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Abstract 

Within the framework of microgrid systems, ESS (energy storage systems) are becoming 
essential in developing relevant markets in the use of more renewable sources and for 
Smart Grids. ESS are projected to strengthen grid resilience by solving complications such 
as hourly variations in demand and price, excessive power fluctuation and lack of energy 
supply that are related with the instability of renewable energy sources. 

Then, the preservation of the battery lifetime infers a starting point in the development of 
an ESS. It comprises everything related to the electrical system, where the critical 
inconvenient consist on dealing with the different charging process of the batteries, which 
consist on applying three stages: Bulk, absorption and float.  

To address this problem, with the aim of providing a viable solution, this project introduces 
an ESS control algorithm within the optimization control strategies minimizing cost 
functions for a microgrid system. The proposed solution is established on a modification of 
the optimization strategy for adding absorption and float stages after each bulk charge to 
preserve the battery lifetime. Where, as a part of a tertiary control system, theses stages 
are estimated out of the optimization program to reduce computation complexity. Taken a 
look at the simulation results and at expenses of only a slight cost function increase, it has 
been confirmed the feasibility of this procedure. These growth of the cost function can be 
assumed to preserve the battery lifetime.  
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1. Introduction: application framework and objectives 

 

1.1. System under study 

The worldwide energy scenario is experiencing significant changes, energy requirements 

are increasing rapidly, reaching high new levels. The progressively emigration from large 

scale with traditional generation to systems that are more flexible represents a change in 

the paradigm of centralized electric power generation. In addition, technological evolution 

and the continuous less dependency on fossil resources are increasing the support on 

renewable technologies such as solar, mainly weather-dependent.  

The continuous monitoring and balance between generation and consumption are 

motivating changes in the operation and configuration of the entire power grid. 

Consequently, large generation plants coexist with local generation technologies, storage 

devices and power electronics based controls.  

The MED-Solar (Machrek Energy Development-Solar) initiative, a particular case where 

this work focus on, is aimed at reducing back-up diesel generators fuel consumption in the 

Machrek area (Lebanon, Palestine and Jordan) where the mains is severely affected by 

frequent black-outs. This reduction was carried out by building a microgrid, which integrates 

photovoltaic solar generation and an Energy Storage System (ESS) to the pre-existing 

electrical facilities composed by back-up gensets and the mains [1].  

 

The configuration of the microgrid analyzed in this project is shown in Fig. 1 and includes 
two types of elements [2], referred as shows table 1, namely:   

TABLE 1. MICROGRID CONFIGURATION 

MICROGRID CONFIGURATION 

Device Controllable Pre-Existing 

Diesel generator and its control unit 
(Automatic Control Switch).  
Photovoltaic (PV) generators and their 
inverters.  - 
Commercial Inverter/Battery charger 
(BC) to manage the stored energy 
(includes Pb-acid battery bank) 

 - 
Power Switch for main power supply 
selection.   
Critical and non-critical AC loads 
connected to different AC buses to 
assure the critical loads demand. 

- 

Grid energy supply 

- 
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Fig. 1. Microgrid configuration 

The voltage of the loads bus is set either by the mains, the genset or the BC whereas the 
PV inverter acts as a current source. This inverter is connected to the critical loads AC bus 
to contribute to satisfy their demand when neither the grid, nor the diesel generator are 
available. 

A design of an Energy Management System (EMS) is required to properly schedule the 

power flow among the elements of the microgrid in order to satisfy the load demand at a 

minimum cost and to provide general solutions to the micro-grids management. The EMS 

design often incorporates energy optimization programs that minimize a certain cost 

function. These programs are formulated as constrained optimization problems, whose 

solution can be conveniently found through computational environments such as GAMS 

[3]-[4] or AIMMS [5].   

1.2 EMS Description 

One of the main technical problems that deal with the safe and economical operations of 
the microgrid is the control and energy management of all the devices. The EMS offers a 
solution for the energy administration. It gives the tools to increase the availability of the 
grid, to respond faster and more effectively to the energy balance of the network and react 
against malfunctions, to reduce the risk of system disturbances and outages [6].  
 
The EMS considers several constraints as the physical operating limits of the energy 
system (technical characteristics of the microgrid elements, grid parameters and modes of 
operation), as well as the information from forecasting systems (e.g., load demand, solar 
radiation) in order to determine the optimal energy profiles of the resources to minimize a 
pre-defined cost function [7]. This allows to swiftly adapting the electric power system to 
new conditions. The technical and innovative concepts ensure that the network control 
system will continue to meet the requirements well into the future. 
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It also provides the instructions to the controllers for all the manageable devices, such as 
generation sources, energy storage systems and intelligent loads, supporting the two 
microgrid mode operations (connected or isolated to the grid) [8], see fig 2. 

 
Fig. 2. EMS general scheme [7] 

The configuration proposed in the MED-solar project corresponds to a connected microgrid. 

Where the implementation of an EMS plays an important role managing a cluster of several 

conditions and inputs that interacts according to a logical pre-set scheme that is processed 

in such a way the result is an optimal operation of the microgrid devices. 

Then, a central controller that is at the head of the hierarchical control system is embedded 
into the grid to be on charge of the managing and controlling the microgrid, see fig 3.  
 

 

Fig. 3. Proposed Microgrid configuration of the MED-Solar Project 
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When the microgrid operates connected to the public distribution system, the network will 
provide the necessary voltage and frequency references so that all other generation 
elements of the microgrid work without any problems. Thus, when it operates connected 
there are no stability problems. If the microgrid is isolated, all the reference values will be 
given by the main power source, the diesel generators. 
 
After solving the energy dispatch, the EMS sends to the suppliers and the loads controllers 
the active and reactive power commands as well as the signals to those loads that must 
be kept in service and those to be disconnected. 

Moreover, the EMS must verify that none of the technical restrictions imposed on the 

microgrid are missed. This also, allows a much more efficient maintenance of all the 

components in the microgrid, which includes the implementation of remote management 

solutions. These characteristics can be helpful in sizing (of the microgrid) related problems.   

As a result, the EMS gives the corresponding energy profiles to the controllable power 

elements of the microgrid to minimize the cost function.  

These orders are placed at the highest hierarchical level of the microgrid control and are 

usually given in hourly / several minutes’ time scales by setting the power / energy 

references of the controllable elements over the time. The predictive model makes evident 

the needs of forecasting and data collection systems that provide relevant information to 

perform the optimizations.  

1.3 Operation of the EMS 

Since the EMS maintains a constant communication with all the elements of the microgrid, 

the supervision can be done in real time in order to create a direct link to the implementation 

of a smart energy system. 

