Sumari

SUMARI 1

1. ANNEX A: CÀLCULS 3
 1.1. Mètode ordinal dels criteris ponderats 3
 1.2. Càlcul del centre de gravetat del pilot en la posició de conducció 4
 1.2.1. Centre de gravetat del conjunt cap i coll (cdgA) 6
 1.2.2. Centre de gravetat del conjunt braç dret (cdgB) i centre de gravetat del conjunt braç esquerre (cdgC) 8
 1.2.3. Centre de gravetat del tòrax (cdgD) 9
 1.2.4. Centre de gravetat de la cuixa dreta i cuixa esquerra (cdgE i cdgG) 9
 1.2.5. Centre de gravetat del conjunt cama dreta i peu dret (cdgF) i centre de gravetat del conjunt cama esquerre i peu esquerre (cdgH) 9
 1.2.6. Centre de gravetat del pilot (cdgP) 10
 1.3. Dimensions generals del xassís 10
 1.4. Suspensió posterior 11
 1.4.1. Geometria de la suspensió posterior 11
 1.4.2. Transmissió de forces a l’esmorteïdor posterior 16
 1.4.3. Càlcul de la constant de rígidesa de la molla de la suspensió posterior [K] 18
 1.5. Rodaments dels eixos 21
 1.6. Cargols disc de fre 27
 1.6.1. Força de muntatge necessària 28
 1.6.2. Seguretat de la unió 28
 1.6.3. Moment de muntatge 29

2. ANNEX B: MEMÒRIA ECONÒMICA 30
 2.1. Hipòtesis inicials 30
 2.2. Cost base d’explotació 31
 2.3. Compte de pèrdues i guanys 32
 2.3.1. Escenari pessimista 33
 2.3.2. Escenari realista 33
 2.3.3. Escenari optimista 34
 2.4. Flux de caixa 34
 2.4.1. Escenari pessimista 35
 2.4.2. Escenari realista 36
 2.4.3. Escenari optimista 37
1. Annex A: Càlculs

1.1. Mètode ordinal dels criteris ponderats

En aquest capítol s’inclouen les taules utilitzades per arribar als resultats obtinguts a l’apartat 2.3 de la memòria.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Σ+1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Wood board</td>
<td>0,5</td>
<td>1</td>
<td>1</td>
<td>3,5</td>
<td>0,35</td>
</tr>
<tr>
<td>B</td>
<td>Rail</td>
<td>0,5</td>
<td>1</td>
<td>1</td>
<td>3,5</td>
<td>0,35</td>
</tr>
<tr>
<td>C</td>
<td>Sled</td>
<td>0</td>
<td>0</td>
<td>0,5</td>
<td>1,5</td>
<td>0,15</td>
</tr>
<tr>
<td>D</td>
<td>Aero board</td>
<td>0</td>
<td>0</td>
<td>0,5</td>
<td>1,5</td>
<td>0,15</td>
</tr>
</tbody>
</table>

Taula 1.1 Facilitat de construcció i muntatge

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Σ+1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Wood board</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0,4</td>
</tr>
<tr>
<td>B</td>
<td>Rail</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0,3</td>
</tr>
<tr>
<td>C</td>
<td>Sled</td>
<td>0</td>
<td>0</td>
<td>0,5</td>
<td>1,5</td>
<td>0,15</td>
</tr>
<tr>
<td>D</td>
<td>Aero board</td>
<td>0</td>
<td>0</td>
<td>0,5</td>
<td>1,5</td>
<td>0,15</td>
</tr>
</tbody>
</table>

Taula 1.2 Cost de fabricació

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Σ+1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Wood board</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>B</td>
<td>Rail</td>
<td>1</td>
<td>1</td>
<td>0,5</td>
<td>3,5</td>
<td>0,35</td>
</tr>
<tr>
<td>C</td>
<td>Sled</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0,2</td>
</tr>
<tr>
<td>D</td>
<td>Aero board</td>
<td>1</td>
<td>0,5</td>
<td>1</td>
<td>3,5</td>
<td>0,35</td>
</tr>
</tbody>
</table>

Taula 1.3 Estabilitat
1.2. Càlcul del centre de gravetat del pilot en la posició de conducció

Per al càlcul del centre de gravetat s’ha utilitzat la distribució de pesos de la Fig. 5.7 del apartat 4.3 de la memòria del projecte, així com els centres de gravetat particulars de cada un dels membres del cos del pilot.

Cal tenir present les simplificacions esmentades:

- Cap i coll es considerarà com una única unitat: Cap
Disseny i desenvolupament d’un luge tot terreny

- Braç, avantbraç i mà es considerarà com una única unitat: Braç
- Cama i peu es considerarà com una única unitat: Cama

A la Taula 1.7 es mostren els resultats de la distribució de pesos a partir d’un pes total del pilot de 75kg.

<table>
<thead>
<tr>
<th>Identificació</th>
<th>Part del cos</th>
<th>Distribució [%]</th>
<th>Pes [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cap + coll</td>
<td>8,4%</td>
<td>6,3</td>
</tr>
<tr>
<td>B</td>
<td>Braç D</td>
<td>2,8%</td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td>Avantbraç D</td>
<td>1,7%</td>
<td>1,275</td>
</tr>
<tr>
<td></td>
<td>Mà D</td>
<td>0,6%</td>
<td>0,45</td>
</tr>
<tr>
<td>C</td>
<td>Braç E</td>
<td>2,8%</td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td>Avantbraç E</td>
<td>1,7%</td>
<td>1,275</td>
</tr>
<tr>
<td></td>
<td>Mà E</td>
<td>0,6%</td>
<td>0,45</td>
</tr>
<tr>
<td>D</td>
<td>Tòrax</td>
<td>50,0%</td>
<td>37,5</td>
</tr>
<tr>
<td>E</td>
<td>Cuixa D</td>
<td>10,0%</td>
<td>7,5</td>
</tr>
<tr>
<td>F</td>
<td>Cama D + Peu D</td>
<td>5,7%</td>
<td>4,275</td>
</tr>
<tr>
<td>G</td>
<td>Cuixa E</td>
<td>10,0%</td>
<td>7,5</td>
</tr>
<tr>
<td>H</td>
<td>Cama E + Peu E</td>
<td>5,7%</td>
<td>4,275</td>
</tr>
</tbody>
</table>

Taula 1.7 Distribució de pesos segons la part del cos humà

El mètode utilitzat ha estat el del càlcul del centre de gravetat de múltiples cossos, tal com es mostra en l’equació genèrica següent:

\[x = \frac{x_1 \cdot w_1 + x_2 \cdot w_2 + \ldots + x_n \cdot w_n}{w_1 + w_2 + \ldots + w_n} \] \hspace{1cm} (Eq. 1.1)

On \(x \) és el valor de la component \(x \) del cos i-èssim i \(w_i \) és el pes corresponent al cos i-èssim, cal tenir present que aquesta equació genèrica seria vàlida per als 3 eixos del sistema de coordenades.

L’origen de coordenades es defineix, tal com indica la Fig. 1.1, en la unió articulada entre el tòrax i les cames. A més a més, a la Fig. 1.1 es mostren els diferents centres de gravetat de cadascuna de les parts del cos del pilot segons la identificació de la Taula 1.7.

Es parteix de la base que en l’eix \(z \) hi ha simetria respecte el pla \(xy \), però no ha sigut necessari realitzar cálcul per a la coordenada \(z \) del centre de gravetat del pilot.
Annex

Per al càlcul dels diferents centres de gravetat s'ha utilitzat la localització particular de cada segment del cos mostrada a la Fig. 1.2.

1.2.1. Centre de gravetat del conjunt cap i coll (cdgA)

Per al càlcul del centre de gravetat del conjunt cap i coll, cal tenir en compte la simplificació definida a tractar el cap i el coll com una única entitat, que la longitud de cap i coll és de 314mm, L_{co} (Taula 4.1 de la memòria) i que segons la Fig. 1.2 la distribució de pes del propi cap i coll posiciona el seu centre de gravetat al 60%, λ_{co}, queda clarament identificat el centre de gravetat particular del conjunt.

