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ABSTRACT 
The use of spectrally efficient continuous phase modulati- 
ons for mobile communications may lead to a serious perfor- 
mance degradation of the classical frequency error detectors 
(FEDs) due to the presence of self-noise. This contribution 
presents a new statistically efficient frequency estimation al- 
gorithm for staggered modulations. The cancellation of the 
self-noise is accomplished by the use of the Conditional ML 
principle, well known in the context of array processing, as 
an alternative to the Unconditional ML, typically applied in 
the communications field. The paper also provides a new 
Cramer Rao Bound (CRB) which is more accurate than 
the so-called Modified CRB (MCRB) extensively applied 
to synchronization problems. 

1. INTRODUCTION 

A Frequency Error Detector (FED) is the basic component 
of an automatic frequency loop. This kind of loop, either 
in analog or digital form, is usually employed for the pur- 
pose of carrier frequency synchronization in digital commu- 
nications. Different types of FEDs have been proposed in 
the last few years, and basically, there may be classified in 
four types: quadricorrelators, dual-filter detectors (DFD), 
rotational detectors and ML-based detectors. The reader 
is referred to the F.M. Gardner report [l] and references 
therein, and to D’Andrea et al. papers [2][3] for a further 
study of ML-based methods and the Cramer-Rao bounds 
associated to this problem. 

Frequency detectors based on the Maximum Likelihood 
(ML) formulation are important in that they are expected 
to provide good performance against noise. However, in 
the case of digitally modulated signals, the assumption of 
low signal-to-noise ratio (SNR) is usually required in or- 
der to avoid the mathematical difficulties associated with 
the rigorous application of the ML principle. To assume 
that the SNR is low has the consequence that the final 
structure of the estimator ignores the effect of the so-called 
self-noise. It is demonstrated in [l] that self-noise-free ope- 
ration can be achieved with non-staggered signals (when 
the loop is in the steady state) provided that two mild res- 
trictions are satisfied, i.e., the link impulse response g ( t )  
is Nyquist (g ( iT)  = 0, i # 0) and the Fourier Transform 
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of the transmitted pulse has linear phase. However, in the 
case of staggered signals, the more stringent requirement 
that g(iT/2) = 0 at i # 0 should be met for the cancella- 
tion of the self-noise, which is too restrictive for practical 
applications. 

This paper presents a new FED solution for the caSe of 
staggered signals which has the property that the self-noise 
is totally cancelled without the necessity of the above menti- 
oned restrictive condition. The key point for the derivation 
of the new solution is the use of a different method for the 
application of the ML principle, which does not require the 
assumption of low SNR. In this sense, one of the goals of 
the present contribution is to show that the conclusions de- 
rived in the literature concerning the requirements for the 
self-noise-free condition can not be considered as general 
conclusions about the frequency estimation problem. Ins- 
tead, it is the assumption of low-SNR required in the clas- 
sical derivation what leads to these stringent requirements. 
While in the field of array signal processing, both Condi- 
tional ML (CML) and Unconditional ML (UML) methods 
[4] have been studied and successfully applied to different 
problems, in the field of digital communications only the 
UML method has been classically employed. A possible re- 
ason for that is that most synchronization algorithms for 
digitally modulated signals have been obtained by formula- 
ting the problem in the continuous time domain, and their 
discrete counterparts have been derived by a direct trans- 
lation of them. Then, the question arises to whether the 
CML method can be applied directly to the sampled digi- 
tal modulations, and whether the obtained results will differ 
or not with respect to the classical ones derived from the 
UML method. This question is addressed in the present 
contribution where both classical and new algorithms are 
derived via the CML principle by formulating the problem 
directly in the discrete time domain. 