In this project the time horizon is one day with hourly intervals and the output variables of 

the EMS are the PV energy prevision to be injected into the microgrid, the energy 

production of the diesel generator, the energy exchange with the mains, the energy 

exchange with battery bank, the prevision of the battery SOC and the hourly energy to 

supply the loads, a see in figure 4.  

The EMS input information is (in green): 
 

-     The forecast of the renewable energy generators output for the given time 
horizon (usually one day) divided in N consecutive periods (usually 24 hours).  

- The loads energy demand in the following consecutive n-periods. 
- The State of Charge (SOC) of the ESS. 
- The operational limits of non-renewable energy generators. 
- The state of the loads. 
- Operational limits of generators and ESS. 
- Grid energy supply limitations. 

 
The output information is (in blue): 
 

- Set points for the control system for each manageable source. 
- Control signals to connect or disconnect loads. 
- Energy scheduling for generators. 
- Battery charging and discharging profile  

 
Restrictions (in red): 
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- Market prices (Mains energy cost prevision, diesel, etc.) 
- Cost function included in a deterministic model of the microgrid energy   

management. 
- Battery management algorithm. 

 
Fig. 4. EMS general scheme [2] 

1.2. EMS Program optimization 

The optimization program determines the ideal schedule of the elements minimizing a cost 

function, over a pre-specified period (horizon) with a pre-specified time granularity (usually, 

a day period with time slots of 15 minutes to one hour [9]).  

In grid-connected systems, it is assumed that consumers are invoiced at the local market 

prices. The problem of the optimization is expressed according to the implicit market policy, 

which exploit the revenue from the consumed energy. Then, the microgrid can be analyzed 

as a bidirectional energy system, where positive flux of current is transmitted from the grid 

to the microgrid in order to supply the loads or to charge the batteries and negative flux of 

current is transmitted from the microgrid to the grid power supply. This means that the 

purchase or sale of energy to the main electricity grid must be considered. Because of the 

limited capacity of the transmission line between the grid and the microgrid, the input/output 

of this bidirectional system is restricted. 

Once all these variables are introduced, the optimization is performed according several 
conditions and inherent limitations of the system. The EMS architecture is shown in Fig. 5 
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Fig. 5.  EMS classical architecture 

In this regard and specifically related to the energy storage system which is highlighted in 

red at the figure 5, a typical hourly EMS architecture must include the battery modelling 

and consider the basic battery restrictions (SOC-state of charge- within a range and hourly 

energy balance of the ESS [9], [10] and [11]).  

A typical energy profile evolution given by the EMS, is shown at figure 6. 

 

Fig. 6. EMS energy profile prososal (a) Hourly charge / discharge energy profile (b) SOC evolution 

 

1.3. EMS limitations 

Usually, these optimization programs do not take into account the limitations imposed by 

the processes of charge and discharge of the storage element (battery bank) for its lifetime 

preservation, which consist in group of phases defined as: Bulk, Absorption and Float, see 

fig. 7. 
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Fig. 7. Battery charging process [11] 

The main reason why these processes are not integrated into the optimization programs is 

their high complexity characterized through highly nonlinear models. Similarly, the 

operation limitations (found in the manufacturer’s datasheets) of commercial 

inverters/battery chargers of the microgrid are not taken into account by the optimization 

programs. 

Based on the premise that, because of the highly computation complexity [12], [13], [14] 

and [15], the optimization softwares are not compliant with the modelling algorithms, this 

results in an hourly schedule that is not compatible with the BC operation modes, in 

particular, this equipment cannot process the power set points given by the optimization 

program, which in turn, has not taken into account the BC operation requirements to protect 

the battery bank.  

These characteristics highlight the necessity to manage in a proper way the energy that is 

being stored, in order to reinforce power networks and maintain load levels. 

Consequently, to implement a solution that takes into account the dynamics of the battery 

restrictions and charging process and to avoid convergence related problems, the decision-

making sequence must be modified, then at the strategic level of the EMS hierarchy 

structure, the battery management algorithm must be managed as an external entity as 

seen in fig 8. It is supposed that energy storage system, adds external conditions and 

specific new data, in terms of energy requirements, to the core of the hierarchy structure 

with the purpose of adjusting the final optimization solution. 
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Fig. 8. EMS hierarchy structure 

Therefore, the application of the optimization conditions should also be conducted by the 

objective of decreasing the excessive workload of the EMS, then the task related to the 

ESS can be calculated in a third party situation.  

Then, the management algorithm optimizes the relevant parameters defining the ESS so 

that the feed-in of electricity into the grid can be controlled to fulfil the conditions given by 

the EMS. 

 

Objectives: 

Therefore, this work proposes on one hand a modification of the EMS optimization 

algorithm to include time intervals in the battery-bank energy profile ensuring a proper 

charge/discharge process of the ESS. On the other hand, from the knowledge of these 

available time intervals the work proposes a control algorithm for a commercial battery-

inverter set (ESS: Energy Storage System) based on charge/discharge analytical models.    

This control algorithm is computed out of the optimization program and delivers an energy 

profile compliant with the charge/discharge requirements of the battery bank, thus 

preserving its lifetime. Moreover, this ESS energy profile reasonably approximates the cost 

function minimization.  

The organization of the work is as follows: chapter II describes the ESS modelling and the 

battery charging process. Chapter III defines the control problem, its influence on the EMS 

and the control algorithm, whereas Section IV presents the simulation results of a case of 

study and analyses the Battery charger selection. Chapter V defines the communication 

issues between the battery charger, the EMS and the algorithm solver. Chapter VI and 

Chapter VII introduces the budget and environmental impact of the project, respectively. 

Finally, Section VIII details the conclusions of this work and suggests further research in 

this field. 
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2. ESS – Modelling 

2.1. Lead-acid Batteries 

There are several alternatives to rechargeable batteries in the market, they are produced 
in many different shapes, magnitude and energy capacity. Among them, lead–acid are the 
most used in not-compact size applications. Their low manufacturing cost and their high 
surge current levels make them common where the capacity is more important than weight 
and handling issues.  

The PB-acid technology consist of several flat lead plates immersed in an electrolyte 

(distilled water is normally used for this purpose), where the plates conform numerous two 

volt cells that are the basic element in the batteries configuration.  

The main advantages consist on their high specific power and low self-discharge 

characteristic, on the other hand the principal disadvantages are their low specific energy, 

slow charge process and limited cycle life. However, regardless of these limitations Lead 

acid batteries are still being specified for microgrid applications because of the cost and 

the large developed technology behind them. 

2.1.1. State of charge 

The State of Charge (SOC), is the available battery capacity remaining and corresponds 

to the instant measure of the accessible energy of the battery expressed as a percentage 

of a reference, usually a full charged battery, which must be updated periodically, see fig 

9. On the other hand, the depth of discharge (DOD) represents the emptiness of the battery 

respect to the energy. 

