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Phasic neurons typically fire only for a fast-rising input, say at the onset of a step current,

but not for steady or slow inputs, a property associated with type III excitability. Phasic

neurons can show extraordinary temporal precision for phase locking and coincidence

detection. Exemplars are found in the auditory brain stem where precise timing is used in

sound localization. Phasicness at the cellular level arises from a dynamic, voltage-gated,

negative feedback that can be recruited subthreshold, preventing the neuron from

reaching spike threshold if the voltage does not rise fast enough. We consider two

mechanisms for phasicness: a low threshold potassium current (subtractive mechanism)

and a sodium current with subthreshold inactivation (divisive mechanism). We develop

and analyze three reduced models with either divisive or subtractive mechanisms or both

to gain insight into the dynamical mechanisms for the potentially high temporal precision

of type III-excitable neurons. We compare their firing properties and performance for a

range of stimuli. The models have characteristic non-monotonic input-output relations,

firing rate vs. input intensity, for either stochastic current injection or Poisson-timed

excitatory synaptic conductance trains. We assess performance according to precision

of phase-locking and coincidence detection by the models’ responses to repetitive

packets of unitary excitatory synaptic inputs with more or less temporal coherence.

We find that each mechanism contributes features but best performance is attained if

both are present. The subtractive mechanism confers extraordinary precision for phase

locking and coincidence detection but only within a restricted parameter range when

the divisive mechanism of sodium inactivation is inoperative. The divisive mechanism

guarantees robustness of phasic properties, without compromising excitability, although

with somewhat less precision. Finally, we demonstrate that brief transient inhibition if

properly timed can enhance the reliability of firing.
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1. INTRODUCTION

Phasic neurons may fire at the onset of a step input, typically

once, but not during the steady portion and not for slowly varying

inputs. This property of phasic firing is often called type III

excitability, in contrast to repetitive firing for slow inputs for type
I and II excitable neurons (Hodgkin, 1948; Svirskis et al., 2002;

Izhikevich, 2007; Prescott et al., 2008a; Meng et al., 2012; Rinzel
and Huguet, 2013). Phasic neurons can show extraordinary

temporal precision for phase locking and coincidence detection.
Some examples of phasic neurons include: auditory brain stem

neurons that are involved with precise timing computations

(Oertel, 1999; Schnupp and Carr, 2009; Carr andMacleod, 2010),
some spinal cord neurons (Prescott and De Koninck, 2002;
Prescott et al., 2008a), and even the squid giant axon (Clay et al.,

2008).
Underlying phasicness is a dynamic, voltage-gated, negative

feedback that can be recruited subthreshold, preventing the
neuron from reaching spike threshold if an increasing input
does not rise fast enough. Various cellular mechanisms can
implement the dynamic negative feedback. Type III excitability
may be due to an outward current (say, potassium K+) that
activates relatively fast for subthreshold voltages (Rathouz and
Trussell, 1998; Svirskis et al., 2002; Rothman and Manis, 2003;
Prescott et al., 2008a). Thus, if an input current depolarizes a
cell too slowly, the outward K+ current can activate and oppose
the voltage rise, limiting the depolarization to subthreshold
levels. In contrast, with rapid depolarization due to a fast-rising
input current, the K+ current lags, allowing subsequent spike
generation. During the spike, the K+ current strongly activates,
precluding subsequent spikes, and therefore, repetitive firing.

This subtractive (K+ current) mechanism is not the only way
to generate type III excitability. Indeed, a divisive mechanism,
such as a fast-activating, but transient, inward (sodium Na+

or calcium) current with suitably recruitable inactivation, can
also generate type III excitability (Prescott and De Koninck,
2002; Svirskis et al., 2004; Gai et al., 2009; Platkiewicz and
Brette, 2011). The conceptual framework is the same. If the cell
depolarizes slowly, the inactivation process develops before the
inward current can activate and the cell will not fire a spike. If the
depolarization is fast enough before inactivation of the inward
current can occur, a spike (and only one spike) is produced.

In some auditory neurons both subtractive and divisive
mechanisms contribute to phasic firing (Svirskis et al., 2004; Scott
et al., 2010); it appears that inactivation of sodium current INa is
V-gated at unusually lowV values. Neurons in the auditory brain
stem, where precise timing is important for sound localization
(Oertel, 1983; Reyes et al., 1994; Oertel, 1999; Rothman and
Manis, 2003), show extraordinary temporal precision (on sub-
ms time scales) for phase locking and coincidence detection.
One may wonder what is the contribution of each mechanism in
shaping the properties of the system and what is gained by having
two feedback processes.

To address these questions we utilize reduced 2 and 3-variable
versions (Meng et al., 2012) of an 8-variable biophysically-
based model developed by (Rothman and Manis, 2003). This
8-variable model, that we refer to as RM03, has been widely

used for modeling the phasic firing of cells in the auditory
brainstem. In RM03, the dominant mechanism for phasicness is
a low-threshold potassium current (IKLT) (subtractive dominant
mechanism). Phasic behavior is lost if the conductance of IKLT
is frozen at its resting value, but phasic firing can be restored
with a divisive negative feedback mechanism by left-shifting
the V-dependence of steady-state inactivation gating for sodium
current. We characterize the features of the subtractive and
divisivemechanisms by isolating each in our reducedmodels; one
has only subtractive (S model), one only divisive (D model), and
a third has a combination of both (C model).

Our reduced models permit mathematical analysis, including
phase plane analysis, and thereby prediction and insight into
the phasic firing properties. Using tools from bifurcation theory
we can assess the range of conductances for which the neuron
models show type III excitability. We observe that the subtractive
mechanism if considered alone (i.e., if the INa is non-inactivating)
requires a strong reduction of Na+ conductance in order to
preserve its phasic properties and prevent a highly depolarized
state for strong inputs (depolarized state of “lockup”). The
presence of a divisive mechanism combined with a subtractive
one, guarantees the robustness of the phasic properties of the
system with respect to changes in channel density.

In this comparative study, we use a range of different stimuli
that help us to elucidate the different contributions of each
mechanism to the output properties. As a function of a steady
input’s amplitude the three models show no bifurcation to
repetitive activity. Indeed, there is firing only in the presence of
input fluctuations and firing probability shows strong sensitivity
to input variance (Higgs et al., 2006; Lundstrom et al., 2008,
2009; Gai et al., 2009). In order to quantify this sensitivity, we
compared the models’ responses to ramps and periodic inputs,
as well as their input-output curves (firing rate vs. mean input
and varying noise strength, and firing rate vs. excitatory input
frequency with random maximal conductance). We observe that
the low-threshold K+ conductance in the S model prevents
excessive depolarization, thus keeping the cell in the proper
voltage operating range, and provides robustness to small input
fluctuations. On the contrary, the D model has higher input
resistance, thus more vulnerable to input fluctuations and mean
depolarization, which ultimately leads to excitability loss from INa
inactivation.

In order to assess coincidence-detection and phase-locking,
we inject periodic trains of excitatory inputs, created from
many small excitatory postsynaptic conductances (EPSGs) with
random event times, that can be more or less synchronized.
We vary the input frequency and vector strength (a measure of
coincidence), and we compute the output firing rate (a measure
of entrainment) and vector strength (ameasure of phase locking).
We find that while both mechanims show enhancement of vector
strength, subtractive spikers can out-perform divisive spikers
for temporal precision and coincidence detection, especially
in the presence of a background noise. Finally, we explore
the effects of background constant inhibition as well as timed
inhibition and we observe that inhibition can have contrasting
effects on the firing rate, positive or negative, but the D model
shows less sensitivity to the arrival time of the inhibitory
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inputs compared to the S and C models, especially at high
frequencies.

Our results suggest that phasic neurons equipped with two
negative feedback processes are more robust to changes in
applied currents and conductance densities than models that
possess only one negative feedback mechanism, while they show
stronger coincidence detection properties.

2. METHODS

2.1. Neuron Models
Rothman and Manis (2003) developed a Hodgkin-Huxley-like
neuron model that has been widely used for modeling the phasic
firing of cells in the auditory brainstem. It consists of a sodium
current INa, a high-threshold (IKHT) and a low-threshold (IKLT)
potassium currents, a hyperpolarization-activated cation current
Ih and a leak current Ilk. The current balance equation has the
following expression:

C
dV

dt
= −INa − IKHT − IKLT − Ih − Ilk + I(t), (1)

whereC is themembrane capacitance,V is themembrane voltage
and I(t) is the external input current. Each ionic current Ii
is governed by an activation and/or inactivation variable, and
Equation (1) can be written as

C
dV

dt
= 2[−ḡNam

3h(V −ENa)− ḡKHT(0.85n
2 + 0.15p)(V− EKHT)

− ḡKLTw
4z(V −EK)− ḡhr(V −Eh)− ḡlk(V − Elk)]+ I(t),

(2)

where ḡi and Ei are respectively the maximal conductances and
reversal potentials for the ionic current i = Na, KHT, KLT, h, lk.
Maximal conductances and channel gating rates aremultiplied by
a factor of 2 and 3, respectively, as in Gai et al. (2009), to mimic
the brain slices during whole cell recordings at temperature 32◦C.

Of particular interest for our problem is the dynamics of
activation of low-threshold potassium current IKLT governed by
the variable w and the dynamics of inactivation of the transient
sodium current INa governed by the variable h.

