DISTANCE LABELINGS: A GENERALIZATION OF LANGFORD SEQUENCES

S. C. LÓPEZ AND F. A. MUNTANER-BATLE

ABSTRACT. A Langford sequence of order m and defect d can be identified with a labeling of the vertices of a path of order $2m$ in which each labeled from d up to $d + m - 1$ appears twice and in which the vertices that have been label with k are at distance k. In this paper, we introduce two generalizations of this labeling that are related to distances.

2010 Mathematics subject classification: 11B99 and 05C78.
Key words: Langford sequence, distance i-labeling, distance J-labeling δ-sequence and δ-set.

1. INTRODUCTION

For the graph terminology not introduced in this paper we refer the reader to [14, 15]. For $m \leq n$, we denote the set \{m, m + 1, \ldots, n\} by [m, n]. A Skolem sequence [8, 11] of order m is a sequence of $2m$ numbers $(s_1, s_2, \ldots, s_{2m})$ such that (i) for every $k \in [1, m]$ there exist exactly two subscripts $i, j \in [1, 2m]$ with $s_i = s_j = k$, (ii) the subscripts i and j satisfy the condition $|i - j| = k$. The sequence $(4, 2, 3, 2, 4, 3, 1, 1)$ is an example of a Skolem sequence of order 4. It is well known that Skolem sequences of order m exist if and only if $m \equiv 0 \text{ or } 1 \pmod{4}$.

Skolem introduced in [12] what is now called a hooked Skolem sequence of order m, where there exists a zero at the second to last position of the sequence containing 2. Later on, Abrham and Kotzig [1] introduced the concept of extended Skolem sequence, where the zero is allowed to appear in any position of the sequence. An extended Skolem sequence of order m exists for every m. The following construction was given in [1]:

\begin{equation}
(p_m, p_m - 2, p_m - 4, \ldots, 2, 0, 2, \ldots, p_m - 2, p_m, q_m, q_m - 2, q_m - 4, \ldots, 3, 1, 3, \ldots, q_m - 2, q_m),
\end{equation}

where p_m and q_m are the largest even and odd numbers not exceeding m, respectively. Notice that from every Skolem sequence we can obtain two trivial extended Skolem sequences just by adding a zero either in the first or in the last position.

Let d be a positive integer. A Langford sequence of order m and defect d [13] is a sequence $(l_1, l_2, \ldots, l_{2m})$ of $2m$ numbers such that (i) for every $k \in [d, d + m - 1]$ there exist exactly two subscripts $i, j \in [1, 2m]$ with $l_i = l_j = k$, (ii) the subscripts i and j satisfy the condition $|i - j| = k$. Langford sequences, for $d = 2$, were introduced in [4] and they are referred to as perfect Langford sequences. Notice that, a Langford sequence of order m and defect $d = 1$ is a Skolem sequence of order m. Bermond, Brower and Germa on one side [2], and Simpson on the other side [13] characterized the existence of Langford sequences for every order m and defect d.

Theorem 1.1. [2, 13] A Langford sequence of order m and defect d exists if and only if the following conditions hold: (i) $m \geq 2d - 1$, and (ii) $m \equiv 0 \text{ or } 1 \pmod{4}$ if d is odd; $m \equiv 0 \text{ or } 3 \pmod{4}$ if d is even.

For a complete survey on Skolem-type sequences we refer the reader to [3]. For different constructions and applications of Langford type sequences we also refer the reader to [5, 6, 7, 9, 10].

Date: July 10, 2015.
1.1. Distance labelings. Let $L = (l_1, l_2, \ldots, l_{2m})$ be a Langford sequence of order m and defect d. Consider a path P with $V(P) = \{v_i : i = 1, 2, \ldots, 2m\}$ and $E(P) = \{v_i v_{i+1} : i = 1, 2, 2m - 1\}$. Then, we can identify L with a labeling $f : V(P) \rightarrow [d, d + m - 1]$ in such a way that, (i) for every $k \in [d, d + m - 1]$ there exist exactly two vertices v_i, v_j with $f(v_i) = f(v_j) = k$, (ii) the distance $d(v_i, v_j) = k$. Motivated by this fact, we introduce two notions of distance labelings, one of them associated with a positive integer l and the other one associated with a set of positive integers J.