 

Fig. 9. SOC- Graphical description 

The estimation of the state of charge is indispensable to achieve the optimum performance 

of a storage system. One of the most important aspects, which affects the estimation of the 

SOC of a battery, is the aging. Due to the charge and discharge cycles, the capacity of the 

battery’s cells decreases with time. Then, the reference should be the rated capacity of a 

new cell rather than the current capacity of the cell. For instance, as the battery gets close 

to the end of its lifetime its nominal full capacity will be around 80% of its rated capacity. 
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Therefore, even if the cell were fully charged, its SOC may reach only the 80% of its original 

capacity. 

If the current capacity is taken as reference instead of the rated capacity of the battery 

when is new, is comparable to gradually decreasing the size of the fuel tank over the 

lifetime of a vehicle without notifying the driver. Then, if the nominal value of battery 

capacity is taken as reference, the estimate may contain substantial errors.  

In order to estimate the real remaining charge of the battery, environmental factors, as well 

the ageing must be taken in consideration. 

2.1.2. State of Health 

The State of Health (SOH) is an indicator of the general condition of a battery and its 

condition to provide the nominal performance compared with a new battery. This parameter 

takes into account the internal the resistance, voltage, charge acceptance and self-

discharge. Then, this is not an absolute measure, but a reference value, which shows the 

available lifetime of the battery and how much has been consumed. For example, using an 

analogy, it can be compared to the odometer display function of a vehicle, which shows 

the how much the vehicle has been driven since it was new. 

Due the SOH is a relative condition, there must be a measurement log since the initial 

operation of the battery or at least a base parameters to take as reference. Then, if the 

voltage is an aspect to be monitored, the system must keep a record of the initial voltage 

of a fresh cell, or if the number of charge and discharge sequences is used as a measure 

parameter, the estimated battery cycle life of a new cell may be used as the reference. 

2.2. Lead acid battery charging process 

Currently, most of energy storage systems involving photovoltaic systems use flooded 

lead-acid batteries [16], where two electrodes, positive and negative, interacts with 

chemical liquid compounds used for the electricity storage, in solution with some type of 

electrolyte [17].  

The electrochemical reaction that allows the storage function is achieved through 

accumulators or cells. These systems allows the purpose of storage and release the flux 

of electrons by alternating the charge and discharge states. Transforming the chemical 

energy into electricity, and vice versa, is performed by the interaction of the electrochemical 

process. When the electrodes are connected to a closed circuit, generate an electric 

current, then the electrons flow from one electrode to another.  

However it has a comparatively low robustness for great amplitude charging cycles. This 

limitation is produced by the electrochemical reaction by itself; creating solid compounds 

that are stored directly on the electrodes on which they form (sulfation). This produces 

limited-mass system, which obviously bounds the capacity of the batteries due to the 

damaging of the compounds. An appropriate method to preserve the Pb-acid batteries 

requires a charging profile that implies the controlled-current/controlled-voltage technique, 

proposing elementary charging capabilities necessary for exploiting performance and 

lifecycle of batteries.  

The charging process is usually large, and takes several hours until finished depending on 

many factors such as voltage, current, state of charge and temperature. Primary, a 

controlled current is injected so that the differential voltage between the terminals of the 
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battery increases its value until the maximum charge voltage where is kept constant, then, 

at this moment the current starts to fall down because of the saturation.  

The challenge consists on maximize the charging rates and cell voltages without 

overcharging the cells. Increasing charger currents within manufacture limitations will result 

into the reduction of the charging time, nonetheless, the fully charge at constant current 

must be avoided in order to preserve the battery lifetime, then multi-stage methods should 

be applied as stated by the German Institute for Standardization at the normative DIN 

41773, where the charging procedure for Pb-lead acid batteries is described. 

Then, the charging process must be limited to prevent increasing the battery voltage above 

the recommended limits or applying charging currents that exceed manufacturer 

recommended levels. In either case, both conditions may damage the internal cells by 

breaking them down, resulting in failures and reducing the overall battery lifetime [17]. 

These characteristics are taken into account by commercial battery chargers and will be 

explained at chapter IV. 

 

Fig. 10.  Battery charge sequence through a bidirectional converter. [17] 

According to [16], [17] and [18], Pb-acid batteries should be charged in a three successive 

stage sequence: constant current charging phase, constant voltage maintenance phase 

and constant voltage flotation phase. The first phase applies the main bulk part of the 

charge and last for the half time of the charge time, the second stage provides the 

saturation effect by reducing the current and avoiding the overcharge of the battery, finally, 

the third phase applies an even lower voltage and stands for keeping charged the battery. 

To achieve this balance many commercial equipment use PWM chargers to drive the Pb-

acid battery charge into the three consecutive stages: bulk, absorption and float [17] – [18] 

(Fig. 10). 
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Then, it becomes clear that the knowledge of the battery variables requires the modelling 
of the aforementioned stages, which can be characterized by the simplified model of J.B. 
Copetti et al. [18] used in [19] and [20] as a standard that not depends on the field analysis 
of the energy accumulators and only requires manufacturer’s technical data. 

Nonetheless, this model is a general solution that lacks in the analysis through all the 

charging phases required by the batteries. However, several models have been developed 

based on the work of Copetti in which the charging modalities are analyzed. The bulk and 

discharge stages are described by N. Achaibou et al. in [12], whereas absorption and float 

are studied using the model described by H. Fakham et al. in [13].  

As a first approach, the batteries can be described by their voltage performance, where the 

main parameters are the open circuit voltage and the product of the internal resistance 

multiplied by the current, which is positive or negative depending on the charging an 

discharge stage respectively. Then, the resistance is variable and depends on other factors 

such as capacity, temperature and current among others.  The main characteristics and 

the mathematical expressions defining each stage are the following: 

Bulk stage – controlled Current: The transformation from the electrical to chemical 

energy takes place with higher intensity. This stage presents a high energy consumption 

at constant current until reaching a SOC value between 0.8 and 0.9; as a function of current 

and temperature [17] - [18], the battery voltage increases progressively as the SOC 

increases. A properly configured charger will supply the battery as much current as it safely 

accept (this value is recommended by the manufactures, which usually is the 20% of the 

capacity of the battery). 

