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ABSTRACT

Adjoint methods are a key ingredient of gradient-based full-waveform inversion schemes.
While being conceptually elegant, they face the challenge of massive memory require-
ments caused by the opposite time directions of forward and adjoint simulations and the
necessity to access both wavefields simultaneously for the computation of the sensitivity
kernel. To overcome this bottleneck, we present lossy compression techniques that sig-
nificantly reduce the memory requirements with only a small computational overhead.
Our approach is tailored to adjoint methods and utilizes the fact that the computation
of a sufficiently accurate sensitivity kernel does not require the fully-resolved forward
wavefield. The collection of methods comprises re-interpolation with a coarse temporal
grid as well as adaptively chosen polynomial degree and floating-point precision to rep-
resent spatial snapshots of the forward wavefield on hierarchical grids. Furthermore,
the first arrivals of adjoint waves are used to identify “shadow zones” that do not con-
tribute to the sensitivity kernel. Numerical experiments show the high potential of this
approach achieving an effective compression factor of three orders of magnitude with
only a minor reduction in the rate of convergence. Moreover, it is computationally
cheap and straightforward to integrate in finite-element wave propagation codes with
possible extensions to finite-difference methods.

INTRODUCTION

Adjoint methods offer a powerful tool to solve problems in full-waveform inversion (FWI).
They are essential to efficiently compute the first and second derivatives of the misfit func-
tional and have been applied successfully to solve tomography problems on many different
scales, see, for instance, Igel et al. (1996); Pratt et al. (1998); Fichtner et al. (2009); Virieux
and Operto (2009); Tape et al. (2010); Zhu et al. (2012); Rickers et al. (2013); Métivier et
al. (2013). However, the time-reversed nature of the adjoint simulations introduces a severe
bottleneck by the necessity to access forward and adjoint wavefields simultaneously during
the computation of sensitivity kernels. Hence, in addition to requiring a huge amount of
computational resources, FWI on 3D data sets also demands massive storage capabilities.

In general, there exist two opposing strategies to deal with this challenge that show a
tradeoff between memory requirements and increasing the computational cost. On the one
hand, saving the whole forward wavefield to the disk yields a significant overhead to store
and process the four-dimensional space-time evolution of the seismic wavefield. Moreover,
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since this can easily exceed tens or hundreds of terabytes, it necessitates to use the slow levels
in memory hierarchy and limitations of the memory bandwidth degrade the performance
significantly, especially on GPU clusters. On the other hand, checkpointing techniques
(Griewank, 1992; Walther and Griewank, 2004) can trade an almost arbitrary amount of
memory requirements for additional computations. While the optimal placement of the
checkpoints has been studied and fine-tuned to its application in reverse time migration and
seismic tomography (Symes, 2007; Anderson et al., 2012), this approach yields a significant
computational overhead, which is typically in the order of one additional forward simulation
and can only be reduced at the cost of increasing the memory requirements. A related
strategy was proposed by Tromp et al. (2008) and requires to store only the boundary
values and the final state of the forward wavefield. In a second step, an auxiliary PDE
- the so-called backward wave equation - is solved during the adjoint run to propagate
the saved forward wavefield in reversed time direction. While its computational overhead is
comparable to checkpointing techniques, this approach is limited to symmetric time stepping
schemes and when attenuation in the Earth is weak.

In summary, storing the whole forward wavefield is prohibitively expensive for large
data sets and potential remedies like checkpointing introduce a significant computational
overhead. Hence, the amount of auxiliary data that has to be transferred to and from disk
and related input/output (I/O) operations are key challenges for full-waveform inversion.

In this paper we propose an alternative approach that strikes a balance between memory
requirements and the need for additional computations. This is based on techniques for the
lossy compression of the forward wavefield that fulfill the following important requirements:

• The error in the inexact gradients can be controlled such that the lossy compression
does not significantly affect the inverted results.

• The I/O overhead is reduced substantially without the need for extra simulations.

• The computational cost for compressing/decompressing the wavefield is cheap com-
pared to solving the elastic wave equation.

• Using approximate sensitivity kernels resulting from the compressed wavefield does
not significantly slow down the rate of convergence of an iterative minimization scheme
to solve the inverse problem.

Our method combines (i) storing coarse temporal snapshots and re-interpolation with a
sliding window cubic spline, (ii) spatial compression based on an adaptively chosen floating-
point precision and local representation of the wavefield by lower-dimensional polynomials
on hierarchical grids and (iii) identification of “shadow zones”, where forward and adjoint
wavefield do not overlap.

Related ideas have been proposed in previous work by Unat et al. (2009); Weiser and
Götschel (2012); Hanzich et al. (2013) and Götschel and Weiser (2014), achieving com-
pression factors between 8 and 213 for different applications. However, we can obtain
significantly higher compression factors by tailoring the methods to the computation of
sensitivity kernels in high-order finite-element methods for time-domain FWI.

Alternative compression strategies based on the discrete cosine transform have been pro-
posed and studied by Hanzich et al. (2014) and Unat et al. (2009). A rigorous comparison
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with wavelet-based compression methods is beyond the scope of this paper. Intermediate
results indicate, however, that wavelet-based methods tend to achieve a slightly higher com-
pression factor given a fixed accuracy. On the other hand, the methods presented in this
paper have a significantly smaller computational overhead for compression and decompres-
sion, which makes them a particularly favorable alternative to checkpointing techniques.

This paper is organized as follows. First, we develop error estimates for inexact sensi-
tivity kernels that result from a (de-)compressed forward wavefield. Then we describe the
compression techniques in detail and conclude with numerical examples in the last section.

