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ABSTRACT 
In this paper, a blind algorithm for detecting active users in 
a DS-CDMA system is presented. This probabilistic algo- 
rithm relies on the theory of Hidden Markov Models (HMM) 
and is completely blind in the sense that no knowledge of the 
signature sequences, channel state information or training 
sequences is required for any user. Additionally, observation 
through an array of sensors is also considered. Performance 
is verified via computer simulations, showing the near-far 
resistance of the analyzed procedure. 

1. INTRODUCTION 
During the last two decades, multi-user detection in CDMA 
systems [I] has received great attention. In order to demo- 
dulate active users, two problems must be solved: channel 
distortion and multiple access interference (MAI). 

The use of antenna arrays can help in combating these 
problems. For example, in frequency non-selective channels, 
when there is no means of temporal diversity to  overcome 
fading, an effective countermeasure is the use of antenna 
diversity. 

Regarding MAI, whenever CDMA systems are strongly 
affected by the near-far problem, combining spread spec- 
trum signals with adaptive array beamforming results in a 
more powerful system that rejects interferences and com- 
bats the multipath. Consequently, the performance and 
capacity of the system may be increased. 

Besides, in recent years, a large effort has been made in 
developing blind detection algorithms. Such detection met- 
hods perform channel impulse response (CIR) acquisition 
and data detection without requiring additional informa- 
tion (in the form of users' signatures, timing or training 
sequences), thus adding flexibility to the system. In other 
words, blind receivers only make use of channel output to- 
gether with limited statistical assumptions on the input sig- 
nal. Blind equalization/estimation methods can be roughly 
classified in four families: 

1. Bussgang algorithms, 
2. Polyspectra and cumulant-based algorithms, 
3. Cyclostationary statistics-based algorithms and 
4. Probabilistic algorithms. 
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Both Bussgang and Polyspectra methods are far from using 
all the known statistical information about the input sig- 
nal, and algorithms based on cyclostationarity properties 
are limited to use second order statistics. On the contrary, 
probabilistic algorithms [2]-[5], which lead to joint channel 
estimation and data detection often on a basis of a Ma- 
ximum Likelihood (ML) criterion, take advantage of this 
information more efficiently. These methods exhibit hig- 
her computational complexity and, unlike algorithms be- 
longing to the second and third groups, may suffer from 
convergence to spurious solutions. However, probabilistic 
algorithms clearly outperform in other fields. For example, 
in comparison with Bussgang and Polyspectra techniques, 
more accurate channel identification can be achieved from 
a reduced number of samples. 

The approach considered in this paper consists in a pro- 
babilistic algorithm on the basis of the Baum&Welch (BW) 
reestimation procedure. This BW-based algorithm, which 
relies on the theory of Hidden Markov Models (HMM) [6,7], 
was initially roposed in a single-user case in [8], further de- 
veloped in [!37 and applied to perform jointly blind channel 
estimation and sequence detection in a CDMA environment 
in [3]. In this paper, the algorithm is extended to a multi- 
sensor case. 

The technique we are proposing is completely blind in 
the sense that no knowledge of signature waveforms, timing, 
amplitudes or training sequences is required for any user. 
Moreover, an estimate of each user's signature convolved 
with the physical channel response is adaptively obtained; 
estimated data sequences are also provided. 

In [4, 51, a closely-related technique can be found. In 
that case, the authors employ a Viterbi-based algorithm to 
perform blind channel identification. A detailed comparison 
between the Viterbi and Baum&Welch-based approaches is 
carried out in [3]. 