Mathematical model: 

Eq.1 shows the cell voltage, as a function of the battery charging dynamics:  

𝑉𝑐(𝑡) = (2 − 0.16 · 𝑆𝑂𝐶(𝑡 − 1)) +
𝐼(𝑡)

𝐶10
· (1 − 0.025 · 𝛥𝑇)     (1) 

                            · (
6

1+𝐼(𝑡)0.86
+

0.48

(1−𝑆𝑂𝐶(𝑡))
0.86 + 0.036) 

   

Eq. 2 shows the quantity of useful accessible charge respect to the nominal capacity: 
 
 

                           𝐶 =
𝐶10·1.67·(1+0.005·𝛥𝑇)

1+0.67·(
𝐼(𝑡)

𝐼10
)
0.9    (2) 

 
Finally, Eq. (3) represents the SOC of the battery at charging stage: 
 

                               𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) + 𝐼(𝑡) ·
∆𝑡

𝐶
       (3) 

Discharge stage Mathematical Model: 

In Eq. 4 the discharging voltage is modelled by the following equation, which depends on 
the load current, SOC and temperature variation: 
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1.3 1.5

I( t )
Vc( t ) 2.085 0.12 1 SOC( t )

C10

4 0.27
1 0.007 T ,

1 I( t ) SOC( t ) 0.02

       

 
    

  

   (4) 

 

In Eq. (5) the SOC at time interval t is expressed recursively as: 

               𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) − 𝐼(𝑡) ·
∆𝑡

𝐶
   (5) 

Absorption stage – Constant Voltage: The event of reaching the gasification voltage 

(undesirable chemical reactions take place producing electrolyte loss) and the current 

decrease, marks the starting point of this stage, the electrolyte is recovered from being 

degraded by the previous process, this period is essential for the health of the battery. This 

stage has reduced energy consumption and the voltage level is set to a constant value 

from 2.30V to 2.45 V per cell, corresponding to the gasification voltage [22]. The load 

current progressively decreases its value until one of the following two conditions is met: 

the SOC reaches 0.95 or an elapsed time of 4 hours from the beginning of this stage; after 

that, the equipment automatically switches to the float stage. If this voltage is not applied, 

the battery cells will lose the ability to receive a full charge along the time, decreasing the 

performance due to sulfation [17].  

Float stage - Constant Voltage: The battery is maintained at full charge, self-discharge 

is avoided and battery sulfation is prevented. This stage has an even lower energy 

consumption than the previous one since the applied voltage is reduced to 2.1 Volts per 

cell and the current is reduced to values close to 0A [17].  

In this stage the BC apply a lower voltage than the other stages in order to prevent 

electrolyte gasification, but high enough to neutralize the self-discharge. 

Absorption and Float Mathematical Model: 

In order to analyze these stages and to avoid excessive complexity, a non-complex 

resistor-capacitor electrical model is used, Fig. 11. 

 

 

Fig. 11. Battery equivalent circuit [15] 

In these stages, the voltages Vbat (Battery voltage, theoretical gassing voltage) and Vg 
(Manufacturer Gassing Voltage) are given. 
 
Eq. 6 shows the internal current of the battery and the can be modelled as follow: 
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Vbat( t ) n Vg
I( t ) I( t 1) ,

n R( t )

 
  


  (6) 

 

In order to find the value of the resistance, it is necessary to determine the internal 
capacitance and its related electromotive force of the battery, can be computed at Eq. 7 and 
Eq. 8 respectively:  

 

C10 1
Cb( t ) ,

I( t ) n 0.16
1 0.67

I10

 


 
  (7) 

I( t ) dt
Vcb( t ) Vcb( t 1) ,

Cb( t )


     (8) 

Finally, the resistance is given by the Eq. 9:  

 

0.6 1.2

1 6 0.48
R( t ) .

C10 1 I( t 1) Vcb( t ) 2
1

0.16

 
 
   
      
   

  (9) 

Where:  

 

- I(t) is the battery current [A] 

- Δt is the duration of the time interval considered [h] 

- Vc(t) is the cell voltage [V] 

- SOC (t) is the battery state of charge [p.u.] 

- C10 is the charge/discharge capacity in 10 h at 25ºC [Ah] 

- ΔT is the temperature variation referred to 25ºC [ºC] 

- C is the battery capacity at the charge/discharge constant current [Ah] 

- n is the number of battery cells 

- I10 is the charge/discharge current in 10 h at 25ºC [A] 

- Vcb(t) is the internal electromotive force of the battery [V] 

- Cb(t) is the battery capacitance [F] 

- R(t) is the internal resistance of the battery [Ω] 

- Vg is the gasification voltage given by the manufacturer [V] 

- Vbat(t) is the battery bank voltage [V] 

- Vcp: polarization voltage [V] 
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- Cp: polarization capacitor [F] 

 

Following, in chapter III are analyzed the issues related on dealing with the life-span of the 

batteries as detailed by J. Salameh et al. in [21] and by K. Smith et al. in [22]. Then, later 

at chapter IV the analysis results and BC selection are analyzed. 

The aim of this work focuses on the development of a specific energy management 

algorithm for a Pb-Acid battery bank driven by a commercial battery inverter/charger, which 

should be compliant with the recommended battery charging/discharging stages, namely: 

bulk, absorption and float.  

Then, the project will adapt the proposed algorithm to be embedded in microgrid 

optimization software with a low increase of computational complexity. As a result, the 

global optimization programs will take into account the careful charge/discharge stages of 

the battery thus preserving its lifetime and reducing the operational cost of the microgrid. 
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3. ESS Control and EMS Modifications 

3.1. EMS and EES interaction issues: proposed approach  

Usually, the EMS’s based on optimization cost functions does not take into account the 

battery charging phases [23] - [25]. The integration of the battery model given in (1-9) within 

the EMS optimization program leads to an excessive requirement of computational 

resources which would adversely affect the online operation of the EMS [26] - [31].  

The execution of the strategy constraints must be established on the modelling of the 

battery behaviour, such that, the trade-off energy balance considers the State of Charge 

(SOC) of the accumulators, then, the scheduled profiles will contemplate the estimated 

power injected into the batteries bank. 

In this project, in order to facilitate the integration of the charging stages modelling within 

the ESS for the battery requirements prediction, the proposed optimization alternative is 

based in a three steps solution, as summarized in Fig. 12 and explained as follows: 

 

Fig. 12. Proposed EMS architecture 
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3.1.1. EMS optimization program modification 

Initially the optimization program gives the peak value of the SOC evolution, namely the 

bulk-end-of-charge battery SOC so that the cost function is minimized. Accordingly, the 

end of the bulk charge process is detected when the SOC reaches this peak value. It is 

worth noting that the bulk-end-of-charge battery SOC value is bounded by the parameter 

“Max-end-of charge”, expressed in p.u. (per-unit) of the battery SOC, which is set to 0.8 or 

0.9 to avoid the battery overcharge in the absorption phase. 

Then, the EMS optimization program is modified to include energy empty time slots in the 

battery energy exchange profile just after each bulk charge process, so that absorption and 

floating stages could take place, as seen in figure 13.  

