
Materializing Baseline Views for Deviation
Detection Exploratory OLAP?

Pedro Furtado1, Sergi Nadal3, Veronika Peralta2, Mahfoud Djedaini2, Nicolas
Labroche2, and Patrick Marcel2

1 University of Coimbra, Portugal, pnf@dei.uc.pt
2 University of Tours, France, firstname.lastname@univ-tours.fr
3 Universitat Politècnica de Catalunya, Spain, snadal@essi.upc.edu

Abstract. Alert-raising and deviation detection in OLAP and explora-
tory search concerns calling the user’s attention to variations and non-
uniform data distributions, or directing the user to the most interesting
exploration of the data. In this paper, we are interested in the ability of a
data warehouse to monitor continuously new data, and to update accord-
ingly a particular type of materialized views recording statistics, called
baselines. It should be possible to detect deviations at various levels of
aggregation, and baselines should be fully integrated into the database.
We propose Multi-level Baseline Materialized Views (BMV), including
the mechanisms to build, refresh and detect deviations. We also propose
an incremental approach and formula for refreshing baselines efficiently.
An experimental setup proves the concept and shows its efficiency.

Keywords: OLAP, deviation detection, materialized views

1 Introduction

Data warehouses are used to support analysis over large amounts of data and
decision making based on the results of those analysis. Online analytic process-
ing (OLAP) tools enable analysis of multidimensional data interactively using
multiple perspectives, roll-up, drill-down, slicing and dicing. That multitude of
analysis perspectives contributes to information overload. While a huge amount
of information is available and browsable in many different ways, it is commonly
agreed that mechanisms to ease the job of the analyst are of key importance.

Deviation detection is a useful mechanism to identify variations in data dis-
tributions that can be relevant to explore, and alert users to look at those uncom-
mon patterns. In order to do this, it is necessary to build, refresh and monitor
baselines. Baselines are statistical artifacts that maintain information about the
normal distribution of some data. When new values are outside that normality
users are alerted, or the variations are used to guide navigation. In this work we
restrict deviation detection to identifying if values are outside a usual band, on
future work we intend to explore more complex models.

? This work was done while Pedro Furtado was visiting University of Tours.

2 Pedro Furtado et al.

Baselines should be integrated into databases as “first-class citizens”. They
have many similarities to materialized views in terms of their life-cycle. In this
paper we propose Multi-level Baseline Materialized Views (BMV). The approach
assumes baselines can be created and monitored at different levels of aggregation,
such as daily and monthly totals. BMVs are integrated into the data warehouse,
managed and refreshed as a kind of materialized view, at multiple levels of
aggregation. The proposed architecture should be efficient, therefore we design
the physical mechanisms for baseline monitoring and refreshing taking efficiency
into account. The resulting architecture is evaluated using a proof of concept
and the dataset of the Star Schema Benchmark (SSB).

The rest of this paper is organized as follows. Section 2 discusses related work.
Section 3 motivates Multi-level Baseline Materialized Views with an example
and possible uses. Section 4 defines the concept formally. Section 5 proposes the
mechanisms for managing BMVs (creation, refreshing and detection). Section 6
presents experimental results to validate our proposal and Section 7 concludes.

2 Related work

For a long time now, researchers have been interested in finding out interesting
patterns in datasets [4,6,11,12], and interestingness measures have been stud-
ied as well [5]. Some previous works have dealt with the more specific issue of
deviation detection [2,4,11,12].

In [2], the authors adapt attribute focusing algorithms to multidimensional
hierarchical data. Attribute focusing discovers interesting attribute values, in the
sense that the observed frequency of those values deviate from their expected fre-
quency. In order to make attribute focusing useful for OLAP, they have adapted
the method to hierarchical dimensions often found in data cubes.