ITERATIVE INVERSION SCHEMES WITH INEXACT GRADIENTS

In this section we briefly recall nonlinear minimization methods to solve inverse problems
and introduce important notation. A classical Newton-type line-search method iteratively
updates the model m by setting

mk+1 = mk + αks
k, (1)

with a search direction sk, along which the misfit decreases, and a suitable step-length
αk > 0, until the sequence mk converged to a (local) minimum. sk is obtained by minimizing
a quadratic approximation of the misfit functional χ around the current model mk, which
gives

sk = −Bkgk, (2)

where gk denotes the gradient of χ evaluated at mk and Bk is a positive definite matrix
that approximates the inverse Hessian of χ at mk. Typical choices for Bk are given by the
BFGS or L-BFGS method (Nocedal and Wright, 2006) and for the particular case of using
the identity operator as Bk, we obtain the steepest descent method.

In order to compute search directions to update the model, we require the Fréchet
derivative of χ with respect to m. This sensitivity can be efficiently computed using ad-
joints. Here, it is important to note that all derivatives with respect to different structural
parameters like density, bulk or shear moduli, have a similar structure that involves mul-
tiplication of forward and adjoint velocity fields or strains, respectively, and integration in
time. For instance, in case of the elastic wave equation for isotropic media, the Fréchet
derivatives with respect to density ρ and shear modulus µ are given by

Kρ(x) = −
∫ T

0
ut(x, t) · u†t(x, t) dt, (3)

Kµ(x) =

∫ T

0
ε(u)(x, t) : ε(u†)(x, t) dt, (4)

where u† is the adjoint wavefield and ε(u) and ε(u†) denote the strain tensors of forward and
adjoint field, respectively. More generally, the Fréchet derivatives with respect to structural
parameters have the following form

K(x) =

∫ T

0
(D u)(x, t) · (D u†)(x, t) dt, (5)

where D is a first-order differential operator that extracts spatial or temporal derivatives
of the wavefield. Transforming K to the model space then yields the gradient g. For
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further examples see, e.g., Fichtner (2011) or Tromp et al. (2005). As mentioned before,
the opposite time directions of forward and adjoint simulations cause the main challenge of
computing the Fréchet derivatives.

In what follows, the key idea is to compress Du during the forward simulation and
to decompress it again during the adjoint run, i.e., we replace Du in equation 5 by an

approximate field
∼Du≈ Du. This yields an approximate gradient g̃k and - in case of a

quasi-Newton method - also a modified B̃k in equation 2. Although only the forward

wavefield is compressed, all derived quantities that involve
∼Du will be denoted with ·̃ to

indicate the inexactness.

Note that we substitute
∼Du for Du only during the computation of the sensitivity

kernel, i.e., after the forward run. Hence, the compression neither affects the calculation of
the misfits nor the adjoint sources. This implies, in particular, that also the adjoint state
u† has the full accuracy and does not introduce an additional compression error.

As pointed out above, we aim for a good approximation of the sensitivity kernel rather
than an accurate reconstruction of the forward wavefield itself. In the next step, we show
that by carefully controlling the approximation error, an inexactly computed sensitivity
kernel is sufficient to ensure convergence of an iterative minimization method to solve the
inverse problem. Therefore, we have to ensure that g̃k ≈ gk and also s̃k ≈ sk. In particular,
we require that all s̃k are directions along which χ decreases. Using the structure of the
sensitivity kernels as indicated in equation 5, we can bound the absolute error in the gradient
for each structural parameter field by the estimate

‖g̃ − g‖L∞ ≤ const ·
∫ T

0
‖( ∼Du)(x, t)− (D u)(x, t)‖L2 · ‖(D u†)(x, t)‖L2 dt. (6)

Here, the particular choice of the norm depends on the finite-element discretization and
would typically correspond to some discrete Sobolev space norm, see Boehm and Ulbrich
(2015) for details. From inequality 6 we derive that the error in the gradient is bounded

by the approximation error of the compressed forward wavefield ‖( ∼Du)(x, t)− (D u)(x, t)‖.
Controlling the latter at the time of compression is key to our method. An estimate of the
adjoint state would additionally allow for time-dependent compression thresholds, but such
estimate is not yet available during the forward simulation.

Intuitively, we would expect similar model updates if the error ‖g̃ − g‖ is small. More
precisely, we can ensure convergence of the iterative minimization scheme if the inexactly
computed search directions s̃k satisfy the so-called angle condition, i.e.,

(gk, s̃k) ≤ −β ‖gk‖ · ‖s̃k‖ (7)

holds with some β > 0 for all k, cf. Nocedal and Wright (2006). The geometric inter-
pretation of inequality 7 is that the search directions s̃k enclose an angle of strictly less
than 90 degrees with the exact negative gradient gk at the current iterate. This ensures, in
particular, that all s̃k are directions of descent.

For the steepest descent method, we have s̃k = g̃k and it can easily be shown that the
angle condition is satisfied if the relative error of the inexact gradient is smaller than 0.5.
Indeed, if ‖g̃k − gk‖ < δ‖g̃k‖ for some δ ∈ [0, 0.5), we obtain

(gk, s̃k) = (gk,−g̃k) ≤ ‖g̃k − gk‖ · ‖gk‖ − ‖gk‖2

≤ δ‖g̃k‖ · ‖gk‖ − (1− δ)‖g̃k‖ · ‖gk‖ ,
(8)
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which gives the angle condition, inequality 7, for the steepest descent method with β =
1 − 2δ. Now, we can utilize the estimate from inequality 6 to ensure that the error in the
approximate gradient is sufficiently small, i.e., ‖g̃k − gk‖ < δ‖g̃k‖.

In the case of a quasi-Newton method like (L)-BFGS, the inexact search direction s̃k

computed with the approximations B̃k and g̃k can be interpreted as a solution to a perturbed
version of the linear system in equation 2. Here, the Dennis-Moré conditions (Dennis and
Moré, 1977) have to be satisfied to ensure a superlinear rate of convergence.

Before introducing the compression methods, we should discuss three main challenges
when using inexact gradients in an iterative descent scheme. First, convergence to the
same local minimum as with exact gradients can not be guaranteed. Secondly, the rate
of convergence might be reduced, i.e., it might take more iterations to obtain the same
reduction in the objective function. Furthermore, depending on the level of inexactness,
the approximated gradient might not be a direction of descent and iterations may get stuck.