 

Fig. 13. EMS profile modification 

 

The modification adds at least a time slot of pre-defined duration (usually from 1h to 4h) 

when the variable SOC(t) reaches the bulk-end-of-charge battery SOC. The Fig. 14 shows 

two possible examples of SOC evolutions where their peak values are lower than the 

parameter Max-end-of- charge and at least two time slots were inserted after the bulk 

phase. With these new restrictions, the modified optimization program redistributes along 

the time the available battery energy profile to both minimize the cost function and to assure 

the time slots for the charge process. This redistribution is shown in the example of Figs. 

15 and 16. 

 

Fig. 14. Examples of battery SOC hourly evolutions within the modified optimization model. 
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Fig. 15(a) shows the original energy profile given by the EMS when no battery charging 

restrictions are considered (see the immediate discharge from 12:00 to 13:00 after the last 

charge slot of bulk stage).  

 

 

(a) 

 

(b) 

Fig. 15.  Original EMS proposal without battery charging restrictions (a) Hourly charge / discharge 

energy profile (b) SOC evolution 

On the other hand, Fig. 14(a) present the battery energy profile once the optimization 

program was modified to take into account the constraints of battery SOC Max-end-of-

charge = 0.8 and an empty energy minimum time slot of 4 hours. It can be noted that the 

discharge stage takes place from 22:00 to 23:00 (10 hours after the last charge slot of bulk 

stage). Henceforth, this last profile will be referred as “modified EMS proposal”. 

As it will be detailed in the simulation results section, in spite of these significant differences 

in the battery energy profile, the cost function value in both cases exhibits similar results. 

 

(a) 
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(b) 

Fig. 16.  Modified EMS proposal with battery charging restrictions (a) Hourly charge / discharge 

energy profile (b) SOC evolution 

3.1.2. An specific ESS algorithm control 

 

Fig. 17. Flow diagram of the ESS control algorithm 
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The algorithm is in charge to assure the proper battery operation and is computed out of 

the EMS optimization program to avoid heavy computations.  

As summarized in Fig. 12, the algorithm is proposed to coordinate the dispatch of the three 

ESS levels. The control consists on several separate functionalities as described in a 

procedure explained below. The ESS algorithm starts from the hourly battery energy profile 

including the empty energy time slots given by the modified EMS optimization program.  

Fig. 17 presents the flux-diagram of the ESS algorithm which inputs are the initial SOC and 

the energy profiles containing the empty times-lots given by the EMS modified optimization 

program. This algorithm is based on the following steps: 

Step 1: Assign the number of hours per slot for the absorption stage. 

Step 2: Determine, at the beginning of the process, the time intervals where each one of 

the stages is activated during the day. 

Step 3: According to the stage where the battery operates and the corresponding 

restrictions, determine the voltage and the current of the battery, namely: 

Bulk stage: The battery should be charged at a maximum current until the variable SOC(t) 

reaches the bulk-end-of-charge battery SOC value. From hourly available energy profile 

given by the EMS optimization program, the corresponding average power is computed 

each five minutes and the algorithm starts from a maximum current value given by the 

maximum current value given by 2 times the I10 charging current [14], then the battery 

voltage is computed through (1). If the resulting average power is lower than the available 

one, the bulk stage takes place and the battery is charged at this current value. Otherwise, 

the algorithm restarts the voltage computation reducing the charge current value in 1A (the 

current reduction step resolution is fixed by the commercial BC). This reduction is carried 

out until the resulting power is lower than the available one. In this case, the bulk stage 

takes place until the variable SOC(t) in (3) is equal to the bulk-end-of-charge battery SOC 

value given by the EMS optimization program. 

Absorption: This stage takes place in the empty energy time slots given by the optimization 

program. In this case, there are no current limitations. After the bulk stage, the BC sets the 

battery voltage to the absorption one (2.352V); starting from an initial value, corresponding 

to the last current value of the bulk stage, the battery current evolution is computed through 

(6-9). The time ending of this stage is fixed by the user according to the available energy 

empty time slots. 

Float: This phase takes place after the absorption one and the current computation follows 

the same steps but now with the float voltage value (2.1V). 

In this regard, the EMS optimization program reschedules the microgrid devices in order to 

deliver the energy required by the absorption and float stages.  

Discharge stage: from the last value of the battery voltage and the battery energy profile, 

the initial battery current is computed and subsequently the battery voltage and the battery 

SOC evolution are computed through (4) and (5). 

Moreover, the EMS considers four time slots intervals (from 1h to 4h) to execute the 

absorption stage after the bulk one, as seen in fig. 18. These four counterproposal options 

are subsequently sent to the EMS which is in charge to make the definitive choice 

according to the optimization function value. 

 



 

 30 

 

Fig. 18.  EMS proposal options 

3.1.3. EMS proposal and ESS counterproposal management 

As previously stated, starting from a modified energy profiles proposal including energy-

empty time-slots given by the EMS (see Fig. 19(a)), the ESS algorithm delivers an energy 

profile counterproposal, shown in Fig. 19(b). As it can be seen, the ESS algorithm executes 

the absorption stage immediately after the end of the bulk stage and before the discharge 

one. Therefore, the profile guarantees at least a user-prefixed time interval of 

absorption/flotation phases for the transition from bulk to discharge.  

Nevertheless, as seen in Fig. 19(b), absorption and float stages require a certain (low) 

amount of energy. As summarized in the lower red blocks of Fig. 12, this energy will be 

obtained from the knowledge of the ESS energy profile by means of the EMS optimization 

program, which reschedules the microgrid elements to both provide the absorption and 

float stage energy and minimize the cost function. 

 

 

(a) 

 (b) 
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Fig. 19.  EMS proposal vs. ESS counterproposal comparison (a) Modified EMS proposal with 

battery charging restrictions (b) ESS algorithm charge / discharge battery energy 

counterproposal. 
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4. Simulation results and implementation issues 

In this Chapter, a real case is analyzed, it also presents a comparison between the 
results obtained by the EMS with and without the algorithm. 
 
At the Appendices number 2, there is located the Matlab [32] code which develops the 
control algorithm. 

4.1. Simulation and Results – Case 1 

To verify the performance of the proposed system, a set of simulations of the control 

strategy are executed using the modified EMS proposal of Fig. 20(a). The following battery 

bank parameters are assumed: C10 = 1875 Ah, Vbat = 48 V, I10 = 187.5 A and I20 = 375 

A and as initial conditions: ΔT=0ºC, SOC=0.5 and an initial current value provided to the 

battery bank of 50A. Irradiance and load demand data were measured on January 15th 

2016 on a microgrid located at the municipality of Qobbet Bshamra, (Akkar province, 

Lebanon). 