The present contribution makes use of the high amount 
of research effort on the CML in the field of array proces- 
sing, by importing all those rich results to the frequency 
estimation problem of digitally modulated signals. Specifi- 
cally, on the one hand, the final structure of the FEDs is 
based directly on the general equations for the gradient and 

the general expression for the Cramer-Rao Bound (CRB) 
for the CML method derived in [4] is used to derive a more 
accurate performance bound than the so-called Modified 
CRB (MCRB) derived in [3]. 

Hessian derived by Viberg et al. [5 ] .  On the other hand, 
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2. BACKGROUND 

The derivation of the algorithm is done from the general 
class of linear problems according to the following expres- 
sion: 

Y = A, (e) X + W (1) 

where the B x M  matrix Y denotes the observation matrix 
composed by M observation vectors y (i) ( i  = 0,1,2,  ..., M -  
1) of length B samples each, the N x B  matrix X the trans- 
mitted data symbols, the N x M  modulation dependent sig- 
nal model transfer matrix A, (e), and the BxM noise ma- 
trix W the AWGN term with scalar element by element 
mean power e:. The CML estimation of parameter vec- 
tor 0 is obtained by the minimization of the following cost 
function: 

LCML (e) = tr (.iii) (2) 

where the observation data samples autocorrelation ma- 
trix 6. = Y Y H / M  is projected into the orthogonal si nal 
space by mean of the orthogonal projection matrix Pz = 
I - A,Ai= I - A, (A:Ap)-' A:. Under these conditi- 
ons, Stoica and Nehorai [4] derived the Cramer-Rao bound 
(CRB) for the CML estimator in the context of linear array 
theory. On the other hand, Viberg, Ottersten and Kailath 
[5] derived the gradient and Hessian of the CML cost func- 
tion (2). For the single parameter case (as happens in the 
problem of frequency estimation) for which 8 = 01, the 
CRB, gradient and Hessian equations may be manipulated 
to yield: 

CRBCML (Q) = (?Re [t. (DHPiD?)])-' (3) 
o w  

(4) 

g (E) = -2Re [tr (AigPiD)]  (5) 

E [H (0)] = 2Re [tr (DHPiDI')] (6) 

where f; = XXW/M is the autocorrelation matrix obtained 
from the symbol matrix X and matrix D (0) = &Ap (0) 
The following sections constitute a summary of the appro- 
ach followed in [6]. 

3. FREQUENCY ESTIMATION FOR 
NON-STAGGERED MODULATIONS 

Let's consider the signal model for a non-staggered linear 
digital modulation (e.g. MPSK, MQAM, ...) affected by a 
frequency error 0. The received signal in an AWGN channel 
can be modeled by eq. (1). The received data vector signal 
model of length B samples can be written as follows: 

where A, (fl) has the conventional convolution structure of 
the pulse shaping filter: 

being a, (0) the pulse shape response p of length 2K + 1 
symbols sampled at N,, samples per symbol affected by the 
frequency offset a (a), that is: 

ap(0) = p ~ a ( R )  (9) 
P = [P(O),p(l), ... p((2K + 1)" - (10) 

I' (11) a (0) = [I, e 3 Q , e 3 2 Q  e3((2K+1P*s- l )Q 
1 "', 

and being x = [z(O),x(l), ..., z ( N g  - 1)IT the information 
symbol vector which includes the carrier phase evolution 
sampled at one sample per symbol: 

x (n )  = Ae3f$+nNsan)s(n) (12) 

The log-CML cost function (2) becomes: 

Ns 
EP 

LCML (0) = tr (PiyyH) = const. - -Sp(0) (13) 

(14) 
EP A 

SP(f4 = N, (Ab(WY)" (A,H(Q)Y) 

S P P )  = N, l p m Y l l *  

where Ep is the pulse energy. For ISI-free pulse shaping it 
holds that A:(R)A,(Q) = E,I and the cost function to be 
maximized becomes: 

(15) 
h 1 

or, in other words, it is necessary to maximize in 0 the 
mean power of the matched filter ap (0) output decimated 
at one sample per symbol which is more clearly represented 
by the following expression: 