To highlight the primary biophysical mechanisms for phasic
firing properties and to facilitate our analysis, we proceed as
in Meng et al. (2012), and develop 3 reduced versions of
the 8-variable RM03 model by identifying and approximating
some nonessential features for the model’s excitability and spike
generation mechanism. Namely, we set m = m∞(V), we freeze
the inactivation gating variable z of IKLT and the activation gating
variable r of Ih, and we remove IKHT (see Meng et al., 2012 for
more details and a justification of this simplification).

The reduced models considered are two 2-variable models,
both divisive and subtractive dominant versions, and a third
3-dimensional model that combines both mechanisms.

2.1.1. Subtractive (S) Model
In order to isolate the subtractive mechanism, we disable
the subthreshold dynamic negative feedback provided by

inactivation of INa by freezing the inactivation variable h at its
value at the resting state for the other two models. To do so and
still retain the type III excitability property, we need to reduce
ḡNa (see Appendix B in SupplementaryMaterial). Themodel then
writes as:

C
dV

dt
= −2(ḡNam∞(V)3h0(V − ENa)+ ḡKLTw

4z0(V − EK)

+ gl(V − El))+ I

dw

dt
= 3

w∞(V)− w

τw(V)
, (3)

where C = 12pF, ḡNa = 177nS, h0 = 0.22, ḡKLT = 200nS,
z0 = 0.662, gl = 4.97nS, ENa = 55mV, EK = −70mV and
El = −52.024mV. Notice that we obtained gl and El from the
original RM03 model by setting gl = ḡhr0 + ḡlk and El =

1/gl(ḡhr0Eh + ḡlkElk).
The steady-state functions m∞(V) and w∞(V) (see

Figure 1A) are given by

m∞(V) = (1+ e−(V+38)/7)−1,

and

w∞(V) = (1+ e(−(V+48)/6)−1/4, (4)

respectively, and the time function for w (see Figure 1B) is

τw(V) = 1.5+
100

6e(V+60)/6 + 16e−(V+60)/45
. (5)

2.1.2. Divisive (D) Model
We can disable the subthreshold dynamic negative feedback
provided by activation of IKLT by freezing the conductance gKLT
(activation and inactivation variables w and z) to its value at the
resting state. In this case, the only subthrehsold dynamic negative
feedback that is left in the model is sodium inactivation, but in
order to ensure phasic firing for a steady input, we manipulated
the model so that sodium inactivation is shifted to lower values
of voltage (i.e., h∞(V + 6)). The model then reduces to:

C
dV

dt
= −2(ḡNam∞(V)3h(V − ENa)+ ḡKLTw

4
0z0(V − EK)

+ gl(V − El))+ I

dh

dt
= 3

h∞(V)− h

τh(V)
, (6)

where w0 = 0.512, ḡNa = 500 nS and the other parameter values
are as in the S model.

The steady-state function h∞(V) (see Figure 1A) is given by

h∞(V) = (1+ e(V+hshift+65)/6)−1, (7)

and the time function for h (see Figure 1B) is

τh(V) =
100

7e(V+60+hshift)/11 + 10e−(V+60+hshift)/15
+ 0.6, (8)

with hshift = 6.
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FIGURE 1 | Voltage-dependent functions of the models. (A) Voltage-dependent steady-state functions for the gating variables of the ionic currents: sodium

activation m∞ (solid red), sodium inactivation h∞ (green) and potassium activation w∞ (solid blue). We also include w4
∞ (dotted blue) and m3

∞ (dotted red). (B) Time

constant functions for sodium inactivation τh (green) and potassium activation τw (blue).

2.1.3. Combined (C) Model
The model has both dynamic subthreshold negative feedback
mechanisms: activation of IKLT (as modeled for the S model) and
inactivation of INa (as modeled for the D model). The voltage
equation is given by:

C
dV

dt
= −2(ḡNam∞(V)3h(V − ENa)+ ḡKLTw

4z0(V − EK)

+ gl(V − El))+ I (9)

dw

dt
= 3

w∞(V)− w

τw(V)

dh

dt
= 3

h∞(V)− h

τh(V)
,

where ḡNa = 500 and the other parameter values are as before.
The functions h∞(V) and τh are given in Equations (7) and (8),
respectively (as in the D model), and w∞ and τw are given in
Equations (4) and (5), respectively (as in the S model).

2.2. Time Scales Ratio
We compute the ratio between voltage and gating variable time
constants for the divisive and the subtractive models.

We define the total conductance as

gtot(V , h,w) = 2(gNa(V , h)+ gKLT(V ,w)+ gl).

The ratio for the divisive model is given by:

r(V , h) =
3C

gtot(V , h,w0)τh(V)
,

and for the subtractive:

r(V ,w) =
3C

gtot(V , h0,w)τw(V)
.

Notice that values of r close to 1 indicate that the two variables
evolve on a similar time scale, while values of r close to 0 indicate
that the voltage evolves on a much faster time-scale than the
gating variable.

2.3. Inputs
We consider several types of deterministic inputs: steps, ramps
and also a half-wave rectified sinusoidal input I(t) with amplitude
A and frequency ω,

I(t) = A[sin(2πωt)]+, (10)

where [·]+ = max(·, 0). In some cases we inject external noisy
input of the form Inoise = Cση(t), where η(t) is a “white noise”
process.

We also consider conductance based synaptic-like currents.
Each synaptic site generates a minimal excitatory or inhibitory
postsynaptic conductance (EPSG/IPSG) that is modeled as an
alpha function with time constant τsyn = 0.3ms, unless otherwise
stated, and maximal conductance gmax:

gsyn(t) = gmax
t

τsyn
e1−t/τsyn . (11)

Thus, conductance-based synaptic currents have the form:

Isyn(t) = gsyn(t − ts)(V − Esyn),

for t ≥ ts, where Esyn = 0 and Esyn = −75 mV for excitatory and
inhibitory synaptic inputs, respectively, and ts is the pre-synaptic
spike time.

For the case of steady (but random) synaptic inputs, the
synaptic event times are Poisson distributed with a given
frequency and their maximal conductances are modeled as a
summation of N = 7 independent miniature EPSGs with fixed
amplitude, each of which occurs with probability p = 1/2. Thus,
maximal conductances for composite EPSGs are discrete and
modeled with a binomial distribution, B(N, p), where N = 7 is
the maximum number of mEPSGs each with probability p = 0.5
of occurence. Thus, the mean number of mEPGS is 3.5, i.e., there
will be 50% probability forN ≤ 3 and 50% probability forN ≥ 4.

In order to test coincidence detection, we inject periodically
modulated excitatory synaptic inputs from several fibers/sites
as in Jercog et al. (2010), similar to what might occur in vivo
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(Joris et al., 1994). Each cycle’s composite input was generated
from eight small (mini) excitatory postsynaptic conductances
(mEPSGs) modeled as alpha functions with fixed amplitude
and event times per site drawn from a von Mises distribution
independently at each cycle. The von Mises probability density
function for the angle θ is given by:

f (θ , a, b) =
eb cos(θ−a)

2πI0(b)
, (12)

where a = 1/4 is the mean and b is the temporal coherence
(b = 0 corresponds to a uniform distribution and as b increases
the distribution becomes more concentrated about the angle a),
and I0(x) is the modified Bessel function of order 0. Notice
that to vary b is equivalent to vary the vector strength of
the periodic input train. The vector strength (VS), also known
as “synchronization index” (Goldberg and Brown, 1969), is a
measure of how clustered are events over a cycle. To compute
the VS one associates to each event time a vector on the unit circle
with a phase angle and computes themean vector. TheVS is given
by the length of the mean vector. Perfect clustering is obtained
when VS = 1. The relationship between VS and the temporal
coherence b of the input distribution is given by:

VS(b) = I1(b)/I0(b),

where I0(x) and I1(x) are the modified Bessel function of order 0
and 1, respectively.

In our simulations we chose maximal conductances for
individual mEPSGs according to the following criteria: for low
input strength, we pick gmax,e so that six coincident inputs, but
not less, generate a composite EPSG that exceeds threshold for
spike at rest, and for high input strength we reduce this number
to four coincident inputs. Notice, that since the EPSG threshold
for spike is different for each model, we used different values of
gmax,e for each model.

In order to test the role of timed inhibition we also inject
periodic inhibitory inputs generated in the same way as the
excitatory ones: composite IPSGs are obtained from mini-IPSGs
(mIPSGs) modeled as alpha functions (see Equation 11) with
maximal conductance gmax,i and the timings in the arrival
of mIPSGs are also drawn from a von Mises distribution.
The frequency of the inhibitory input will be the same as
for the excitatory input, but we will vary other parameters
for inhibition: the temporal coherence bi in the von Mises
distribution (Equation 12), the maximal conductance gmax,i and
time scale τi of the mIPSGs (Equation 11). Since we want explore
the role that arrival time of inhibition plays in the maximal
response of the system, we also vary the phase difference ϕ

between the inhibitory and the excitatory inputs (ϕ = ai − ae (
mod 1) , ϕ ∈ [0, 1]), where ai and ae are the means of the von
Mises distribution for the inhibitory and the excitatory input
trains, respectively. Notice that when ϕ is close to 0, inhibition
just follows excitation, while when ϕ is close to 1, inhibition just
precedes excitation.

2.4. Criterion for Spike Identification or
Detection
RM03-like models have low input resistance. The high
conductance shunts EPSCs as well as spike currents. Strong
EPSGs are required to elicit a spike and distinguishing spikes
from EPSPs requires care. Although spikes may vary in
amplitude, we observe that there is a sharp rise in voltage
response when the input exceeds a certain value (see Figure 2C),
showing the presence of a regenerative process. Thus, our
criterion for spike detection requires that V passes a set level
(−20 mV) and that the net intrinsic current when V = −20 mV
is negative, i.e., dominated by sodium current (in order to detect
the regenerative process).