Table 2 states the energy proposals (expressed in kWh) sent by the EMS, in each one the 

energy balance is the same but the discharge state is distributed in a different manner in 

order to maintain the equilibrium in the energy trade-off. The squares in Cyan tone stand 

for the time slots available for the absorption charging stage. 

TABLE 2. CASE 1 - EMS PROFILES PROPOSALS [KWH] – GIVEN PROFILES 

TIME [h] OPTION A 
[kWh] 

OPTION B 
[kWh] 

OPTION C 
[kWh] 

OPTION D 
[kWh] 

00:00 to 01:00 0.789 0.789 0.789 0.789 

01:00 to 02:00 6.736 6.736 6.736 6.736 

02:00 to 03:00 0.0001 0.0001 0.0001 0.0001 

03:00 to 04:00 0.0001 0.0001 0.0001 0.0001 

04:00 to 05:00 0.0001 0.0001 0.0001 0.0001 

05:00 to 06:00 0.0001 0.0001 0.0001 0.0001 

06:00 to 07:00 4.798 4.798 4.798 4.798 

07:00 to 08:00 2.922 2.922 2.922 2.922 

08:00 to 09:00 2.203 2.203 2.203 2.203 

09:00 to 10:00 3.589 3.589 3.589 3.589 

10:00 to 11:00 4.809 4.809 4.809 4.809 

11:00 to 12:00 7.594 7.594 7.594 7.594 

12:00 to 13:00 0 0 0 0 

13:00 to 14:00 -4.896 0 0 0 

14:00 to 15:00 0 -4.896 0 0 

15:00 to 16:00 0 0 -4.896 0 

16:00 to 17:00 0 0 0 0 

17:00 to 18:00 0 0 0 0 

18:00 to 19:00 0 0 0 0 

19:00 to 20:00 0 0 0 0 

20:00 to 21:00 0 0 0 0 

21:00 to 22:00 0 0 0 0 Initial SoC 0,5 

22:00 to 23:00 0 0 0 -4.896 Temp. Variation 0 
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23:00 to 24:00 0 0 0 0 Last Current [A] 50 

 28.5444 28.5444 28.5444 28.5444   

Each one of the four proposals aims the execution of the Absorption stage after each Bulk 

stage and before each discharge stage, all seen from the point of view of the cost function 

of the EMS. Therefore, the option one guarantees one hour of absorption phase for the 

transition from Bulk to discharge and option four guarantees at least 4 hours. 

The figures 20, 21, 22 and 23 summarize the EMS optimization program proposals and the 

ESS algorithm counterproposals in a five-minute scale. 

Table 3, 4, 5 and 6 present the hourly values of the system response under the 

aforementioned modified EMS proposals and ESS algorithm counterproposals divided in 

charge/discharge energy, battery SOC and the different charge/discharge stages. At the 

lower part of the tables, the daily energy balances are also shown. 

On each figure, the part (a) represents the battery energy profile proposal of the EMS, 

respectively. Part (b) and (c) show the battery voltage and current evolution. Part (d) 

displays the resulting required energy and finally part (e) plots the battery SOC evolution. 

The four energy proposals have the same energy distribution from 00:00 until 12:00, where 

the bulk stage takes place, tending to use all the available energy delivered by the microgrid. 

Starting at this point, the slots are introduce in order to activate the absorption stage. In all 

cases at this phase, the current takes a softly decrease until reaching almost 0A at a charge 

voltage of 2.35V. Subsequently flotation stage takes place near 0A current value and a 

constant voltage value of 2.1 V, as reported in section III.  

4.1.1. Algorithm response – One hour available Slot, Option A 

At fig 20 and table 3, the absorption stage last for one hour and takes place from 12:00 to 

13:00 reaching a SOC of 0.8116.  

From 13:00 to 14:00 a discharge process is identified by the decrease of the battery voltage 

and the negative values of the battery current, the SOC value at this point is 0.7680.  

Then, at 14:00 and then until the end of the day, the Float stage is active, consuming 

practically none energy.  

The result at this option, suggest an additional power consumption of 4.1484 kWh with a 

SOC at the end of the day of 0.7680. 

 

(a) 
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(b) 

 

 

 (c) 

 

 

(d) 

 

 

(e) 

Fig. 20. Case 1 - Algorithm response in 5-minutes scale - One hour available Slot (a) EMS 

optimization program battery energy (b) Charge / discharge counterproposal battery energy (c) 

Voltage cell (d) Battery current (e) Counterproposal battery SOC evolution. 

 



 

 35 

TABLE 3. CASE 1 - EMS PROPOSAL AND ESS ALGORITHM COUNTERPROPOSAL – OPTION A 

TIME [h] 
Energy EMS 

 proposal [kWh] 

ESS algorithm counterproposal- OP A 

Hourly  
energy [kWh] 

SOC STAGE 

00:00 to 01:00 0.7890 0.7538 0.5051 Bulk 

01:00 to 02:00 6.7360 6.7124 0.5657 Bulk 

02:00 to 03:00 0.0001 0.0000 0.5657 Bulk 

03:00 to 04:00 0.0001 0.0000 0.5657 Bulk 

04:00 to 05:00 0.0001 0.0000 0.5657 Bulk 

05:00 to 06:00 0.0001 0.0000 0.5657 Bulk 

06:00 to 07:00 4.7980 4.7774 0.6053 Bulk 

07:00 to 08:00 2.9220 2.8905 0.6272 Bulk 

08:00 to 09:00 2.2030 2.1610 0.6430 Bulk 

09:00 to 10:00 3.5890 3.5501 0.6705 Bulk 

10:00 to 11:00 4.8090 4.7799 0.7092 Bulk 

11:00 to 12:00 7.5940 7.5648 0.7748 Bulk 

12:00 to 13:00 0.0000 4.3436 0.8116 Absorption 

13:00 to 14:00 -4.8960 -4.8406 0.7680 Discharge 

14:00 to 15:00 0.0000 0.0000 0.7680 Float 

15:00 to 16:00 0.0000 0.0000 0.7680 Float 

16:00 to 17:00 0.0000 0.0000 0.7680 Float 

17:00 to 18:00 0.0000 0.0000 0.7680 Float 

18:00 to 19:00 0.0000 0.0000 0.7680 Float 

19:00 to 20:00 0.0000 0.0000 0.7680 Float 

20:00 to 21:00 0.0000 0.0000 0.7680 Float 

21:00 to 22:00 0.0000 0.0000 0.7680 Float 

22:00 to 23:00 0.0000 0.0000 0.7680 Float 

23:00 to 24:00 0.0000 0.0000 0.7680 Float 

Total 28.5444 32.6928 Difference -4.1484 

 

4.1.2. Algorithm response – Two hours available Slot, Option B 

In the option B, fig 21 and table 4, the absorption stage takes place from 12:00 to 14:00, 

lasting for 2 hours and reaching a SOC of 0.8171, the additional 0.006 [p.u] SOC value 

correspond to the additional hour given for the absorption phase.   
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From 14:00 to 15:00 the discharge process is performed, taking from the battery 4.840 

kWh and decreasing the SOC value until reach 0.7835. 

