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Abstract

We study solutions for the one-dimensional problem of the Green-Lindsay and the Lord-Shulman
theories with two temperatures. First, existence and uniqueness of weakly regular solutions are
obtained. Second, we prove the exponential stability in the Green-Lindsay model, but the non-
exponential stability for the Lord-Shulman model.
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1 Introduction

The usual theory of heat conduction based on Fourier’s law implies the instantaneous propagation of
heat waves. This fact is not well accepted from the viewpoint of physics because it contradicts the
causality principle. Accordingly, a big interest has been developed to propose alternative constitutive
equations to the Fourier law. We recall the classical formulations of Lord-Shulman [9] and Green-
Lindsay theories [5], which are based on the Cattaneo-Maxwell theory heat conduction. This is the
case when the heat equation is hyperbolic.

Thermoelasticity with two temperatures is one of the non-classical theories of thermomechanics
of elastic solids. The main difference of this theory with respect to the classical one is in the thermal
dependence. The theory was proposed by Chen, Gurtin and Williams (see [1], [3], [6]) and several
authors have dedicate its attention to this problem (Ieşan [7], Chen et al. [2], [16], Quintanilla [11], [12],
among others). In this paper where elastic effects are taken into consideration we deal with the two
models proposed by Youssef [18]. They correspond to the two-temperature modifications of the Green-
Lindsay and Lord-Shulman theories. Uniqueness and instability of solutions was obtained in [10].

First, the well-posedness will be proved in spaces with only combined, hence less regularity than
known for the classical single-temperature case. Then we prove that the solutions uniformly decay
exponentially for the Green-Lindsay theory, but the decay is slow – not exponential - for the Lord-
Shulman case. This is a surprising aspect of this paper providing another interesting example for a
situation where the change from Fourier’s to Cattaneo-Maxwell’s law leads to a loss of exponential
stability, cp. [14] for the classical exponentially stable single-temperature case, and [4,13,15] for other
examples of loss of exponential stability for plates or Timoshenko type models.

1



The one-dimensional system of equations that governs the deformations of a centrosymmetric
thermoelastic material in the theory of Green and Lindsay with two temperatures is

ρü = µuxx + a
(
θx + αθ̇x

)
hθ̈ + dθ̇ − au̇x = kφxx

φ− θ = mkφxx.

(1.1)

Here, u is the displacement, θ is the temperature and φ is the conductive temperature, ρ is the
mass density and a, α, h, d, µ, m and k are constitutive constants. We will assume

a 6= 0, α > 0, ρ > 0, k > 0, m > 0, h > 0, µ > 0 and αd ≥ h. (1.2)

In fact, the last inequality is a consequence of the entropy inequality of Green and Lindsay (see [5]).
We study the solutions of the system (1.1) in B× J , where B = [0, π] and J = [0,∞). We assume the
homogeneous Dirichlet boundary conditions

u(0, t) = u(π, t) = φ(0, t) = φ(π, t) = 0, t ∈ J (1.3)

together with the initial conditions

u(x, 0) = u0, u̇(x, 0) = v0, θ(x, 0) = θ0, θ̇(x, 0) = ψ0, x ∈ B. (1.4)

We consider the isomorphism Id−mk∆: φ −→ φ−mkφxx = θ. This operator acts on W 2,2(B)∩
W 1,2

0 (B) and take values in L2. We denote by Φ(θ) = φ the inverse operator. In view of the boundary
conditions, we have

‖θ‖2 = ‖φ‖2 + 2mk‖φx‖2 +m2k2‖φxx‖2 (norm in L2). (1.5)

We also consider the problem determined by the boundary conditions

u(0, t) = u(π, t) = φx(0, t) = φx(π, t) = 0, t ∈ J. (1.6)