2.5. Simulation Methods
Equations were integrated numerically in C using an implicit 4th
order Runge-Kutta method. Stochastic differential equations had
a white noise term and were integrated using an Euler-Maruyama
method for stochastic differential equations (Higham, 2001) with
time step1t = 0.005ms, along with a random number generator
from the GSL-GNU Scientific Library. The bifurcation diagrams
were computed using the Auto feature in XPPAUT. We used
Matlab and Python to analyze and plot the data.

3. RESULTS

3.1. Reduced Models with Divisive or
Subtractive Mechanisms for Type III
Excitability
We have developed reduced models (with 2 or 3 variables) that
show type III excitability (each model fires once only at the
onset of a step current and not repetitively thereafter) using two
different biological mechanisms, subtractive and divisive, that we
managed to isolate.

Our starting point model is a reduced version of the Rothman
andManis model (RM03) (Rothman andManis, 2003) for phasic
neurons in the auditory brainstem (see Equation 1 in Methods),
that we previously showed behaves semi-quantitatively and
qualitatively as the full model (Meng et al., 2012). This reduced
version contains a potassium current that is partially activated
at Vrest and can significantly activate for subthreshold voltages,
and a transient sodium current that can significantly inactivate
for subthreshold voltages. Noting that “threshold” does not
correspond to a fixed voltage value for spike initiation, especially
in the case of phasic models (Azouz and Gray, 2000; Platkiewicz
and Brette, 2010, 2011), we use as threshold the voltage value
at which sodium activation (responsible of spike generation)
rises sharply (i.e., m3

∞(V)), which is approximately −40 mV.
This voltage value would correspond to spike initiation if
the dynamic subthreshold negative feedback factors were not
present (see Section Methods for our precise criterion for spike
identification). For this reduced RM03 model we also remove
the IKHT current and freeze the activation variable of Ih, as well
as the IKLT inactivation variable at their resting values (Vrest =

−63.6 mV).
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FIGURE 2 | Basic properties of phasic firing. (A) Steady state (fixed point) continuation for S (left), D (center), and C (right) models for a steady current I. Stable

fixed point (black solid) does not destabilize. (Inset) Voltage responses to a step current of different amplitudes indicated in each panel. (B) Phase-plane portraits and

trajectories corresponding to the same step current as in (A) for S and D models. (Left, S model) V-nullclines for I = 0, 0.8, 1.5 nA (solid black curve) and w-nullcline

(gray curve). Colors indicate ratio between V and w time-scales considering only ratios smaller than 1. (Middle, D model) V-nullclines for I = 0, 0.2, 0.6 nA (solid black

curve) and h-nullcline (gray curve). Colors indicate ratio between V and h time-scales considering only ratios smaller than 1. (C) Maximal value of V in response to a

step current of varying amplitude (x-axis) for S (blue), D (red), and C (green) models.

Now, we formulate 2-variable models that isolate the two
negative feedback mechanisms. The Substractive (S) model (see
Equation 3) isolates IKLT using a non-inactivating sodium current
by freezing the inactivation gating variable of the RM03 model at
its resting state value. Without dynamic Na+ inactivation, the S
model can develop bistability (coexistence of Vrest with a stable
depolarized state). To prevent such bistability and preserve type
III excitability we reduce ḡNa from 1000 to 177 nS (see Appendix
B in Supplementary Material for more details). Although this is
a strong reduction (by a factor of 1/5 or so), notice that Na+

strongly inactivates at subthreshold values of voltage and spikes
ocurr with h approximately 0.1, thus the total Na+ conductance
at spike onset is more comparable. Nevertheless, even with
this reduction, the density of sodium channels for the S model
is sufficient to amplify subthreshold synaptic potentials, thus
retaining the excitability property. The divisive (D) model (see
Equation 6) isolates Na+ inactivation by freezing the potassium
activation variable at its resting value (w0 = w∞(Vrest)).
However, freezing w to its resting value converts this reduced
D model (as well as the original RM03) from phasic to tonic
(Day et al., 2008; Gai et al., 2009, 2010; Meng et al., 2012). To
counteract this effect and retain phasic firing in the D model we
shift h∞ by 6mV leftwards with respect to the original h∞ in
RM03 (see Figure 1). Moreover, in order to better compare the
results with the S model we decrease ḡNa from 1000nS to 500nS.
Finally, we combine these twomechanisms in a 3-variable model:
the combined (C) model (see Equation 9) has IKLT of the S model
and INa of the D model.

3.2. Dynamic Properties for Different Type
III Mechanisms
Each of the models, C, D, S, fires phasically (only one spike, if
any, at the onset of the input; see Figure 2A, inset) and its steady
state Vss depends on I, the applied current, but is stable for any
I (Figure 2A). There is no bifurcaton to repetitive firing on the
Vss vs. I curve - a signature of type III excitability. For a slow
modulation of the input current I there is no spiking; the voltage
tracks the Vss vs. I relation. Depolarization in the S and C models
with I is modest because of IKLT activation. In contrast to this
rectification in the Vss vs. I relation for S and C, the D model has
a nearly linear relation without V-gating of IKLT and negligible
steady state INa. Thus, the set of voltages at steady state spans a
wider range for the D model than for the S and C models.

In a phasic firing system, spikes are elicited only for
transient inputs, fast enough and strong enough inputs.
For step current input our models respond sensitively to a
step’s amplitude (Figures 2A(inset),C), effectively showing a
threshold-like behavior for this stimulus class. The C model has
higher current threshold than the D model – they have the same
ḡNa but C has two negative feedback processes. S has the highest
current threshold, reflecting the decreased ḡNa. Notice that the
amplitude of spikes is modulated accordingly.

Phase plane analysis and relative time scales between voltage
and gating variable help us understand dynamic features of spike
generation (see Figure 2B andMethods Section). The trajectories
corresponding to the time courses in Figure 2A (inset) reveal the
characteristics of excitability: amplification of V for an adequate
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stimulus and then recruitment of dynamic negative feedback
(Figure 2B). For these phasic systems, the steady state is always
on the “left branch” for each I-value, guaranteeing its stability
(Rinzel and Huguet, 2013). For steady strong input the V-
nullcline’s cubic or N-shape is greatly diminished corresponding
to suppressed excitability (strongly activated IKLT or strongly
inactivated INa). Notice that this change is more dramatic in the
D model than in the S model (the V-nullcline for I = 0.6 nA in
the D model is hardly visible).

When the external input I increases, the steady state drifts
downward along the left branch and the phase point approaches
the steady state. In the S model, activation of IKLT precludes
excessive depolarization, limiting the steady state voltage to
values no higher than −60 to −50 mV. Close to the resting
state, the voltage and the gating variable have “comparable” time-
scales (within a factor of 3), and the phase point does not escape
rightward directly (red trajectories in Figure 2B). Only for large
enough input I, the phase point can enter the region with a clear
time-scale separation (blue region for values of V above −40
mV), and escape rightward toward the right branch of the V-
nullcline, generating a spike (green trajectories in Figure 2B).
Repolarization of the membrane potential after a spike is only
due to the Ohmic leak current in the D model, unlike S and C
models that have the V-gated potassium current, and there is no
hyperpolarization when the spike terminates.

For a time-varying input the V-nullcline and target steady
state move with the stimulus. Thus, for a slow stimulus ramp,
the phase point tracks slowly the drifting steady state and there
is no spike. For a fast enough ramp the phase point can escape

rightward and lead to a single spike and then settle to a stable
depolarized steady state. For this reason, phasic neurons are often
called differentiators because they respond to fast-rising, but not
to slow-rising, inputs (Ferragamo and Oertel, 2002; Svirskis et al.,
2002; McGinley and Oertel, 2006; Izhikevich, 2007; Ratte et al.,
2014). Our D model is a less sensitive differentiator; its critical
value for the ramp slope to elicit an action potential is lower (see
Figure S1A) and, in response to a half-wave rectified sinusoidal
input (Equation 10), it can fire at lower frequencies than C and S
(see Figure S1B).

3.3. Type III Excitability is More Robust in
the Presence of Na+ Inactivation
Type III excitability occurs in each of our representative models
but more or less robustly for mixtures of INa and IKLT. We
identified regions in the parameter space (ḡNa, ḡKLT) where the
models behave phasically, i.e. the fixed point is stable for any
value of I (Figure 3A, gray region). For other ḡNa − ḡKLT
combinations the models show destabilization of the fixed point
through a Hopf bifurcation and repetitive firing (Figure 3A, red
region) and the possiblity of multiple steady states, including a
stable steady state of high voltage, “lockup,” (Figure 3A, white
region).

The divisive mechanism is key to guarantee the robustness
of the phasic properties of the system with respect to changes
in channel density. Removal of Na+ inactivation, as in the S
model, strongly constrains the parameter range for type III
excitability. To avoid “lockup” in the S model (large white region
in Figure 3A) we chose its value of ḡNa smaller than for D and

FIGURE 3 | Dynamics of models with varying maximal sodium (gNa) and potassium (gKLT) conductances. (A) Different dynamic regimes are indicated with

different colors. In the gray area the fixed point is stable for the biologically plausible range of voltages V ∈ (−100, 40) (see Appendix A in Supplementary Material for

more details) and no bifurcation occurs (type III excitability). In the red region, a Hopf bifurcation occurs (type II excitability). The white area has saddle-node

bifurcations of the fixed points and multiple steady states are possible. (B) Minimal EPSG strength that produces a spike for an EPSG of the form

gex (t) = gmax (t/0.3)e
1−t/0.3, assuming that the neuron is at its resting state. White area corresponds to no spikes. The black dot indicates the maximal conductances

chosen for each model to perform the comparative study.
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C models; consequently, a stronger input was required for the S
model to be excited (see Figure 2C). By comparing the parameter
spaces of the D and C models, we observe that when ḡNa in
the D model is increased, the system transitions to a regime
with oscillatory behavior, while the presence of IKLT narrows this
region (compare Figure 3A for D and C).