In [11], the authors introduce an operator that summarizes reasons for drops
or increases observed at an aggregated level. They developed an information
theoretic formulation and designed a dynamic programming algorithm to find
the reasons. This work is then also evolved in [12], where the authors propose
automation through the iDiff operator that in a single step returns summarized
reasons for drops or increases observed at an aggregated level. Comparing to
our proposal, this approach does not materialize baselines, therefore it is very
computationally intensive during navigation, since it requires searching for de-
viations on the fly. In [4], a more general framework is proposed for measuring
differences in data characteristics based in quantifying the deviation between
two datasets in terms of the models they induce. The framework covers a wide
variety of models, including frequent itemsets, decision tree classifiers, and clus-
ters. The authors show how statistical techniques can be applied to the deviation
measure to assess whether the difference between two models is significant. In
[3] a set of approaches was designed for summarizing multidimensional cubes,
including quantization, multidimensional histograms and an efficient approach
for computation and maintenance of confidence intervals.

Materializing Baseline Views for Deviation Detection Exploratory OLAP 3

Our previous work on the subject [8], for raising alerts in real-time data ware-
houses, introduced a first definition of baselines, an approach to compute them
and to detect deviation in real-time data warehouses. We now evolve the concept
in some directions. We generalize the concept of baseline to detect deviations
at any level of aggregation. Multi-level Baseline Materialized Views materialize
baselines, and are fully integrated in the data warehouse life-cycle. The mech-
anisms for building, refreshing and monitoring deviations are also different and
achieve integration into the data warehouse architecture. BMVs share many of
the mechanisms of materialized views, but with specific approaches for refresh-
ing the baseline. We also propose a mechanism for holding and computing data
normality intervals incrementally within the baseline.

3 Using Baseline Materialized Views

In this section we make use of examples to better motivate and clarify the con-
cept of BMV, its relevance in the framework of exploratory search and query
recommendation, and how it could be used in such context.

A Baseline Materialized View defines two levels of aggregation: (i) a detailed
level (DL), at which deviations are detected, and (ii) a more aggregated level
(AL), at which statistical information is summarized to the user. For each cell
of the AL, a set of cells of the DL allow to study deviations.

As an example, consider a data warehouse that records each individual sale
of products. A sales manager is interested in knowing when the sales of some
products are above or below its typical sales values. He creates a baseline that
alerts when the weekly sales of a product are abnormal when compared to the av-
erage weekly sales of the product category along the year. The baseline monitors
weekly sales of products (DL: product × week) and provides statistics by year
and category (AL: category×year). If the user wanted the baseline for a specific
subset of the cube, he could add the appropriate filters (e.g. country=“Canada”).

A straightforward use of BMV is alerting. This means that the baseline will
compare the current week with the remaining weeks of the same year or of the
previous year (if there are not enough weeks in the current year yet to compare
to). In order for this to work, (product× week) must be a hierarchical detail of
(category × year). Weekly product sales will be automatically integrated into
a BMV after each week ends (because of the week field in the definition of the
baseline). The system writes into an alert log when the value to be integrated is
out of a typical interval, which we define as [AV G(sales)−CI,AV G(sales)+CI],
where CI is a confidence interval.

In addition, the concept of BMVs is extremely useful in exploratory OLAP.
In the case of a user exploring cubes from some perspective, deviation detection
with BMVs can be used to efficiently direct him to drill-down from the current
perspective directly into some interesting facts that the BMV maintains.

As another example, consider the drill-down scenario (shown in Figure 1). A
user initially compares sales per nation for 1997 and 1998. He then focuses on
Canada, comparing sales per city. Finding that Canada 5 city has an abnormal

4 Pedro Furtado et al.

volume of sales, he drills-down to product category, and finds out that category
MFGR#42 has an enormous volume of sales. Analyzing the monthly evolution
of sales of this category, he discovers that it has had an abnormal amount of
orders in February 1998. The length of this simple navigation is 4 queries. This
compares with 2 queries if using a baseline with AL: nation×year and DL: city×
month × category. When the user is navigating at the more aggregated level,
the baseline immediately indicates the abnormal increase in sales of category
MFGR#42. But, even more important, while the user navigating through the
data may never find the interesting data, the interesting data is suggested to
him when using baselines. In the experimental section we revisit this example,
and show the improvement also in execution time.

