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Abstract—This work investigates, analytically and experimen-
tally, the effects induced by the use of a first-order sigma-delta
feedback loop as a control method of dielectric charging for
capacitive MEMS. This technique allows one to set a desired level
of net charge in the dielectric of a MEMS device by continuously
alternating the polarity of the actuation voltage. This control
system displays a number of interesting effects, inherited from
sigma-delta modulation, and not usually found in conventional
MEMS applications, with the charge locking phenomenon being
the most relevant. The convergence time and the effectiveness of
the control method are also investigated and discussed.

I. INTRODUCTION

Dielectric charging is a major reliability issue in electro-

static microelectromechanical systems (MEMS) [1], [2]. For

instance, this problem hinders the large scale use of these

devices as variable capacitors, switches or oscillators in appli-

cations such as components for RF. In the case of varactors and

voltage-actuated switches, thin dielectric layers are commonly

used to prevent short-circuiting between moveable and fixed

parts. However, the application of relatively high voltages

across such small scale structures results in high electric fields,

which may produce such phenomena as dielectric polarization

or charge injection and trapping. Such dielectric charging

caused by device actuation produces undesired changes in

key parameters of the device, such as: pull-in voltage drift,

capacitance–voltage C(V ) characteristic shifts or, in severe

cases, permanent stiction of mechanical parts.

In recent years, smart actuation techniques and strategies

to mitigate or control the effects of dielectric charging in

MEMS capacitors have been proposed [3]–[8]. Closed-loop

strategies are inspired by sigma-delta (ΣΔ) modulation: they

trace a certain characteristic of the MEMS that is related

to the dielectric charge and dynamically apply correcting

feedback stimuli. Studies [7], [8] experimentally implement

first and second-order ΣΔ modulation on MEMS, while [9]

realises an ASIC first-order ΣΔ control. These studies focus

on experimental validation or on IC implementation of control.

However, an analytical or extended numerical analysis of

these systems is an open issue. They are impeded by the

lack of simple but reliable models of dielectric charging and

mechanical structures. In addition, one has to analyse the

entire system ”capacitive MEMS – dielectric – feedback loop”,

which is a non-trivial task. As a matter of fact, no rigorous

proof of the robustness of the ΣΔ loop for MEMS has been

presented so far. Discussions on undesirable effects that may

appear in the dynamics of MEMS due to the feedback loop

are very limited.

This work addresses the robustness of the first-order ΣΔ
loop and its effects (the convergence time, charge locking and

general stability) on MEMS. From our analysis, we predict

how the ΣΔ effects can be measured and provide experimental

validation. The experimental validation is a rather remarkable

result since these effects appear in a realistic physical sys-

tem that involves components belonging to different physical

domains. The appearance of channel tones, which is another

well-known ΣΔ related phenomenon is not investigated in this

work. These tones may be considered a secondary issue since

they only affect the capability of the method to retrieve the

information on dielectric charging, but not the capability of

the method to fix a desirable level of charge.

II. STATEMENT OF THE PROBLEM

The aim of this study is not to introduce a new charge

control and actuation technique for MEMS. Rather we in-

vestigate it, providing an analysis of its dynamics, as stated

in the Introduction, and validating our results experimentally.

Therefore, we focus on the first-order ΣΔ control of dielectric

charge from [7], [10].

Let us first provide a brief overview of the system, shown in

Fig. 1. A MEMS capacitor is the one used in the experimental

part of this work. It is a movable plate-electrode suspended

in air above a fixed plate-electrode that has a dielectric

layer deposited on top. More details about this device are

given in Sec. V. The net charge stored in the dielectric, Qd,

changes the effective voltage ”seen” by the device by the

amount Vshift = Qd/Cd, where Cd is the capacitance of the

dielectric layer. This implies that Qd causes a horizontal shift

of the capacitance-voltage characteristic C(V ) of the device.