1 
Ns gp(Q) = -aH (0) ['i.,. 0 ppH] a (0) (16) 

or, in other words, the Eeriodogram over the synchronous 
autocorrelation matrix R,,, = czl' yzy: of the strobe 
by strobe partially overlapped received data y., weighted by 
the outer product of the matched filter p response, with: 

yz = [y(iNss),y(iNss + I), ..., y(iN,s + (2K + 1)N.s - I)] 
(17) 

Finally, the solution update recursion given by eq. (4) is 
derived from the gradient expression in eq. (5) and the 
Hessie of the CML cost function in eq. (6 ) .  For a given 
prior R close the CML solution, the gradient becomes: 
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Figure 1: Structure of the FED. The obtained FED employing 
the CML approach resembles that of classical Gardner's FED, 
but with different design of the two filters. 

where bl = - j  I - &-ap (a) a," (n)) &ap (0),=~. This 
result agrees with that given by Gaxdner [l] where the es- 
timation update is driven by the product of two FIR filter 
outputs, the matched filter (MF) and the frequency matc- 
hed filter (FMF), as depicted in figure 1. On the other 
hand, the Hessian given in eq. (6 ) leads to: 

( 

E [H (a)]n=n = 2&PT (19) 

where PT = E [la," (g  yi 1'1 is the mean power at the out- 
put of the MF and ,Bp a measure of the pulse energy time- 
spread p p  = Ep [E, k 2 q , ( k )  - (E, k ~ , ( k ) ) ~ ]  for e p ( k )  = 

lp(k)I2 / E p  . The asymptotic CRB (eq. (3)) for the fre- 
quency estimation is given by: 

1 
2N8 SNRP, CRBCML (0) = 

which agrees with the MCRB given by Moeneclaey et al. 
[7] and D'Andrea et al. [3]. 

4. EXTENSION FOR STAGGERED MODULATIONS 

Staggered modulations (e.g. OQPSK, MSK, ...) consist in 
the modulation of two orthogonal subcarriers with a cons- 
tant time-delay between them. There are two reasons for 
using this modulation structure. The first one is to achieve 
an almost continuous phase time evolution (in fact, MSK is 
a particular case of CPFSK) and the second is to ensure a 
more constant signal envelope time evolution for improving 
the performance in front of non-linearities in the high power 
amplifiers. 

The signal model given in eq. (7) for non-staggered mo- 
dulations is also valid for the staggered modulations with 
small changes. Basically, the unique difference is introduced 
by the constant time-offset between the orthogonal subcar- 
riers. The most typical offset is half a symbol period and 
this is reflected in the transfer matrix A, (Cl) as follows: 

Note that the ISI-free condition obtained for non-staggered 
modulations no longer holds (i.e.Az (R) A, (0) # E$). 
The modification of the transfer matrix A, (0) also requires 

the extension of the symbol vector x to the modified one 
x = [z(O),z(l), ..., z(2N8 - 1)IT where now the length of 
the vector becomes 2N, instead of N,, with even and odd 
modified symbols given by: 

z(2n) = Aei('+"N""n)Re [ s ( n ) ]  (22) 

3Im M41 (23) z(2n + 1) = Aej(4+("+l/2)Nssn) ' 

The new CML cost function is, once again, given by eq. 
(14), but now, Ai(0)  # l/EpAZ(Cl). Note that, since 
a CML cost function is employed, the perfect suppression 
of the pattern noise is ensured, because the term Ai(S2)y 
extracts the minimum mean square error estimate of the 
symbol information vector x, which is used to remove the 
symbol information at the matched filter output AF(0)y. 
This property applies for the frequency estimation in both, 
non-staggered and staggered modulations, and it is the fun- 
damental difference with the UML based algorithms. 