Però com en la posició de conducció el conjunt cap i coll es troba inclinat 30º, α_{4} (Taula 4.3 de la memòria) respecte al tòrax i desplaçat de l’origen de coordenades la distància projectada a l’eix x de la longitud del tòrax, H_{ea}, i desplaçat la distància projectada a l’eix y de la longitud del tòrax, H_{ea}, les coordenades del centre de gravetat en la posició definitiva de cada conjunt són:

$$x_{A} = - H_{ea} \cdot \cos \alpha_{1} + \lambda_{co} \cdot L_{co} \cdot \cos \alpha_{1} + \alpha_{4} = 684.9\text{mm}$$

$$y_{A} = H_{ea} \cdot \sin \alpha_{1} - \lambda_{co} \cdot L_{co} \cdot \sin \alpha_{1} + \alpha_{4} = 349.5\text{mm}$$
Fig. 1.2 Localització del centre de gravetat per a cada segment del cos
1.2.2. Centre de gravetat del conjunt braç dret (cdgB) i centre de gravetat del conjunt braç esquerre (cdgC)

Per al càlcul del centre de gravetat de cada conjunt de braç, avantbraç i mà, cal tenir en compte que en la posició de conducció el conjunt queda completament estirat i per tant el seu centre de gravetat quedarà posicionat en la línia marcada des de l’espatlla fins la mà.

Així doncs, el centre de gravetat del conjunt serà segons l’(Eq. 1.1), tenint en compte que la longitud del braç és de 279mm, L_b, la de l’avantbraç 257mm, L_ab, i de la mà de 190mm, L_m, a més de la localització del centre de gravetat de cada segment segons la Fig. 1.2, λ_i, i la distribució de pes de la Taula 1.7, així com la longitud de l’espatlla de 514mm, L_esp.

\[
x_B = x_C = \frac{x_b \cdot w_b + x_{ab} \cdot w_{ab} + x_m \cdot w_m}{w_b + w_{ab} + w_m} \quad \text{(Eq. 1.2)}
\]

\[
y_B = y_C = \frac{y_b \cdot w_b + y_{ab} \cdot w_{ab} + y_m \cdot w_m}{w_b + w_{ab} + w_m} \quad \text{(Eq. 1.3)}
\]

\[
x_b = (-L_{esp} + \lambda_b \cdot L_b) \cdot \cos \alpha_1 = -378,1 \text{mm}
\]

\[
x_{ab} = (-L_{esp} + L_b + \lambda_{ab} \cdot L_{ab}) \cdot \cos \alpha_1 = -124,2 \text{mm}
\]

\[
x_m = (-L_{esp} + L_b + L_{ab} + \lambda_m \cdot L_m) \cdot \cos \alpha_1 = 109,9 \text{mm}
\]

\[
y_b = (-L_{esp} + \lambda_b \cdot L_b) \cdot \sin \alpha_1 = 137,6 \text{mm}
\]

\[
y_{ab} = (-L_{esp} + L_b + \lambda_{ab} \cdot L_{ab}) \cdot \sin \alpha_1 = 45,2 \text{mm}
\]

\[
y_m = (-L_{esp} + L_b + L_{ab} + \lambda_m \cdot L_m) \cdot \sin \alpha_1 = -40,0 \text{mm}
\]

Substituïm a l’(Eq. 1.4), i (Eq. 1.5) i s’obté el centre de gravetat de cada subconjunt, centre de gravetat del conjunt braç dret \((x_B,y_B)\) i centre de gravetat del conjunt braç esquerre \((x_C,y_C)\)

\[
x_B = x_C = -236,1 \text{mm}
\]

\[
y_B = y_C = 70,7 \text{mm}
\]
1.2.3. Centre de gravetat del tòrax (cdgD)

Per al càlcul del centre de gravetat del tòrax, cal tenir en compte que la longitud del tòrax és de 600mm, \(H_{ea} \) (Taula 4.1 de la memòria) i que segons la Fig. 1.2 la distribució de pes del propi tòrax posiciona el seu centre de gravetat al 50\%, \(\lambda_t \), queda clarament identificat el centre de gravetat particular del tòrax.

Però com en la posició de conducció el tòrax es troba inclinat 20\º, \(\alpha_1 \) (Taula 4.3 de la memòria), les coordenades del centre de gravetat en la posició definitiva del tòrax són:

\[
\begin{align*}
 x_D &= -\lambda_t \cdot H_{ea} \cdot \cos \alpha_1 = -281,9 \text{ mm} \\
 y_D &= \lambda_t \cdot H_{ea} \cdot \sin \alpha_1 = 102,6 \text{ mm}
\end{align*}
\]

1.2.4. Centre de gravetat de la cuixa dreta i cuixa esquerra (cdgE i cdgG)

Per al càlcul del centre de gravetat de la cuixa dreta i esquerra, cal tenir en compte que la longitud de la cuixa és de 434mm, \(L_C \) (Taula 4.1 de la memòria) i que segons la Fig. 1.2 la distribució de pes de la pròpia cuixa posiciona el seu centre de gravetat al 40\%, \(\lambda_C \), queda clarament identificat el centre de gravetat particular de cada cuixa.

Però com en la posició de conducció la cuixa es troba inclinada 10\º, \(\alpha_2 \) (Taula 4.3 de la memòria), les coordenades del centre de gravetat en la posició definitiva de cada cuixa són:

\[
\begin{align*}
 x_E = x_G = \lambda_C \cdot L_C \cdot \cos \alpha_2 &= 170,9 \text{ mm} \\
 y_E = y_G = \lambda_C \cdot L_C \cdot \sin \alpha_2 &= 30,1 \text{ mm}
\end{align*}
\]

1.2.5. Centre de gravetat del conjunt cama dreta i peu dret (cdgF) i centre de gravetat del conjunt cama esquerre i peu esquerre (cdgH)

Per al càlcul del centre de gravetat del conjunt cama i peu, cal tenir en compte la simplificació definida a tractar la cama i el peu com una única entitat, que la longitud de la cama és de 503mm, \(L_{cp} \) (Taula 4.1 de la memòria) i que segons la Fig. 1.2 la distribució de pes de la pròpia cama posiciona el seu centre de gravetat al 40\%, \(\lambda_{cp} \), queda clarament identificat el centre de gravetat particular de cada conjunt.

Però com en la posició de conducció la cama es troba inclinada 10\º, \(\alpha_3 \) (Taula 4.3 de la memòria) i desplaçada de l’origen de coordenades la distància projectada al eix x de la
longitud de la cuixa, (417,55mm), i desplaçada la distància projectada a l’eix y de la longitud de la cuixa, (75,36mm), les coordenades del centre de gravetat en la posició definitiva de cada conjunt són:

\[x_f = x_H = 417.55 + \lambda_{cp} \cdot L_{cp} \cdot \cos \alpha_3 = 625.6\text{mm}\]

\[y_f = y_H = 75.36 - \lambda_{cp} \cdot L_{cp} \cdot \sin \alpha_3 = 40.4\text{mm}\]

1.2.6. Centre de gravetat del pilot (cdgP)

Per al càlcul del centre de gravetat del pilot, cal tenir en compte les dades dels apartats 1.1 a 1.5, l'Eq. (1.1) i la distribució de pes dels diferents segments del cos de la Taula 1.7:

\[x_p = \frac{x_A \cdot w_A + x_B \cdot w_B + x_C \cdot w_C + x_D \cdot w_D + x_E \cdot w_E + x_F \cdot w_F + x_G \cdot w_G + x_H \cdot w_H}{w_A + w_B + w_C + w_D + w_E + w_F + w_G + w_H} \quad (\text{Eq. 1.4})\]

\[y_p = \frac{y_A \cdot w_A + y_B \cdot w_B + y_C \cdot w_C + y_D \cdot w_D + y_E \cdot w_E + y_F \cdot w_F + y_G \cdot w_G + y_H \cdot w_H}{w_A + w_B + w_C + w_D + w_E + w_F + w_G + w_H} \quad (\text{Eq. 1.5})\]

Substituint els valors dels apartats anteriors i de la distribució de pesos a (Eq. 1.4) i (Eq. 1.5), s’obté el centre de gravetat del pilot \((x_p, y_p)\):

\[x_p = -117.1\text{mm}\]

\[y_p = 98.5\text{mm}\]

1.3. Dimensions generals del xassís

Segons les dimensions generals establertes a l’apartat 4.3 s’ha definit que la distància entre eixos ha de ser de mínim 1.200mm i màxim 1.500mm i que la distància mínima del xassís al terra ha de ser de 100mm.