Fig. 1. Drill-down scenario. Time on the left refers to experiments in Section 6.

BMVs are compatible with, and complement ordinary materialized views
(MV) in two ways. First, while an ordinary MV provides one-level aggregation
of finest granularity data (i.e. primary fact events), a BMV analyzes data at
some level of detail (DL), not necessarily the finest granularity, and describes
the distribution of those data at a more aggregated level (AL). Second, the most
relevant innovation in BMVs is that they are associated with automatic deviation
checks at each BMV refresh instant, generating a log of detected deviations
and/or alerts.

4 Formal Framework

In this section we define baseline materialized views and illustrate them using
simple examples. To keep the formalism simple, we consider read-only cubes
under a ROLAP perspective, described by a star schema. We consider the classic
definition of hierarchies, where a hierarchy hi is a set Lev(hi) = {l0, . . . , ld} of
levels together with a roll-up total order �hi

of Lev(hi).
A multidimensional schema (or briefly, a schema) is a tripleM = 〈A,H,M〉

where:

– A = {l1, . . . , lm} is a finite set of levels, with pairwise disjoint domains,

Materializing Baseline Views for Deviation Detection Exploratory OLAP 5

– H = {h1, . . . , hn} is a finite set of hierarchies, such that each level li of A
belongs to at least one hierarchy of H.

– M = {m1, . . . ,mp} is a finite set of measure attributes.

Given a schema M = 〈A,H, M〉, let Dom(H) = Lev(h1) × . . . × Lev(hn);
each g ∈ Dom(H) being a group-by set of M. We use the classical partial order
on group-by sets, defined by: g � g′, if g = 〈l1, . . . , ln〉, g′ = 〈l′1, . . . , l′n〉 and
∀i ∈ [1, n] it is li �hi

l′i. We note g0 the most specific (finest) group by set.

Definition 1 (Baseline).
A baseline over schemaM = 〈A,H,M〉 is a 5-tuple B = 〈G,Gd, P,Me, Stats〉

where:

1. G ∈ Dom(H) is the baseline group-by set;
2. Gd ∈ Dom(H), with G � Gd (G is a rollup of Gd), is the baseline deviation

detection group-by set;
3. P = {p1, . . . , pn} is a set of Boolean predicates, whose conjunction defines

the selection predicate for q; they are of the form l = v, or l ∈ V , with l
a level, v a value, V a set of values. Conventionally, if no selection on hi
is made in B (all values being selected) nothing appears in P and we write
P = ∅ if no selection is made at all;

4. Me ⊆M is a subset of measures;
5. Stats = {f1, . . . , fk} over Me is a set of aggregation functions, one per

measures in Me. In this paper, these functions compute the average and
confidence interval for each measure in Me.

A baseline can be viewed as a query, that specifies how to aggregate (using
functions in Stats) a set of facts (defined by group by set Gd and predicates in
P) at a given aggregation level (group by set G). A baseline materialized view
(BMV) is a baseline materialized as a stored data set and refreshed automatically
using the procedure described in section 5.

Example 1. Assume a baseline by Month and Brand, describing the statistics
(in terms of a confidence interval) for the average sales by Day and Product.
This baseline is:
〈{month, brand}, {day, product}, {nation = “France′′}, {sales}, {fCI}〉4,

where fCI computes the confidence interval of a set of numerical values. The
baseline will update the sales total, the average sales and the confidence interval
when products are added to the baseline, by addition to the (month × brand)
cell to which the product and current month belong. The baseline will also allow
detecting deviations, by verifying if the new values being inserted are within or
outside of the confidence interval. In some cases this verification needs to be
done with the previous period. For instance, when a new month starts, there
is no sale yet for that month, therefore new sales should be compared with the
values of the previous month, until there are enough values in the current month
to compare with it.
4 For the sake of readability, baseline expressions are simplified in the examples: the

top levels are dropped in the group-by sets.