With the above derivation using the angle condition and the error bound from inequality
6, convergence of the inexact LBFGS-method to a local minimizer can be guaranteed pro-
vided that the inexactness of the gradient is sufficiently small. Of course, however, without
any further assumptions on the problem structure or the initial model, it is in general not
possible to ensure convergence towards a global minimizer or even towards the same local
minimizer. This is a common limitation of non-convex optimization problems, which applies
to all iterative descent schemes. On the other hand, there is no guarantee the iterations
using exact gradients will converge to a better minimum.

To address the second and third challenge, it is important to ensure that more accurate
gradients are used once a local minimizer is approached. This is achieved by adaptively
choosing the compression criteria, which will be introduced in the next session. Thereby,
we can guarantee that the accuracy of the approximate gradient improves when its norm
decreases. With carefully chosen compression thresholds, we expect that all variants of
descent methods tailored to full-waveform inversion can also be applied successfully with
inexact gradients.

LOSSY COMPRESSION TECHNIQUES

In this section we present several methods for lossy compression of the forward wavefield.
All of the following methods require suitable criteria to steer the quality of the compression.
For the spatial compression, we recall from inequality 6 that the error in the gradient can

be bounded by ‖( ∼Du)(x, t) − (D u)(x, t)‖, which gives a localized quantity that can be
computed at the time of compression. Hence, we propose using thresholds on the absolute
and relative point-wise difference between the decompressed and the fully-resolved wavefield.
More specifically, for given tolerances εabs2 > εabs1 > 0 and εrel, we will ensure that one of
the following conditions holds for all snapshots of the decompressed wavefield:

(C-1) The maximum absolute error is smaller than εabs1 .

(C-2) The maximum relative error is smaller than εrel and the maximum absolute error is
smaller than εabs2 .

Specific configurations of these thresholds can be found in the section on numerical results.
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In the following, we use the term “forward wavefield” in a generic way, which is motivated
by the fact that the techniques apply to all kinds of vector fields, e.g., displacements,
velocities, strains, pressure or velocity divergence. Furthermore, we denote the wavefield by
u instead of Du to simplify the notation.

Field re-quantization

As a first method for the spatial compression of the wavefield, we propose to use an adaptive
number of bits to represent the values at the grid points; see Hanzich et al. (2013) for prior
work in this field. The main idea is to adapt the floating-point precision for storing the
wavefield to the local amplitudes. This enables us to represent values by fewer bits in areas
with a small range of amplitudes and, consequently, to reduce the memory requirements.
We borrow the term quantization from image processing, which refers to a transfer function
that maps a continuous interval of values [vmin, vmax] onto a finite set {v0, v1, v2, . . . , vk}
with increments of ∆v = vi+1 − vi. Since all entities are already quantized in our case - for
instance, in single precision floating-point format - and only the number of discrete values
will change, we use the term re-quantization.

Compressing and decompressing the wavefield means to transform the higher-precision
representation into the lower-precision one and vice versa, which is summarized in Algo-
rithms 1 and 2, respectively. In addition to storing the values at all grid points with the
reduced number of bits, the offset value uo and the spacing s = ∆v need to be stored.
Due to this overhead, we cannot pick the floating-point precision individually for every
grid point. Instead, we divide the computational domain Ω into smaller subdomains Ωi,
i = 1, . . . ,K. Within every subdomain we use a constant number of bits to store the values
of its grid points and, thus, only two additional values for offset and spacing are required
per subdomain. Hence, the size of the subdomains should be small enough to take advan-
tage of the locally varying amplitudes of the wavefield, but also large enough such that
the memory overhead introduced by offset and spacing is not significant. For instance, in
a spectral-element code the finite elements - with 125 grid points for fourth-order shape
functions in 3D - can serve as partitioning, but larger subdomains can be used as well.

Algorithm 1 Re-quantization, compression

Require: uncompressed raw wavefield u, subdomains Ωi, vector of bit-resolutions b
1: for all Ωi do
2: Set offset uoi = min{u(x) : x ∈ Ωi}.
3: Set spacing si = 1

2bi−1 ·
(

max{u(x) : x ∈ Ωi} − uoi
)
.

4: for all xj ∈ Ωi do

5: Set ūj =
⌊
(uj−uoi )

si
+ 0.5

⌋
.

6: end for
7: end for

Ensure: compressed wavefield ū, vector of offsets uo and spacings s.
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Algorithm 2 Re-quantization, decompression

Require: Compressed wavefield ū, offsets uo, spacings s.
1: for all Ωi do
2: for all xj ∈ Ωi do
3: ũj = uoi + si · ūj
4: end for
5: end for

Ensure: Decompressed wavefield ũ.

From Algorithms 1 and 2 we directly deduce that the point-wise compression error is
bounded by

|ũj − uj | = |uoi + si · ūj − uj | =
∣∣∣∣uoi − uj + si

⌊
(uj − uoi )

si
+ 0.5

⌋∣∣∣∣ ≤ 0.5si. (9)

Hence, it is straightforward to apply the criteria (C-1) and (C-2) presented at the beginning
of this section to determine the required number of bits in every subdomain.

p-Coarsening

This second technique for the spatial compression of the wavefield is tailored specifically
to spectral-element methods, which are widely used in numerical wave propagation codes
like SPECFEM3D (Peter et al., 2011) or SES3D (Gokhberg and Fichtner, 2016). Here,
the wavefield is spatially represented by higher-order shape functions, most commonly with
polynomials of order 4. Note that we restrict the following presentation to fourth-order
polynomials, but the method can easily be extended to other high-order finite-element
methods. A straightforward way to approximate the wavefield with fewer degrees of freedom
is to adaptively reduce the polynomial degree within the spectral elements. This requires to
downsample the wavefield locally onto a lower-dimensional space. Based on similar concepts
for adaptive mesh refinement in finite-element methods, we call this approach p-coarsening.