S’han definit les rodes del davant de 200mm de diàmetre i la roda del darrera de 254mm.

A més, cal tenir present l’evolvent del cos del pilot definit a l’apartat 4.3 de la memòria, per tal que el xassís sigui prou ampli per encabir-hi el pilot en la posició de conducció.
Disseny i desenvolupament d’un luge tot terreny

1.4. Suspensió posterior

1.4.1. Geometria de la suspensió posterior

Amb aquestes dimensions assegurem les cotes generals establertes en un inici, així com la correcta posició del pilot.

La línia continua gris clar representa l’evolvent del pilot i per tant la limitació de les dimensions del xassís.

1.4. Suspensió posterior

1.4.1. Geometria de la suspensió posterior

A continuació es mostra la solució plantejada, partint d’un esmorteïdor central amb un recorregut total de la suspensió en vertical d’entre 110 i 130mm.
La Fig. 1.5 mostra l’esquematització i parametrització de les dues posicions del sistema basculant més molla en la posició inicial 1-2-3-4 i la posició final 1’-2-3-4’, per tal de poder fer el càlcul geomètric del recorregut de la suspensió, L_{11}, que s’assimila a una distància vertical per simplificar la resolució del problema.
Disseny i desenvolupament d’un luge tot terreny

Fig. 1.5 Geometria de la suspensió posterior en les dues posicions extremes

On la definició i valors coneguts són les que s’acompanyen a la taula següent:

<table>
<thead>
<tr>
<th>Denominació</th>
<th>Designació</th>
<th>Dimensió [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorregut vertical de la suspensió</td>
<td>L$_{11'}$</td>
<td>110-130</td>
</tr>
<tr>
<td>Distància entre el centre de gir del basculant i el punt de fixació superior de l’esmorteïdor</td>
<td>L$_{23}$</td>
<td>100</td>
</tr>
<tr>
<td>Distància entre el centre de gir del basculant i el punt de fixació del esmorteïdor</td>
<td>L$_{24}$</td>
<td>Incògnita</td>
</tr>
<tr>
<td>Longitud del basculant (entre el centre de gir i el centre de la roda del darrera)</td>
<td>L$_{12}$</td>
<td>330</td>
</tr>
<tr>
<td>Longitud del esmorteïdor en repòs</td>
<td>L$_{34}$</td>
<td>Incògnita</td>
</tr>
<tr>
<td>Longitud del esmorteïdor en el màxim recorregut vertical de la suspensió</td>
<td>L$_{34'}$</td>
<td>Incògnita</td>
</tr>
<tr>
<td>Angle en repòs del basculant respecte l’eix que defineixen el centre de gir del basculant i el punt de fixació de l’esmorteïdor</td>
<td>γ_i</td>
<td>87°</td>
</tr>
</tbody>
</table>

Taula 1.8 Definició i valors característics de la suspensió

A través de les següents relacions trigonomètriques derivades de la posició inicial del sistema basculant més molla, es possible el càlcul de L$_{24}$, primera incògnita del sistema:
\[
\frac{L_{23}}{\sin \beta_i} = \frac{L_{34}}{\sin \gamma_i} \quad \text{(Eq. 1.6)}
\]

\[
\theta_i + \beta_i + \gamma_i = 180^\circ \quad \text{(Eq. 1.7)}
\]

\[
\frac{L_{24}}{\sin \theta_i} = \frac{L_{34}}{\sin \gamma_i} \quad \text{(Eq. 1.8)}
\]

Conegudes \(L_{23}, L_{34}\) i \(\gamma_i\) es pot aïllar \(\beta_i\) de l’(Eq. 1.6). Tot seguit s’obté directament de l’(Eq. 1.7) el valor de \(\theta_i\).

Amb els valors obtinguts es pot aïllar de l’(Eq. 1.8) i calcular el valor de \(L_{24}\) (distancia del centre de gir del basculant al punt de fixació inferior de la molla).

A partir de la posició de màxim recorregut de la suspensió (1’-2-3-4’), es poden establir les següents relacions trigonomètriques i finalitzar el càlcul geomètric de tot el sistema.

\[
\frac{L_{23}}{\sin \beta_f} = \frac{L_{34}}{\sin \gamma_f} \quad \text{(Eq. 1.9)}
\]

\[
\frac{L_{23}}{\sin \beta_f} = \frac{L_{24'}}{\sin \theta_f} \quad \text{(Eq. 1.10)}
\]

\[
\theta_f + \beta_f + \gamma_f = 180^\circ \quad \text{(Eq. 1.11)}
\]

De l’(Eq. 1.9) aïllem \(\gamma_f\) i de l’(Eq. 1.10) aïllem \(\theta_f\), substituint a l’(Eq. 1.11), s’obté:

\[
\arcsin\left(\frac{L_{34}'}{L_{23}} \cdot \sin \beta_f\right) + \arcsin\left(\frac{L_{24'}}{L_{23}} \cdot \sin \beta_f\right) + \beta_f = 180^\circ \quad \text{(Eq. 1.12)}
\]

Equació que permet calcular el valor de \(\beta_f\). A partir del valor obtingut \(\beta_f\) i de l’(Eq. 1.9) s’obté el valor de \(\gamma_f\) i a partir de l’(Eq. 1.10) el valor de \(\theta_f\).

Del triangle format per 1-2-1’ es poden establir les següents relacions:
\[\Delta \gamma = \gamma_f - \gamma_i \quad \text{(Eq. 1.13)} \]
\[2 \cdot \psi + \Delta \gamma = 180^\circ \quad \text{(Eq. 1.14)} \]
\[\frac{L_{11}}{\sin \Delta \gamma} = \frac{L_{12}}{\sin \psi} \quad \text{(Eq. 1.15)} \]

De les (Eq. 1.13), (Eq. 1.14) i (Eq. 1.15) s'acaba obtenint el valor \(L_{11} \), recorregut de la suspensió en la posició màxima.

En un inici s'ha definit \(L_{11} \) entre 110 i 130 mm com a paràmetre de disseny, per tant, els càlculs anteriors permeten comprovar la geometria de la suspensió a partir de la definició inicial dels paràmetres \(L_{12}, L_{23}, L_{34}, L_{34}' \) i \(\gamma_i \).

A partir de les dimensions generals del luge tot terreny, s'estableix \(L_{12} \) (longitud total del basculant) i l'angle \(\gamma_i \):

\[L_{12} = 330 \text{mm} \]
\[\gamma_i = 87^\circ \]

A més, per assentiment, es defineix un valor lògic per a \(L_{23} \) igual a 100mm, d'acord a les dimensions bàsiques del xassís.

De les dades dels fabricants de molles es realitzen els càlculs amb diferents models de molla i per tant amb diferents valors per a longitud lliure de la molla, \(L_{34} \), i la longitud en compressió màxima de la molla, \(L_{34}' \):

Primer cas:

Model DV-22 170x40mm de la marca DNM.

\[L_{34} = 170 \text{ mm} \]
\[L_{34}' = 140 \text{ mm} \]

Amb aquestes dades, s'acaba obtenint que:
L_{24} = 142,81\text{mm}

L_{11'} = 143,94\text{mm}

Amb aquest model de molla no es compleix la premissa de disseny d’un recorregut de suspensió entre 110 i 130\text{mm}.

Segon cas:

Model DV-22 165x35\text{mm} de la marca DNM.

L_{34} = 165\text{ mm}

L_{34'} = 130\text{mm}

Amb aquestes dades, s’acaba obtenint que:

L_{24} = 136,58\text{mm}

L_{11'} = 128,68\text{mm}

Per tant, aquest segon cas és l’adient amb les definicions i paràmetres de disseny establerts.

Cal però, simplificar les distàncies i facilitar així el procés de fabricació, d’aquesta manera s’estableix L_{24} en 135\text{mm} i tornant a calcular el valor del recorregut s’obté que L_{11'} és igual a 124,8\text{mm}, trobant-se dins el marge definit prèviament.