6 Pedro Furtado et al.

5 Baseline Materialized Views life-cycle

The BMV life-cycle is composed by a set of mechanisms that includes building
the BMV initially, refreshing it, detecting deviations and selecting the best BMVs
to materialize.

5.1 Updating Baseline Materialized Views

In a data warehouse, materialized views (MVs) are refreshed periodically, either
as soon as “new data arrives”, or in deferred mode. Conceptually, the update is
based on a merge operation, whereby the MV is merged with new data.

The approach for refreshing BMVs in a star schema of a ROLAP data ware-
house shares a lot of similarities with refreshing MVs. An MV would have the
following elements: MV = 〈G,P,Me, agg〉. In this section we describe the gen-
eral approach to refresh these structures and how to merge the measures (Me).
The operation that merges the statistics (Stats) of BMVs is described in 5.2.

The refresh is done by first running the query associated with the deviation
detection group set (Gd in BMV) or with the group-set (G in MV) against the
new data items. The result is an aggregation of the data items with granularity
Gd or G respectively. Now, new values are merged with those already in the
BMV/MV using additive formulas. Examples of such formulas to merge measures
of MVs or BMVs are:

sumnew = sumold + SUM(new items) (1)

countnew = countold + COUNT (new items) (2)

minnew = MIN(minold,MIN(new items)) (3)

maxnew = MAX(maxold,MAX(new items)) (4)

avgnew =
sumold + SUM(new items)

countold + COUNT (new items)
(5)

Note that this is similar to the standard approach used for incremental main-
tenance of data cubes and summary tables in a Warehouse [9].

Example 2. Consider the following examples of, respectively, BMV1, BMV2 and
BMV3:
〈{product, year}, {product, day}, {nation = France}, {sales}, {sum(sales)}〉
〈{product, year}, {product, week}, {nation = France}, {sales}, {sum(sales)}〉
〈{brand, year}, {product, week}, ∅, {sales, {sum(sales)}〉

Consider a new data item to be added with the following fields:

product brand date nation sales

P101 Philips 01-01-2015 France . . .

It is integrated into BMV1 at the end of the day, as it needs to be aggregated
into (product,day). It is integrated into BMV2 and BMV3 at the end of the week,
as it is pre-aggregated into (product,week) to represent sales of each product for
a week. The measure sum(sales) for product P101 will be updated by summing
all sales of that product in the period.

Materializing Baseline Views for Deviation Detection Exploratory OLAP 7

5.2 Statistics Structure and Merging Operation

The process of refreshing BMVs is incremental, with the addition of new data
to the existing data. New data needs to refresh the statistics describing it.

Consider the structure of BMVs, BMV = 〈G,Gd, P,Me, Stats〉. Gd is the
deviation detection group-by set. The BMV is refreshed when there is complete
data at that level. For instance, if we are considering daily sales per product, the
deviation detection group-by set is daily sales per product and we can refresh
the baseline after each day has passed (or later, if deferred). Now we describe
how to refresh the Stats element. Note that the statistics to be considered must
have an incremental property to guarantee the usability and the efficiency of the
approach.

According to the Central Limit Theorem it is possible to estimate a con-
fidence interval around the mean of a population with the hypothesis of an
underlying Normal distribution if the number of samples is 30 or more. The
mean µ and the standard deviation σ of a population X = {xi}ni=1 can be
computed incrementally as follows if we keep in memory the tuple Stats =
(n,
∑n
i=1 xi,

∑n
i=1 x

2
i):

µ =
1

n

n∑
i=1

xi, σ =

(
n∑
i=1

x2i −
(
∑n
i=1 xi)

2

n

) 1
2

(6)

The confidence interval CI is then defined as follows:

CI = µ± Z(1−ρ) ·
σ√
n

(7)

where Z(1−ρ) is a parameter that is read from the Normal distribution table
and that indicates how many standard deviations covers the interval when the
confidence is in the interval is 1−ρ, or in other words, when the probability that
the true mean is outside the confidence interval is ρ.