In the control system, Vshift (then, Qd) is calculated from

a quasi-differential capacitance ΔC measurement, obtained

at sampling times nTs. On the other hand, one of the two

bipolar voltage waveforms BIT0 and BIT1, described in Fig. 1,

is applied to the device during each sampling period. The

application of either BIT0 or BIT1 produces opposite (but not

necessarily symmetrical) C(V ) shifts. Thus, causing opposite

effects on the charge dynamics. The control method compares

ΔC with a preselected threshold ΔCth (thus with a threshold

Qth) and decides which waveform must be applied in the next

sampling period to achieve Qd = Qth.
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Fig. 1: (a) Block diagram of the system and the description of
the voltage waveforms, BIT0 and BIT1, used to actuate the MEMS.
The electrostatic actuation alters the net charge trapped in the MEMS
dielectric, causing a horizontal shift of the C(V ) characteristic of the
device. Other factors, such as the distribution of charge, contribute
to vertical shift of the C(V ). (b) Effect of actuation voltages on the
dielectric charge. The charging process consists of multiple positive
and negative components defined by eq. (1). They can be seen as
”capacitors” with different charge and discharge dynamics. When one
applies BIT0, the positive components charge more than the negative
ones (depending on the δ value). For the BIT1 waveform the effect
is opposite. The total charge is obtained by summing all components
up.

A. Electromechanical model

The MEMS is actuated by applying a voltage V across

its electrodes. This causes a displacement y of the moveable

electrode and, as a consequence, a change in the device capac-

itance C(y). In a 1D approach, the kinetics of the moveable

electrode can be described by a typical mass-spring-damping

differential equation mÿ(t)+bẏ(t)+ky(t) = Fel(V, y), where

m is the mass of the movable electrode, b is the damping

factor, k is the spring coefficient of the mechanical restoring

force and Fel(V, y) is the electrostatic force. However, the

electromechanical part of the system can be described with the

desired complexity, depending on the accuracy required, i.e.

using partial differential equations or finite-element methods.

Therefore, the total capacitance C of the device will be a

function of the form F = C(Y), where Y expresses the

position of the moveable electrode.

All the simulations in this work have been performed

using both 1D models and beam models (partial differential

equations), taking into account the presence of both uniform

and various non-uniform charge distributions [11]. The latter

modifies the electrostatic force Fel that acts on the MEMS,

making it proportional to (V − Vshift)
2 + σ2

V where σ2
V is

the variance of the dielectric charge distribution. Thus, if the

charge is accumulated in the dielectric uniformly, there is no

vertical shift of C(V ).

B. Charge dynamics model

Let us consider the multi-exponential model for the dielec-

tric charge dynamics experimentally validated in [12], [13].

This model considers a set of positive qp =
∑

i q
p,i and

negative qn =
∑

i q
n,i charge components:

qp(t) =

{
Qp

max

∑
i ζ

p
i e

−t/τp
Di V > 0

Qp
max(1−

∑
i ζ

p
i e

−t/τp
Ci) V < 0

qn(t) =

{
Qn

max(1−
∑

i ζ
n
i e

−t/τn
Ci) V > 0

Qn
max

∑
i ζ

n
i e

−t/τn
Di V < 0

(1)

where Qp
max and Qn

max are respectively the maximum value

of the positive and of the negative charge components for

the voltage applied V , τCi and τDi are charging and dis-

charging time constants and ζi are coefficients expressing the

contribution of each exponential to each charge component

(then,
∑

i ζi = 1 for each component). The time varying

expression of the total dielectric charge is Qd(t) = qp(t) +
qn(t) =

∑
i q

p,i(t)+
∑

i q
n,i(t), which is the sum of multiple

independent charge components.

C. Closed-loop control algorithm of dielectric charging

The control method is based on measurements of the quasi-

differential capacitance ΔC, which under some conditions can

be easily related to the net dielectric charge Qd. For instance,

for a device working below pull-in, with a parabolic bottom

of the C(V ) and symmetrical voltages in BIT0 and BIT1

waveforms (V + = −V − = V , see Fig. 1), it is

ΔC(t) = −4αV Qd(t)/Cd (2)

where the coefficient α is obtained from fittings of the C(V ).
From the current value of ΔC, the control method is aimed

at fixing the dielectric charge at a selected (desired) level Qth

by using this decision mechanism:

BIT((n+ 1)Ts) =

{
BIT0 ΔC(nTs) > ΔCth (Qd(nTs) < Qth)

BIT1 ΔC(nTs) < ΔCth (Qd(nTs) > Qth)
(3)

where Ts is the sampling time, Qd(nTs) is the total dielec-

tric charge estimated from the quasi-differential capacitance

ΔC(nTs) measured at t = nTs, and BIT((n + 1)Ts) is the

voltage waveform, BIT0 or BIT1, to apply to the MEMS in

the next sampling period [nTs, (n+ 1)Ts).
The dynamics of the total charge can be expressed in a

compact form, where for simplicity we consider f(nTs) = fn,

as follows:

Qn+1 = Θ(Qn, bn), bn+1 = 1
2 (1 + sgn(ΔCth −ΔCn)) (4)

where Qn+1 ε R is the net charge in the next sampling period

as a function of its current value Qn and of the decision bit

provided by (3): bn ε B = {1, 0}. Thus, we will use the sub-

script n to denote the discrete-time evolution of the dynamical
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Fig. 2: Simulation results showing the evolution of the positive and
negative charge components and of the total charge when the control
method with Qth=0 is applied. The initial net charge is negative.

quantities in our problem. The script i will be used to denote

a quantity related to individual charge components. Note that

the dependence of the system dynamics on the equation of the

mechanical component is hidden in bn. Equations (4) represent

a piecewise contraction map that is asymptotically periodic,

i.e. its steady state solutions are stable cycles [14].

III. GLOBAL BEHAVIOUR OF THE ΣΔ CONTROLLED

MEMS

A. Convergence time of the multiple-charge components

The charge dynamics are modelled as a sum of independent

components, each evolving with its own time constants. If we

look separately at the positive and negative components of Qd,

they evolve and reach a steady state rather slowly, as shown

in the simulation results of Fig. 2. This is determined by the

largest characteristic time scale of qp and qn, which can be

in the range of hours or even days. However, the total charge

Qd = qn+ qp evolves with noticeably faster time scales. This

is a very useful property, since it allows one to fix the desired

level of dielectric charge faster. In the experiment described in

Sec. V, the total charge settles to the desired level faster than

the characteristic time of individual charge components.

B. Devil’s staircase and charge locking

Similarly to ΣΔ modulators, the amount of charge in the

dielectric can be inferred from the averaged output bitstream

b, that tells us what is the average decision bit applied by the

control loop. After the system has reached a steady state, the

averaged bitstream corresponds to a stable cycle of dielectric

charge. When the desired level of charge is changed (by

adjusting ΔCth), a change in the averaged bitstream should be

observed. Ideally, the plot b(ΔCth) should be a straight line.

As shown in Fig. 3(a), this is the case when a small sampling

time Ts is used. However, when Ts becomes comparable with

the fastest time constant of the charge dynamics, plateaus

appear in the plot b(ΔCth).
Such a plot is a Devil’s staircase, an effect previously

seen and explained in the context of conventional ΣΔ mod-

ulators [15], where plateaus are associated with integrator

leakage. In our case, Ts can be associated with the leakage of

the dielectric charge reservoir, understood as an integrator in

the ΣΔ loop [7]. This generates the appearance of increasing

plateaus with increasing Ts. Clearly, this is an undesirable

effect that should be avoided by proper selection of the

sampling time Ts. The case of non-uniform distributions of

Fig. 3: (a) Simulation results of the averaged bitstream (b) provided
by the control loop as a function of ΔCth for both uniform and non-
uniform charge distributions. Each point corresponds to a steady-state
case. (b) Domains of existence of cycles observed in the system.

charge was also investigated. The results, reported in Fig. 3(a),

demonstrate that the Devil’s staircase effect also persists in this

case.
The Devil’s staircase is a manifestation of a more general

phenomenon termed here as charge locking. By varying two

parameters, for instance, Ts and ΔCth, the results of Fig. 3(b)

are obtained. This graph shows the average amount of charge

fixed by the control algorithm in the MEMS dielectric. Each

colored tongue corresponds to a case where this charge is

fixed, or locked, to the same value.
These plateaus disappear if a second-order feedback loop

is employed [8]. However, the implementation of the second-

order loop for MEMS may be difficult. One should consider

all trade-offs between a simpler but less reliable first-order ΣΔ
loop and a higher-complexity and more reliable second-order

loop.

IV. ANALYTICAL PROPERTIES OF THE CONTROL METHOD

Followed on from our discussion of some typical effects of

ΣΔ loops, let us now focus on the global convergence and

the robustness of the charge control algorithm.

A. Analysis of the discrete time model
The charge difference ΔQ0, extracted or added to the

dielectric by the feedback loop after applying BIT0 is:

ΔQ0 = Qd(n+ 1)−Qd(n) =
∑
i

qp,in α1−δ
C,i α

δ
D,i+

+
∑
i

ζp,ii Qp
max(1− α1−δ

C,i )α
δ
D,i +

∑
i

qn,in β1−δ
D,i β

δ
C,i

+
∑
i

ζni Q
n
max(1− βδ

C,i)− qpn − qnn

(5)

where αC,D,i = exp[− Ts

τp
C,D,i

] and βC,D,i = exp[− Ts

τn
C,D,i

].