2. SYSTEM MODEL 
We consider the general asynchronous multiple-access chan- 
nel model. The multichannel receiver employs a P sensor 
array in which the signal received by sensor p ,  p = 1, . . . , P 
is given, regardless of the array structure by, 

K 

n k=l 

where hkp(t - nT, t )  is the overall complex channel impulse 
response of user k at sensor p ,  given by the convolution of 
its signature sequence, physical channel and the receiving 
filter impulse responses. It incorporates the amplitude and 
the delay for user k at sensor p ,  and its duration is assumed 
to be smaller or equd to L symbol periods. The total num- 
ber of active users is K and their transmitted data sequen- 
ces are binary independent symbols bk[7L] E (1, -1). The 



symbol rate is 1 T and wp(t )  is normalized temporal and 
spatially white aussian noise. The multi-sensor multiple- 

f. = l/Ts = MIT to access channel is sampled at a rate 
derive the discrete vector sequence r n] 

d 

where the M length vector corresponding to a pth sensor is 
given by 

rP[n] = [ T p ( n ~ ) ,  . . . , T , ( ~ T  + ( M  - I)T,)]~ . (3) 

The observation r[n] is modeled as a MP-length vector, 
probabilistic function of a state vector s [ n ] ,  

r[n] = H[n]s[n] + w[n] . (4) 

Since, at any given time, a maximum of L symbols for each 
user affect the observation, there are N = Z K L  possible 
state vectors corresponding to all combinations of L binary 
symbols of the K active users. Note that the number of 
state vectors is independent of the array size and therefore 
the number of sensors does not increase the complexity of 
the algorithm. We denote each of the possible states as the 
K L  length vectors S j ,  

Sj E s = { S I , S 2 , .  . . , S N }  (5) 

such that, 

The state at time instant nT is denoted by s n] E S. The 

pulse response for each user, denoted by the matrix Hk [n], 
( M P  x KL)  matrix H[n] depends of the overal I discrete im- 

H[n] = [HI [n], . . . , H K [ ~ ] ]  . (8) 

Each of these matrices incorporates a vector response for 
each of the L symbols that may be present in the observa- 
tion due to the ISI, 

Hk[n] = [hkO[n],...,hk(L-I)[n]] (9) 

hki = [hkii [nIT,. . , hkip[nITlT 

which again includes the vector response for each of the P 
sensors, 

and finally the resulting signature for each user, symbol and 
sensor 

(10) 

. (11) 1 h k p (  (n l)T, nT) 

hkp((n + Z)T +'(M - I)TS,nT) 

(12) 
T 

[ = 

The noise is modeled as the M P  length vector 

w[n] = [Wl [n] , . . . , W P  [nITIT 

that includes the observed noise for each sensor at the sam- 
ple rate, 

wp[n] = c[wp(nT),  . . . ,wp(nT + ( M  - 1)TS)IT . (13) 

3. THE MULTI-USER ADAPTIVE 
BAUM&WELCH (MABW) ALGORITHM 

The BW algorithm is essentially identical to the EM met- 
hod and it is known to lead, at  least, to a local maximum 
of the likelihood function [7]. When dealing with time- 
varying channels, an adaptive version called ABW (Adap- 
tive Baum&Welch) can be considered [8]. 

To achieve channel identification, the BW-based algo- 
rithm operates on a trellis-like structure having, in a multi- 
user case, N = 2KL states. First, the probability, yj[n] ,  
of being in state j : 1 . B  i i i  the trellis at time instant n 
given the sequence and the HMM is computed by means of 
the Forward-Backward algorithm 161. Second, the estimated 
multi-user CIR is updated at  the symbol rate considering 
the steepest-descent adapt ation scheme: 

H[n]  = H[n - 13 + p.lhE[e[n]s[nIX], 

e[n] = r[n] - m[n] = r[n] - H[n]s[n] 

(14) 

(15) 
where 

and ph is the adaptation constant. Note that such CIR 
is, accordingly to the signal model, the convolution of the 
signatures with the physical channel response. In our blind 
environment, the expectation in the gradient term will be 
computed on the basis of the received sequence up to instant 
n+ A (where the lag A is a design parameter taking typical 
values of 4-8 symbols) and the model at instant n - 1: 

N 

and 

ej[n] = r[n] - mj[n] = r[n] - H[n - l]sj j = 1." (18) 

Data detection is performed together with the ada tation 
following an individually most-likely state criterion 761. 