Finally, we define the interval I as being the sum of the confidence interval
of the estimator of the mean CI, that reflects the uncertainty in the estimator,
and a value that can be expressed as either a fraction f of the mean itself or a
constant value c or both (defined by hand). Both f and c should be positive real
values or zero.

Example 3. The following is the information in a BMV, from which the aver-
age and the confidence intervals are promptly computed using (5), (6) and (7).
The confidence interval is configured for 1 − ρ = 0.90 which corresponds to a
parameter Z0.90 = 1.645.
〈{month, brand}, {day, product}, ∅, {sum(sales)},
{((count(sales), sum(sales), sum(sales ∗ sales)), 1.645}〉

5.3 Materialization Algorithm

Before introducing the algorithm, we motivate it showing the unfeasibility of
materializing the complete set of BMVs. Consider a roll-up lattice, where each

8 Pedro Furtado et al.

node ni represents a group-by set G, hence the number of BMVs that can be
generated from the node, is the total number of available nodes from ni to the
top node n0. That represents all possible perspectives G that can be observed
from Gd Figure 2 depicts a simple lattice structure with 3 dimensions, where
each node shows the number of possible BMVs. Thus, the number of BMVs it
can contain is 22. On top of that, that number will be increased by the possible
combinations of selection predicates P at each level ni.

Fig. 2. A 3-dimensional lattice

In [8] we introduced the concept of mon-
itoring query set MQ, that contains a set
of queries q which reflect the user’s in-
terest for deviation detection. Here we ex-
tend the definition of MQ in order to in-
corporate the elements of a BMV, there-
fore MQ = {m1, . . . ,mn} where mi =
〈G,Gd, P,Me, Stats〉.MQ can be obtained by
mining the query log, with techniques such as
[1,12], tailored to the user’s interest, or follow-
ing a cost-based approach based on empirical
measures as the well-known greedy algorithm
[7].

Algorithm 1 depicts the materialization phase, valid for both generation and
refreshment of BMVs. For each monitoring query, the related BMV is material-
ized using the formulas presented in 5.1 and 5.2. We assume the existence of a
CDC (Change Data Capture) table containing the new incoming items. Opera-
tion isMaterialized checks if a set of BMVs contains the BMV in the second
parameter. On the other hand, mergeStatistics given a set of BMVs, a BMV
and a sample of items applies eqs. (1) to (5) from the sample to the BMV and
includes it in the set. Likewise, refreshConfidenceInterval applies eqs. (6)
and (7).

Algorithm 1 Materializing BMVs

Input MQ: monitoring query set, BMV : set of baseline materialized views, CDC
table containing new items

Output BMV refreshed set of baseline materialized views
1: for q = 〈G,Gd, P,Me, Stats〉 ∈ MQ do
2: sample = q(CDC) . Run query against CDC table
3: if isMaterialized(BMV, q) then
4: mergeStatistics(BMV, q, sample)

5: refreshConfidenceInterval(BMV, q, sample)

6: return BMV

Materializing Baseline Views for Deviation Detection Exploratory OLAP 9

5.4 Detection and Alerting

Detection refers to the system detecting deviations in data. The baselines contain
reference statistics, so detection is based on verifying whether a new value is
within the interval. For instance,

i f (newSalesValue > avgSa le s + IC + f · IC + c or
newSalesValue < avgSa le s − IC − f · IC − c) {

dump a l e r t to l og
}

where the information dumped to the log has the structure 〈product, day,
month, year, new sales, average sales, confidence interval limits〉.

Deviations are tested immediately prior to integrating the new data into the
baseline. If a deviation is detected, information is dumped into a deviation log.
Only cases with more than a pre-specified minimum number of samples in the
baseline will be dumped. Then there are different possible courses of action. It
is possible to raise alerts for the user to look at the data, but the log can also be
used to direct the user to the most interesting data during navigation. Besides
the deviation log, there can be a “new cases” log, which records new cases that
are not yet in the baseline when they appear (e.g. a new product).

At the start of a new period, there are no values registered yet in the BMV
for that period, so it is not possible to compare new values with the same period.
If there is at least a minimum number of samples, the value is compared within
the period, otherwise it is compared against the previous period instead of the
current one.