1.4.2. Transmissió de forces a l’esmorteïdor posterior

Cal determinar quines són les forces que actuen sobre l’esmorteïdor a partir de les forces de la roda posterior, per poder determinar i definir la molla de la suspensió posterior.

A la Fig. 1.6 es mostra un esquema de les forces que actuen al sistema de la suspensió.
La força a la roda posterior, R_r, transmet un parell al punt 2, Γ_2, que es traduirà en una força al punt d’unió amb la molla, F_m al punt 4.

Cal tenir present que les forces horitzontals són absorbides pel propi basculant.

D’aquesta manera, es pot calcular la F_m en funció dels angles φ i β_i, que alhora depenen del recorregut del basculant, tal com es pot veure en les següents equacions:

\[
R_{rv} = R_r \cdot \cos \varphi
\]

\[
\Gamma_2 = R_{rv} \cdot L_{12} = R_r \cdot \cos \varphi \cdot L_{12}
\]

\[
\Gamma_2 = F_{mv} \cdot L_{24} = F_m \cdot \cos \beta_i \cdot L_{24}
\]

\[
F_{mv} = F_m \cdot \sin \beta_i
\]

\[
F_m = F_m \cdot \sin \beta_i \cdot L_{24} = R_r \cdot \cos \varphi \cdot L_{12}
\]

\[
F_m = \frac{R_r \cdot \cos \varphi \cdot L_{12}}{\sin \beta_i \cdot L_{24}}
\]
(Eq. 1.16)
1.4.3. Càlcul de la constant de rigidesa de la molla de la suspensió posterior [K]

Per calcular la molla de la suspensió posterior cal veure primer quina força rep la roda posterior en la posició de repòs amb el pilot sobre el luge.

Es considera que el pes del pilot és de 75kg i el pes del luge de 25kg, repartits tal com de la següent manera: 40% del pes a l’eix davanter i 60% a l’eix del darrera.

Per tant:

\[P_{\text{pilot}} = 75 \cdot 9,81 = 735,45 \text{N} \]

\[P_d = 0,4 \cdot 25 \cdot 9,81 = 98,1 \text{N} \]

\[P_r = 0,6 \cdot 25 \cdot 9,81 = 147,15 \text{N} \]

Fig. 1.7 Croquis de les forces i reaccions del luge

\[\sum F_{\text{ext}} = m \cdot a \]
\[\sum M_{\text{ext}} = 0 \]
De l'Eq. 1.17 es dedueixen les següents equacions:

\[m \cdot g \cdot \sin \alpha + (P_r + P_d) \cdot \sin \alpha - F_{rd} - F_r = m \cdot a \]
(Eq. 1.19)

\[m \cdot g \cdot \cos \alpha + (P_r + P_d) \cdot \cos \alpha = R_d + R_r \]
(Eq. 1.20)

\[F_{rd} = \mu_d \cdot R_d \]
(Eq. 1.21)

\[F_r = \mu_d \cdot R_r \]
(Eq. 1.22)

I de l'Eq. 1.18 se’n dedueixen les següents:

\[(h_{cdg} \cdot m \cdot g + P_r \cdot h_{rr}) \cdot \sin \alpha_i + R_r \cdot (x_d + x_r) = (x_d \cdot m \cdot g + P_r \cdot (x_d + x_r)) \cdot \cos \alpha_i \]
(Eq. 1.23)

\[(h_{cdg} \cdot m \cdot g + P_d \cdot h_{rd}) \cdot \sin \alpha_i + (x_r \cdot m \cdot g + P_d \cdot (x_d + x_r)) \cdot \cos \alpha_i = R_d \cdot (x_d + x_r) \]
(Eq. 1.24)

Amb les equacions anteriors es poden extreure les equacions per determinar les reaccions a les rodes del luge, tal com es mostra a continuació:

\[R_r = \frac{(x_d \cdot m \cdot g + P_r \cdot (x_d + x_r)) \cdot \cos \alpha_i - (h_{cdg} \cdot m \cdot g + P_r \cdot h_{rr}) \cdot \sin \alpha_i}{(x_d + x_r)} \]
(Eq. 1.25)

\[R_d = \frac{(h_{cdg} \cdot m \cdot g + P_d \cdot h_{rd}) \cdot \sin \alpha_i + (x_r \cdot m \cdot g + P_d \cdot (x_d + x_r)) \cdot \cos \alpha_i}{(x_d + x_r)} \]
(Eq. 1.26)

A través d’aquestes equacions es pot obtenir la gràfica del valor de \(R_r \) i \(R_d \) en funció de l’angle \(\alpha \), tal com mostra a continuació:
Tal com es pot apreciar a la Fig. 1.8, la força de reacció a l’eix del davant augmenta amb l’augment de l’angle de la pendent, tal com era d’esperar, mentre que la força de reacció a l’eix del darrera decreix.

Per al càlcul dels esforços es tindrà en compte la força màxima en el pitjor dels casos, en aquest cas per al càlcul dels esforços als que estarà sotmesa la suspensió es tindrà en compte la reacció a la roda del darrera amb pendent 0%, ja que són les condicions possibles més desfavorables, tot i que no sigui una condició de conducció habitual, així doncs:

\[R_r = 439,28 \text{N} \]
Tenint en compte que per al cas inicial de repòs en aquest pendent s’ha definit que la suspensió tingui un recorregut vertical de 10mm, de tal manera que es poden trobar els valors necessaris per calcular la força de la molla segons l’(Eq. 1.16) tal que:

\[
F_m = \frac{439,28 \cdot \cos \varphi \cdot L_{12}}{\sin \beta_1 \cdot L_{24}} = 965,39 \, N
\]

Un cop calculada la força de la molla, \(F_m \), i sabent el desplaçament que ha patit la molla en les condicions inicials de repòs es pot calcular la constant de rigidesa de la molla segons l’equació següent:

\[
F_m = K_m \cdot x_m
\]

\[
K_m = \frac{F_m}{x_m} = \frac{965,39}{5,04} = 191,54 \, N
\]

De tal forma que el valor de la constant de rigidesa de la molla ha de ser de 191,54N.

Amb aquests valors es pot calcular la força màxima de la molla quan esdevingui el màxim recorregut possible. Sent aquesta força màxima igual a 4.788,64 N, ja que el desplaçament màxim de la suspensió, \(x_{\text{max}} \), és de 25mm.

1.5. Rodaments dels eixos

A continuació es descriuen els càlculs realitzats per als esforços als que estan sol·licitats els rodaments dels eixos, tant l’eix davanter com l’eix posterior.

L’eix del davant, al tractar-se d’un conjunt comercial porta els propis de la marca, amb la designació MBS 12x28, que corresponen a uns rodaments SKF 6001 2RS. Mentre que l’eix posterior es disposen rodaments SKF 6201. A la taula següent se’n mostren les característiques:
A la figura següent se’n mostra un croquis amb la distribució de forces sobre el luge i les forces de reacció a cada roda.

Fig. 1.9 Forces de reacció a les rodes

\[F_p = R_d + R_r \quad \text{(Eq. 1.27)} \]
\[\sum \Gamma_A = 0 \quad \text{(Eq. 1.28)} \]
\[R_r = \frac{536}{1.360} \cdot F_p \quad \text{(Eq. 1.29)} \]
\[R_d = \frac{824}{1.360} \cdot F_p \quad \text{(Eq. 1.30)} \]
A més del pes del pilot cal considerar la massa pròpia del luge, 25kg, que establint un factor de seguretat, s’ha considerat una massa total de 150kg.

\[F_p = 150 \cdot 9,81 = 1.471,5 \, N \] \hspace{1cm} (Eq. 1.31)

A partir d’aquest valor i les equacions anteriors, s’obtenen les forces de reacció a les dues rodes:

\[R_r = 891,56 \, N \] \hspace{1cm} (Eq. 1.32)

\[R_d = 579,94 \, N \] \hspace{1cm} (Eq. 1.33)

Amb les dades obtingudes, es mostren a continuació només els càlculs per a la roda del darrera, ja que els de l’eix del davant són d’un conjunt comercial, estan menys sol·licitats i n’hi ha 2 a cada roda, aleshores es més crític l’eix del darrera.