ΔQ0 can be seen as sum of positive and negative charge differ-

ences due to the application of a BIT0: ΔQ0 = ΔQp
0+ΔQn

0 .

A similar expression for ΔQ1 can be found when a BIT1 is

applied.
Now, let us consider that Ts is far below the fastest time

constant of the charge dynamics. This assumption allows us to

linearise and discretise expressions (1). According to this, let

us examine separately the positive and negative components

of (5) for the case of BIT0:

ΔQp,i
0 = Qp,i

max
(1−δ)Ts

τp
Ci

[
1− qp,i

Qp,i
max

(
1 +

δτp
Ci

(1−δ)τp
Di

)]
(6)
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ΔQn,i
0 = Qn,i

max
δTs

τn
Ci

[
1− qn,i

Qn,i
max

(
1 +

(1−δ)τn
Ci

δτn
Di

)]
(7)

where Qp,i
max = Qp

maxζ
p
i and Qn,i

max = Qn
maxζ

n
i .

Similar expressions can be easily derived for BIT1 (ΔQp,i
1

and ΔQn,i
1 ). Then, the system evolution can be described with

the following 2D map G : R2 → R2:

qp,in+1 = qp,in +ΔQp,i
0 (1− bn) + ΔQp,i

1 bn
qn,in+1 = qn,in +ΔQn,i

0 (1− bn) + ΔQn,i
1 bn

(8)

where qpn, q
n
n ε R, n ε N and the applied bit bn ε B = {0, 1}.

Taking into account that both voltage polarities (V + and

V −) are applied during a certain time in BIT0 and BIT1,

depending on the value of δ, the average time in which the

positive voltage (V +) is applied can be described as beff =
b(1 − δ) + (1 − b)δ. And therefore, the average time for the

negative voltage (V −) is 1− beff .

Now, it is possible to find the stable equilibrium point of

each charge contribution of the system (8) as a function of δ
and b:

qp,i = Qp,i
max

(1−beff )

τp
Ci/τ

p
Dibeff+(1−beff )

qn,i = Qn,i
max

beff

τn
Ci/τ

n
Di(1−beff )+beff

(9)

Moreover, since the system is dissipative (contracting), all

the trajectories are forced to converge to the stable equilibrium

point (9).

Assuming now that the target charge surface has been

reached, i.e. Qd = Qth, in the final equilibrium point we

will have that:

Qth = Qd =
∑

i q
p,i + qn,i (10)

and this equation implicitly determines the asymptotic value

of the averaged b.
Finally, the equation of a first order sigma-delta modulation

can be obtained taking into account all the charge contributions

presented in (8).

Qd(n+1) = Qd(n) + (1− bn)
∑
i

ΔQi
0 + bn

∑
i

ΔQi
1 (11)

B. Effectiveness of the control method for a two-exponential
charging model

Let us now use the analytical models derived in the previous

section for the specific case of two exponentials in each

charge component. The performance of the ΣΔ charge control

algorithm is demonstrated in Fig. 4, where we plot ΔQ as a

function of the initial charge state for each component, qpn
and qnn . The diagonal line represents the condition where the

total charge is as desired. In our example, this condition is

qpn + qnn = 0, that is, the dielectric stays electrically neutral.

Therefore, for all points lying on the upper-left half plane (UL)

the total charge is positive and for those in the lower-right half

plane (DR) the total charge is negative.

For the ΣΔ algorithm to converge, ΔQ must be positive in

the lower half-plane and negative in the upper half-plane. In

this case of ideal operation, the ΣΔ loop will compensate any

Fig. 4: Dynamics of the control algorithm in the (qnn , q
p
n) plane. If

the total charge Qd = qnn + qpn is in the upper half-plane D0 ∪ UL,
the control method changes the charge, moving it to the desired level
set by the line Qd = Qth. If the total charge Qd = qnn + qpn is in
the lower half-plane D1 ∪ DR, the control method again changes
it towards the desired level. Once the line Qd = Qth is reached, a
sliding mode control takes place unless the point ΔQ0 = |ΔQ1| is
reached. The value of ΔQ is also shown in the plane for convenience.

excess of positive or negative charge in the dielectric. This is

indeed so for the two largest portions of the plane, where the

right conditions on ΔQ are fulfilled.

Figure 4 depicts the state of the system as a point moving

along a trajectory in the plane. In the two largest sections of

the plane, above and below the diagonal line that represents the

desired level of charge, we proceed towards the diagonal line

with every step of application of the algorithm. The system

dynamics are dominated by the presence of the two stable

points and the trajectories converge towards them, as desired.