Let G be a graph and let l be a nonnegative integer. Consider any function $f : V(G) \rightarrow [0, l]$. We say that f is a distance labeling of length l (or distance l-labeling) of G if the following two conditions hold, (i) either $f(V(G)) = [0, l]$ or $f(V(G)) = [1, l]$ and (ii) if there exist two vertices v_i, v_j with $f(v_i) = f(v_j) = k$ then $d(v_i, v_j) = k$. Clearly, a graph can have many different distance labelings. We denote by $\lambda(G)$, the labeling length of G, the minimum l for which a distance l-labeling of G exists.

We say that a distance l-labeling of G is proper if for every $k \in [1, l]$ there exist at least two vertices v_i, v_j of G with $f(v_i) = f(v_j) = k$. We also say that a proper distance l-labeling of G is regular of degree r (for short r-regular) if for every $k \in [1, l]$ there exist exactly r vertices v_{i_1}, v_{i_2}, \ldots, v_{i_r} with $f(v_{i_1}) = f(v_{i_2}) = \ldots = f(v_{i_r}) = k$. Clearly, if a graph G admits a proper distance l-labeling then $l \leq D(G)$, where $D(G)$ is the diameter of G.

Let G be a graph and let J be a set of nonnegative integers. Consider any function $f : V(G) \rightarrow J$. We say that f is a distance J-labeling of G if the following two conditions hold, (i) $f(V(G)) = J$ and (ii) for any pair of vertices v_i, v_j with $f(v_i) = f(v_j) = k$ we have that $d(v_i, v_j) = k$. We say that a distance J-labeling is proper if for every $k \in J \setminus \{0\}$ there exist at least two vertices v_i, v_j with $f(v_i) = f(v_j) = k$. We also say that a proper distance J-labeling of G is regular of degree r (for short r-regular) if for every $k \in J \setminus \{0\}$ there exist exactly r vertices v_{i_1}, v_{i_2}, \ldots, v_{i_r} with $f(v_{i_1}) = f(v_{i_2}) = \ldots = f(v_{i_r}) = k$. Clearly, a distance l-labeling is a distance J-labeling in which either $J = [0, l]$ or $J = [1, l]$. Thus, the notion of a J-labeling is more general than the notion of a l-labeling.

In this paper, we provide the labeling length of some well known families of graphs. We also study the inverse problem, that is, for a given pair of positive integers l and r we ask for the existence of a graph of order lr with a regular l-labeling of degree r. Finally, we study a similar question when we deal with J-labelings. The organization of the paper is the following one. Section 2 is devoted to l-labelings, we start calculating the labeling length of complete graphs, paths, cycles and some others families. The inverse problem is studied in the second part of the section. Section 3 is devoted to the inverse problem in J-labelings. There are many open problems that remain to be solve, we end the paper by presenting some of them.

2. Distance l-labelings

We start this section by providing the labeling length of some well known families of graphs. By definition, $\lambda(K_1) = 0$. In what follows, we only consider graphs of order at least 2.

Proposition 2.1. Let $n \geq 2$. The complete graph K_n has $\lambda(K_n) = 1$.

Proof. By assigning the label 1 to all vertices of K_n, we obtain a distance 1-labeling of it. \qed

Proposition 2.2. Let $n \geq 2$. The path P_n has $\lambda(P_n) = \lfloor n/2 \rfloor$.

Proof. By previous comment, we know that a Skolem sequence of order m exists if $m \equiv 0$ or 1 (mod 4). This fact together with (1) guarantees the existence of a proper distance $\lfloor n/2 \rfloor$-labeling when $n \not\equiv 4, 6$ (mod}
Let \(n \geq 3 \). The cycle \(C_n \) has \(\lambda(C_n) = \lfloor n/2 \rfloor \).

Proof.
Since, except for \(C_4 \) there are not three vertices in the cycle which are at the same distance, we have that \(\lambda(C_4) \geq \lfloor n/2 \rfloor \). The sequence that appears in (1) allows us to construct a (proper) distance \(\lfloor n/2 \rfloor \)-labeling of \(C_n \) when \(n \) is odd. Moreover, if \(n \) is even we can obtain a distance \(\lfloor n/2 \rfloor \)-labeling of \(C_n \) from the sequence that appears in (1) just by removing the end odd label.

Proposition 2.4. The star \(K_{1,k} \) has \(\lambda(K_{1,k}) = 2 \), when \(k \geq 3 \), and \(\lambda(K_{1,k}) = 1 \) otherwise.