Es considera una velocitat constant de 50km/h, per simplificar els càlculs, si bé a la realitat la velocitat seria variable durant l’ús del luge tot terreny.

\[v = 50 \frac{km}{h} = 13,88 \, m/s \] \hspace{1cm} (Eq. 1.34)

Sabent el radi de la roda posterior se’n calcula la velocitat angular:

\[n = \frac{v}{r} = \frac{13,88}{0,139} = 99,4 \, \frac{rad}{s} \cong 949,4 \, rpm \] \hspace{1cm} (Eq. 1.35)

Amb les dades obtingudes a (Eq. 1.31), (Eq. 1.32) i (Eq. 1.35), es calcula la càrrega equivalent, tal com es mostra a la Fig. 1.10.
S’obté:

\[F_r = \frac{R_r}{2} = \frac{891,56}{2} = 445,78 \text{ N} \]

(Eq. 1.36)

Per al càlcul de la força axial, es considera el cas més crític, moment en el qual el vehicle estigui traçant un revolt a la velocitat màxima. En aquestes circumstàncies, s’assimila la força de fregament a la força axial que es transmetrà als rodaments per simplificar el cas d’estudi.

D’aquesta manera la força de fricció serà igual a la massa per l’acceleració normal en la direcció que descriu el centre de gir i el punt de contacte de la roda amb el terra:
Disseny i desenvolupament d’un luge tot terreny

Tenint en compte que la força de fricció serà màxima quan el radi sigui mínim donada una certa velocitat. Per tant, aïllant el radi de les equacions anteriors, s’obté:

$$R = \frac{v^2}{\mu g}$$ \hspace{1cm} (Eq. 1.39)

De tal manera que es pot obtenir el radi mínim donada una velocitat i un coeficient de fricció. Per a $v=50\text{km/h}$ i $\mu=0.45$ (valor aproximat del coeficient de fricció entre el cauix i la sorra, s’obté que el radi mínim de gir és 43.70m.

A partir d’aquest valor és pot obtenir el valor de la força de fricció màxima:

$$F_f = F_u = 662.17\;N$$ \hspace{1cm} (Eq. 1.40)
El factor f_d segons tipologia de màquina i condicions de treball és 2,25 en aquest cas, ja que està sotmès a impacte al tractar-se d’un vehicle tot terreny.

$$F_r = 2,25 \cdot 445,78 = 1.003 \, N \quad \text{(Eq. 1.41)}$$

$$F_a = 2,25 \cdot 662,17 = 1.489,89 \, N \quad \text{(Eq. 1.42)}$$

A continuació s’estudien els factors radial i axial, per tal de trobar la càrrega equivalent:

$$P_e = X \cdot F_r + Y \cdot F_a \quad \text{(Eq. 1.43)}$$

$$\frac{F_a}{C_0} = \frac{1.489,89}{3.100} = 0,481 \quad \text{(Eq. 1.44)}$$

Amb el que es troba el valor de $e=0,435$ segons taula. Sent el quocient entre les forces axial i radial:

$$\frac{F_a}{F_r} = \frac{1.489,89}{1.003} = 1,485 > e \quad \text{(Eq. 1.45)}$$

I per tant $X=0,56$ i $Y=1,016$, obtenint-se la càrrega equivalent per aquestes condicions i rodament:

$$P_e = X \cdot F_r + Y \cdot F_a = F_r = 0,56 \cdot 1.003 + 1,016 \cdot 1.489,89 = 2.074,68 \, N \quad \text{(Eq. 1.46)}$$

A continuació es comprova la vida útil del rodament, segons l’equació:

$$\frac{f_L}{f_N} = \frac{C}{P_e} \quad \text{(Eq. 1.47)}$$

$$f_N = \sqrt[3]{\frac{100}{3 \cdot n}} \quad \text{(Eq. 1.48)}$$
A partir de les equacions anteriors s'obté el valor \(f_L \).

\[
f_L = 1,152 \quad \text{(Eq. 1.49)}
\]

A partir del qual es pot trobar el temps de vida del rodament \(L_h \).

\[
L_h = 500 \cdot f_L^3 = 764,75 \text{ h} \quad \text{(Eq. 1.50)}
\]

Tal que amb la suposició inicial de velocitat mitjana constant de 50km/h, suposaria una durada de 38.237 km, valor més que suficient per la tipologia de vehicle.

1.6. Cargols disc de fre

A continuació es mostren els càlculs necessaris per a la comprovació dels cargols del disc de fre. Es considera que els esforços més rellevants als que estarà sotmès el luge es quan es realitzi una frenada en sec des de la velocitat màxima fins a aturar el vehicle. Es considera velocitat màxima de 50km/h i un temps necessari per aturar-lo de 5s. Per tant, la desacceleració que patirà el vehicle i el pilot serà:

\[
a_F = \frac{v_f - v_i}{t} = 2,78 \frac{m}{s^2} \quad \text{(Eq. 1.51)}
\]

Considerant la massa del pilot amb la del luge més un marge de seguretat, \(m \), a 100kg, s'obté que la força de frenada és:

\[
F_F = m \cdot a_F = 277,78 \text{ N} \quad \text{(Eq. 1.52)}
\]

Suposant un parell a la roda, on \(r_{roda}=0,14\text{m} \):

\[
M_{Froda} = \frac{F_F \cdot r_{roda}}{n} = 38,89 \text{ Nm} \quad \text{(Eq. 1.53)}
\]
Es disposen 6 cargols tipus FHC/90, M5x18, NF E 27-160, a un radi, \(r_{cr} \), de 22mm del centre de la roda. Per tant, la força a cada cargol es calcula com segueix, on \(n_{cr} \) és el nombre de cargols:

\[
F_{cr} = \frac{M_f}{r_{cr}} \cdot \frac{1}{n_{cr}} = 294,61 \text{ N}
\]

(1.54)

1.6.1. Força de muntatge necessària

Tenint en compte una sola superfície de fregament, \(m = 1 \), i un coeficient de fregament entre superfícies, \(\mu = 0,1 \), es troba la força de muntatge mínima necessària segons l’expressió:

\[
F_{M\text{min}} = \frac{F_{cr}}{m \cdot \mu} = 2.946,1 \text{ N}
\]

(1.55)

A partir de la força de muntatge mínima, es pot calcular la força de muntatge màxima segons l'(Eq. 1.56), tenint en compte el factor de collada, \(\alpha_c = 2 \), considerant una clau de pneumàtica no lubricada:

\[
F_{M\text{max}} = \alpha_c \cdot F_{M\text{min}} = 2 \cdot 2.946,1 = 5.892,5 \text{ N}
\]

(1.56)

1.6.2. Seguretat de la unió

La comprovació dels cargols s’avalua a partir de tensió a la que està sotmès el cargol, comparant-la amb la tensió admissible.

A partir del valor trobat a l'(Eq. 1.56) es pot trobar el valor de la tensió a tracció:

\[
\sigma = \frac{F_{M\text{max}}}{A_T} = \frac{5.892,5}{14,2} = 414,94 \frac{N}{\text{mm}^2}
\]

(1.57)

Tenint en compte un \(C_s = 1,4 \) i un factor corrector per l’efecte de la torsió de 1,35, es compara el valor trobat de la tensió amb el límit elàstic, segons la relació següent:
\[\sigma \leq 0.52 \cdot R_e \] \hspace{1cm} (Eq. 1.58)

De tal manera, que per a què la unió sigui segura, cal que el límit elàstic sigui superior a 798 N/mm\(^2\), sent el cargol adient el de qualitat 10.9.

1.6.3. Moment de muntatge

Així doncs, cal considerar un moment de muntatge adient per assegurar aquestes condicions, segons l’equació següent:

\[M'_m = 0.2 \cdot F_{M_{\text{max}}} \cdot d = 5.892.25 \text{ Nmm} \] \hspace{1cm} (Eq. 1.59)
2. Annex B: Memòria econòmica

En aquest capítol es mostren els detalls de l’anàlisi econòmic que s’ha dut a terme al capítol 9 de la memòria.