However, in principle it is possible to observe the reverse

behaviour of the ΣΔ algorithm. For example, the domains

denoted as R1 and R2 in Fig. 4 correspond to the opposite

behaviour where ΔQ < 0 for BIT0 and ΔQ > 0 for BIT1. In

order to avoid the undesired behaviour of the algorithm, we

must design the system accordingly, selecting small enough

values of Ts and δ.

Finally, we note that as soon as a trajectory reaches the

diagonal line, it undergoes a specific type of sliding mode
control [16].

V. EXPERIMENTAL RESULTS

There are no means to directly measure the dielectric charge

in a MEMS device while it is being used. Thus, it is extremely

difficult to have an understanding of the dielectric charge

dynamics without interfering into the operation of the device.

However, our analysis predicts a number of ΣΔ effects when

applying dielectric charge control. Then, if we can observe

them experimentally, we can prove that our understanding of

the charge behaviour is correct.

In this section, we demonstrate experimentally the charge

locking phenomenon. To this effect, the ΣΔ charge control has
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Fig. 5: Averaged bitstream versus target differential capacitance
obtained experimentally for Ts=1.7 s (circles), 820 ms (squares) and
180 ms (triangles).

been applied to a MEMS capacitor that exhibits reasonably fast

charging when working below pull-in. The device, fabricated

with standard PolyMUMPS technology, is a two-parallel plate

structure. The upper plate-electrode is a polysilicon layer,

suspended over 2.75 μm of air gap, followed below by a

0.6 μm thick silicon nitride layer and the doped silicon

substrate, which is the bottom electrode. The plate dimensions

are 340 μm x 340 μm and the pull-in voltage is 24.5 V. The

parameters of the two-exponential charge dynamics model for

this device, obtained from fittings of experimental data, are:

Qn
max/Cd = −4.67 V, Qp

max/Cd = 3.85 V, τnC,1 = 0.33 s,

τpC,1 = 4.7 s, τnC,2 = 2.11 s, τpC,2 = 29.1 s, τnD,1 = 0.98 s,

τpD,1 = 10.2 s, τnD,2 = 89.1 s, τpD,2 = 52.6 s, ζn1 = ζp1 = 0.61,

ζn2 = ζp2 = 0.39. The charge control method is implemented

using a precision impedance analyzer, which performs the

capacitance measurements and also applies the subsequent

excitation waveform, BIT0 and BIT1, according to (3).

The control method was applied to achieve a set of val-

ues of ΔCth ranging from -5fF to +5 fF in constant 1 fF

steps. The values used in the BIT0 and BIT1 waveforms are

V + = −V −=10 V, Ts=180 ms and δ=1/7. The results obtained

are summarized in Fig. 5. Each point of this figure corresponds

to the following case: charge control is applied to set a given

value of ΔCth, thus a certain amount of net charge Qd during

3 hours. This is time enough to reach stable control regimes in

all cases considered, and allows one to obtain the asymptotic

averaged bitstream that corresponds to such stable regime.

Finally, all experiments were made for three different values

of Ts, namely 180 ms, 820 ms and 1.7 s. Note that not all of

these values are below the time constants reported above.

Accordingly to theoretical and simulation results discussed

in previous sections, a plateau is clearly observed in Fig. 5

for the slowest rate Ts=1.7 s. This plateau ”locks” to zero

the bit stream average (same average number of BIT0’s and

BIT1’s applied during the stable regime) for values of ΔCth

ranging from -2fF to +1fF. This means that, for this case, the

control method is unable to distinguish ΔCth and thus the

corresponding target charge, within this range. Again, the size

of the plateaus becomes reduced when the sampling frequency

increases, as also seen in Fig. 5. In particular, note that the

”charge locking” effect disappears, and thus there is a ’one to

one’ relationship between ΔCth and the bitstream average, for

the fastest sampling rate Ts=180 ms.

VI. CONCLUSIONS

The dynamics of a sigma-delta dielectric charge control has

been discussed through simulations, analysis and experiments.

The discrete time maps associated to the control method have

been obtained assuming multiexponential dielectric charging

models. The appearance of charge locking phenomena for low

sampling frequencies has been analyzed. Experiments obtained

with a parallel plate MEMS capacitor have confirmed the

existence of plateaus and how they disappear as the sampling

frequency is conveniently increased.