Proof.
For \(k \geq 3 \), consider a labeling \(f \) that assigns the label 1 to the central vertex and to one of its leaves, and that assigns label 2 to the other vertices. Then \(f \) is a (proper if \(k \geq 4 \)) distance 2-labeling of \(K_{1,k} \). For \(1 \leq k \leq 2 \), the sequences \(1-1 \) and \(0-1-1 \), where 0 is assigned to a leaf, give a (proper) distance 1-labeling of \(K_{1,1} \) and \(K_{1,2} \), respectively.

Proposition 2.5. Let \(m \) and \(n \) be integers with \(2 \leq m \leq n \). Then, \(\lambda(K_{m,n}) = m \). In particular, the graph \(K_{m,n} \) admits a proper distance \(l \)-labeling if and only if, \(1 \leq m \leq 2 \).

Proof.
Let \(X \) and \(Y \) be the stable sets of \(K_{m,n} \), with \(|X| \leq |Y| \). We have that \(D(K_{m,n}) = 2 \), however the maximum number of vertices that are mutually at distance 2 is \(n \). Thus, by assigning label 2 to all vertices, except one, in \(Y \), 1 to the remaining vertex in \(Y \) and to one vertex in \(X \), 0 to another vertex of \(X \) we still have left 2 \(-\) 2 vertices in \(X \) to label.

Proposition 2.6. Let \(n \) and \(k \) be positive integers with \(k \geq 3 \). Let \(S^m_k \) be the graph obtained from \(K_{1,k} \) by replacing each edge with a path of \(n \) edges. Then

\[
\lambda(S^m_k) = \begin{cases}
2(n - 1), & \text{if } k = n - 1, \\
2n - 1, & \text{if } k = n, \\
2n, & \text{if } k > n.
\end{cases}
\]

Proof.
Suppose that \(S^m_k \) admits a distance \(l \)-labeling with \(l < 2n \). Then, all the labels assigned to leaves should be different. Moreover, although each even label could appear \(k \)-times, one for each of the \(k \) paths that are joined to the star \(K_{1,k} \), odd labels appear at most twice (either in the same or in two of the original forming paths). Thus, at least 2 \(n \) \(-\) 2 \(\) labels are needed for obtaining a distance labeling of \(S^m_k \), when \(k \geq n - 1 \). The following construction provides a distance 2 \((n - 1)\)-labeling of \(S^m_k \), when \(k = n - 1 \). Suppose that we label the central vertices of each path using the pattern \(2-4-\ldots-2(n - 1) \). Then, add odd labels to the leaves. For the case \(k = n \), we need to introduce a new odd label, which corresponds to 2 \(n \) \(-\) 1. Finally, when \(k > n \), we cannot complete a distance \(l \)-labeling without using 2 \(n \) labels. Fig. 1 provides a proper 2 \(n \)-labeling that can be generalized in that case.
Fig. 2 and 3 show proper distance labelings of S^5_k and S^5_3, respectively, that have been obtained by using the above constructions, and then, combining pairs of paths (whose end odd labels sum up to 8) for obtaining a proper distance 8-labeling and 9-labeling, respectively.

![Figure 1. A proper distance 10-labeling of S^5_6.](image1)

![Figure 2. A proper distance 8-labeling of S^5_4.](image2)

![Figure 3. A proper distance 9-labeling of S^5_5.](image3)

The case $k < n - 1$ in Proposition 2.6 requires a more detailed study. Consider the labeling of S^n_k obtained by assigning the labels in the sequence $0 - 2 - 4 - \ldots - 2(n - o) - s_1^i - s_2^i - s_k^i$ to the vertices of the path P^i, $i = 1, \ldots, k$, where 0 is the label assigned to the central vertex of S^n_k, and $\{s_j^i\}_{i=1,...,k}$ is the (multi)set of odd labels, if necessary, we replace some of the even labels by the remaining odd labels. By considering the pattern $1 - 1, 3 - 1 - 1 - 3, 5 - 3 - 1 - 1 - 3 - 5$ to the vertices of one of the paths, it can be checked that, the graph S^n_k admits an l-distance labeling with $l \in \{2(n-o), 2(n-o) + 1\}$ and

$$\left\lfloor \frac{2n - 1}{2k + 1} \right\rfloor \leq o \leq \left\lfloor \frac{2n + 2}{2k + 1} \right\rfloor.$$