2.1. Hipòtesis inicials

La taula següent mostra el detall de les inversions inicials considerades:

<table>
<thead>
<tr>
<th>Descripció</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversió inicial</td>
<td>85.000 €</td>
</tr>
<tr>
<td>Utillatge de muntatge</td>
<td>40.000 €</td>
</tr>
<tr>
<td>Motllos</td>
<td>35.000 €</td>
</tr>
<tr>
<td>Maquinaria base taller</td>
<td>10.000 €</td>
</tr>
</tbody>
</table>

Taula 2.1 Detall inversions inicials

Per al cost de desenvolupament del projecte d’R+D, s’han considerat els següents costos:

<table>
<thead>
<tr>
<th>Descripció</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projecte R+D</td>
<td>72.000 €</td>
</tr>
<tr>
<td>Hores enginyer industrial (960h x 48€/h)</td>
<td>46.080 €</td>
</tr>
<tr>
<td>Hores delineant (460h x 21€/h)</td>
<td>10.080 €</td>
</tr>
<tr>
<td>Honoraris administratius (320h x 12 €/h)</td>
<td>3.840 €</td>
</tr>
<tr>
<td>Compra ordinadors (3u)</td>
<td>2.040 €</td>
</tr>
<tr>
<td>Compra plotter (1u)</td>
<td>960 €</td>
</tr>
<tr>
<td>Fabricació prototip (2u)</td>
<td>9.000 €</td>
</tr>
</tbody>
</table>

Taula 2.2 Detall costos projecte R+D

Per al cost de mà d'obra indirecte, s’han considerat els següents costos:
2.2. Cost base d'explotació

Per al cost base d'explotació s'ha considerat un cost de muntatge de 18 € i els següents costos:

<table>
<thead>
<tr>
<th>Descripció</th>
<th>Cost [€/u]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost directe</td>
<td>348,69</td>
</tr>
<tr>
<td>Matèria primera</td>
<td>45,44</td>
</tr>
<tr>
<td>Processos</td>
<td>138,00</td>
</tr>
<tr>
<td>Elements comercials</td>
<td>147,25</td>
</tr>
<tr>
<td>Muntatge</td>
<td>18,00</td>
</tr>
<tr>
<td>Cost indirecte industrialització</td>
<td>55,79</td>
</tr>
<tr>
<td>Energia (5%)</td>
<td>17,43</td>
</tr>
<tr>
<td>Manteniment (1%)</td>
<td>3,49</td>
</tr>
<tr>
<td>Altres despeses (10%)</td>
<td>34,87</td>
</tr>
<tr>
<td>Subtotal Industrial</td>
<td>404,48</td>
</tr>
<tr>
<td>Distribució (10%)</td>
<td>40,45</td>
</tr>
<tr>
<td>Total cost explotació</td>
<td>444,93</td>
</tr>
</tbody>
</table>

A continuació es mostra el detall del cost directe d'explotació, on s'han tingut en compte:

<table>
<thead>
<tr>
<th>Descripció</th>
<th>Cost [€/u]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost matèries primeres</td>
<td>45,44</td>
</tr>
<tr>
<td>Tub circular 20x2mm (aprox. 8m x 2,4€/m)</td>
<td>18,77</td>
</tr>
<tr>
<td>Tub quadrat 20x1mm (aprox. 1,4m)</td>
<td>2,08</td>
</tr>
<tr>
<td>Platines</td>
<td>4</td>
</tr>
<tr>
<td>Seient</td>
<td>20,2</td>
</tr>
<tr>
<td>Coixinets niló</td>
<td>0,4</td>
</tr>
</tbody>
</table>
2.3. Compte de pèrdues i guanys

Tal com es mostra a la memòria s’han considerat tres escenaris amb les hipòtesis d’estimació de vendes inicials i creixements anuals de la Taula 9.2 de la memòria.

A continuació es mostra el detall per a cadascun dels escenaris.

<table>
<thead>
<tr>
<th>Descripció</th>
<th>Cost [€/u]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost processes</td>
<td>138 €</td>
</tr>
<tr>
<td>Tall (1h)</td>
<td>24 €</td>
</tr>
<tr>
<td>Plegadora (1,5h)</td>
<td>36 €</td>
</tr>
<tr>
<td>Mecanitzats (1h)</td>
<td>18 €</td>
</tr>
<tr>
<td>Soldadura (1,5h)</td>
<td>36 €</td>
</tr>
<tr>
<td>Fibra seient (1h)</td>
<td>24 €</td>
</tr>
</tbody>
</table>

Taula 2.6 Detall cost processes

<table>
<thead>
<tr>
<th>Descripció</th>
<th>Cost [€/u]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost elements comercials</td>
<td>147,25</td>
</tr>
<tr>
<td>AMES-B-12-17-25</td>
<td>1,40</td>
</tr>
<tr>
<td>Cargoleria (Cargols, Femelles i Volanderes)</td>
<td>2,95</td>
</tr>
<tr>
<td>Rodament 6001</td>
<td>3,90</td>
</tr>
<tr>
<td>Disc de fre</td>
<td>19,50</td>
</tr>
<tr>
<td>Pinça de fre</td>
<td>25,50</td>
</tr>
<tr>
<td>Maneta fre (cable)</td>
<td>8,50</td>
</tr>
<tr>
<td>Reposapeus</td>
<td>11,00</td>
</tr>
<tr>
<td>Puny manillar</td>
<td>8,00</td>
</tr>
<tr>
<td>Molla suspensió darrera</td>
<td>6,70</td>
</tr>
<tr>
<td>Eix davant</td>
<td>27,15</td>
</tr>
<tr>
<td>Pneumàtic darrera</td>
<td>5,15</td>
</tr>
<tr>
<td>Llanta davant</td>
<td>9,25</td>
</tr>
<tr>
<td>Pneumàtic davant</td>
<td>12,95</td>
</tr>
<tr>
<td>Rodaments eix davant</td>
<td>3,90</td>
</tr>
<tr>
<td>AMES-B-12-17-25</td>
<td>1,40</td>
</tr>
</tbody>
</table>

Taula 2.7 Detall cost elements comercials
2.3.1. Escenari pessimista

<table>
<thead>
<tr>
<th></th>
<th>Any 1</th>
<th>Any 2</th>
<th>Any 3</th>
<th>Any 4</th>
<th>Any 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendes totals</td>
<td>[u/any]</td>
<td>1.000</td>
<td>1.050</td>
<td>1.103</td>
<td>1.158</td>
<td>1.216</td>
</tr>
<tr>
<td>PVP</td>
<td>[€/u]</td>
<td>580</td>
<td>597</td>
<td>615</td>
<td>634</td>
<td>653</td>
</tr>
<tr>
<td>Ingressos d'explotació</td>
<td>[€/any]</td>
<td>580.000</td>
<td>627.270</td>
<td>678.393</td>
<td>733.681</td>
<td>793.477</td>
</tr>
<tr>
<td>Cost producció</td>
<td>[€/u]</td>
<td>404,5</td>
<td>416,6</td>
<td>429,1</td>
<td>442,0</td>
<td>455,2</td>
</tr>
<tr>
<td>Despeses explotació</td>
<td>[€/any]</td>
<td>404.480</td>
<td>437.446</td>
<td>473.097</td>
<td>511.655</td>
<td>553.355</td>
</tr>
<tr>
<td>Despeses distribució</td>
<td>[€/any]</td>
<td>40.448</td>
<td>43.745</td>
<td>47.310</td>
<td>51.165</td>
<td>55.335</td>
</tr>
<tr>
<td>Resultat explotació</td>
<td>[€/any]</td>
<td>135.072</td>
<td>146.080</td>
<td>157.985</td>
<td>170.861</td>
<td>184.786</td>
</tr>
<tr>
<td>Despeses mà d'obra indirecte</td>
<td>[€/any]</td>
<td>129.000</td>
<td>132.870</td>
<td>136.856</td>
<td>140.962</td>
<td>145.191</td>
</tr>
<tr>
<td>Amortització web</td>
<td>[€/any]</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Amortització R+D</td>
<td>[€/any]</td>
<td>24.000</td>
<td>24.000</td>
<td>24.000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Amortització maquinaria</td>
<td>[€/any]</td>
<td>17.000</td>
<td>17.000</td>
<td>17.000</td>
<td>17.000</td>
<td>17.000</td>
</tr>
<tr>
<td>Resultat exercici abans impostos</td>
<td>[€/any]</td>
<td>-41.328</td>
<td>-34.322</td>
<td>-26.539</td>
<td>8.091</td>
<td>17.644</td>
</tr>
<tr>
<td>Impost sobre benefici (35%)</td>
<td>[€/any]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.832</td>
<td>6.175</td>
</tr>
</tbody>
</table>