In this case, the functional Φ acts on L2
∗(B) and takes values in W 2,2(B)∩L2

∗(B)∩{φ, φx(0) = φx(π) =
0}, where L2

∗(B) = {θ ∈ L2(B),
∫ π
0 θ dx = 0}. The functional Φ is also an isomorphism. At the same

time equality (1.5) holds.
The one-dimensional system of equations that governs the deformations of a thermoelastic ma-

terial in the theory of Lord and Shulman with two temperatures is
ρü = µuxx + aθx

h1
˙̂
θ − a ˙̂ux = kφxx

φ− θ = mkφxx,

(1.7)

where f̂ = f + d1ḟ , together with the boundary conditions (1.3) and initial conditions (1.4). For the
coefficients we assume

a 6= 0, ρ > 0, k > 0, m > 0, h1 > 0, µ > 0 and d1 > 0. (1.8)

Section 2 is devoted to the Green-Lindsay theory with two temperatures. We prove the existence and
uniqueness of solutions as well as exponential stability of solutions. Section 3 has a similar struc-
ture, but for the Lord-Shulman theory with two temperatures. Here, however, we prove the maybe
unexpected slow, non-exponential decay of the solutions.
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2 Green-Lindsay theory

We write the system (1.1) as  u̇ = v, v̇ = 1
ρ [µuxx + a(θx + αψx)]

θ̇ = ψ, ψ̇ = 1
h [avx − dψ + kΦ(θ)xx]

(2.1)

and (1.1)3. In this section we prove the existence, uniqueness and exponential decay for the problem
proposed by the system (2.1) with initial conditions (1.4) and boundary conditions (1.3). We also
point out how to extend the results for the boundary conditions (1.6) easily.
We denote by H the Hilbert space

{(u, v, θ, ψ) : u ∈W 1,2
0 (B), v, θ, ψ ∈ L2(B)} (2.2)

with inner product

〈(u, v, θ, ψ), (u∗, v∗, θ∗, ψ∗)〉 :=
1

2

∫ π

0

[
ρvv∗ + µuxu∗x +

h

α
(θ + αψ)(θ∗ + αψ∗)

+

(
d− h

α

)
θθ∗ + αkΦ(θ)xΦ(θ∗)x +mk2αΦ(θ)xxΦ(θ∗)xx

]
dx.

(2.3)

We define

A =


0 I 0 0

µ
ρ D

2 0 a
ρ D

aα
ρ D

0 0 0 I

0 a
h D

k
h D

2Φ − d
h

 (2.4)

where I is the identity operator and D denotes the derivative with respect to x. (1.1) does not
provide regularity for ψ, θ, therefore the term µuxx + a(θx + αψx) in (2.1) has to be interpreted as
D(µux + a(θ + αψ)). Separate regularity like uxx, θx, ψx ∈ L2(B) is not available.

Our problem can be written as the following Cauchy problem in the Hilbert space H:

dω

dt
= Aω, ω0 = (u0, v0, θ0, ψ0), (2.5)

where ω = (u, v, θ, ψ). The domain D of A is the set of ω ∈ H such that Aω ∈ H. It is a dense subspace
of H.
For the boundary conditions (1.6) we have to work with the Hilbert space

{(u, v, θ, ψ), u ∈W 1,2
0 (B), v ∈ L2(B), θ, ψ ∈ L2

∗(B)}

with the same inner product as in (2.3) and matrix operator A as in (2.4).

2.1 Existence and uniqueness of solutions

Theorem 2.1 The operator A is dissipative, and Range (A) = H.

Proof. Taking into account the evolutive equations and the boundary conditions, we have the dissipa-
tivity by observing

Re〈Aω, ω〉 =
1

2
Re

{∫ π

0

[
[µuxx + a(θx + αψx)] v + µvxux +

(
h
αψ + avx − dψ + kΦ(θ)xx

)
(θ + αψ)

+
(
d− h

α

)
ψθ + αkΦ(ψ)xΦ(θ)x +mk2αΦ(ψ)xxΦ(θ)xx

]
dx
}

=
1

2

∫ π

0

[
(h− αd)|ψ|2 − k|φx|2 − k2m|φxx|2

]
dx.