6 Proof of concept

We illustrate the interest of our approach on the Star Schema Benchmark [10],
recording sales of products (parts) over time (the date dimension), customers
and suppliers. We modified the generated data to add skewness/deviations (an
abnormal amount of sales of specific products or brands in specific time inter-
vals). SSB generates sales data from 1992 to 1999. The sales of product 1 and
brand MFGR#241 where increased to 5% of total sales in the first week of 1998.
1GB of data was generated (SF=1).

The set of BMVs created is listed in Table 2. We apply the approach to
detect weekly abnormalities in the first week of 1998 (parameters f and c were
set to 0), show sales evolution and detection results, and evaluate the following
efficiency metrics: a) time to build the BMV; b) time to refresh the BMV; c) time
to detect the deviations (generate the alert log). The time to build the BMVs
and MVs (materialized views) is compared. All the experiments were run on a
Toshiba Qosmio machine, on a multicore Intel i7 CPU q720 (1.6 GHz), 8 GB
of RAM, 1 TB 7400 RPM disk. The DBMS was MySQL version 5.5.41 bundled
with MAMP out-of-the-box with no tuning except for the creation of indexes.

Figure 3 shows the evolution of sales (sum of quantity) in 52 weeks of 1997 and
the first week of 1998 of two particular brands (MFGR#111 and MFGR#421).

10 Pedro Furtado et al.

The injected increase in sales can be seen in the evolution of sales of brand
MFGR#421, with a steep rise in the first weeks of 1998. We can also see the de-
viation interval limits for the same brand (MFGR#421). Figure 1 shows the out-
put log with deviations detected for the first week of 1998. It correctly identifies
brand MFGR#421 as having sales of 19,945, a value well above the mean (5,457)
and outside the interval limits also identified (2,601 to 8,313). This was the only
row in the log, indeed correct since we only injected variations in MFGR#421.

Fig. 3. Charting Brand by Week 1997 and Jan 1998

Brand Week Year Sales Num of Sales Avg Sales Upper Limit Lower Limit

MFGR#412 1 1998 19,945 62 5457.47 8313.62 2601.32

Table 1. Content of Alert Log for Jan 1998

Table 2 depicts the times taken to build, refresh and detect deviations in
BMVs, and the size of the BMVs. The build time is incurred only once and de-
pends on the size of the dataset. It was between 60 and 620 seconds, depending
on the amount of data and aggregation level. Figure 4 details the build times
for product BMVs, and compare with the time taken to build MVs of the same
aggregation level. The same test was done for the brand BMVs but is not re-
ported due to lack of space. The total times to build a BMV, an MV following
the same pre-aggregation and an MV directly from the base data were 620, 556
and 258 seconds respectively. Creation of an MV is significantly faster if directly
from the base data, but times to build BMVs are still acceptable and offer the
advantage of having deviation detection.

The refresh times and time taken to generate the deviation detection logs are
shown in table 2. Refreshing was very quick for BMVs with few rows and took
between 25 and 125 seconds for huge BMVs (updating sales statistics for 200,000

Materializing Baseline Views for Deviation Detection Exploratory OLAP 11

products). The time taken to test and generate deviation logs was insignificant
in all cases.

BMV name initial build time size(rows) refresh time time to generate alert log

PY-PD prod-year, prod-day 367 1.2M 29.36 1.07

PM-PD prod-month, prod-day 620 4.45 M 124.41 0.96

BY-BD brand-year,brand-day 80 384 0.11 0.12

BM-BD brand-month,brand-day 79.85 4608 0.09 0.46

PY-PW prod-year,prod-week 484 1.2M 24.9 3.6

BY-BW brand-year,brand-week 59.35 384 0.1 0.09

Table 2. Time to Operate Baseline Materialized Views

Fig. 4. Detailed Timing to Build Products BMVs

Finally, we tested the drill-down scenario detailed in section 3. Without using
BMVs, the user had to submit 4 different queries, for a cost of 237 secs.
When using right BVMs, which provided him assistance, he only had to submit
2 queries with a cost of 98.5 secs.