Lately, at 15:00 starts the float stage, which last until the end of the day.  

Finally, the energy balance in this option results with an increment of 4.793 kWh to reach 

a final SOC of 0.773 

 

 

(a) 

 

 

(b) 

 

 

 (c) 

 

 



 

 37 

(d) 

 

 

(e) 

Fig. 21. Case 1 - Algorithm response in 5-minutes scale - Two hours available Slot (a) EMS 

optimization program battery energy (b) Charge / discharge counterproposal battery energy (c) 

Voltage cell (d) Battery current (e) Counterproposal battery SOC evolution. 

TABLE 4. CASE 1- EMS PROPOSAL AND ESS ALGORITHM COUNTERPROPOSAL – OPTION B 

TIME [h] 
Energy EMS 

 proposal [kWh] 

ESS algorithm counterproposal- OP B 

Hourly  
energy [kWh] 

SOC STAGE 

00:00 to 01:00 0.7890 0.7538 0.5051 Bulk 

01:00 to 02:00 6.7360 6.7124 0.5657 Bulk 

02:00 to 03:00 0.0001 0.0000 0.5657 Bulk 

03:00 to 04:00 0.0001 0.0000 0.5657 Bulk 

04:00 to 05:00 0.0001 0.0000 0.5657 Bulk 

05:00 to 06:00 0.0001 0.0000 0.5657 Bulk 

06:00 to 07:00 4.7980 4.7774 0.6053 Bulk 

07:00 to 08:00 2.9220 2.8905 0.6272 Bulk 

08:00 to 09:00 2.2030 2.1610 0.6430 Bulk 

09:00 to 10:00 3.5890 3.5501 0.6705 Bulk 

10:00 to 11:00 4.8090 4.7799 0.7092 Bulk 

11:00 to 12:00 7.5940 7.5648 0.7748 Bulk 

12:00 to 13:00 0.0000 4.3436 0.8116 Absorption 

13:00 to 14:00 0.0000 0.6452 0.8171 Absorption 

14:00 to 15:00 -4.8960 -4.8408 0.7735 Discharge 

15:00 to 16:00 0.0000 0.0000 0.7735 Float 

16:00 to 17:00 0.0000 0.0000 0.7735 Float 

17:00 to 18:00 0.0000 0.0000 0.7735 Float 

18:00 to 19:00 0.0000 0.0000 0.7735 Float 
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19:00 to 20:00 0.0000 0.0000 0.7735 Float 

20:00 to 21:00 0.0000 0.0000 0.7735 Float 

21:00 to 22:00 0.0000 0.0000 0.7735 Float 

22:00 to 23:00 0.0000 0.0000 0.7735 Float 

23:00 to 24:00 0.0000 0.0000 0.7735 Float 

Total 28.5444 33.3378 Difference -4.7934 

4.1.3. Algorithm response – Three hours available Slot, Option C 

Fig 22 and table 5 show the Option C response, where the absorption stage starts at 12:00 

and finishes at 15:00, lasting for 3 hours and reaching a SOC of 0.8171. One can notice 

that in comparison with the previous case and besides the additional hour for the absorption 

stage, this response is practically the same in terms of SOC and trade-off of energy. On 

this situation the third hour of absorption stages produces a null effect in energy 

consumption and, therefore, none variation in the SOC evolution. However, because the 

additional hour at the absorption parameters, this option is better for the battery life-

extension. 

 

(a) 

 

(b) 
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 (c) 

 

 

(d) 

 

 

(e) 

Fig. 22. Case 1 - Algorithm response in 5-minutes scale - Three hours available Slot (a) EMS 

optimization program battery energy (b) Charge / discharge counterproposal battery energy (c) 

Voltage cell (d) Battery current (e) Counterproposal battery SOC evolution. 

TABLE 5. CASE1 - EMS PROPOSAL AND ESS ALGORITHM COUNTERPROPOSAL – OPTION C 

TIME [h] 
Energy EMS 

 proposal [kWh] 

ESS algorithm counterproposal- OP C 

Hourly  
energy [kWh] 

SOC STAGE 

00:00 to 01:00 0.7890 0.7538 0.5051 Bulk 

01:00 to 02:00 6.7360 6.7124 0.5657 Bulk 

02:00 to 03:00 0.0001 0.0000 0.5657 Bulk 

03:00 to 04:00 0.0001 0.0000 0.5657 Bulk 

04:00 to 05:00 0.0001 0.0000 0.5657 Bulk 

05:00 to 06:00 0.0001 0.0000 0.5657 Bulk 

06:00 to 07:00 4.7980 4.7774 0.6053 Bulk 

07:00 to 08:00 2.9220 2.8905 0.6272 Bulk 

08:00 to 09:00 2.2030 2.1610 0.6430 Bulk 

09:00 to 10:00 3.5890 3.5501 0.6705 Bulk 

10:00 to 11:00 4.8090 4.7799 0.7092 Bulk 
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11:00 to 12:00 7.5940 7.5648 0.7748 Bulk 

12:00 to 13:00 0.0000 4.3436 0.8116 Absorption 

13:00 to 14:00 0.0000 0.6452 0.8171 Absorption 

14:00 to 15:00 0.0000 0.0000 0.8171 Absorption 

15:00 to 16:00 -4.8960 -4.8408 0.7735 Discharge 

16:00 to 17:00 0.0000 0.0000 0.7735 Float 

17:00 to 18:00 0.0000 0.0000 0.7735 Float 

18:00 to 19:00 0.0000 0.0000 0.7735 Float 

19:00 to 20:00 0.0000 0.0000 0.7735 Float 

20:00 to 21:00 0.0000 0.0000 0.7735 Float 

21:00 to 22:00 0.0000 0.0000 0.7735 Float 

22:00 to 23:00 0.0000 0.0000 0.7735 Float 

23:00 to 24:00 0.0000 0.0000 0.7735 Float 

Total 28.5444 33.3378 Difference -4.7934 

 

4.1.4. Algorithm response – Four hours available Slot, Option D 

From table 6 and figure 23: At 00:00 the bulk stage is started during a time interval of 12 

hours. It can be noted that from 02:00 to 06:00 the battery remains on bulk stage at zero 

current, since energy is neither provided nor required. 