(2.6)
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Moreover, for f = (f1, f2, f3, f4) ∈ H, the equation Aω = f is solved by ω = (u, v, θ, ψ) ∈ D, where
v := f1, ψ := f3, and

θ(x) := φ−mkφxx = − a

k

∫ x

0
f1 ds+

d

k

∫ x

0

∫ s

0
f3 dτ ds+

h

k

∫ x

0

∫ s

0
f4 dτ ds

+
x

πk

[
a

∫ π

0
f1 ds− d

∫ π

0

∫ s

0
f3 dτ ds− h

∫ π

0

∫ s

0
f4 dτ ds

]
−m [−aDf1 + df3 + hf4] ,

(2.7)

u(x) :=− a

µ

∫ x

0
θ ds+

ρ

µ

∫ x

0

∫ s

0
f2 dτ ds−

aα

µ

∫ x

0
f2 ds

+
x

πµ

[
a

∫ π

0
θ ds− ρ

∫ π

0

∫ s

0
f3 dτ ds+ aα

∫ π

0
f2 ds

]
. �

(2.8)

As a consequence of Theorem 2.1 and the Lumer-Phillips corollary to the Hille-Yosida Theorem [8]
we obtain the well-posedness.

Theorem 2.2 The operator A generates a contraction semigroup {etA}t≥0, and for ω0 ∈ D there
exists a unique solution ω ∈ C0([0,∞),D) ∩ C1([0,∞),H).

The proof of Theorem 2.1 can be also adapted to the boundary conditions (1.6). The main difference
will consist in the new expressions for θ(x) and u(x), but it can be done in a direct way. Therefore,
the existence of the semigroup proposed at Theorem 2.2 can be also obtained for the conditions (1.6).

2.2 Exponential decay

To prove the exponential stability of the solutions we use the following characterization, going back
to Gearhart, Huang and Prüß (see [8]).

Theorem 2.3 Let {etA∗}t≥0 be a C0-semigroup of contractions generated by the operator A∗ in the
Hilbert space H∗. Then the semigroup is exponentially stable if and only if iR ⊆ %(A∗) (resolvent set)
and

lim|β|→∞||(iβI −A∗)−1|| <∞, β ∈ R. (2.9)

Theorem 2.4 The operator A generates a semigroup which is exponentially stable.

Proof. Since 0 ∈ %(A), following the arguments in ( [8], p. 25), we assume that the imaginary axis
is not contained in the resolvent set. Then there exists a real number $ 6= 0 with ||A−1||−1 ≤ |$| <∞
such that the set {iλ, |λ| < |$|} is in the resolvent of A and sup{||(iλI − A)−1||, |λ| < |$|} = ∞.
Therefore, there exists a sequence of real numbers λn with λn → $, |λn| < |$| and a sequence of unit
norm vectors ωn = (un, vn, θn, ψn) in the domain of the operator A such that

||(iλnI −A)ωn|| → 0. (2.10)

This implies
iλnun − vn → 0 in W 1,2, (2.11)

iλnvn −
1

ρ

(
µD2un + aDθn + aαDψn

)
→ 0 in L2, (2.12)

iλnθn − ψn → 0 in L2, (2.13)
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iλnψn −
1

h

(
aDvn + kD2Φ(θn)− dψn

)
→ 0 in L2. (2.14)

Considering Re〈(iλnI −A)ωn, ωn〉 then (2.6) implies ||ψn|| → 0, ||φn,x|| → 0 and ||φn,xx|| → 0 in L2.
From equation (2.13), ||θn|| → 0 in L2. Taking into account that Φ(θ) = φ, and removing from (2.14)
the terms that tend to 0, we get that a

hλn
Dvn → 0. Multiplying (2.12) by ρ

λn
vn we obtain

iρ||vn||2 + µ〈Dun,
1

λn
Dvn〉+ a〈θn,

1

λn
Dvn〉+ aα〈ψn,

1

λn
Dvn〉 → 0. (2.15)

Thus, ||vn||2 → 0. The next step is to multiply (2.12) by un and, since Dun is bounded, we get
ρ〈iλnvn, un〉+µ||Dun||2 → 0. Using (2.11), −ρ||vn||2 +µ||Dun||2 → 0 and then, ||Dun||2 → 0. Finally,
Dun → 0 in L2. These behaviors contradict the hypothesis that ωn has norm 1.