Taula 2.8 Compte de pèrdues i guanys – Escenari pessimista

2.3.2. Escenari realista

<table>
<thead>
<tr>
<th></th>
<th>Any 1</th>
<th>Any 2</th>
<th>Any 3</th>
<th>Any 4</th>
<th>Any 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendes totals</td>
<td>[u/any]</td>
<td>1.200</td>
<td>1.320</td>
<td>1.584</td>
<td>1.901</td>
<td>2.091</td>
</tr>
<tr>
<td>PVP</td>
<td>[€/u]</td>
<td>580</td>
<td>597</td>
<td>615</td>
<td>634</td>
<td>653</td>
</tr>
<tr>
<td>Ingressos d'explotació</td>
<td>[€/any]</td>
<td>696.000</td>
<td>788.568</td>
<td>974.670</td>
<td>1.204.692</td>
<td>1.364.916</td>
</tr>
<tr>
<td>Cost producció</td>
<td>[€/u]</td>
<td>404,5</td>
<td>416,6</td>
<td>429,1</td>
<td>442,0</td>
<td>455,2</td>
</tr>
<tr>
<td>Despeses explotació</td>
<td>[€/any]</td>
<td>485.376</td>
<td>549.932</td>
<td>679.715</td>
<td>840.128</td>
<td>951.865</td>
</tr>
<tr>
<td>Despeses distribució</td>
<td>[€/any]</td>
<td>48.538</td>
<td>54.993</td>
<td>67.972</td>
<td>84.013</td>
<td>95.187</td>
</tr>
<tr>
<td>Resultat explotació</td>
<td>[€/any]</td>
<td>162.086</td>
<td>183.643</td>
<td>226.983</td>
<td>280.551</td>
<td>317.864</td>
</tr>
<tr>
<td>Despeses mà d'obra indirecte</td>
<td>[€/any]</td>
<td>129.000</td>
<td>132.870</td>
<td>136.856</td>
<td>140.962</td>
<td>145.191</td>
</tr>
<tr>
<td>Amortització web</td>
<td>[€/any]</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Amortització R+D</td>
<td>[€/any]</td>
<td>24.000</td>
<td>24.000</td>
<td>24.000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Amortització maquinaria</td>
<td>[€/any]</td>
<td>17.000</td>
<td>17.000</td>
<td>17.000</td>
<td>17.000</td>
<td>17.000</td>
</tr>
<tr>
<td>Impost sobre benefici (35%)</td>
<td>[€/any]</td>
<td>1.134</td>
<td>14.861</td>
<td>41.223</td>
<td>52.753</td>
<td>109.971</td>
</tr>
<tr>
<td>Resultat net exercici</td>
<td>[€/any]</td>
<td>-14.314</td>
<td>2.107</td>
<td>27.598</td>
<td>76.558</td>
<td>97.969</td>
</tr>
</tbody>
</table>

Taula 2.9 Compte de pèrdues i guanys – Escenari realista
2.3.3. Escenari optimista

<table>
<thead>
<tr>
<th></th>
<th>Any 1</th>
<th>Any 2</th>
<th>Any 3</th>
<th>Any 4</th>
<th>Any 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendes totals</td>
<td>[u/any]</td>
<td>1.500</td>
<td>1.875</td>
<td>2.344</td>
<td>2.930</td>
<td>3.662</td>
</tr>
<tr>
<td>PVP</td>
<td>[€/u]</td>
<td>580</td>
<td>597</td>
<td>615</td>
<td>634</td>
<td>653</td>
</tr>
<tr>
<td>Ingresos d'explotació</td>
<td>[€/any]</td>
<td>870.000</td>
<td>1.120.125</td>
<td>1.442.161</td>
<td>1.856.782</td>
<td>2.390.607</td>
</tr>
<tr>
<td>Cost producció</td>
<td>[€/u]</td>
<td>404,5</td>
<td>416,6</td>
<td>429,1</td>
<td>442,0</td>
<td>455,2</td>
</tr>
<tr>
<td>Despeses distribució</td>
<td>[€/any]</td>
<td>60.672</td>
<td>78.115</td>
<td>100.573</td>
<td>129.488</td>
<td>166.716</td>
</tr>
<tr>
<td>Despeses mà d'obra indirecte</td>
<td>[€/any]</td>
<td>129.000</td>
<td>132.870</td>
<td>136.856</td>
<td>140.962</td>
<td>145.191</td>
</tr>
<tr>
<td>Amortització web</td>
<td>[€/any]</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
</tr>
<tr>
<td>Amortització R+D</td>
<td>[€/any]</td>
<td>24.000</td>
<td>24.000</td>
<td>24.000</td>
<td>24.000</td>
<td>24.000</td>
</tr>
<tr>
<td>Amortització maquinaria</td>
<td>[€/any]</td>
<td>17.000</td>
<td>17.000</td>
<td>17.000</td>
<td>17.000</td>
<td>17.000</td>
</tr>
<tr>
<td>Impost sobre benefici (35%)</td>
<td>[€/any]</td>
<td>9.173</td>
<td>28.159</td>
<td>52.965</td>
<td>94.374</td>
<td>136.355</td>
</tr>
<tr>
<td>Resultat net exercici</td>
<td>[€/any]</td>
<td>17.035</td>
<td>52.296</td>
<td>98.364</td>
<td>175.267</td>
<td>253.231</td>
</tr>
</tbody>
</table>

Taula 2.10 Compte de pèrdues i guanys – Escenari optimista

2.4. Flux de caixa

A continuació es mostra el detall per al flux de caixa de cadascun dels escenaris.
2.4.1. Escenari pessimista

Taula 2.11 Flux de caixa – Escenari pessimista

<table>
<thead>
<tr>
<th></th>
<th>Any 0</th>
<th>Any 1</th>
<th>Any 2</th>
<th>Any 3</th>
<th>Any 4</th>
<th>Any 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>COBRAMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingresos explotació</td>
<td>620.000 €</td>
<td>670.530 €</td>
<td>725.178 €</td>
<td>784.280 €</td>
<td>848.199 €</td>
<td>3.648.187 €</td>
<td></td>
</tr>
<tr>
<td>PAGAMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pagaments explotació</td>
<td>578.328 €</td>
<td>621.720 €</td>
<td>669.018 €</td>
<td>729.132 €</td>
<td>784.161 €</td>
<td>3.382 359 €</td>
<td></td>
</tr>
<tr>
<td>Distribució</td>
<td>40.448 €</td>
<td>43.745 €</td>
<td>47.310 €</td>
<td>51.165 €</td>
<td>55.335 €</td>
<td>238.033 €</td>
<td></td>
</tr>
<tr>
<td>Despeses mà d’obra indirectes</td>
<td>129.000 €</td>
<td>132.870 €</td>
<td>136.856 €</td>
<td>140.962 €</td>
<td>145.191 €</td>
<td>684.879 €</td>
<td></td>
</tr>
<tr>
<td>Despeses marketing/web</td>
<td>4.400 €</td>
<td>4.532 €</td>
<td>4.668 €</td>
<td>4.808 €</td>
<td>4.952 €</td>
<td>23.360 €</td>
<td></td>
</tr>
<tr>
<td>Impostos</td>
<td>- €</td>
<td>3.128 €</td>
<td>7.086 €</td>
<td>20.542 €</td>
<td>25.328 €</td>
<td>56.084 €</td>
<td></td>
</tr>
<tr>
<td>INVERSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>163.000 €</td>
</tr>
<tr>
<td>Desenvolupament web</td>
<td>6.000 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.000 €</td>
</tr>
<tr>
<td>Desenvolupament R+D</td>
<td>72.000 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72.000 €</td>
</tr>
<tr>
<td>Inversió inicial</td>
<td>85.000 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85.000 €</td>
</tr>
<tr>
<td>FLUX CAIXA</td>
<td>163.000 €</td>
<td>41.672 €</td>
<td>48.810 €</td>
<td>56.161 €</td>
<td>55.149 €</td>
<td>64.038 €</td>
<td>102.828 €</td>
</tr>
<tr>
<td>FLUX CAIXA ACUMULAT</td>
<td>163.000 €</td>
<td>121.328 €</td>
<td>72.519 €</td>
<td>16.358 €</td>
<td>38.790 €</td>
<td>102.828 €</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2.1 Gràfica flux de caixa de l’escenari pessimista