3.1. Overcoming Local Maxima 
The MABW adaptation algorithm might suffer from con- 
vergence to local maxima yielding incorrect estimates of the 
CIRs. Those maxima appear as a consequence of two fairly 
independent phenomena [5] :  severe IS1 due to multipath 
propagation and the multi-user structure of the received sig- 
nal provided it is affected by the near-far effect. The first 
circumstance rarely occurs in mobile channels with low to 
moderate ISI. Therefore, we will focus on the mechanism to 
overcome the second phenomenon. 

When a multi-user signal is affected by the near-far effect, 
the algorithm tends to split the CIR estimate of the user(s) 
of greatest magnitude among the weakest(s) ones since this 
solution locally maximizes the likelihood function. Nevert- 
heless, this extent can be easily detected since, in those 
cases, estimated data sequences for the involved users are 
identical (up to a sign change). The strategy to overcome 
this problem consists in checking periodically for this total 
coincidence (coherence checking) and, if necessary, rearran- 
ging the overall CIR estimates obtained so far (coherence 
compensation) [5]- 

4. SIMULATION RESULTS 
4.1. Convergence study 
Although in DS-CDMA systems user separation mainly re- 
lies on the orthogonality among spreading sequences, when 
multi-sensor observation is employed a direction of arrival 
(DoA) criterion can be considered as well. The aim of this 
section is to analyze the feasibility of including such spatial 
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information, to be acquired blandly, in order to distinguish 
users. 

The system under study operates at the symbol rate em- 
ploying a BPSK modulation scheme. In all cases, K = 4 
users impinging on a linear array with P = 7 sensors (X/2 
spaced) contributed to the CDMA signal. For simplicity, 
users are assumed to be synchronous. Gold sequences with 
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Figure 1. Learning curves with signatures. DoA: 
90,90,90,90. 
M = 31 chips were used as spreading sequences, that is, 
Tc = T/31, being T the symbol time; coherence checkings 
were performed every S = 50 symbols. A stationary and 
single-path model was considered for the channel. Simu- 
lation results are averaged over 50-run tests and the per- 
formance measure is the CIR estimation noise defined (for 
each user) as: 

z=o p=o 

In Fig.1, the DoA for all users is 90 degrees and the SNR, 
for all users as well, equals to 10 dB. In this case, the only 
criterion to separate users is the orthogonality among spre- 
ading sequences. It can be observed that the steady state 
is reached around symbol n = 300. 

Assuming plane-wave propagation, the set of relative 
phase-delays observed at the different sensors (i.e. steering 
vectors) can be viewed as a kind of spatial signature. Furt- 
hermore, if the directions of arrival are apart enough, no 
spreading sequence might be required to distinguish users. 
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Figure 2. Learning curves without signatures. DoA: 
90,55,75,105. 
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Figure 3. Learning curves with signatures and near- 
far effect. DoA: 90,55,75,105. 

This extent is reflected in Fig.2. The directions of arri- 
val were, respectively, of 90, 55, 75 and 105 degrees from 
broadside reverting in a maximum value for the normalized 
crosscorrelation between steering vectors of 0.1053. Despite 
of the fact that no user-specific signature is considered, the 
algorithm is capable of separating active users. This fact 
can be taken into account in order to improve system capa- 
city by employing space-division multiple-access (SDMA), 
that is, assigning the same spreading sequences to users 
with large angular separation. Furthermore, no additional 
improvement seems to be obtained by using spreading s e  
uences when signals impinge from very different directions 
see Fig.3) 

It should be pointed out that sudden jumps in the curves 
are caused by the mechanism proposed to overcome local 
maxima (coherence compensations) which suddenly rear- 
ranges current CIR estimates. Also note that, regardless 
of the simplicity in the channel model, (i.e. plane-wave 
propagation, direct line-of-sight, no multipath propagation) 
no assumption concerning to the propagation conditions is 
made within the MABW algorithm. However, the algo- 
rithm takes advantage from those ideal conditions. That 
lack of assumptions adds flexibility to the algorithm which 
can be employed unchanged in a wide vaxiety of propagation 
environments. 

In Fig.3 users are received with dissimilar levels 
(SNR=25,18,10,10 dB) whereas the rest of parameters r e  
main unchanged with respect to Fig.1. A near-far resistant 
behaviour is clearly observed. Now, strongest users are de- 
tected more rapidly since they can be easily distinguished 
from the weakest ones. 