More specifically, if $\left\lfloor \frac{(2n - 1)/(2k + 1)} \right\rfloor = \left\lfloor \frac{(2n + 2)/(2k + 1)} \right\rfloor$ then $o = \left\lfloor \frac{(2n - 1)/(2k + 1)} \right\rfloor$ and $l = 2(n-o)$. If $\left\lfloor \frac{(2n - 1)/(2k + 1)} \right\rfloor + 1 = \left\lfloor \frac{(2n)/(2k + 1)} \right\rfloor$ then $o = \left\lfloor \frac{(2n)/(2k + 1)} \right\rfloor$ and $l = 2(n-o) + 1$. Finally, if $\left\lfloor \frac{(2n)/(2k + 1)} \right\rfloor + 1 = \left\lfloor \frac{(2n + 1)/(2k + 1)} \right\rfloor$ then $o = \left\lfloor \frac{(2n + 1)/(2k + 1)} \right\rfloor$ and $l = 2(n-o) + 1$.

Proposition 2.7. For $n \geq 3$, let W_n be the wheel of order $n + 1$. Then $\lambda(W_n) = \lceil n/2 \rceil$.

Proof. Except for W_3, all wheels have $D(W_n) = 2$. The maximum number of vertices that are mutually at distance 2 is $\lfloor n/2 \rfloor$ and all of them are in the cycle. Thus, by assigning label 2 to all these vertices, 0 to one vertex of the cycle and 1 to the central vertex and to one vertex of the cycle, we still have to label $\lfloor n/2 \rfloor - 2$ vertices. \qed
Proposition 2.8. For \(n \geq 2 \), let \(F_n \) be the fan of order \(n + 1 \). Then \(\lambda(F_n) = \lfloor n/2 \rfloor \).

Proof.
Except for \(F_2 \), all fans have \(D(F_n) = 2 \). The maximum number of vertices that are mutually at distance 2 is \(\lceil n/2 \rceil \) and all of them are in the path. Thus, by assigning label 2 to all these vertices, 0 to one vertex of the path, 1 to the central vertex and to one vertex of the path when \(n \) is even and to two vertices when \(n \) is odd, we still have to label \(\lfloor n/2 \rfloor - 2 \) vertices.

2.1. The inverse problem. For every positive integer \(l \), there exists a graph \(G \) of order \(l \) with a trivial \(l \)-labeling that assigns a different label in \([1, l]\) to each vertex. In this section, we are interested on the existence of a graph \(G \) that admits a proper distance \(l \)-labeling.

We are now ready to state and prove the next result.

Theorem 2.1. For every pair of positive integers \(l \) and \(r \), \(r \geq 2 \), there exists a graph \(G \) of order \(lr \) with a regular \(l \)-labeling of degree \(r \).

Proof.
We give a constructive proof. Assume first that \(l \) is odd. Let \(G \) be the graph obtained from the complete graph \(K_r \) by identifying \(r - 1 \) vertices of \(K_r \) with the central vertex of the graph \(K^r_{\lfloor l/2 \rfloor} \). That is, \(G \) is obtained from \(K_r \) by attaching \(2r \) paths of length \(\lfloor l/2 \rfloor \) to its vertices, \(r + 1 \) to a particular vertex \(v_1 \) of \(K_r \) and exactly one path to each of the remaining vertices \(F = \{v_2, v_3, \ldots, v_r\} \) of \(K_r \). Now, consider the labeling \(f \) of \(G \) that assigns 1 to the vertices of \(K_r \), the sequence \(1 - 3 - \ldots - l \) to the vertices of the paths attached to \(F \) and one of the paths attached to \(v_1 \), and the sequence \(1 - 2 - 4 - \ldots - (l - 1) \) to the remaining paths. Then \(f \) is a regular \(l \)-labeling of degree \(r \) of \(G \). Assume now that \(l \) is even. Let \(G \) be the graph obtained in the above construction for \(l - 1 \). Then, by adding a leave to each vertex of \(G \) labeled with \(l - 2 \) we obtain a new graph \(G' \) that admits a regular \(l \)-labeling \(f' \) of degree \(r \). The labeling \(f' \) can be obtained from the labeling \(f \) of \(G \), defined above, just by assigning the label \(l \) to the new vertices.