REFERENCES

[1] W. M. V. Spengen, “Capacitive RF MEMS switch dielectric charging
and reliability: a critical review with recommendations,” Journal of
Micromechanics and Microengineering, vol. 22, no. 7, p. 074001, 2012.

[2] W. de Groot, J. Webster, D. Felnhofer, and E. Gusev, “Review of device
and reliability physics of dielectrics in electrostatically driven MEMS
devices,” Device and Materials Reliability, IEEE Trans. on, vol. 9, no. 2,
pp. 190 –202, june 2009.

[3] Z. Peng, X. Yuan, J. Hwang, D. Forehand, and C. Goldsmith, “Dielectric
charging of RF MEMS capacitive switches under bipolar control-voltage
waveforms,” in IEEE/MTT-S Int. Microwave Symp., June 3-8 2007, pp.
1943 – 1946.

[4] T. Ikehashi, T. Miyazaki, H. Yamazaki, A. Suzuki, E. Ogawa, S. Miyano,
T. Saito, T. Ohguro, T. Miyagi, Y. Sugizaki, N. Otsuka, H. Shibata, and
Y. Toyoshima, “An RF MEMS variable capacitor with intelligent bipolar
actuation,” in IEEE Int. Solid-State Circuits Conf. (ISSCC 2008), Feb
3-7, 2008, pp. 581–583.

[5] W. Wong and C. Lai, “Longer MEMS switch lifetime using novel
dual-pulse actuation voltage,” IEEE Trans. on Device and Materials
Reliability, vol. 9, no. 4, 2009.

[6] M. Dominguez, D. Lopez, D. Molinero, and J. Pons, “Dielectric charging
control for electrostatic MEMS switches,” in Proc. of SPIE Conf. on
Defense, Security and Sensing DSS-20109, Orlando, 2010.

[7] S. Gorreta, J. Pons-Nin, E. Blokhina, O. Feely, and M. Dominguez-
Pumar, “Delta-sigma control of dielectric charge for contactless capac-
itive MEMS,” IEEE-JMEMS, vol. 23, no. 4, pp. 829–841, Aug 2014.

[8] S. Gorreta, J. Pons-Nin, E. Blokhina, and M. Dominguez, “A second-
order delta-sigma control of dielectric charge for contactless capacitive
MEMS,” IEEE-JMEMS, vol. 24, no. 2, pp. 259–261, 2015.

[9] G. Ding, D. Molinero, W. Wang, C. Palego, S. Halder, J. Hwang,
and C. L. Goldsmith, “Intelligent bipolar control of mems capacitive
switches,” Microwave Theory and Techniques, IEEE Trans. on, vol. 61,
no. 1, pp. 464–471, 2013.

[10] P. Giounanlis, E. Blokhina, O. Feely, S. Gorreta, J. Pons-Nin, and
M. Domnguez, “Sigma-Delta inspired control technique for the improve-
ment of MEMS reliability,” in International Symposium on Circuits and
Systems, Melbourne, June 1-5 2014.

[11] X. Rottenberg, I. De Wolf, B. Nauwelaers, W. De Raedt, and H. A. C.
Tilmans, “Analytical model of the dc actuation of electrostatic MEMS
devices with distributed dielectric charging and nonplanar electrodes,”
IEEE-JMEMS, vol. 16, no. 5, pp. 1243–1253, 2007.

[12] G. Papaioannou and J. Papapolymerou, “Dielectric charging mechanisms
in RF-MEMS capacitive switches,” in Microwave Integrated Circuit
Conference, 2007. EuMIC 2007. European, Oct 2007, pp. 359–362.

[13] E. Blokhina, S. Gorreta, D. Lopez, D. Molinero, O. Feely, J. Pons-Nin,
and M. Dominguez-Pumar, “Dielectric charge control in electrostatic
MEMS positioners/varactors,” IEEE-JMEMS, vol. 21, no. 3, pp. 559
–573, June 2012.

[14] H. Bruin and J. Deane, “Piecewise contractions are asymptotically
periodic,” Proceedings of the American Mathematical Society, vol. 137,
no. 4, pp. 1389 – 1395, 2009.

[15] O. Feely and L. Chua, “The effect of integrator leak in ΣΔ modulation,”
IEEE Trans. on Circuits and Systems I, vol. 38, pp. 1293–1305, 1991.

[16] M. Dominguez-Pumar, S. Gorreta, and J. Pons-Nin, “Slide mode analysis
of the dynamics of sigma-delta controls of dielectric charging,” IEEE
Trans. on Industrial Electronics, 2016.


