_{\Omega} \chi_{\mathbb{R}^d \setminus F}(x) \left(\int_{\mathbb{R}^d \setminus F} \chi_{F}(y) K(x, y) \, dy \right) \, dx
= \mathcal{L}_K(F \setminus \Omega, \Omega \setminus F),
\]
and similarly for the limit on the second line of (A.8). The combination of (A.7) and (A.8) yields the convergence of the \(K \)-perimeters claimed in (A.4).

The proof of Lemma 5.3 is thus finished. \(\square \)

APPENDIX B. OPTIMALITY OF THE WIDTH OF THE STRIP GIVEN IN (1.17)

The goal of this appendix is to show that, for large values of the periodicity scale \(\tau \), the interface of the planelike ground states for powerlike interactions, as in (1.9), oscillates, in general, by a quantity proportional to \(\tau \) (i.e., the conclusion in (1.17) of Theorem 1.4 cannot be improved).

Of course, one needs to construct an ad-hoc example to check this optimality. The idea to construct this counterexample comes from similar phenomena in minimal surfaces and minimal foliations, in which the oscillation is produced by the fact that the metric is nonflat. For simplicity, we present here a two-dimensional explicit example, which goes as follows.

Given \(\tau \in 4\mathbb{N} + 1 \) (to be taken large in the subsequent construction), we define
\[
Q := \left\{ \frac{-\tau - 1}{2}, \ldots, 0, \ldots, \frac{-1}{2} \right\}^2,
\]
\[
\hat{Q} := \left\{ \frac{-\tau - 1}{4}, \ldots, 0, \ldots, \frac{-1}{4} \right\}^2,
\]
and
\[
\hat{Q} := \left\{ (i, j) \in \mathbb{Z}^2 \times \mathbb{Z}^2 \text{ s.t. there exists } (i', j') \in \hat{Q} \times \hat{Q} \text{ for which } i - i' = j - j' \in \tau \mathbb{Z}^2 \right\}.
\]

We set
\[
J_{ij} := \begin{cases}
\Lambda & \text{if } (i, j) \in \hat{Q} \text{ and } i \neq j \\
0 & \text{if } i = j \\
1 & \text{otherwise,}
\end{cases}
\]
for \(\Lambda > 1 \) (to be chosen conveniently large in the sequel).
We claim that any planelike ground state with rationally independent slope \(\omega \in \mathbb{R}^2 \) (with \(\omega \cdot n \neq 0 \) for any \(n \in \mathbb{Z}^2 \)) for the Hamiltonian associated to this case with vanishing magnetic field (i.e. \(h_i := 0 \) in (1.15)) possesses oscillations of order \(\tau \), for large \(\tau \).

For this, we argue by contradiction and suppose that (1.16) holds true with \(M = M(\tau) \) sublinear in \(\tau \), namely there exists a ground state \(u = u_{\omega,\tau} \) such that

\[
\partial u \subset \left\{ i \in \mathbb{Z}^2 : \frac{\omega}{|\omega|} \cdot i \in [0, M(\tau)] \right\},
\]

and

\[
\lim_{\tau \to +\infty} \frac{M(\tau)}{\tau} = 0.
\]

Since \(\omega \) is irrational, any straight line \(r_\omega \) with direction normal to \(\omega \) will get arbitrarily close to \(\tau \mathbb{Z}^2 \). In particular, up to a translation, we may assume that the origin lies in a \(\frac{\tau}{64} \)-neighborhood of \(r_\omega \), and, from (B.1) and (B.2), we can write

\[
u_i = -1 \text{ for any } i \text{ for which } \frac{\omega}{|\omega|} \cdot i \geq \frac{\tau}{32} \\
\text{and } \nu_i = 1 \text{ for any } i \text{ for which } \frac{\omega}{|\omega|} \cdot i \leq -\frac{\tau}{32},
\]
as long as \(\tau \) is large enough.