![Figure 4. A regular 5-labeling of degree 4 of a graph G.](image)

Notice that, the graph provided in the proof of Theorem 2.1 also has \(\lambda(G) = l \). Fig. 4 and 5 show examples for the above construction. The pattern provided in the proof of the above theorem, for \(r = 2 \), can be modified in order to obtain the following lower bound for the size of a graph \(G \) as in Theorem 2.1.

Proposition 2.9. For every positive integer \(l \) there exists a graph of order \(2l \) and size \((l+2)(l+1)/2 - 2\) that admits a regular distance \(l \)-labeling of degree 2.
Lemma 3.1. The following easy fact is obtained from the definition. It is clear from definition that to say that a graph admits a (proper) distance labeling is the same as to say that the graph admits either a (proper) distance \([0, l]\)-labeling or a (proper) distance \([1, l]\)-labeling. That is, we relax the condition on the labels, the set of labels is not necessarily a set of consecutive integers. In this section, we study which kind of sets \(J\) can appear as a set labels of a graph that admits a distance \(J\)-labeling.

The following easy fact is obtained from the definition.

Lemma 3.1. Let \(G\) be a graph with a proper distance \(J\)-labeling \(f\). Then \(J \subset [0, D(G)]\), where \(D(G)\) is the diameter of \(G\).

3. **Distance \(J\)-labelings**

3.1. **The inverse problem: distance \(J\)-labelings obtained from sequences.** We start with a definition. Let \(S = (s_1, s_1, \ldots, s_1, s_2, \ldots, s_2, \ldots, s_l, \ldots, s_l)\) be a sequence of nonnegative integers where, (i) \(s_i < s_j\) whenever \(i < j\) and (ii) each number \(s_i\) appears \(k_i\) times, for \(i = 1, 2, \ldots, l\). We say that \(S\) is a \(\delta\)-sequence if there is a simple graph \(G\) that admits a partition of the vertices \(V(G) = \bigcup_{i=1}^{l} V_i\) such that, for all \(i \in \{1, 2, \ldots, l\}\), \(|V_i| = k_i\), and if \(u, v \in V_i\) then \(d_G(u, v) = s_i\). The graph \(G\) is said to realize the sequence \(S\).

Let \(\Sigma = \{s_1 < s_2 < \ldots < s_l\}\) be a set of nonnegative integers. We say that \(\Sigma\) is a \(\delta\)-set with \(n\) degrees of freedom or a \(\delta_n\)-set if there is a \(\delta\)-sequence \(S\) of the form \(S = (s_1, s_1, \ldots, s_1, s_2, \ldots, s_2, \ldots, s_l, \ldots, s_l)\), in which the following conditions hold: (i) all, except \(n\) numbers different from zero, appear at least twice, and (ii) if \(s_1 = 0\) then \(0\) appears exactly once in \(S\). We say that any graph realizing \(S\) also realizes \(\Sigma\). If \(n = 0\) we simply say that \(\Sigma\) is a \(\delta\)-set. Let us notice that an equivalent definition for a \(\delta\)-set is the following one. We say that \(\Sigma\) is a \(\delta\)-set if there exists a graph \(G\) that admits a proper distance \(\Sigma\)-labeling.

![Figure 5. A regular 6-labeling of degree 4 of a graph \(G\).](image)
Proposition 3.1. Let \(\Sigma = \{1 < s_1 < s_2 < \ldots < s_l\} \) be a set such that \(s_i - s_{i-1} \leq 2 \), for \(i = 1, 2, \ldots, l \). Then \(\Sigma \) is a \(\delta \)-set. Furthermore, there is a caterpillar of order \(2l \) that realizes \(\Sigma \).