Spectral-element methods represent the wavefield on a single element by the Galerkin
projection of the following form

u(x, t) =

4∑
i,j,k=0

uijk4 (t)ψijk(x), (10)

with shape functions ψijk and time-dependent coefficients uijk4 (t) that approximate the
wavefield at the grid points. Here, ψijk are the tensorized Lagrange polynomials of degree
4 with control points given by the Gauss-Lobatto-Legendre (GLL) quadrature rule. As the
number of collocation points quickly increase from 8 (degree 1) to 27 (degree 2) and 125
(degree 4), a lower polynomial degree reduces the memory requirements significantly.

In the following, we denote the fourth-order coefficients by uijk4 and the lower-dimensional
representation of u using polynomials of order p ∈ {0, 1, 2, 3, 4} by up. Here, u0 is a constant
function defined by the average value of the wavefield at the collocation points of p = 1.
The projection of u4 onto the lower-dimensional subspace can be computed by solving a
least-squares problem, which requires the solution of a linear system with (p+1)3 unknowns.
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As a cheaper alternative, we can determine up by simply evaluating u4 at the lower-order
collocation points. Moreover, we can exploit the hierarchical structure of the GLL points
- see Figure 1 - which means that the projection requires only memory access to the cor-
responding indices of u4, but no interpolation for p ∈ {0, 1, 2, 4}. Since this approach does
not incorporate information from the higher-order collocation points, this approximation is
slightly worse compared to the least-squares projection, but it proved to be acceptable in
our numerical tests.

p = 0

p = 1

p = 2

p = 4

Figure 1: Hierarchical order of the GLL points in 2D (same structure as in 3D). For degrees
1, 2 and 4, every collocation point of the lower-order polynomial is also a collocation point
of the higher-order polynomials.

The local polynomial degree is determined based on the criteria (C-1) and (C-2) intro-
duced at the beginning of this section. In order to estimate the point-wise errors and to
decompress the wavefield, we simply need to plug in up into equation 10 and to evaluate u
at the fourth-order collocation points.

Re-quantization and p-coarsening on hierarchical grids

While re-quantization and p-coarsening can be used independently, a combination of both
achieves the highest compression rate. The main idea is to use a hierarchy of grids on which
the lower-order information acts as a predictor for the values of the next finer grid level.
More specifically, on each level we compute the difference between the values predicted
by the lower-order shape functions and the actual values of the wavefield and re-quantize
these residuals. This is conceptually similar to MPEG video compression, see Sullivan and
Wiegand (2005). For spectral-element methods we exploit again the hierarchy of the GLL
points and denote the set of collocation points on level l as Pp[l] with p = (0, 1, 2, 4). Hence,
we have Pp[l] ⊂ Pp[l+1] and P0 = ∅. Now, we use Lagrange polynomials of order p[l] and
interpolating Pp[l], to predict the values at the points in Pp[l+1]. Algorithm 3 describes the
compression in detail. The error bound given by inequality 9 determines the number of bits
that are required to re-quantize the residuals at the collocation points of the next higher
level such that criteria (C-1) and (C-2) are satisfied, cf. line 5 in Algorithm 3. This number

is determined independently for each level. Note that we use the approximated values ũijkp[l]

from the previous level instead of the actual wavefield uijkp[l] in line 7 in Algorithm 3. Hence,
we only use information that is available at the time of decompression. This ensures that
the approximation error does not increase if we move to higher levels and we indeed have
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control over point-wise absolute and relative errors after decompression.

Algorithm 3 Combined re-quantization and p-coarsening

Require: uncompressed raw wavefield on a subdomain, thresholds εabs1 , εabs2 and εrel.
1: Set ũ0 = u0.
2: for l = 0, 1, 2 do
3: for all xijk ∈ Pp[l+1] \ Pp[l] do
4: Set rijk = u4(x

ijk)− ũp[l](xijk).
5: Determine number of bits bl to re-quantize rijk based on εabs1 , εabs2 and εrel.
6: Apply Algorithm 1 to re-quantize rijk and obtain r̄ijk and sl.
7: Set ũijkp[l+1] = ũijkp[l] + r̄ijk.
8: end for
9: end for

10: Set ū = r̄.
Ensure: compressed wavefield ū, spacings sl and number of bits bl for every level.

The procedure is sketched in Figure 2 for a 2D element. Note that in 3D the number
of collocation points rapidly increases from 8 (P1 \ P0) to 19 (P2 \ P1) and 98 (P4 \ P2).
Furthermore, the magnitude of the residuals typically decreases from level to level, which
yields high compression factors.

While this approach is straightforward to use with finite-element methods, it is impor-
tant to note that the patch-wise partitioning of the mesh can be done independently of the
discretization scheme. We will comment on possible extensions to finite-difference methods
in the discussion.

Temporal Compression

Explicit time stepping schemes, which are widely used in seismic wave propagation codes,
require much shorter time steps due to the CFL condition than the sample rate predicted
by the Nyquist-Shannon theorem. This motivates using a coarser temporal grid for storing
the wavefield and FWI codes typically save only every kth time step with k in the order of
10 to 30; see Fichtner et al. (2009) for a derivation of the sampling rate.