The threshold for eliciting a spike with a brief synaptic
excitatory conductance input (EPSG) depends on ḡNa and
ḡKLT (see Figure 3B). If ḡNa is small, then the system is not
excitable (white region in Figure 3B). Of course, as ḡNa increases
the system becomes more excitable and the EPSG threshold
decreases. Moreover, if ḡKLT is large, more inward current
(INa plus the excitatory current) is needed to overcome the
opposing potassium current and EPSG threshold increases.
Thus, in Figure 3B, along contours, ḡNa increases as ḡKLT
increases.

3.4. Non-monotonic f-I Curves for Noisy,
Constant Mean Input Current
Neurons and models with type III excitability respond to input
transients but not to slowly varying inputs. In contrast, type I
and type II excitable systems fire repetitively for steady input
current. Their input-output relations, firing frequency vs. current
(f -I curve), typically show monotonic increase over much of
the I-range and then at high I-values loss of oscillation with
either gradually decreasing amplitude or with a sudden drop
in frequency and amplitude (Rinzel and Ermentrout, 1998;
Borisyuk and Rinzel, 2005; Rinzel and Huguet, 2013). For type
III excitability, an f -I relation quantifies the response to a
fluctuating input: the mean firing frequency vs. the mean of
a noisy current. The f -I curve is non-monotonic, as seen in
some illustrative cases (Higgs et al., 2006; Lundstrom et al., 2008,
2009; Gai et al., 2009), and particularly distinctive from typical

(noise free) type I and II cases. The firing frequency (firing
probability per unit time) decreases smoothly toward zero for
high mean I and the f -I relation shows strong sensitivity to input
variance.

Our three phasic models have non-monotonic f -I relations
and show strong sensitivity to noise (Figure 4A). The f -I curves
are similarly shaped for the S and C models but less symmetric
than D’s f -I curves. There is no repetitive firing without noise;
the increase of firing probability with noise level evidences
the models’ sensitivity to input transients (different colors in
Figure 4A). The S model fires less frequently than D or C
to a given noise level, partly because ḡNa is smaller for the S
model requiring stronger fluctuations to generate spikes (see
Figure 3B). The C model shows intermediate sensitivity to
noise.

We highlight the different effects of subthreshold V-
dependent conductance gating by replotting the input-output
relations of Figure 4A in terms of mean voltage, 〈V〉 (Figure 4B).
For S and C the maximum firing rate occurs for 〈V〉 around
Vrest , slightly depolarized for D. The firing rate of S and C
decreases for increased 〈V〉 and falls abruptly to zero for 〈V〉

just below −50 mV, less than the activation voltage for INa. This
abrupt falloff reflects the shunting effect of strongly activated gKLT
and reduced amplitude of V fluctuations. On the other hand,
firing rate rises gradually with 〈V〉 below Vrest with substantial
firing probability 〈V〉 well below Vrest . At these hyperpolarized
levels the input resistance is high (gKLT is deactivated) and
V-fluctuations are substantial. In contrast to the asymmetry
in the f -V relations for S and C the relation for D is more
symmetric, like that for f -I relation of D. Ohmic leak is the
only conductance at the foot and tail of the V-range for D.
Therefore, the input resistance and voltage fluctuations are
comparable.

FIGURE 4 | Firing rate for noisy input current, as a function of mean input and mean voltage shows non-monotonic behavior. (A,B) Inputs to the S (left), D

(middle), and C (right) models are noisy currents modeled as Gaussian white noise with constant nonzero mean 〈I〉 and noise intensity σ = 5, 10, 15, 20, 25, 30 pA

(different colors shown in legend). (A) Output firing rates vs. mean input current 〈I〉. (B) Output firing rates vs. mean voltage 〈V〉. Solid black thin curves are h∞, m3
∞,

and w4
∞ used for each model. Mean voltage 〈V〉 are computed from the time series by ignoring a 4 ms time window that surrounds a spike.
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3.5. Non-monotonic Input-output Curves
for Stochastic Synaptic Input
The noisy current input of Section 3.4 may be viewed as

an idealization of random synaptic input delivered to a cell.

Here, we consider the response to trains of excitatory synaptic

conductance inputs (EPSGs). The event times are Poisson

distributed and the EPSG amplitudes are binomially-distributed
(see Section Methods) with mean amplitude that will just elicit

a spike from the resting state. The three models show non-

monotonic input-output curves, firing rate vs. EPSG input rate

(Figure 5A, black curves), qualitatively as seen in Figure 4A

for noisy current injection but some features differ. On the

low input side the models fire for current injection (Figure 4A)

even for non-positive 〈I〉, since by chance some positive current
fluctuations are strong enough to cause a spike. But for synaptic

input, firing only occurs for positive EPSG rate (Figure 5A).

This feature is also seen in Figure 5B (black curves) where the

firing rate for stochastic EPSG input drops abruptly to zero

as 〈V〉 decreases below Vrest ; this corresponds to zero EPSG

rate, i.e. no synaptic input. Substantial mean input, either noisy

current injection or stochastic ESPGs, leads to depolarization and
reduced firing probability. But for synaptic input, high EPSG

rate leads to increased membrane conductance, thus EPSGs
that might be superthreshold for lower input rates are not for
higher rates; the EPSG threshold has effectively increased thereby
attenuating the effect of input variance and smoothing the drop
in firing rate (see more details in Figure S2). For the D model,

the conductance nature of synaptic input accounts for the loss of
symmetry in its input-output relation.

Synaptic inhibition differently affects our three models while
they are undergoing stochastic EPSG input. For the S and
C models, not surprisingly (although, see below), inhibition
decreases the firing rate for a given EPSG rate (Figure 5A, red
and green curves). In contrast, for the D model the relationship
between firing rate and inhibition can be non-monotonic
(Figure 5A), depending upon the EPSG rate. Specifically, the
firing rate decreases with ginh for low EPSG rate, whereas for high
EPSG rate firing rate increases. Consequently, at moderate input
rates the firing rate behaves non-monotonically, increasing then
decreasing with ginh (see more details in Figure S3).

There are some notable features of the input-output relations,
firing rate vs. 〈V〉 (Figure 5B). Overall, the relations appear
qualitatively similar for the 3 models, non-monotonic with a
sharp rise and gradual fall for increasing 〈V〉. The “left branch”
extends to lower 〈V〉 with ginh; this is because ginh lowers the
effective resting voltage, where firing rate descends to zero as
〈EPSG〉 rate decreases to zero. For the S and C models, in case
of either stochastic EPSGs, here (Figure 5B), or for noisy current
injection (Figure 4B), firing rate decreases from its maximum to
near zero for the same 10 mV range: (−60,−50 mV). Notably,
the maximum firing rate occurs at the same mean voltage
independently of the inhibition level; this “sweet spot“ for firing
is again located about the same voltages as for the noisy input
(Figure 4B): ∼ −60mV for S and C and at a higher depolarized
state (∼ −55mV) for D. From the perspective of a given 〈V〉

FIGURE 5 | Firing rate for stochastic synaptic inputs as a function of EPSG input rate and mean voltage depolarization shows different responses for

constant inhibitory synaptic inputs. (A,B) Inputs to the S (left), D (middle), and C (right) models are trains of excitatory synaptic conductance inputs (EPSGs) that

are Poisson distributed in time and binomially-distributed in amplitude (see Section Methods). The mean amplitude is different for each model and is chosen according

to the threshold to elicit a spike from the resting state: 8 nS (S model); 3.86 nS (D model) and 5.7 nS (C model). (A) Output firing rate as a fucntion of EPSG input rate

(x-axis) in the absence of inhibition (black) and under the presence of a synaptic inhibitory current of constant conductance: ginh = 10 (red), 20 nS (green). (B) Output

firing rate obtained in (A) plotted a function of mean membrane potential 〈V〉. Mean voltages 〈V〉 are computed from the time series by ignoring a 4 ms time window

that surrounds a spike. Curves are colored according to the inhibition strength as in (A). Figure S3 shows output firing rate for a larger range of inhibitory strengths.

Figure S2 shows spike triggered averages for the simulation runs indicated with gray and pink squares in (A).

Frontiers in Computational Neuroscience | www.frontiersin.org 9 February 2017 | Volume 11 | Article 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Huguet et al. Subtractive Divisive Mechanisms for Phasicness

we see (except for 〈V〉 less than, say, −60 mV) that the firing
rate decreases with ginh. The effect is monotonic decreasing in
each model. The reason being that in order to maintain a fixed
〈V〉 as ginh increases, the excitatory input, EPSG rate, must also
increase. That is, to keep a balanced state of fixed 〈V〉 both
synaptic excitation and inhibition increase or decrease together.
The amount of increased ginh that compensates for increased
excitatory input to maintain a balanced 〈V〉 is smaller for the D
model than for S and C due to D’s larger input resistance (see
Figure S3).