Proof.
We claim that for each set \(\Sigma = \{1 < s_1 < s_2 < \ldots < s_l\} \) such that \(s_i - s_{i-1} \leq 2 \) there is a caterpillar of order \(2l \) that admits a 2-regular distance \(\Sigma \)-labeling in which the label \(s_i \) is assigned to exactly two leaves. The proof is by induction. For \(l = 1 \), the path \(P_2 \) admits a 2-regular distance \{1\}-labeling, and for \(l = 2 \), the star \(K_{1,3} \) and the path \(P_4 \) admit a 2-regular distance \{1, 2\}-labeling and a 2-regular distance \{1, 3\}-labeling, respectively. Assume that the claim is true for \(l \) and let \(\Sigma = \{1 = s_1 < s_2 < \ldots < s_{l+1}\} \) such that \(s_i - s_{i-1} \leq 2 \). Let \(\Sigma' = \Sigma \setminus \{s_{l+1}\} \). By the induction hypothesis, there is a caterpillar \(G' \) of order \(2l' \) that admits a regular distance \(\Sigma' \)-labeling of degree 2 in which the label \(s_i \) is assigned to leaves, namely, \(u_1 \) and \(u_2 \). Let \(u \in V(G') \) be the (unique) vertex in \(G' \) adjacent to \(u_1 \). Then, if \(s_{l+1} - s_1 = 2 \), the caterpillar obtained from \(G' \) by adding two new vertices \(v_1 \) and \(v_2 \) and the edges \(u_iv_1 \), for \(i = 1, 2 \), admits a regular distance \(\Sigma \)-labeling of degree 2 in which the label \(s_1 \) is assigned to leaves \(\{v_1, v_2\} \). Otherwise, if \(s_{l+1} - s_1 = 1 \) then the caterpillar obtained from \(G' \) by adding two new vertices \(v_1 \) and \(v_2 \) and the edges \(uv_1 \) and \(u_2v_2 \) admits a regular distance \(\Sigma \)-labeling of degree 2 in which the label \(s_{l+1} \) is assigned to leaves \(\{v_1, v_2\} \). This proves the claim. To complete the proof, we only have to consider the vertex partition of \(G \) defined by the vertices that receive the same label.

Proposition 3.1 provides us with a family of \(\delta \)-sets, in which, if we order the elements of each \(\delta \)-set, we get that the differences between consecutive elements are upper bounded by 2. This fact may lead us to get the idea that the differences between consecutive elements in \(\delta \)-sets cannot be too large. This is not true in general and we show it in the next result.

Theorem 3.1. Let \(\{k_1 < k_2 < \ldots < k_n\} \) be a set of positive integers. Then there exists a \(\delta \)-set \(\Sigma = \{s_1 < s_2 < \ldots < s_l\} \) and a set of indices \(\{1 \leq j_1 < j_2 < \ldots < j_n\} \), with \(j_n < l - 1 \), such that
\[s_{j_1+1} - s_{j_1} = k_1, \ s_{j_2+1} - s_{j_2} = k_2, \ldots, s_{j_n+1} - s_{j_n} = k_n. \]

Moreover, \(s_1 \) can be chosen to be any positive integer.

Proof.
Choose any number \(d_1 \in \mathbb{N} \) and choose any Langford sequence of defect \(d_1 \) (such a sequence exists by Theorem 1.1. We let \(d_1 = s_1 \). (Notice that if \(d_1 = 1 \) then the sequence is actually a Skolem sequence). Let this Langford sequence be \(L_1 \). Next, choose a Langford sequence \(L_2 \) with defect \(L_1 + 1 \). Next, choose a Langford sequence \(L_3 \) with defect \(L_2 + 1 \). Keep this procedure until we have used all the values \(k_1, k_2, \ldots, k_n \). At this point create a new sequence \(L \), where \(L \) is the concatenation of \(L_1, L_2, \ldots, L_n \) and label the vertices of the path \(P_r, r = \sum_{i=1}^{n+1} |L_i| \), with the elements of \(L \) keeping the order in the labeling induced by the sequence \(L \). This shows the result.

The next result shows that there are sets that are not \(\delta \)-sets.

Proposition 3.2. The set \(\Sigma = \{2, 3\} \) is not a \(\delta \)-set.

Proof.
The proof is by contradiction. Assume to the contrary that \(\Sigma = \{2, 3\} \) is a \(\delta \)-set. That is to say, we assume that there exists a sequence \(S \) consisting of \(k_1 \) copies of 2 and \(k_2 \) copies of 3 that is a \(\delta \)-sequence. Let \(G \) be a graph that realizes \(S \) and \(V_1 \cup V_2 \) the partition of \(V(G) \) defined as follows: if \(u, v \in V_1 \) then \(d_G(u, v) = i + 1 \), for \(i = 1, 2 \). It is clear that \(V_1 \) must be formed by the leaves of a star with center some vertex \(a \in V \). Since \(a \) is at distance 1 of any vertex in \(V_1 \), it follows that \(a \) must be in \(V_2 \) and furthermore, all vertices adjacent to \(a \) must be in \(V_1 \). Thus, there are no two adjacent vertices in the neighborhood of \(a \). At this point, let \(b \in V_2 \setminus \{a\} \). Then, there is a path of the form \(a, u_1, u_2, b \), where \(u_1 \in V_1 \) and hence, \(u_2, b \in V_2 \). This contradicts the fact that \(d_G(u_2, b) = 1 \). \(\square \)
The above proof works for any set of the form $\Sigma = \{2, n\}$, for $n \geq 3$. Thus, in fact, Proposition 3.2 can be generalized as follows.