We now reach a contradiction with the minimality of \(u \) by constructing a suitable competitor \(v \) with less energy. To this aim, we define

\[
v_i := \begin{cases} -1 & \text{if } i \in \hat{Q}, \\ u_i & \text{otherwise}. \end{cases}
\]

Since \(u \) is supposed to be minimal, we have that

\[
0 \geq H_{\hat{Q}}(u) - H_{\hat{Q}}(v) = \sum_{(i,j) \in \mathbb{Z}^4 \setminus (\mathbb{Z}^2 \setminus \hat{Q})^2} J_{ij}(v_i v_j - u_i u_j)
\]

\[
= \Lambda \sum_{i,j \in \hat{Q}} \frac{1 - u_i u_j}{|i - j|^{2+s}} - 2 \sum_{i \in \hat{Q}, j \not\in \hat{Q}} \left(1 + u_i\right) u_j |i - j|^{2+s}
\]

\[
\geq 4\Lambda \sum_{\substack{i,j \in \hat{Q} \\{u_i = 1\} \\{u_j = -1\}}} \frac{1}{|i - j|^{2+s}} - 4 \sum_{i \in \hat{Q}, j \not\in \hat{Q}} \frac{1}{|i - j|^{2+s}}.
\]

Now, from (B.3), we know that the number of sites \(i \in \hat{Q} \) for which \(u_i = 1 \) is at least of the order \(c\tau^2 \), and similarly that the number of sites \(j \in \hat{Q} \) for which \(u_j = -1 \) is at least of the order \(c\tau^2 \), with \(c > 0 \) universal. Consequently, we have that

\[
\sum_{\substack{i,j \in \hat{Q} \\{u_i = 1\} \\{u_j = -1\}}} \frac{1}{|i - j|^{2+s}} \geq c' \tau^4 \left(\frac{\tau}{2^s}\right)^{2-s} = c' \tau^{2-s},
\]
for some $c' > 0$. On the other hand, using the index $k := j - i$,

$$\sum_{\substack{i \in Q \setminus \hat{Q} \mid i \neq j \mid i \in \hat{Q}}} \frac{1}{|i - j|^{2+s}} \leq C \sum_{\substack{|i| \leq \tau^{-1} \mid |i| \geq \frac{\tau}{2}}} \frac{1}{|i - j|^{2+s}} \leq C \sum_{\substack{|i| \leq \tau^{-1} \mid |i| \geq \frac{\tau}{2}}} \frac{1}{|k|^{2+s}}$$

$$\leq C' \sum_{\substack{|i| \leq \tau^{-1} \mid |i| \geq \frac{\tau}{2}}} \left(\frac{\tau + 1}{2} - |i| \right)^{-s} = C'' \sum_{\ell=0}^{\tau^{-1}} \left(\frac{\tau + 1}{2} - \ell \right)^{-s} \ell$$

$$\leq C''' \tau \sum_{\ell=0}^{\tau^{-1}} \left(\frac{\tau + 1}{2} - \ell \right)^{-s} \leq C''' \tau^{2-s},$$

for some $C, C', C'', C''' > 0$.

Thus, we insert this and (B.5) into (B.4) and we find that

$$0 \geq 4\tau^{2-s} (c' \Lambda - C'''),$$

which is a contradiction if Λ is sufficiently large.

Conclusions

After a short review of the classical Ising model, we considered in this paper a spin system with long-range interactions. We gave rigorous proofs of three types of results:

- the construction of ground state solutions whose phase separation stays at a bounded distance from any given hyperplane,
- the construction of nonlocal minimal surfaces which stay at a bounded distance from any given hyperplane,
- the asymptotic link between ground states of long-range Ising models and nonlocal minimal surfaces.

Acknowledgements

This work has been supported by the Alexander von Humboldt Foundation, the ERC grant 277749 E.P.S.I.L.O.N. “Elliptic Pde’s and Symmetry of Interfaces and Layers for Odd Non-linearities”, the PRIN grant 201274FYK7 “Aspetti variazionali e perturbativi nei problemi differenziali nonlineari”, the “Maria de Maeztu” MINECO grant MDM-2014-0445 and the MINECO grant MTM2014-52402-C3-1-P.

References