Now, (2.9) is proved by a similar argument. If is is not true, there exist a sequence λn with
|λn| → ∞ and a sequence of unit norm vectors ωn = (un, vn, θn, ψn) in the domain of the operator A
such that (2.10) holds. We can now follow the arguments used previously when (λn)n is bounded. �

The proof of Theorem 2.4 can be adapted to the boundary conditions (1.6). Therefore we have
obtained the exponential decay of solutions for the boundary conditions (1.3) and also (1.6).

3 Lord-Shulman theory

We re-write (1.7) as a first order system
˙̂u = v̂, ˙̂v = 1

ρ [µûxx + aθx + ad1ψx]

θ̇ = ψ, ψ̇ = 1
h1d1

[av̂x + kΦ(θ)xx − h1ψ]
(3.1)

and (1.1)3. Again in this section we give the existence and uniqueness of solutions for the boundary
conditions (1.3). The extension for the boundary conditions (1.6) can be done in a similar way as
in Section 2. However, in this section we prove the slow decay of solutions only for the boundary
conditions (1.6). One suspects a similar result for the boundary conditions (1.3), but our arguments
can not be extended to this case.

In analogy to Section 2, we denote by H1 the Hilbert space

{(û, v̂, θ, ψ) : û ∈W 1,2
0 , v̂, θ, ψ ∈ L2} (3.2)

with inner product

〈(û, v̂, θ, ψ), (û∗, v̂∗, θ∗, ψ∗)〉 :=
1

2

∫ π

0

[
ρv̂v̂∗ + µûxû∗x + h1(θ + d1ψ)(θ∗ + d1ψ∗)+

d1kΦ(θ)xΦ(θ∗)x +md1k
2Φ(θ)xxΦ(θ∗)xx

]
dx.

(3.3)

We define

B =


0 I 0 0

µ
ρ D

2 0 a
ρ D

a
d1
ρD

0 0 0 I

0 a
h1d1

D k
h1d1

D2Φ − 1
d1

 . (3.4)

Our problem can be transformed in the following Cauchy problem in the Hilbert space H1:

dω

dt
= Bω, ω0 = (û0, v̂0, θ0, ψ0), (3.5)
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where ω = (û, v̂, θ, ψ). The domain D1 of B is the set of ω ∈ H1 such that Bω ∈ H1. It is a dense
subspace of H.

The existence and and the uniqueness of solutions follows as in Section 2.1, we have the dissipa-
tivity of B and Range (B) = H1, implying

Theorem 3.1 The operator B generates a contraction semigroup {etB}t≥0, and for ω0 ∈ D1 there
exists a unique solution ω ∈ C0([0,∞),D1) ∩ C1([0,∞),H1).

Now we prove the interesting fact that the system, for the boundary conditions (1.6), is not
exponentially stable. The existence and uniqueness is obtained for these boundary conditions in a
similar way, but it is easier accessible with the method used below. To exclude trivial non-decaying
solutions we assume that the initial conditions belong to the domain.

Taken into account (1.7)3, θ = φ−mkφxx, the system (1.7) can be written as follows: ρü = µuxx + a(φx −mkφxxx)

h1

[
φ̇−mkφ̇xx + d1

(
φ̈−mkφ̈xx

)]
− a (u̇x + d1üx) = kφxx.

(3.6)

Theorem 3.2 The corresponding semigroup is not exponentially stable.