3.6. Precision and Detection of Coincident
Inputs for Periodic Drive
3.6.1. Coincidence Detection, Reliability, and

Precision of Entrainment
Neuron models with type III excitability are good coincidence
detectors, as are neurons in the auditory brainstem. That is, they
respond when multiple inputs arrive tightly-timed in a volley
but not if the same inputs are dispersed in time. Moreover,
such neurons can phase lock with high precision to an external
periodic stimulus; they fire precisely timed on each stimulus
cycle, sometimes enhancing the input precision (Joris et al., 1994;
Joris and Smith, 2008).

We adopt a stochastic input framework to characterize the
models’ coincidence detection properties for cyclic drive. Each
cycle has a fixed number of inputs; they are more or less

time coherent for higher or smaller values of b, respectively,
according to a von Mises distribution (Figure 6 and Methods).
The probability of firing in a cycle varies with the input frequency
and temporal coherence of inputs (Figure 7). The V-shape of
these parameter regimes for firing is not unexpected. They
resemble the diagrams for phase-locking of the models for
periodic inputs, as for full or partially rectified sinusoidal current
injection (Figure S1B and Gai et al., 2009, 2010; Meng et al.,
2012). However, for deterministic periodic input the transition in
input parameter values from 1:1 entrainment to low firing rate is
sharp at low frequencies, here it is gradual because the composite
input per cycle involves stochastically-timed unitary events. The
curved nature of the high and low frequency legs of the V reflect
the threshold of these models for an input’s rising slope together
with the feature that temporal coherence here is with respect
to a cycle’s phase not absolute time. Say, the need for higher b
values to ensure firing for lower frequency inputs accounts for
the need to have fast rising input. We also see here that the
V’s apex, around 200–300Hz, is similar to that of S and C for
sinusoidal input, suggestive of a resonant like property of these
models (Remme et al., 2014). These models do not fire for our
EPSG volleys for cyclic frequency above 400Hz, regardless of the
input temporal coherence b. Temporal summation of the inputs
for τs = 0.3 ms leads to enough baseline activation of negative
feedback to preclude spiking. This upper limit of frequency is
larger if unitary inputs are larger (compare Figures 7A,B). Later,
we will see that inhibition may restore the excitability properties

FIGURE 6 | Periodic trains of composite excitatory synaptic inputs with random event times. (A) Probability density function (pdf) of the von Mises

distribution for different values of the temporal coherence parameter b ranging between 0 and 20 in increments of 2 units. (B) Raster plot of event times per site (8

sites) drawn from a von Mises distribution (pdf shown in red) with b = 1 (top), b = 8 (middle), and b = 20 (bottom), together with the input period histogram (black)

and composite EPSG (blue curve) obtained from the summation of individual mEPSG with gmax = 1 and f = 250 Hz (see Section Methods). (C) Averaged composite

EPGS for b = 1, b = 8, and b = 20.
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FIGURE 7 | Detection of coincident inputs for a periodic train of multi-synaptic inputs with varying temporal coherence and frequency. (A,B) Firing

probability per cycle (0 <spikes/cycle< 1) for S (left), D (middle), and C (right) models as a function of temporal coherence in the arrival of inputs (x-axis; bottom axis

shows temporal coherence parameter b in von Mises distribution, while top axis shows its corresponding input vector strength) and input frequency f (y-axis). Bars on

the right hand side of panels correspond to firing rate when dispersion is null (b = ∞). Notice that temporal coherence b refers to a cycle, thus the dispersion of inputs

in absolute time for a given value of b decreases with input frequency. (A) Moderate individual EPSGs (only 6 or more coincident inputs exceed threshold for spike

from the resting state): 5nS (S), 2.5nS (D), 3.5nS (C). (B) Strong individual EPSGs (only 4 or more coincident inputs exceed threshold for spike from the resting state):

7.5 nS (S), 3.75nS (D), 5.25 (C). Computations were performed with 1000 cycles.

in these situations, especially for the D model. Note that for the
sinusoidal input of Figure S1B we allowed amplitude to be a
stimulus parameter and therefore entrainment could be to very
high frequencies.

For both moderate and strong inputs, (Figures 7A,B,
respectively), the D model is less selective to time coincident
inputs. The D model can spike with higher probability for weak
temporal coherence than the S and C models; D has a lower
threshold for input slope that causes firing (see Figure S1B). The
D model’s lower slope threshold is further seen in D’s tolerance
for low frequency inputs. The more stringent requirement of S
and C for steeper input slope is also seen in the spike triggered
averages (see Figure S4). For weakly coincident inputs (small b),
only a few realizations lead to composite EPSGs that are steep
enough to cause firing, hence the low firing probability for S and
C models. This observation suggests that models with dynamic
IKLT are more sensitive to inputs arriving together while the D
model, with frozen conductance for IKLT is far less selective about
how these inputs are distributed along a cycle.

The firing probability increases for each of the models if
the unitary input strength increases (compare Figures 7A,B).
Coincidence sensitivity persists with incresing input strength
although the minimum degree of coincidence needed for firing
decreases (leftward shift of colored region). The stronger unitary
inputs lead to larger increments in rising slope per event. It
is easier to generate with fewer inputs a fast enough rising

composite input to cause a spike. The D model here as well
fires less selectively than S and C; at 50% rate for very weak
coincidence (b = 2, with VS∼0.7) over a substantial input
frequency range. This feature of the D model is likely reflecting
the passive and slower time course of membrane potential decay
after a subthreshold EPSP peak, in contrast to the active decay
from IKLT in the S and C models (Jercog et al., 2010; Khurana
et al., 2011; Mathews et al., 2010). This allows more time for a
subsequent EPSG to give another sharp rise to the input. The
D model, although legitimately phasic by our definition, behaves
somewhat like an integrator for summation of fast unitary inputs.

It is rather striking to notice that, for a fixed input frequency
(say, 250 Hz in Figure 7A), the dependence of firing probability
on b for the S and C models is considerably more gradual than
for the D model. For b = 8 less than 50% of inputs rise fast
enough to cause S to fire; for b = 20 about 70% are fast enough
(see Figure 6B). For very large b (∼ 35) the firing probability
becomes close to one. Only when the event times are very tightly
timed will the input’s rise be treated as fast enough for S. For
lower values of b the fraction of realizations (cycles) that have
events so tightly timed is less and this dependence on b is gradual
for S and C. The range of b values for which the firing rate
rises from 0 to 1 can be considered as the dynamic range for
coincidence detection. Although this dynamic range is wide for
S and C the slope threshold is high and demands for detecting
coincidence in a cycle’s composite input are high. The S and C
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FIGURE 8 | Precision of phase-locking to a periodic train of multi-synaptic inputs with varying temporal coherence and frequency. (A,B) Output vector

strength for simulation runs in Figure 7 for the S (left), D (middle) and C (right) models as a function of temporal coherence in the arrival of inputs (x-axis; bottom axis

shows temporal coherence parameter b in von Mises distribution, while top axis shows its corresponding input vector strength) and input frequency f (y-axis). (A)

Moderate individual EPSGs. (B) Strong individual EPSGs. Contours correspond to output firing rate probability per cycle of 0.2, 0.4, 0.6, and 0.8 (spikes/cycle).

models with a large dynamic range have a firing probability that
encodes the coincidence. The D model is less discriminatory. It
will fire at high probability for far weaker coincidence and its
firing probability is not well graded.

Each model phase-locks with high precision to the cyclic
stimulus, as seen by the high vector strength, VS is above 0.9
in most of the area where responses exceed 0.1 spikes/cycles
(Figure 8, non-white region). Interestingly, the output VS is
substantially higher than the input VS (Figure 8, top horizontal
axis), evidencing that these coincidence detectors can enhance
the precision of entrainment. Although the three models seem
quite similar in terms of VS, they differ significantly in terms of
histogram shape (Figure 9C). Thus, models with dynamic IKLT,
when they respond, they do so at a higher precision than the D
model. This fact is especially noticeable at low input strength (see
Figure 8A).

3.6.2. Coincidence Detection and Precision of

Entrainment in the Presence of White Noise
Our coincidence detector models show varied responses in the
presence of background (white) noise to inputs like those of
Figure 7. For conditions of low firing probability (low b and low
to moderate input frequency) the noise can boost subthreshold
inputs and induce firing, thereby increasing detectability.
However, for conditions of high (noise free) firing probability,
noise reduces firing probability and some suprathreshold inputs
go undetected—reliability is decreased. We found that precision
is reduced by noise for all three models, but especially for D. We

illustrate these effects for input at frequency 250 Hz with low
unitary input strength (as in Figure 7A). For a given noise level,
firing probability increases with b, initially, above the noise free
probability but ultimately below (Figure 9A). As noise strength
increases, the three models show an increased firing rate, for low
to moderate b-values. The S and C models retain some gradation
of firing rate with degree of coincidence, b, but the D model has
a much sharper rise to saturation, thus compromising the rate
encoding of coincident inputs. Moreover, the minimum value of
b for spiking is substantially diminished in the D model; it fires
spontaneously at high noise levels. The precision (measured as
VS) decreases with noise in all models but far more for the D
model than for S or C (Figure 9B).

The S and C models entrain with different phases than does
D although noise induces more firing during the rising slope
of the mean EPSP for each model in the low to moderate
firing rate regime. Consider the case of 250 Hz input, as in
Figures 9A,B. In the noise free case the firing times for the three
models occur mostly at the peak of the EPSP for the average
synaptic conductance (Figure 9C). With noise (10 pA here),
the firing time distribution spreads more toward earlier firing
corresponding to the rising phase of the EPSP, and this effect is
more noticeable in the D model (Figure 9D). Most of the added
spikes thus appear to reflect slope sensitivity, enhanced by the
noise. This effect is reminiscent of earlier findings (Gai et al.,
2009, 2010) in which firing to slow modulation could be induced
on the rising phase when no firing occurred in the absence of
noise, a feature referred to as slope-based stochastic resonance.
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FIGURE 9 | Entrainment and vector strength properties for a periodic train of multi-synaptic inputs in the presence of background (white) noise.