For the computation of the small error gradient let's 
recall from eq. ( 5 )  that: 

g (n) = -2Re [tr (AiyyXPiD)] 

It is useful to focus on the discussion of the first term Aly. 
The pseudo-inverse matrix is performing as a zero-forcing 
matrix. For the asymptotic case B + CO, the CML esti- 
mation will become unbiased and the central rows of matrix 
Ai will only differ in a time-delay. This property holds if 
the transfer matrix A, is full-rank or, in other words, if the 
modulation has an excess of band larger than the required 
by the sampling rate to ensure a non-zero discrete spectrum. 
This condition applies for OQPSK, MSK, among many ot- 
hers, but it could not be satisfied for perfect band limited 
modulations. Under this constraint, the computation of the 
frequency error gradient is straightforward. If we define the 
pseudo-matched filter P-MF as pasym and the frequency 
pseudo-matched filter P-FMF as b2, the gradient estimate 
will follow the same structure as for the non-staggered mo- 
dulations (eq.(18)), that is: 

g (B) = -2Im [(pEvmyi) (bF~i)*] (25) 

(26) 

b2 = centralrow lim -jDHPi (27) 

where: 
pasym = centralrow lim A: 

B-+m 

B+w 

The estimation scheme is, once again, given by figure 1. 
Finally, the CRB is also derived and it follows the same 
expression given for non-staggered modulation in eq. (20) 
where parameter /3, becomes is given: 

pitag = dHPid  (28) 

where 
d = centralrow lim D (29) 

B - - i m  

5 .  SIMULATION RESULTS 

This section illustrates the philosophy and performance of 
the presented design procedure for the case of a MSK sig- 
nal with N,, = 8 samples per symbol, which is interpreted 
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as a staggered signal with cosenoidal pulse shaping. Figure 
2 shows the impulse response of the M F  and FMF filters. 
This is the classical result obtained by applying the UML 
method. It is seen that the output of these filters to a single 
pulse is not zero at some sampling instants different from 
the strobe, and this is the cause of the resulting self-noise 
of the UML method. Figure 3 shows the same results as 

10 20 30 4” 
I 

Figure 4: Normalized steady state variance of the estimated 
frequency for the UML and CML methods, along with the CRB 
(CML) and the MCRB (UML). 

Figure 2: UML method. MF and FMF filters for MSK along 
with their response to a single symbol. 

figure 2 in the case of adopting the proposed CML design 
procedure. It is seen that both P-MF and P-FMF filters 
have changed with respect to the M F  and FMF pulses in 
such a way that the output of these filters to a single cose- 
noidal pulse is now zero at the sampling instants, except for 
the strobe. For that reason, the new solution does not ex- 
hibit self-noise at the steady state. Finally, figure 4 shows 
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Figure 3: CML method. P-MF and P-FMF filters for MSK 
along with their response to a single symbol. 

the variance of the frequency estimate normalized to the 
effective observation time of the FED loop. It is seen that 
for moderate to high energy per symbol to noise spectral 
density (E, /No), the main source of performance degrada- 
tion of the classical UML method is due to the presence 
of self-noise. For that reason the good performance predic- 
ted by the MCRB is never attained. On the contrary, the 
CML estimator attains the more accurate CRB derived in 
this paper. The only price for this improved behaviour is a 
little degradation of the CML method with respect to the 
UML method in the lower range of E,/No. 

6. CONCLUSIONS 

The CML method is applied in this paper to a synchro- 
nization problem, as an alternative to the classical UML 
procedure typically applied in the field of digital communi- 
cations. The main advantage of the new approach is that 
the self-noise can be totally cancelled for those typical ca- 
ses (e.g. staggered signals) for which the classical approach 
leads to this undesirable effect. The new approach does not 
require any statistical assumption about the symbols, and 
the classical low-SNR assumption is not required as hap- 
pened in the UML case. Therefore, it constitutes a better 
founded way of applying the ML principle for deriving exis- 
ting and new solutions. The future work will address the 
extension of the method to the GMSK format, better suited 
to mobile communications. 
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