Instead of using a piecewise constant extrapolation of the forward wavefield during the
adjoint run, however, we propose a cubic spline interpolation to capture the smoothness of
the signal in time. This comes at low computational cost, but improves the approximation
significantly and enables us to reduce the sampling rate of the snapshots. Since it would be
prohibitively expensive to retrieve and access all snapshots simultaneously, we suggest to use
a sliding window of 4 consecutive snapshots to sequentially compute the spline interpolant.
This procedure is illustrated in Figure 3. The wavefield in the central subinterval between
snapshots 2 and 3 is approximated with the cubic spline. Afterwards, the oldest snapshot is
released and the next one is retrieved from disk to continue with the reconstruction in the
next subinterval. Here, spatial decompression is carried out in a first step. Afterwards, the
spline coefficients are determined by solving a tridiagonal linear system, which can be done
analytically, since only 2 unknowns remain after applying natural boundary conditions.
Although every grid point requires its own cubic spline and spatial dependencies are not
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Figure 2: 2D sketch of re-quantization for a reference element of [−1, 1] × [−1, 1] on a
hierarchy of grids. The current interpolant predicts the values at the collocation points of
the higher polynomial degree. Only the residuals of the next level are re-quantized (blue
lines). These residuals are then used together with the current interpolant to construct the
prediction on the next higher level. This procedure is repeated for degrees 0, 1 and 2.
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taken into account, the tridiagonal matrix only depends on the time increments between
the snapshots, which makes the computation of the spline coefficients comparatively cheap.
The evaluation of the spline at intermediate time steps requires 3 summations and 3 multi-
plications per grid point. Note that we can further reduce the computational overhead by
evaluating the spline only every second or third time step when calculating the sensitivity
kernel.
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Figure 3: Cubic spline interpolation using a sliding window with 4 consecutive snapshots.
Top row: reconstructed signals using snapshots at the red markers with either a piecewise
constant extrapolation (dashed line) or a cubic spline (blue line). Middle row: interpolation
errors for both methods. Bottom row: zoom to sliding window. Snapshots at the 4 time
steps with the filled red markers determine a cubic spline that we use to interpolate the
signal in the central subinterval.

Adjoint Shadow Zones

The Fréchet derivatives with respect to different structural parameters have in common that
the forward wavefield, or its temporal or spatial derivatives, respectively, is correlated with
the corresponding adjoint field, cf. equation 5. Hence, only time steps at which forward and
adjoint waves locally overlap contribute to the sensitivity kernel. In particular, there is no
need to store any information locally at time steps prior to the first arrival of the forward
wavefield or later than the first arrival of the adjoint waves. This observation is remarkably
useful in the latter case, since it works independently of the energy and the amplitudes
of the forward wavefield. Thus, it enables us to disregard parts of the forward wavefield,
which would not have been identified by the previously discussed methods. Moreover,
this compression is loss-less with regards to the sensitivity kernel. Figure 4 visualizes the
evolution of the shadow zones for a single source-receiver pair in a 2D domain.

As has been pointed out above, the shadow zones require lower bounds on the arrival
times of forward and adjoint waves for every subdomain. This can be done in a preprocessing
step prior to the inversion, which computes the respective first and last time steps for
each of the subdomains. As a rough estimate for the last time step at which the forward
wavefield needs to be stored locally, we compute the minimum distance of the subdomain
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Figure 4: Time evolution of adjoint shadow zones for a single source-receiver pair on a
12 km × 20 km domain. The rows depict the curl (red) and the divergence (blue) of the
forward and the adjoint wavefield as well as the interaction field, i.e., the product of both
wavefields, which gives the instantaneous contribution to the sensitivity kernel. The gray-
shaded areas indicate the shadow zones, where either the forward or the adjoint wavefield
is zero. Obviously, also the interaction field is zero in these areas and there is no need to
store the wavefield. The right column shows the current memory usage of the compressed
wavefield relative to storing all values with full precision.
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to any seismic station and divide it by the maximum P-wave velocity. Of course, more
sophisticated methods can be applied to estimate the travel times. For instance, we could
run a single adjoint simulation and track the first arrivals of the adjoint waves to obtain a
more accurate prediction. The same technique can also be applied for the first arrivals of
the forward wavefield.

RESULTS

In this section we present numerical examples for the proposed compression methods for
a single parameter gradient and compress the strain field during the forward run. All
numerical tests have been carried out on Piz Daint at the Swiss National Supercomputing
Center (CSCS). Details on the implementation of the spectral-element code can be found
in Boehm (2015). All computations are in double-precision floating-point arithmetic.

Clearly, the actual compression factor depends on the geometry of the domain, the
locations of sources and receivers, and on the underlying velocity model. However, most
of them share the common property of sources and receivers located at or near the surface
and a velocity profile that increases with depth. Hence, the results presented in this section
provide a good indication of the capabilities of the method. For simplicity, we always
use the L2-norm as misfit functional, but, of course, more sophisticated measures can be
used as well. Furthermore, we apply a free-surface condition at the top boundary and
dashpot absorbing boundary conditions (Epanomeritakis et al., 2008) on all other faces of
the computational domain.

We use two different criteria to assess the quality of the inexactly computed gradient us-
ing the compressed wavefield. On the one hand, we consider the angular difference θ, which
denotes the angle enclosed by exact and inexactly computed gradients, cf. the condition
given by inequality 7,

cos θ =

(
g̃, g
)

‖g̃‖ · ‖g‖
(11)

If the angular difference is small, the gradient computed with compressed information points
into a similar direction as the fully-resolved gradient and thus, the model update will be
similar, too. Furthermore, we measure the difference between both gradients by the struc-
tural similarity index (SSIM) developed by Wang et al. (2004), which is widely used in
image processing. The SSIM rates the perceived similarity of images with values between
zero and one with one being the best score. It is important to note that all examples use
the consistent discrete gradient as result of the adjoint simulation without any modification
(e.g., clipping or smoothing). In particular, even higher compression factors can be achieved
if we compare smoothed gradients.

Example 1: Spherical Wave Problem

As a first example, we consider a simple spherical wave problem on a 3D domain of 20 km
× 20 km × 18 km with a homogeneous elastic material ρ = 2000 kg/m3, vp = 2500 m/s
and a Poisson ratio of 0.25. The simulation time is 15 s. Furthermore, we use a single
source-receiver pair at 6 km depth with a horizontal distance of 10 km. The source-time
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function is a Ricker wavelet with a dominant frequency of 3 Hz and we re-inject the recorded
displacements as adjoint source.