Proposition 3.3. The set $\Sigma = \{2, n\}$ is not a δ-set.

Notice that, although $\Sigma = \{2, n\}$ is not a δ-set, it is a δ_1-set, since we can consider a star in which the center is labeled with n and the leaves with 2.

The next result gives a lower bound on the size of δ-sets in terms of the maximum of the set.

Theorem 3.2. Let Σ be a δ-set with $s = \max \Sigma$. Then, $|\Sigma| \geq \lceil(s+1)/2\rceil$.

Proof.

Let Σ be a δ-set with $s = \max \Sigma$. Let G be a graph that realizes Σ and let $V(G) = \cup_{i \in \Sigma} V_i$ be the partition defined as follows: if $u, v \in V_j$ then $d_G(u, v) = i$. Let $a_1, a_2 \in V_s$. At this point, let $P = b_1b_2 \ldots b_{s+1}$ be a path of length s starting at a_1 and ending at a_2. We claim that there are no three vertices in $V(P)$ belonging to the same set V_j, $j \in \Sigma$. We proceed by contradiction. Assume to the contrary that there exist vertices u, v and $w \in V(P)$ such that $u, v, w \in V_j$. That is, $d_G(u, v) = d_G(u, w) = d_G(u, v) = j$. However, it is clear that the above cannot happen if we take the distances in the path. Without loss of generality assume that $d_p(u, v) = k \neq j$. Clearly, $k > j$. Otherwise, we have that $d_G(u, v) \leq k$ instead of $d_G(u, v) = j$. Let P' be a path in G of length j that joins u and v. Then, the subgraph of G obtained from P by substituting the subpath of P joining u and v by P' contains a subpath of length strictly smaller than s. Thus, we obtain a contradiction.

Hence, each set in the partition of $V(G)$ can contain at most two vertices of P. Since $|V(P)| = s + 1$, it follows that we need at least $\lceil(s+1)/2\rceil$ sets in the partition of $V(G)$. Therefore, we obtain that $|\Sigma| \geq \lceil(s+1)/2\rceil$.

It is clear that the above proof cannot be improved in general, since from Proposition 3.1 we get that the any set of the form $\{1, 3, 5, \ldots, 2n \} \cup \{2n + 1\}$ is a δ-set and $|\{1, 3, 5, \ldots, 2n \} \cup \{2n + 1\}| = \lceil(2n + 2)/2\rceil$.

Furthermore, Proposition 3.3 is an immediate consequence of the above result. It is also worth to mention that there are sets which meet the bound provided in Theorem 3.2, however they are not δ-sets. For instance, the set $\{2, 3\}$ considered in Lemma 3.2. From this fact, we see that we cannot characterize δ-sets from, only, a density point of view. Next we want to propose the following open problem.

Open problem 3.1. Characterize δ-sets.

Let Σ be a set. By construction, a path of order $|\Sigma|$ in which each vertex receives a different labeling of Σ defines a distance $|\Sigma|$-labeling. That is, every set is a $\delta_{|\Sigma|}$-set. So, according to that, we propose the next problem.

Open problem 3.2. Given a set Σ is there any construction that provides the minimum r such that Σ is a δ_r-set.

Thus, the above problem is a bit more general than Open problem 3.1.

Acknowledgements The research conducted in this document by the first author has been supported by the Spanish Research Council under project MTM2011-28800-C02-01 and symbolically by the Catalan Research Council under grant 2014SGR1147.

References

Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya. BarcelonaTech. C/Estève Terrades 5, 08860 Castelldefels, Spain

\textit{E-mail address: susana@ma4.upc.edu}

Graph Theory and Applications Research Group, School of Electrical Engineering and Computer Science, Faculty of Engineering and Built Environment, The University of Newcastle, NSW 2308 Australia

\textit{E-mail address: fambles@yahoo.es}