Proof. We will see that, for all sufficiently small ε > 0, there exist solutions of the form

u(x, t) = K1 exp(ωt) sin(nx), φ(x, t) = K2 exp(ωt) cos(nx), (3.7)

such that Re(ω) > −ε. This will prove that we do not have uniform exponential decay of the sys-
tem. Suppose that u and φ are as in (3.7). Then, replacing them in (3.6), the following linear and
homogeneous system in the unknowns K1 and K2 is obtained:(

n2µ+ ρω2 an(1 + kmn2)
−anω(1 + d1ω) kn2 + ωh1(1 + kmn2)(1 + d1ω)

)(
K1

K2

)
=

(
0
0

)
. (3.8)

This linear system will have nontrivial solution if, and only if, the determinant of the coefficients
matrix is null. Let p(x) be this determinant once ω is replaced by x.

p(x) =x4
(
d1h1kmρn

2 + d1h1ρ
)

+ x3
(
h1kmρn

2 + h1ρ
)

+ x2
(
a2d1kmn

4 + d1h1kmµn
4 + a2d1n

2 + d1h1µn
2 + kρn2

)
+ x

(
a2kmn4 + h1kmµn

4 + a2n2 + h1µn
2
)

+ kµn4.

(3.9)

It is a polynomial of degree four. To prove that p(x) has roots as near as desired to the imaginary
axis, we will show that for any ε > 0 there are roots of p(x) located at the right of the vertical line
Re(z) = −ε, or, equivalently, that the polynomial p(x− ε) has a root with positive real part. To prove
that, we use the Routh-Hurwitz theorem (see [17]). It assesses that, if a0 > 0, then all the roots of
a polynomial a0x

4 + a1x
3 + a2x

2 + a3x + a4 have negative real part if, and only if, all the leading
minors of the matrix 

a1 a0 0 0
a3 a2 a1 a0
0 a4 a3 a2
0 0 0 a4


are positive. We denote by Li, for i = 1, 2, 3, 4, the leading minors of this matrix.
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In our case,

a0 = n2d1h1kmρ+ d1h1ρ,

a1 = n2(h1kmρ− 4d1h1kmερ) + h1ρ− 4d1h1ερ,

a2 = n4
(
d1kma

2 + d1h1kmµ
)

+ n2
(
d1a

2 + d1h1µ+ 6d1h1kmε
2ρ+ kρ− 3h1kmερ

)
+ 6d1h1ε

2ρ− 3h1ερ,

a3 = n4
(
kma2 − 2d1kmεa

2 + h1kmµ− 2d1h1kmεµ
)

+ n2
(
−4d1h1kmρε

3 + 3h1kmρε
2 − 2a2d1ε− 2d1h1µε− 2kρε+ a2 + h1µ

)
− 4d1h1ε

3ρ+ 3h1ε
2ρ,

a4 = n4
(
d1kmε

2a2 − kmεa2 + d1h1kmε
2µ+ kµ− h1kmεµ

)
+ n2

(
d1h1kmρε

4 − h1kmρε3 + a2d1ε
2 + d1h1µε

2 + kρε2 − a2ε− h1µε
)

+ d1h1ε
4ρ− h1ε3ρ.

(3.10)

Direct computations give that L2 is a polynomial of degree six in n:

L2 = −2d21h1k
2m2ερ(a2 + h1µ)n6 +R4(n), (3.11)

where R4(n) is a polynomial on n of degree 4. Then, for n sufficiently large, the sign of L2 is determined
by the coefficient of n6: −2d21h1k

2m2ερ(a2 +h1µ) < 0. For n large enough, L2 is negative and p(x− ε)
has at least one root with positive real part. Then, a uniform rate of decay of exponential type for all
the solutions of system (3.6) cannot be obtained and so, the decay of the solutions is slow. �
We recall that d1 = 0 corresponds to the classical law with two temperatures, where the exponential
stability is known, cp. [12]. Also, the case m = 0 corresponds to the Lord-Shulman theory where the
exponential stability is known [14].
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