TIR 17,49% | VAN 52.152€

Retorn de la inversió en 3,42 anys
2.4.2. Escenari realista

<table>
<thead>
<tr>
<th>COBRAMENTS</th>
<th>Any 0</th>
<th>Any 1</th>
<th>Any 2</th>
<th>Any 3</th>
<th>Any 4</th>
<th>Any 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingresos explotació</td>
<td>744.000 €</td>
<td>842.952 €</td>
<td>1.041.889 €</td>
<td>1.287.774 €</td>
<td>1.459.048 €</td>
<td>5.375.663 €</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGAMENTS</th>
<th>Any 0</th>
<th>Any 1</th>
<th>Any 2</th>
<th>Any 3</th>
<th>Any 4</th>
<th>Any 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pagaments explotació</td>
<td>679.104 €</td>
<td>762.496 €</td>
<td>927.598 €</td>
<td>1.140.213 €</td>
<td>1.282.893 €</td>
<td>4.792.304 €</td>
<td></td>
</tr>
<tr>
<td>Distribució</td>
<td>485.376 €</td>
<td>549.932 €</td>
<td>679.715 €</td>
<td>840.128 €</td>
<td>951.865 €</td>
<td>3.507.017 €</td>
<td></td>
</tr>
<tr>
<td>Despeses mà d’obra indirecte</td>
<td>129.000 €</td>
<td>132.870 €</td>
<td>136.856 €</td>
<td>140.962 €</td>
<td>145.191 €</td>
<td>684.879 €</td>
<td></td>
</tr>
<tr>
<td>Despeses marketing/web</td>
<td>4.400 €</td>
<td>4.532 €</td>
<td>4.668 €</td>
<td>4.808 €</td>
<td>4.952 €</td>
<td>23.360 €</td>
<td></td>
</tr>
<tr>
<td>Impostos</td>
<td>11.790 €</td>
<td>20.169 €</td>
<td>38.387 €</td>
<td>70.302 €</td>
<td>85.699 €</td>
<td>226.347 €</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INVERSIONS</th>
<th>Any 0</th>
<th>Any 1</th>
<th>Any 2</th>
<th>Any 3</th>
<th>Any 4</th>
<th>Any 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desenvolupament web</td>
<td>6.000 €</td>
<td>6.000 €</td>
<td>6.000 €</td>
<td>6.000 €</td>
<td>6.000 €</td>
<td>6.000 €</td>
<td></td>
</tr>
<tr>
<td>Desenvolupament R+D</td>
<td>72.000 €</td>
<td>72.000 €</td>
<td>72.000 €</td>
<td>72.000 €</td>
<td>72.000 €</td>
<td>72.000 €</td>
<td></td>
</tr>
<tr>
<td>Inversió inicial</td>
<td>85.000 €</td>
<td>85.000 €</td>
<td>85.000 €</td>
<td>85.000 €</td>
<td>85.000 €</td>
<td>85.000 €</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLUX CAIXA</th>
<th>Any 0</th>
<th>Any 1</th>
<th>Any 2</th>
<th>Any 3</th>
<th>Any 4</th>
<th>Any 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>163.000 €</td>
<td>64.896 €</td>
<td>80.456 €</td>
<td>114.290 €</td>
<td>147.561 €</td>
<td>176.155 €</td>
<td>420.359 €</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLUX CAIXA ACUMULAT</th>
<th>Any 0</th>
<th>Any 1</th>
<th>Any 2</th>
<th>Any 3</th>
<th>Any 4</th>
<th>Any 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>163.000 €</td>
<td>98.104 €</td>
<td>17.648 €</td>
<td>96.643 €</td>
<td>244.204 €</td>
<td>420.359 €</td>
<td>420.359 €</td>
<td></td>
</tr>
</tbody>
</table>

Taula 2.12 Flux de caixa – Escenari realista

![Gràfica flux de caixa de l’escenari realista](image)

Fig. 2.2 Gràfica flux de caixa de l’escenari realista

TIR 50,75% | VAN 299.389 €

Retorn de la inversió en 2,18 anys
2.4.3. Escenaris optimista

<table>
<thead>
<tr>
<th>COBRAMENTS</th>
<th>Any 0</th>
<th>Any 1</th>
<th>Any 2</th>
<th>Any 3</th>
<th>Any 4</th>
<th>Any 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingressos explotació</td>
<td>930.000 €</td>
<td>1.197.375 €</td>
<td>1.541.620 €</td>
<td>1.984.836 €</td>
<td>2.555.477 €</td>
<td>8.209.308 €</td>
<td></td>
</tr>
<tr>
<td>PAGAMENTS</td>
<td>830.965 €</td>
<td>1.051.867 €</td>
<td>1.335.608 €</td>
<td>1.709.334 €</td>
<td>2.178.080 €</td>
<td>7.105.854 €</td>
<td></td>
</tr>
<tr>
<td>Pagaments explotació</td>
<td>606.721 €</td>
<td>781.153 €</td>
<td>1.005.734 €</td>
<td>1.294.883 €</td>
<td>1.667.162 €</td>
<td>5.355.652 €</td>
<td></td>
</tr>
<tr>
<td>Distribució</td>
<td>60.672 €</td>
<td>78.115 €</td>
<td>100.573 €</td>
<td>129.488 €</td>
<td>166.716 €</td>
<td>535.565 €</td>
<td></td>
</tr>
<tr>
<td>Despeses mà d’obra indirecte</td>
<td>4.400 €</td>
<td>4.532 €</td>
<td>4.668 €</td>
<td>4.808 €</td>
<td>4.952 €</td>
<td>23.360 €</td>
<td></td>
</tr>
<tr>
<td>Despeses marketing/web</td>
<td>30.373 €</td>
<td>55.197 €</td>
<td>87.776 €</td>
<td>139.193 €</td>
<td>194.060 €</td>
<td>506.398 €</td>
<td></td>
</tr>
<tr>
<td>Impostos</td>
<td>163.000 €</td>
<td>163.000 €</td>
<td>163.000 €</td>
<td>163.000 €</td>
<td>163.000 €</td>
<td>815.000 €</td>
<td></td>
</tr>
<tr>
<td>INVERSIONS</td>
<td>163.000 €</td>
<td>163.000 €</td>
<td>163.000 €</td>
<td>163.000 €</td>
<td>163.000 €</td>
<td>163.000 €</td>
<td></td>
</tr>
<tr>
<td>Desenvolupament web</td>
<td>6.000 €</td>
<td>6.000 €</td>
<td>6.000 €</td>
<td>6.000 €</td>
<td>6.000 €</td>
<td>6.000 €</td>
<td></td>
</tr>
<tr>
<td>Desenvolupament R+D</td>
<td>72.000 €</td>
<td>72.000 €</td>
<td>72.000 €</td>
<td>72.000 €</td>
<td>72.000 €</td>
<td>72.000 €</td>
<td></td>
</tr>
<tr>
<td>Inversió inicial</td>
<td>85.000 €</td>
<td>85.000 €</td>
<td>85.000 €</td>
<td>85.000 €</td>
<td>85.000 €</td>
<td>85.000 €</td>
<td></td>
</tr>
</tbody>
</table>

| FLUX CAIXA | 163.000 € | 99.035 € | 145.508 € | 206.013 € | 275.502 € | 377.396 € | 940.454 € |
| FLUX CAIXA ACUMULAT | 163.000 € | 63.965 € | 81.543 € | 287.556 € | 563.058 € | 940.454 € |

Taula 2.13 Flux de caixa – Escenari optimista

![Gràfica flux de caixa de l’escenari optimista](image)

Fig. 2.3 Gràfica flux de caixa de l’escenari optimista

TIR 87,99% | VAN 704.074 €

Retorn de la inversió en 1,78 anys