In order to assess the quality of the proposed methods, we compare sensitivity kernels
that result from different configurations of the compression thresholds with the exact kernel.
A detailed quantitative analysis is given in Table 1. Here, we indicate the effective compres-
sion factor, which we define as the ratio of the total memory required for the uncompressed
wavefield and the total memory required by the compressed wavefield. Furthermore, we
show the minimum instantaneous spatial compression factor, which varies between 8 and
16 in all configurations and mainly depends on εabs1 . The quality of the approximation is
measured by the angular difference and the SSIM. In addition, Figure 5 shows vertical slices
through the center of the domain.

The memory requirements can be reduced by three orders of magnitude without hardly
any differences in the visual appearance or the direction of the gradient. As expected,
the quality of the approximated gradient declines with an increasing compression factor.
However, even with a factor of 4714, we obtain an approximate kernel that is at least
qualitatively similar and, more importantly, that is still a direction of descent with an
angular difference of roughly 46 degrees. Note that gzip (version 1.3.12 with option -9 for
highest compression) as a standard black-box loss-less compression software yields only a
compression factor of 1.24 for this particular wavefield. This shows the necessity and also
the great benefit of tailoring lossy compression methods to their application in FWI.

εabs1 εabs2 εrel sr cf miscf θ SSIMx SSIMy SSIMz ohd

(i) 0.001 0.1 0.005 30 544 8.6 3.1 0.9991 0.9983 0.9998 9.26%
(ii) 0.01 0.1 0.02 30 1043 16.0 3.1 0.9991 0.9983 0.9998 9.09%
(iii) 0.01 0.5 0.1 50 1708 15.8 19.7 0.9497 0.9638 0.9164 5.95%
(iv) 0.001 1 0.005 125 2100 8.2 25.2 0.8967 0.9099 0.8499 2.64%
(v) 0.01 1 0.1 75 2506 15.6 33.0 0.8976 0.8015 0.9400 4.27%
(vi) 0.01 10 0.3 100 3277 15.5 39.0 0.8843 0.6808 0.9191 3.28%
(vii) 0.01 10 0.3 150 4714 15.1 46.4 0.5975 0.8909 0.5334 2.28%

Table 1: Statistics for various configurations of the compression algorithm. εabs1 , εabs2 and
εrel refer to the spatial compression thresholds and sr denotes the sampling rate of the spline
snapshots. cf is the overall compression factor, miscf the minimum instantaneous spatial
compression factor, θ the angular difference between exact and approximated gradient.
Columns 9-11 indicate the SSIM for slices through the center of the domain and orthogonal
to each of the coordinate axis and the last column states the overhead in CPU time - relative
to a forward simulation without I/O - for spatial compression and decompression and the
computation of the spline coefficients.

Figure 6 shows the temporal evolution of the spatial compression. Throughout the simu-
lation we achieve at least an instantaneous spatial compression factor of 15.8. Furthermore,
the increase of the compression factor towards the end of the simulation indicates the effect
of the adjoint shadows.

Table 2 states the overhead in CPU time that is required to compress the forward strain
field and to decompress it again during the adjoint run. The total overhead adds only
about 2-10% to the cost of the forward simulation itself. Hence, the compression methods
proposed in this paper are much less expensive than checkpointing techniques or solving the
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Figure 5: Gallery of normalized sensitivity kernels with a compressed forward wavefield
for the configurations of the thresholds indicated in Table 1. The top left image shows the
sensitivity kernel without compressing the forward wavefield; the numbers in the lower right
corner indicate the compression factor. All images have been truncated at 12 km depth and
show a vertical slice through the center of the domain, which corresponds to SSIMx.
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in Table 1. Note that the vertical axis has been truncated to a factor of 200. The spatial
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backward wave equation, which would typically require additional computations in the order
of one forward simulation. Moreover, the actual overhead in wall-clock time that is needed
for compression and decompression is typically even less, as these tasks can be carried out
in separate threads overlapping with the simulation. Furthermore, Table 2 shows that the
compression factor and the computational overhead are inversely proportional. This is due
to the fact, that a higher sampling rate requires fewer spline coefficients and fewer snapshots
to be spatially compressed and decompressed. In addition, higher compression thresholds
not only increase the compression factor, but also allow for skipping more steps in the
prediction-correction phase.

(i) (ii) (iii) (iv) (v) (vi) (vii)

spatial compression 3.80% 3.66% 2.43% 1.10% 1.74% 1.35% 0.93%
spatial decompression 1.63% 1.60% 1.02% 0.44% 0.73% 0.56% 0.38%

spline coefficients 3.83% 3.83% 2.49% 1.10% 1.80% 1.38% 0.96%

total overhead (ohd) 9.26% 9.09% 5.95% 2.64% 4.27% 3.28% 2.28%

Table 2: CPU time of the different components of the compression methods relative to one
forward simulation. Results are shown for the different configurations of the compression
thresholds from Table 1.

Example 2: 3D Inversion in a Cube

We consider a cubic domain of 4 km × 4 km × 4 km with a homogeneous background
medium with ρ = 2000 kg/m3 and vp = 2500 m/s, and a strong reflector near the bottom
with vp = 3000 m/s. Again, we assume a constant Poisson ratio of 0.25 and invert only
for vp. The true model contains two ball-shaped anomalies with ±10% deviations from the
background model. Synthetic test data is generated by five point sources using a Ricker
wavelet with a dominant frequency of 5 Hz. An array of 441 equidistantly aligned receivers
is placed below the surface. Figure 7(a) shows the geometry of the setup as well as the true
velocity model.