4.2. Tracking properties 
For this section, we propose the following scenario: three 
users propagating through sensor-independent Rayleigh- 
fading channels and being received by a linear array. The 
averaged SNR at the input of each sensor is: 25, 15 and 10 
dB for the first, second and third users respectively. Propa- 
gation delays, relative to the first user, are 71 = 0, 7 2  = lTc 
and 73 = ZT, , where Tc is the chip time. The spreading 
sequences are Gold signals of length M = 7. The mobile's 
speed is 200 km/h and the carrier frequency 1800 MHz thus 
generating a maximum Doppler frequency shift of 330 Hz. 
The duration of the symbol (bit time) is 3.69 /AS.  Recall 
that the CIR estimated at each sensor and for each user is, 
in fact, the convolution of the physical channel response ob- 
served through that sensor with the user's signature. Note 
also that, in this case, the physical channel response is just 
a time-varying complex multiplicative factor, that is, flat 
fading is assumed. 

P 
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Figure 4. 
without array observations 
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with array observations 

Performance of the MABW algorithm 

In Figure 4, the multi-user received signal is observed 
through a single sensor. Subplot 1 is dedicated to show the 
evolution of the estimate of such multiplicative factor (in 
amplitude and averaging for all chips in a bit period) for 
user #1 (dashed line: actual value). Subplots 2 and 3 cor- 
respond to the rest of users. We observe that within the 
fist  200 symbols, strongest user’s CIR splits among diffe- 
rent user’s CIR estimates. After coherence compensation at 
time instant n = 100 tracking for the first user starts whe- 
reas the rest of CIF& estimates are reset to their initial esti- 
mates. From that moment on, the estimates for such users 
should start improving until tracking. However, because of 
the fade experienced by user #3, no tracking is attained 
for this user until time instant n = 500. Actually, wit- 
hin symbols 200 to 500 when user #3 suddenly disappears, 
CIR estimate for user #1 splits again between those two 
users causing continuous coherence compensations. This 
happens again at the end of the burst (symbol n = 700 ap- 
proximately). Therefore, not only the estimate of the user 
is degraded, but also that of another user. This extent can 
be observed in subplot 4 where the evolution of the MSE 
in the estimation of the signatures (normalized by the re- 
ceived power) for all active users is shown. This behaviour 
should be also taken into account at the time of estima- 

ting the number of active users; if overestimated, strongest 
users’ CIR estimates will split among several empty CIR 
estimates causing severe degradation in performance. 

Figure 5 is devoted to show the behaviour of the MABW 
algorithm when deploying a 4-sensor array. Since no spa- 
tial information is embedded in the sensor-independent 
Rayleigh-fading channels, improvements in performance 
wil l  only rely, unlike in the previous subsection, in the diver- 
sity introduced by the array observations. Note that signal 
observed through the first sensor corresponds to the same 
realization as in the single-sensor case. As before, subplots 
1 to 3 are dedicated to show the evolution of the estimate 
of such multiplicative factor (in amplitude) for user #1 to 
#3 as observed through sensors 1 to 4. Now, an accurate 
fading-resistant tracking of the amplitude is observed for all 
active users. Also, signature estimates are obtained within 
the first 200 symbols and the variance of the estimation er- 
ror keeps at safe levels (less than -10 dB) throughout the 
whole burst. Note that the performance of the algorithm is 
satisfactory despite of the high near-far ratio (15 dB). 

5. CONCLUSIONS 
In this paper, a blind algorithm for multi-user detection has 
been extended to include m a y  observation. First, a brief 
overview of the MABW algorithm has been given making 
a point of a mechanism to avoid ill-convergence when the 
incoming signal is affected by the near-far effect. Second, 
advantages arising from the use of a multi-sensor framework 
in terms of user distinction on a DoA basis (SDMA) have 
been analized. Finally, an example showing the improved 
resistance to deep fades of the algorithm when using array 
observations has been provided. 
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