(A) Output firing rate (spikes/cycle) and (B) vector strength for S (blue), D (red), and C (green) models for a periodic input of f = 250Hz and low unitary vector strength

(6 coincident inputs exceed threshold for spike from the resting state, as in Figures 7A, 8A) as a function of input temporal coherence b for different noise intensities:

dashed line corresponds to the noise free system and color intensity indicates noise intensity ranging from 5 to 20 in steps of 5. (C,D) Period histograms (solid curves)

for S (blue), D (red), and C (green) models for responses to inputs indicated with empty circles in (A). (C) Corresponds to the noise free system and (D) to noise

strength 10 pA. We show EPSPs (dashed curves, notice that blue and green lie on top of each other) for the average composite EPSGs obtained from the summation

of individual mEPSG with gmax = 1 (take note that this is not the maximal amplitude used in simulations). Numbers indicate firing rate (left) and vector strength (right)

for the different models.

Here, the spread of firing times carries the consequence of
degraded precision, a trade-off for enhanced slope sensitivity.
The D model is more vulnerable to this phenomenon due to its
input resistance. We see here that small differences in noise (and
thus input vector strength) translate into significant effects on the
period histogram’s shape, and on the firing rate for S and C, 2− 3
times increased.

3.6.3. The Timing of Brief Inhibition Can Counter or

Promote Firing
Inhibition can have contrasting effects, negative or positive,
on firing probability. We showed such contrasts for steady
inhibition (ginh) and Poisson distributed excitatory synaptic
input events (Figure 5). For a substantial range of EPSG input
rates, increasing ginh leads to decreased firing probability –
an expected outcome. However, for high EPSG input rates
that lead to substantial reduction in excitability (the non-
monotonic input-output feature of type III excitability), we found
that ginh can promote firing for the D model by decreasing
membrane potential and thereby partially restoring excitability.
Here, for repetitive excitatory input we show that brief inhibition

may increase or decrease firing probability depending on the
timing of inhibition and, further, that the promoting effect
may be enhanced if inhibition is more sharply timed (higher
b-value).

The familiar phenomenon of post-inhibitory rebound relates
to the hyperexcitability following release from a sufficient
duration of hyperpolarization that can cause a spontaneous spike
or induce one from a subthreshold depolarizing input. Perhaps
more surprising is that a brief, well-timed, hyperpolarizing
inhibition can have a similar effect, leading to a spike for an
otherwise subthreshold EPSG. This phenomenon, referred to
as Post-Inhibitory Facilitation (PIF), has been demonstrated for
the Hodgkin-Huxley model (Dodla and Rinzel, 2006) (Type II
excitability) as well as for auditory brain stem neurons and the
RM03 model (Dodla et al., 2006) (Type III excitability). Here, we
characterize and compare the timing window, intensity range and
VS range for reduction and facilitation of firing probability for
the S, D, and C models. The excitatory stimulus is a repetitive
von Mises distributed event train as we used for characterizing
features of entrainment (Figures 6–8). Each cycle includes an
inhibitory input (von Mises) with a specified phase difference
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with respect to excitatory input (they are coincident at phase
0, see Section Methods). We will consider two different input
frequencies: a low frequency (150 Hz) for which the excitatory
input in one cycle has little effect on the next cycle; and a high
frequency (380 Hz), for which temporal summation of excitatory
inputs activates subthreshold negative feedback thereby affecting
subsequent spike generation. For comparing the influence of
inhibition features we choose to define our control conditions
so that each model has an approximately identical firing rate.
We describe first the results for low frequency input with
control conditions: for each model, set an EPSG value so that 6
simultaneous inputs elicit a spike and set the be value to have a
firing rate of about 50Hz.

The dependence of firing probability on the phase of
inhibition shows a common feature nearly throughout our
parameter variation set: firing probability is reduced nearly to
zero when inhibition is timed close to excitation. This reduction
effect can be very localized in time but for some other phases
firing probability shows prominent increases. For time focused
inhibition (bi > 6, say) the firing probability increases by a factor
of 1.5–2 for inhibition that just precedes excitation by 30–40%
i.e., ≈2.5 ms (Figure 10A). This enhancement is more sharply
tuned in phase for S and C than for D. The weaker phase
dependence for D is consistent with the slower and monotonic
decay of an IPSP in the case of D. The IPSP decay for S and C
exhibits resonant like behavior with an overshoot and therefore a
greater phase preference (see Figure S5). The phase ranges where

the firing ratio is near one correspond to inhibition that arrives
just after a spike in the previous cycle and too far ahead of the next
excitatory event to have any effect on firing probability. Finally, if
inhibition is not focused in time but rather smeared (low value of
bi) the firing probability is close to or less than the control value
and without phase preference.

The time course of inhibitory transients significantly affects
the PIF mechanism. If ginh(t) is too fast or too slow, relative to the
intrinsic timescales of V and the subthreshold negative feedback,
PIF is precluded as shown in Dodla et al. (2006) for the IKLT
mechanism. For our models and with repetitive excitatory input,
as τi decreases and becomes small enough, the briefer ginh leads to
a sharpening of the phase preference (Figure 10B) and stronger
enhancement in firing probability. In contrast, as τi increases
the phase preference tuning broadens and enhancement reduces
giving way to a broadening of the late phase range in which firing
probability is reduced below the control level (∼50Hz). This
reduction is especially true for the D model; for τi = 0.9 ms the
firing probability is below control values for approximately 80%
of the cycle. The slower decay of an IPSP for D than for S and C
(again, Figure S5) is exaggerated by larger τi.

Stronger inhibition that is focused and brief can enhance the
PIF effect (Figure 10C). The firing probability increases and the
phase preference sharpens for phases just before the excitation
event (approximately 1.7 ms in advance). The behaviors resemble
those for increasing the vector strength of inhibition (cf,
Figure 10A).

FIGURE 10 | The role of timed inhibition in signal detection at low and high frequencies. (A–C) Output firing rate for periodic trains of combined excitatory

and inhibitory multi-synaptic inputs for the D (red), S (blue), and C (green) models, as a function of phase of inhibition with respect to excitation for f = 150Hz (top) and

f = 380Hz (bottom). Parameters for the excitatory input are fixed so that the output firing rate in the absence of inhibition is about 50 Hz (for f = 150Hz, be = 15 (S)

be = 4 (D), be = 12 (C), and for f = 380Hz, be = 15 (S) be = 3 (D), be = 4 (C)). Maximal conductance for mEPSGs gmax,e at f = 150Hz is chosen so that six

coincident inputs exceed threshold and at f = 380Hz so that four coincident inputs exceed threshold. Parameters modeling the inhibitory multi-synaptic input are

varied. (A) We vary the temporal coherence of the inhibitory inputs, ranging from bi = 0 (light colors) to bi = 10 (dark colors) in intervals of 2; here τi = 0.3 ms and

gmax,i = 2.5 nS. (B) We vary the time scale of inhibitory inputs τi , ranging from τi = 0.1 ms (fast, dark colors) to τi = 0.9 ms (slow, light colors) in intervals of 0.2 ms;

here bi = be and gmax,i is scaled so that the total area under the α-function modeling IPSGs remains constant and takes the same value as for τi = 0.3 ms. (C) We

vary the inhibiton strength gmax,i , ranging from gmax,i = 0 nS (light colors) to gmax,i = 10 nS (dark colors) in intervals of 2.5 nS; here bi = be and τi = 0.3 ms are fixed.

Dashed curves identify the curves in (A–C) that share the same parameters for inhibition.
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Notice that the C model exhibits in Figure 10 (top) more
enhancement of firing probability by brief inhibition overall than
D or S, in contrast to our comparisons of other response features
(say, Figures 2, 4, 7) where C appeared intermediate in degree.
The difference is reflecting the fact that the Cmodel includes both
mechanisms of subthreshold negative feedback. Hence, transient
inhibition is capable of inducing extra hyperexcitability.

The behaviors for high frequency (380 Hz) excitatory input
differ somewhat, but not surprisingly, from those for low
frequency input (Figure 10, lower panels; see caption for
control conditions). Overall, the D model shows the greatest
enhancement in firing probability with transient inhibition. This
effect is understandable since hyperpolarization from transient
inhibition must overcome for S and C two factors: the temporal
summated excitatory conductance between input events (the
only hurdle for D) and the accumulated gKLT. The Dmodel shows
less phase preference for PIF. For S and C the preferred phases
are shifted earlier. These shifts correspond to 1.6− 2.0 ms before
the next input event (comparable in absolute time to that for the
low frequency input case), a time scale comparable to τw and τh.
Interestingly, here for high frequency input the C model shows a
much weaker PIF effect than S, although having a slightly larger
effect than S for low frequency input.