The initial model considered for the inversion contains the two layers, but not the ball-
shaped anomalies. We run LBFGS several times using either the fully-resolved forward
wavefield or different settings of the compression thresholds. Two reconstructions and the
evolution of the misfit for several configurations are shown in Figure 7. Even with an
average compression factor of more than 3000 per source, the iterations look very similar
and converge to the same model. The models from scenario (i) and (ii) after 30 iterations
of LBFGS are visually indistinguishable from the reconstruction without compression. As
expected, the performance of LBFGS declines when too much information is lost during the
compression. However, this can be circumvented by adaptively lowering the compression
thresholds and restarting the iterations. This is the case in scenario (iv) where after 18
iterations the inexact LBFGS search direction is not a direction of descent, see Figure 7(b)
for details. After lowering the compression thresholds during the iterations for scenarios
(iii) and (iv), all tests eventually converge to the same model.

In summary, LBFGS performs well using inexact gradients that result from compressing
and decompressing the wavefield. In particular, neither the rate of convergence nor the
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Figure 7: (a) Computational setup with the true model for vp, receiver locations marked
as black dots and the source locations indicated by red squares. Slices through the center
of the ball-shaped anomalies are projected to the rear and bottom. (b) Misfit reduction
with and without compression. The numbers cf-X indicate the average compression factor
per source. Note that the thresholds were lowered in scenario (iv) after 18 iterations. (c)
Reconstruction without compression illustrating the vp deviation from the initial model.
(d) Reconstruction of scenario (i) using the compressed forward wavefield.

reconstruction changes significantly when the memory requirements are reduced by three
orders of magnitude.

Example 3: SEG Overthrust Model

In this last example, we consider a more complex geology and use a subset of the SEG
overthrust model (Aminzadeh et al., 1996). Here, we use a domain of 8 km × 8 km × 3.2
km, where we extract the central parts of the model in x- and y-direction. We consider an
array of 6561 receivers equidistantly distributed on a plane 8 m beneath the surface with a
lateral and longitudinal spacing of 100 m. We use two configurations for the source. Setup
1 (S1) is a single point source in the center of the x-y-plane at 40 m depth. Setup 2 (S2) is
an encoded source with 6400 simultaneous sources equidistantly aligned on an array with a
spacing of 100 m at 40 m depth. The encoding weights are chosen as independent samples
of Rademacher’s distribution, i.e., either +1 or −1 with equal probability. In both cases,
we use a Ricker wavelet with a dominant frequency of 10 Hz as source time function and a
simulation time of 6 s.

We generate synthetic data with the SEG overthrust model and evaluate the gradient
using the L2-norm as misfit functional for two different models. Model A (MA) is a 1D-
model that is constant in the x-y-plane with the average value of the true model at that
depth. For Model B (MB) we apply a Gaussian smoothing filter to the true model, which
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yields a model that is already close to the true model. Figure 8 shows vertical slices of the
true model, as well as Model A and Model B.

Figure 8: Vertical slices of the models to compare the gradients. Top: True model that
is used to generate synthetic data. Middle: 1D-model with average value of the x-y-plane
(Model A). Bottom: Gaussian smoothing filter applied to the true model (Model B). All
images show the P-wave velocity.

Table 3 compares the accuracy of the gradient with respect to both Lamé coefficients
for both source setups and both models. Similar to the previous examples, we achieve a
compression factor of three orders of magnitude with only a small angular difference for
the point source. The 6400 simultaneously firing point sources in Setup 2 create a more
complicated wavefield. Hence, for fixed error thresholds the achievable compression factor is
smaller than for a single point source. However, for an angular difference of 20 - 32 degrees
the memory requirements can still be reduced by three orders of magnitude.

Furthermore, Figure 9 shows that the inexact gradient still preserves fine-scale informa-
tion if the compression thresholds are chosen carefully. Here, we show slices of the inexact
gradient with respect to the shear modulus accumulated from 20 encoded sources with an
average compression factor of 1364. Although the level of detail decreases with increasing
depth, some fine-scale structures remain visible in the inexact gradient. This confirms that
the compression methods are applicable to models with complex geology. With carefully
chosen compression thresholds the inexact gradients can be used with any iterative descent
method. We will comment on this in more detail in the following section.
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Figure 9: Sections of the accumulated gradient from 20 encoded sources at horizontal slices
through the domain for Model B. The left column shows the relative deviation from the
true shear modulus and the right column the normalized gradient w.r.t. the shear modulus
for each slice.
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εabs1 εabs2 εrel sr cf miscf θ ohd

S1-MA 0.001 0.01 0.05 50 4462 44.3 7.8 6.62%
0.001 0.01 0.05 100 8895 44.3 46.2 3.36%

S1-MB 0.001 0.01 0.05 50 4025 41.0 3.1 6.75%
0.001 0.01 0.05 100 8020 41.0 21.4 3.36%

S2-MA 0.0001 0.01 0.05 50 306 5.0 4.6 6.73%
0.01 0.1 0.1 100 1371 9.7 32.3 3.48%

S2-MB 0.0001 0.01 0.05 50 302 5.0 3.4 6.75%
0.01 0.1 0.1 100 1350 9.7 20.8 3.45%

Table 3: Statistics for various tests with the SEG overthrust model. The first column
indicates the source type, i.e., S1 for a single point source or S2 for an encoded source, and
the model for which the gradient is computed, i.e., MA for the 1D-model and MB for the
smoothed model.

DISCUSSION

The compression methods proposed in this paper offer a promising alternative to checkpoint-
ing techniques. As indicated in the previous section, sufficiently accurate approximations
of the sensitivity kernel can be obtained with only a small computational overhead, adding
only about 2-10% percent to the CPU time of a forward simulation, which is significantly
less than checkpointing methods even if they are tailored to FWI (Anderson et al., 2012).
Furthermore, the practical performance is significantly better than with black-box loss-less
compression tools like gzip that are not tailored to the application in FWI. Note that even
higher compression factors can be achieved if the sensitivity kernels are smoothed before
the model is updated.