7 Conclusions and Future Work

In this paper we have proposed Multi-Level Baseline Materialized Views (BMV)
as a way of integrating deviation detection functionality into the data ware-
house, to efficiently detect abnormal values. We have defined baseline material-
ized views, described their structure and the mechanisms for building, refreshing,
monitoring and alerting on various levels of aggregation based on those baselines.
In order to prove that the approach works, we created an experimental setup
with the Star Schema Benchmark and tested it over sales data. The results of
the experiments show that the approach works well and does not introduce sig-
nificant overheads. It provides an effective way to integrate baselines, deviation
detection and alerting into databases.

An interesting avenue for future work is to relax the uniform distribution
assumption underlying the approach, and to devise baseline materialization al-
gorithms by looking at the navigation sessions of a user, to decide automatically

12 Pedro Furtado et al.

to build a BMV based on her knowledge of the data. In other words, there should
be a BMV selection algorithm for choosing the best set to materialize. Addition-
ally, more complex methods can be used to detect anomalies by comparing data
distributions, such as the KullbackLeibler divergence. We would like to explore
real-time capabilities further and to apply these concepts to help in exploratory
OLAP, since the abnormalities detected in data are crucial clues to the most
interesting paths to follow during analysis and exploration. Finally, we also need
to deal with the information overload that results from too many alerts.

References

1. J. Aligon, E. Gallinucci, M. Golfarelli, P. Marcel, and S. Rizzi. A collaborative
filtering approach for recommending OLAP sessions. Decision Support Systems,
69:20–30, 2015.

2. C. C. Fabris and A. A. Freitas. Incorporating deviation-detection functionality
into the OLAP paradigm. In XVI Simpósio Brasileiro de Banco de Dados, 1-3
Outubro 2001, Rio de Janeiro, Brasil, Anais/Proceedings., pages 274–285, 2001.

3. P. Furtado. Reduced representations of multidimensional datasets, phd thesis, u.
coimbra, December 2000.

4. V. Ganti, J. Gehrke, R. Ramakrishnan, and W. Loh. A framework for measuring
differences in data characteristics. J. Comput. Syst. Sci., 64(3):542–578, 2002.

5. L. Geng and H. J. Hamilton. Interestingness measures for data mining: A survey.
ACM Computing Surveys (CSUR), 38(3):9, 2006.

6. J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: current status
and future directions. Data Mining and Knowledge Discovery, 15(1):55–86, 2007.

7. V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes effi-
ciently. SIGMOD Rec., 25(2):205–216, June 1996.

8. M. Lòpez, S. Nadal, M. Djedaini, P. Marcel, V. Peralta, and P. Furtado. An
approach for raising alert in real-time data warehouses. Journes francophones sur
les Entrepts de Donnes et lAnalyse en ligne Bruxelles, Belgique, 2-3 avril 2015,
2015(1):55–86, 2015.

9. I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of data cubes and sum-
mary tables in a warehouse. In SIGMOD 1997, Proceedings ACM SIGMOD Inter-
national Conference on Management of Data, May 13-15, 1997, Tucson, Arizona,
USA., pages 100–111, 1997.

10. P. E. O’Neil, E. J. O’Neil, X. Chen, and S. Revilak. The star schema benchmark and
augmented fact table indexing. In R. O. Nambiar and M. Poess, editors, TPCTC,
volume 5895 of Lecture Notes in Computer Science, pages 237–252. Springer, 2009.

11. S. Sarawagi. Explaining differences in multidimensional aggregates. In VLDB’99,
Proceedings of 25th International Conference on Very Large Data Bases, September
7-10, 1999, Edinburgh, Scotland, UK, pages 42–53, 1999.

12. S. Sarawagi. idiff: Informative summarization of differences in multidimensional
aggregates. Data Min. Knowl. Discov., 5(4):255–276, 2001.

	Materializing Baseline Views for Deviation Detection Exploratory OLAP