While timed inhibition can boost firing probability for
peri-threshold random synaptic events it can also enhance
coincidence detection and precision. We assessed in Figure 7

coincidence detection quality by showing the dependence on b
(the degree of temporal coherence in the input) for repetitive
excitatory input; a horizontal slice in the heat map shows,
for a given frequency, the increase of firing probability vs. b
(Figure 11A, dashed curves for 250 Hz input and low strength,
as in Figure 7A). The effect of brief inhibition on this sensitivity
to coincidence depends on the phase of inhibition (indicated with
color intensity). In this view we recover the impression that the
C model responds to coincidence with sensitivity intermediate
to that of S and D; the firing probability and the “dynamic

range” (interval of b-values for gradation of firing probability)
are intermediate. The S model, with its subtractive mechanism,
has the largest dynamic range while the D model is coincidence-
sensitive over only a narrow range before saturation with firing
probability exceeding 0.9 for b > 5 or so. For each model
we see that even when inhibition occurs close to excitation
(dark curves) the low firing probability can be increased with
coincidence. These results suggest that timed inhibition may
modulate the rate encoding and dynamic range for coincidence
detection of phasic cells, creating windows over different
b ranges.

The temporal precision (vector strength) of the models’
responses increases with temporal coherence (Figure 11B).
Comparison between the models shows C as intermediate and
D with least precision. For timed inhibition, a high VS can always
be achieved for strongly coincident inputs. In contrast, the VS
is limited in the presence of noise even for very high b-values
(compare Figure 9B and Figure 11B).

4. DISCUSSION

Phasic neurons do not respond repetitively to steady inputs.
The primary mechanism for phasicness is a dynamic negative
feedback mechanism that activates for subthreshold values of
voltage, preventing the generation of a spike. Here we explored
two mechanisms of different nature: a potassium current
(outward current) that activates subthreshold and opposes
depolarization (subtractive mechanism) and a transient sodium
current (inward current) that inactivates subtreshold and can
overwhelm activation gating of the regenerative current (divisive
mechanism). We considered two reduced models that isolated
these mechanisms, one that has only subtractive mechanism (S
model), and one that has only divisive mechanism (D model);
and a third model that combined both (C model), and compared
their performance under different stimuli.

FIGURE 11 | The timing of inhibition can affect coincidence detection and vector strength. (A) Firing probability (spikes/cycle) and (B) vector strength for S

(blue), D (red), and C (green) models, input frequency f = 250Hz and low input strength (six coincident inputs exceed threshold for a spike) as a function of input

temporal coherence b (x-axis) and phase difference between inhibition and excitation indicated with color intensity of curves (0.2 = light and 0.8 = dark in steps of

0.2). Recall that for values of phase difference close to 0, inhibition just follows excitation, while for values close to 1, inhibition just precedes excitation. We include the

results for no inhibition (dashed curves) for comparison.
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We found that each mechanism, divisive and subtractive,
alone can support type III excitability. We do not advocate
choosing one, say subtractive, as the default without
consideration of the other. By extension, one should not
assume that if an IKLT blocker is applied (or gKLT is replaced with
a frozen gKLT, by dynamic clamp) and type III persists that IKLT
is not playing a role in Type III. The effect could have unmasked
a D-mechanism, meriting further study.

Firing in type III excitability requires that the voltage outraces
the dynamic negative feedback before this feedback can activate
significantly and disallow a spike. This speed requirement on
voltage rise means that these neurons and neuron models can
act as input slope detectors. We found that our model with a
subtractive mechanism requires a faster input rise than models
without it (see ramps and sinusoids in Figure S1). Indeed, the
(subtractive) low-threshold activated potassium current directly
competes with a rising voltage by providing high conductance,
that shunts EPSCs as well as noise fluctuations. The divisive
mechanism of Na+ inactivation does not interfere with the rising
voltage but rather hinders the regenerative power of the sodium
current. For this reason, we assert that cells equipped with IKLT
are better-suited for temporal processing like phase-locking and
coincidence detection and with extraordinary temporal precision
than neurons with only subthreshold Na+ inactivation (see
Figures 7, 8).

However, neurons without sodium inactivation, need to
strongly reduce the maximum Na+ conductance in order to
preserve type III excitability, thus compromising excitability
and ultimately signal detection (see Figure 3). Neurons
equipped with both mechanisms, show the best combination
of coincidence detection and signal detection phasic properties
in addition to being the more robust to variations in channel
densities. Indeed, the subtractivemechanism, when accompanied
by a sodium current that inactivates (even if not subthreshold),
increases its excitability while maintaining phasic properties. The
divisive mechanism, if combined with a subthreshold activated
potassium IKLT, becomes more selective to coincident inputs.

We provided new clues to assist in hypothesizing about
mechanism(s) that may underlie phasic behavior in a given
system. For instance, one can expect very differently shaped
input-output relations (Figure 4) depending on whether S or
D is dominant in determining Type III behavior; the relations
for D are rather symmetric and not so for S and, for S, the
asymmetry interestingly switches if firing probability is plotted vs.
input strength or plotted vs. 〈V〉. Moreover, the effect of increased
inhibition onto these curves shows different trends: decreasing
the firing rate monotonically in the S model while affecting firing
rate non-monotonically in the D model (Figure 5).

Given a particular system, one’s approach for investigating and
rationalizing the mechanistic basis should consider the context,
the firing regimes. For instance, one could imagine a neuron
with phasic spike capability at hyperpolarized levels, with an
INa that differs from the INa that supports spike capability at
depolarized levels. In this case, we might predict in favor of a D
mechanism and against S as the default. Indeed, S would involve a
substantial resting conductance that would require exceptionally
strong excitatory input to elicit spikes with depolarization.

4.1. Type III Excitability, Differentiators par
excellence
Neurons that mainly fire due to rapid depolarization to threshold
caused by time coincident inputs (like the models considered
herein) are often called differentiatiors (Izhikevich, 2007; Prescott
et al., 2008a; Lundstrom et al., 2009; Ratte et al., 2014).
Although some neurons may display features of integrators and
differentiators depending on the temporal pattern of the inputs
(Gutkin et al., 2003; Rudolph and Destexhe, 2003), here we have
focused on pure neural differentiatiors which, because of their
intrinsic properties, are incapable of responding to temporally
integrated, slowly varying input. This property is strongly linked
to the concept of type III excitability. That is, the system
approximately tracks a slowly varing input as a pseudo steady
state -there is no bifurcation to oscillatory behavior with the input
treated as a parameter. Input variability is the essential cause
of spiking (Lundstrom et al., 2009, 2008). This excitability type
complements the classical type I and type II excitability classes,
where a stable fixed point destabilizes through a SNIC or Hopf
bifurcation, respectively (Rinzel and Ermentrout, 1998; Borisyuk
and Rinzel, 2005; Izhikevich, 2007; Prescott et al., 2008a; Meng
et al., 2012; Rinzel and Huguet, 2013).

Neurons with type II excitability (emergence of repetitive
firing via a Hopf bifurcation) are typically classified as resonators
since the emergence of repetitive firing is via a Hopf bifurcation
and thereby associated with subthreshold damped oscillations
(some type III models can also show damped oscillations and
thus resonator properties Prescott et al., 2008a,b; Mikiel-Hunter
et al., 2016). However, such a system may display differentiator-
like features when operating near but outside its repetitive firing
regime (Prescott et al., 2008a; Ratte et al., 2014). The sensitivity
to timing of multiple inputs, coincidence detection, is naturally
inherited from the time windows of opportunity provided by
subthreshold resonance. Some differentiator properties that we
studied here are found exclusively in type III excitable systems.
For instance, the fact that, in the presence of noise, pure
differentiators have highly non-monotonic input-output curves
and its firing rate is sensitive to variance and insensitive to
mean input in the noise free case (see Figure 4). Moreover, in
the present study, we added an extra ingredient: when the non-
monotonic input-output curves are plotted as a function of the
mean voltage (see Figures 4B, 5B), the firing rate decay occurs
for subthreshold values of voltage (below ∼ −40 mV; when m is
half activated), irrespective of the negative feedback mechanism
considered. This property does not occur for type II neurons, for
which the firing rate increases with mean input and the decay in
firing rate may occur but at a much higher activated state.

4.2. Two Mechanisms are Better than One
to Provide Robustness to Neuron Models
Previous studies on specialized coincidence detectors in the
auditory brainstem (Manis and Marx, 1991; Rathouz and
Trussell, 1998; Svirskis et al., 2002) have highlighted the
relevance of IKLT in conferring phasic properties. Our early
finding that Na+ current in MSO neurons inactivated at low-
voltages suggested that this feature contributes to enhancing
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coincidence detection (Svirskis et al., 2004). Here, we underscore
that Na+ inactivation plays a strong role in guaranteering the
functional properties of the neuron model in terms of both
spike preservation and phasicness. Thus, if Na+ inactivation
is disabled, as in the S model, sodium conductance must be
tightly constrained in order to preserve the spike and avoid
the “lockup” state (see Figure 3). We tried but were not able
to counteract “lockup” and retain phasic behavior with an
additional potassium current that activated at high voltage (see
Appendix B in Supplementary Material). With the divisive
mechanism alone, spiking is preserved if h∞ is left-shifted to
lower values of voltage – INa must be strongly inactivated at
rest – to retain type III excitability and avoid repetitive firing
in response to steady current. However, having both types of
negative feedback mechanisms in the neuron model (C model)
provides a larger parameter space for conductances over which
the system preserves phasicness, without compromising the spike
or the excitability of the system. Thus, phasic models equipped
with two mechanisms of different nature are more robust to
changes in channel density (see Figure 3A).

In our analysis we considered extreme cases for our models.
Indeed, it is not necessary that a C model, being phasic
and performing properly, remain phasic when the subtractive
mechanism is disabled. For example, the original RM03 model
is phasic but behaves tonically when IKLT conductance is frozen
(Meng et al., 2012). Actually, there is a range of admissible
positionings of Na+ inactivation for a C model that guarantee
similar phasic features as our C model, even when the D model
(frozen w) is not phasic. However, as h∞ is right-shifted, the
phasic region for the C model is reduced and when the shift
is too dramatric, it resembles our S model. In this sense, our S
model is a limiting case of the C model. Thus, our parameter
choice for models allow us to, on one hand, clearly label them
as S or C and on the other hand, keep the parameter values
as similar as possible for a fair comparison. See more details in
Figure S6.