A notable feature of the compressed kernels displayed in Figure 5 is the successive disap-
pearance of the higher Fresnel zones. With increasing compression factor, kernels resemble
“fat rays”, proposed as a compromise between ray theory and accurate finite-frequency
kernels that are more expensive to compute, cf. Husen and Kissling (2001); Yoshizawa and
Kennett (2002). Higher Fresnel zones are relevant only when tomographic resolution is
sufficient to ensure that structure as small as their width can indeed be recovered, see, for
instance, Van Der Hilst and De Hoop (2005). This implies that compression factors may be
further increased in regions of lower coverage where only the first Fresnel zone contributes
significantly to resolution.

With an increasing resolution of the numerical mesh even the reduced memory require-
ments through compression might become prohibitively expensive at some point. In this
case, compression can complement checkpointing techniques by spatially compressing the
snapshots. This allows us to store more checkpoints and, thus, it reduces the computational
overhead of checkpointing techniques.

The analysis of iterative inversion schemes using inexact gradient information shows that
convergence to a (local) minimum can be guaranteed. It is, in general, not possible to ensure
that the iterates with and without compression converge to the same model, although we did
not encounter such problems in our numerical tests. This common limitation of non-convex
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problems can be partially mitigated by choosing the compression thresholds adaptively
based on the norm of the gradient, thus gradually including more information. Similar
strategies in the context of stochastic gradient methods have been applied successfully in
full-waveform inversion (Li et al., 2012; Moghaddam et al., 2013), where randomly chosen
subsets of sources introduce inexactness in the gradient. It has been observed by van
Leeuwen and Herrmann (2013, 2014) that the level of inexactness can be quite high during
the first iterations and only needs to be refined once a local minimum is approached.

In the remainder of this section, we comment on several aspects of the implementation
and possible extensions of the methods.

A multi-parameter inversion requires strains for the sensitivity kernels with respect to
the Lamé coefficients as well as the velocity field for the density kernel, cf. equations 3 and
4. The error thresholds steering the compression can be chosen independently for each field.
Compressed strains are stored element-wise, which is necessary as strains are discontinuous
across element boundaries in a spectral-element discretization. On the other hand, velocities
are continuous throughout the whole domain and we can store the velocity field using global
vectors. This reduces the memory requirements by the number of grid points that are shared
among two or more elements. Note that storing only the displacement field instead of strains
and velocities is disadvantageous for two reasons. First, re-computing temporal and spatial
derivatives of the wavefield during the adjoint run would require significant computing time.
Secondly, a small compression error in the displacement does not necessarily yield a small
difference in the derivatives, which makes it very difficult to control the accuracy of the
approximation for the strains.

All of the compression techniques are spatially localized and do not require MPI com-
munication. Furthermore, compression, decompression and I/O operations, can be carried
out asynchronously to the simulation and in multiple threads, which further reduces the
computational overhead. Due to the significantly reduced memory requirements, using a
local scratch file system is feasible and highly desirable in case it is available on the HPC
architecture.

Possible extensions of the compression methods can combine p− and h-coarsening in
a similar fashion as in hp-adaptivity (Demkowicz et al., 2002). This would enable us to
adaptively merge neighboring elements and to further reduce the memory requirements,
but also introduce an additional computational overhead to transform the mesh.

While this paper primarily targets finite-element methods, the same ideas for wavefield
compression can be applied for finite-difference methods as well. First of all, the temporal
compression of the wavefield and re-interpolation with cubic splines works completely in-
dependently of the spatial discretization as long as the spatial grid does not change with
time. Likewise, re-quantization requires only a partitioning of the spatial domain in smaller
subsets on which the same number of bits is used, but no additional geometric informa-
tion. The main requirement to apply re-quantization in combination with p-coarsening is
a hierarchical structure of the grid. Although this may not be given naturally for a finite-
difference discretization, we can easily split up any rectilinear grid into small patches with
2d grid points per dimension and compress the wavefield on this subdomain using our pro-
posed method. While for high-order finite-element methods the partitioning of the mesh is
intrinsically tied to the discretization, locally interpolating the wavefield at the grid points
by Lagrange polynomials is possible for arbitrary rectilinear grids. This hierarchical subdi-
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vision of the domain appears in many other compression approaches as well, for instance,
MPEG or wavelet-based techniques, and is not limited to finite-element methods.

This paper focuses on adjoint methods to compute sensitivity kernels, but the techniques
for wavefield compression are useful in other areas as well, e.g., in the context of scattering-
integral methods (Chen et al., 2007). Furthermore, we currently investigate extensions for
the adjoint-based computation of Hessian-vector products that are required, for instance,
in a Newton-CG method (Götschel and Weiser, 2014; Boehm and Ulbrich, 2015). While it
is conceptually straightforward to apply the same compression methods to the forward and
adjoint wavefields for the computation of Hessian-vector products, the two main challenges
are error propagation and accuracy. Since the decompressed wavefields also appear as a
distributed source term in the two auxiliary wave equations, errors are propagated to the
perturbed wavefields as well. On the other hand, the inexact Newton steps resulting from
the decompressed wavefields must still yield significantly better updates than the LBFGS
step to compensate for the additional simulations required for the CG iterations. We carried
out some preliminary tests applying the previously discussed compression techniques to the
forward and adjoint wavefield in a Trust-Region Newton-PCG (Boehm and Ulbrich, 2015)
method. Obtaining descent directions was not a problem in our tests, however, the inexact
Newton steps provided only a small improvement compared to LBFGS updates. Of course,
more accurate steps can be obtained by reducing the compression thresholds, but this
significantly lowers the achievable compression factor. Tailoring the compression methods
to Hessian-vector products is subject of future research.

CONCLUSION

In this paper we proposed compression techniques tailored to FWI, where the forward
wavefield is compressed and retrieved during the adjoint run to compute an approximate
gradient. All of the presented methods are easy to implement and computationally cheap,
adding an overhead of only a few percent to a simulation.

Numerical examples show that the methods are capable of reducing the memory re-
quirements by three orders of magnitude without affecting the iterations to solve the in-
verse problem. Although the methods are tailored to spectral-element methods in the time
domain, similar ideas can be applied for other numerical techniques as well.
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