We have considered the idealized situation of a point neuron
model, without regard for potential effects of differential spatial
distributions of ion current mechanisms for phasic behavior.
MSO neurons provide a case for such considerations. In MSO
neurons somatically recorded spikes are typically quite weak in
vitro (Scott et al., 2007) and distinguishing what might be spikes
or synaptic transients is challenging from in vivo extracellular
recordings. Spikes that are generated in the axon initial segment
are presumably shunted by the considerable conductance of
IKLT and Ih in the soma-dendritic membrane (Khurana et al.,
2011), even though Na+ channels (inactivated near rest) are
present in the soma (Scott et al., 2010). A thorough modeling
study of how MSO phasic firing may depend on both gKLT
and Na+ inactivation could include the spatial distribution of
the various V-gated currents (Ko et al., 2016); the influence of
spatial distribution should likewise be considered in other phasic
firing neurons. MSO neurons are superb at computing time
differences. In gerbil, they receive fast excitation and fast, soma-
targeted, inhibition (Myoga et al., 2014). Perhaps the sodium
current while inactivated at rest may be recruited (de-inactivated)
by transient inhibition to respond selectively to well-timed

inhibitory-then-excitatory event pairings as in post-inhibitory
facilitation (Dodla et al., 2006).

Our findings can be extended to analyze the role of negative
feedback processes in a wide range of biological rhythms. Indeed,
the presence of two mechanisms of different nature opposing
to depolarization is not exclusive of phasic systems. Thus, the
original Hodgkin-Huxley model has also Na+ inactivation and
K+ activation, which in this case, act mainly superthreshold.
To counteract a strong non-inactivating inward current with a
strong outward current constrains the allowable channel density.
However, controlling the effect of autocatalysis by a divisive
mechanism, makes the system less sensitive and more flexible
to changes in channel density (Sengül et al., 2014). Spiking,
crucial for neuronal communication and computation, needs to
be preserved with respect to variations in channel density. A
similar statement about “two better than one” can be applied
to a network of excitatory and inhibitory neurons, say as
in a firing rate framework like the Wilson-Cowan equations.
In the classical formulation, inhibition acts as a subtractive
mechanism to counter recurrent excitation (equivalent to sodium
activation). Dynamic synaptic depression on the excitatory-
excitatory interaction behaves divisively like sodium inactivation
by directly controlling and reducing autocatalysis. Having both
mechanisms enables a network model to behave phasically
(Tabak et al., 2006, 2011).

In further regard to robustness and parameter choices in our
study, we acknowledge some compromises. Since we needed to
choose a low value of ḡNa for the S model, the excitability for
this model was reduced. Thus, in order to keep a fair comparison
with the other models, we also reduced ḡNa for D and C models
with respect to the original RM03 model, although this was not
necessary since D and C still are type III for a larger range
of ḡNa (see Figure 3A). Lowering Na+ conductance reduces,
of course, the excitability properties of the system, and leads
to lower amplitude spikes. Lowering ḡNa was also suggested in
Lundstrom et al. (2008) as a mechanism to turn an integrator into
a differentiator.

4.3. The Role of Inhibition in Restoring
Excitability and Shaping Coincidence
Detection Properties
Transient inhibition can reduce or, surprisingly, enhance firing
probability for peri-threshold random synaptic input events,
depending on the timing and precision of the inhibition (Dodla
et al., 2006). This property of post-inhibitory facilitation (Dodla
et al., 2006) is a transient analog for post-inhibitory rebound after
prolonged hyperpolarization. It can be expected in any system
with a dynamic excitability-suppressing factor that is partially
activated at rest and reducible by transient hyperpolarization
or in spontaneously firing conditions for randomly arriving
excitatory and inhibitory events (Dodla and Rinzel, 2006). As
a model, we considered the response sensitivity for periodically
delivered, compound excitatory input events (say multi-synaptic
inputs) that are near to threshold but by chance are sometimes
subthreshold/superthreshold and more or less time dispersed.
Our models (S and C) with IKLT express the behavior. Inhibition
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reduces the excitability-suppressing IKLT current and although
simultaneously positioning membrane potential further from
threshold it opens a time window of enhanced excitability if
inhibitory conductance decays fast enough (see Figures 5, 10).
However, when excitability suppresion is primarily due to Na+

inactivation as in theDmodel, hyperpolarization from a transient
inhibitory input can remove some Na+ inactivation and thereby
effectively lower the spike threshold in spite of hyperpolarization.
A normally subthreshold excitatory input may then trigger a
spike even if inhibition has not completely decayed away (see
Figures 5, 10). The C model should behave more as the S
model or the D model depending on the contribution of each
mechanism. Thus, the PIF phenomenon for the D model is less
sensitive to the arrival time of the inhibitory inputs, compared to
S and C, and this is especially noticeable at high frequencies.

While timed inhibition can facilitate signal detection, it
can also enhance coincidence detection and precision. Several
studies have shown that timed inhibition close to excitation,
either preceeding or following excitation, can improve temporal
precision of neurons (not only neurons with type III) by
narrowing the window for coincidence detection, sometimes at
the price of reducing the firing rate (Brand et al., 2002; Grothe,
2003; Ingham and McAlpine, 2005; Kuenzel et al., 2011). Indeed,
we observed that timed inhibition close to excitation can deselect
some spikes that do not correspond to coincident inputs and
improve precision, especially for the S and C models, but also
modulate the rate encoding and dynamic range of temporal
coherence for coincidence detection (interval of b-values for
gradation of firing probability), creating windows over different
b ranges (see Figure 11).

4.4. Generality of the Model and the Role of
Other Currents
Many of our results are demonstrated for a specific conductance-
based model (adapted from Rothman and Manis, 2003).
However, the geometrical analysis and underlying mathematical
structure of our reduced versions of the model suggest that
qualitative aspects of phasicness will be found in a more general
class of phasic models. Take for instance, Clay’s model for a
healthy squid giant axon (Clay et al., 2008), that was obtained
from the original Hodgkin-Huxley (HH) model by steepening
and left-shifting the activation of IK. The modified model can be
seen as our C model, since HH has sodium inactivation. Another
possibility is to turn the standard HH model into a type III
excitable model by lowering the conductance of INa from 120
to 83 mS/cm2 (Lundstrom et al., 2009). In this case, the model
can be seen as our D model but with a potassium current that
activates superthreshold or close to threshold.

Indeed, we may have kept the high threshold potassium
current IKHT (present in the original RM03 model) in the
D model. The role of this current is to contribute to the
repolarization of the membrane potential once the spike has
occurred – recall that in the D model the repolarization is only
due to the leak current – but it has no effect on the spike
generation, since this current is not active at subthreshold values
of voltage. For this reason, the results described for the D model

will also follow if IKHT is added, since they mainly involve the
subthreshold dynamics. Some differences will be observed if the
activation of IKHT is shifted to lower values, closer to threshold
(around −40 mV for instance). In this case, IKHT will behave as
an IKLT current, so the model will become a Cmodel, with proper
scaling of conductances.

Similarly, the IKHT current can also be included in the C
and S models. For the C model, the inclusion of IKHT does
not change the behavior of the model significantly (Meng et al.,
2012). The S model is different since the inclusion of IKHT might
compensate the persistent INa, and allow for a larger value of ḡNa.
Unfortunately, when IKHT is incorporated in the S model, the
system then switches to type II excitability (see Appendix B in
Supplementary Material for a detailed discussion on this topic).

In many phasic models one can find a hyperpolarization-
activated cation current Ih (Rothman and Manis, 2003; Khurana
et al., 2011). The current Ih is mostly activated below Vrest with
an activation time constant of 200 − 300 ms and deactivation by
membrane depolarization on the order of tens of milliseconds.
In our reduced models we have frozen gh to its resting value,
which is small. Allowing dynamic Ih may have an influence only
on those results that involve dynamics below Vrest . This will
constraint the range of voltages for negative currents, because
Ih prevents excessive hyperpolarization, in the same way as IKLT
prevents excessive depolarization. Moreover, when Ih is activated
the input resistance is lower at values of voltage below Vrest , thus
the responsiveness to noise is smaller. The effects of a dynamic
Ih are more noticeable in the C and S model than in the D
model. Indeed, gKLT is frozen at the resting value for the Dmodel,
therefore, when voltage hyperpolarizes, dynamic IKLT deactivates
for S and C, while for the D model it remains partially activated
causing a similar effect on input resistance as if Ih were present:
input resistance is smaller and there is less probability to fire due
to noise effects. Thus, the presence of Ih (with dynamic rather
than frozen-at-rest conductance) will have little effect on the
essential results regarding coincidence detection properties. Even
in the presence of inhibition, when Ih may reduce the IPSP size,
the results will remain valid but for a stronger inhibitory input.

5. GENERAL CONCLUSION

Subthreshold subtractive and divisive mechanisms each may
contribute to, and together synergize to enhance, a cell’s
phasic properties. If they work alone, cell’s performance may
be compromised. Thus, the subtractive mechanism confers
extraordinary coincidence detection properties to the cell,
but, if alone (with non-inactivating sodium current), is
operative within a restricted parameter range. The divisive
mechanism guarantees robustness of phasic properties, without
reducing a cell’s excitability, although with somewhat less
precision.
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