Then, at 12:00, the system is forced to use at least the following four hours (grey cells) to 

activate the absorption stage before the discharge. From 16:00 to 22:00 and then from 

23:00 to 24:00, the algorithm proposes to activate the float stage, thus fulfilling the 

proposed conditions for the battery protection. 

The result highlights that the microgrid must generate an additional energy of 4.7509 kWh 

distributed from 12:00 to 16:00 to reach the battery absorption phase. 

The final SOC in this option is equal to 0.7731 [p.u]. 

 

(a) 
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(b) 

 

 

(c) 

 

(d) 

 

 

(e) 

Fig. 23. Case 1 - Algorithm response in 5-minutes scale - Four hours available Slot (a) EMS 

optimization program battery energy (b) Charge / discharge counterproposal battery energy (c) 

Voltage cell (d) Battery current (e) Counterproposal battery SOC evolution. 
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TABLE 6. CASE 1 - EMS PROPOSAL AND ESS ALGORITHM COUNTERPROPOSAL – OPTION D 

TIME [h] 
Energy EMS 

 proposal [kWh] 

ESS algorithm counterproposal- OP D 

Hourly  
energy [kWh] 

SOC STAGE 

00:00 to 01:00 0.7890 0.7538 0.5051 Bulk 

01:00 to 02:00 6.7360 6.7124 0.5657 Bulk 

02:00 to 03:00 0.0001 0.0000 0.5657 Bulk 

03:00 to 04:00 0.0001 0.0000 0.5657 Bulk 

04:00 to 05:00 0.0001 0.0000 0.5657 Bulk 

05:00 to 06:00 0.0001 0.0000 0.5657 Bulk 

06:00 to 07:00 4.7980 4.7774 0.6053 Bulk 

07:00 to 08:00 2.9220 2.8905 0.6272 Bulk 

08:00 to 09:00 2.2030 2.1610 0.6430 Bulk 

09:00 to 10:00 3.5890 3.5501 0.6705 Bulk 

10:00 to 11:00 4.8090 4.7799 0.7092 Bulk 

11:00 to 12:00 7.5940 7.5648 0.7748 Bulk 

12:00 to 13:00 0.0000 4.3436 0.8116 Absorption 

13:00 to 14:00 0.0000 0.6452 0.8171 Absorption 

14:00 to 15:00 0.0000 0.0000 0.8171 Absorption 

15:00 to 16:00 0.0000 0.0000 0.8171 Absorption 

16:00 to 17:00 0.0000 0.0000 0.8171 Float 

17:00 to 18:00 0.0000 0.0000 0.8171 Float 

18:00 to 19:00 0.0000 0.0000 0.8171 Float 

19:00 to 20:00 0.0000 0.0000 0.8171 Float 

20:00 to 21:00 0.0000 0.0000 0.8171 Float 

21:00 to 22:00 0.0000 0.0000 0.8171 Float 

22:00 to 23:00 -4.8960 -4.8833 0.7731 Discharge 

23:00 to 24:00 0.0000 0.0000 0.7731 Float 

Total 28.5444 33.2953 Difference -4.7509 
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4.2. Simulation and Results – Case 2 

In this case, the performance of the system is tested considering a blackout in the main 

grid from 13:00 to 18:00, where the energy supply of the batteries is more requested in 

comparison a typical day. The following battery bank parameters are assumed: C10 = 1875 

Ah, Vbat = 48 V, I10 = 187.5 A and I20 = 375 A and as initial conditions: ΔT=0ºC, SOC=0.50 

and an initial current value provided to the battery bank of 50A. Irradiance and load demand 

data were measured on January 20th 2016 on a microgrid located at the same site as the 

previous case. 

Table 7 states the energy proposal (in kWh) sent by the EMS. However, despite the 

previous case, the EMS is giving only one profile option, this is because the optimization 

program has determined it is only possible to assure one hour for the absorption stage, 

then the algorithm is considering one valid option for the charging process modelling. 

The square in Cyan tone stand for the time slot available for the absorption charging stage. 

TABLE 7. CASE 2 - EMS PROFILE PROPOSAL [KWH] – GIVEN PROFILE 

TIME [h] OPTION A 
[kWh] 00:00 to 01:00 0.028 

01:00 to 02:00 7.736 

02:00 to 03:00 0.0001 

03:00 to 04:00 0.0001 

04:00 to 05:00 0.0001 

05:00 to 06:00 0.0001 

06:00 to 07:00 5.798 

07:00 to 08:00 2.922 

08:00 to 09:00 4.203 

09:00 to 10:00 4.589 

10:00 to 11:00 4.809 

11:00 to 12:00 2.594 

12:00 to 13:00 0 

13:00 to 14:00 -7.565 

14:00 to 15:00 0 

15:00 to 16:00 0 

16:00 to 17:00 0 

17:00 to 18:00 0 

18:00 to 19:00 0 

19:00 to 20:00 0 

20:00 to 21:00 0 

21:00 to 22:00 0 Initial SoC 0.50 

22:00 to 23:00 0 Temp. Variation 0 

23:00 to 24:00 0 Last Current [A] 50 

 25.1144   

The fig. 24 summarizes the EMS optimization program proposal and the ESS algorithm 

counterproposal in a five-minute scale for the Case 2. 

Table 8 present the hourly values of the system response under the modified EMS proposal 

and ESS algorithm counterproposal. The daily energy balance is also shown at the lower 

part of the table. 
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On the figure 24, the part (a) represents the battery energy profile proposal of the EMS, for 

the case 2. Part (b) and (c) show the battery voltage and current evolution. Part (d) displays 

the resulting required energy and finally part (e) plots the battery SOC evolution. 

From 00:00 the bulk stage is started during a time interval of 12 hours. Then, at 12:00 the 

one hour slot is introduced in order to activate the absorption stage before the discharge. 

From 14:00 until the end of the day, the float stage is activated. 

Finally, the microgrid must generate an additional energy of 0.997 kWh distributed from 

12:00 to 13:00 to perform the battery absorption phase. Where the current reaches almost 

0A at a charge voltage of 2.35V.  

The final SOC in this case is equal to 0.66669 [p.u]. 

 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

 

(d) 

Fig. 24. Case 2 - Algorithm response in 5-minutes scale - One hour available Slot (a) EMS 

optimization program battery energy (b) Charge / discharge counterproposal battery energy (c) 

Voltage cell (d) Battery current (e) Counterproposal battery SOC evolution. 

 

TABLE 8. CASE 2 - EMS PROPOSAL AND ESS ALGORITHM COUNTERPROPOSAL – OPTION A 

TIME [h] 

Energy EMS ESS algorithm counterproposal- OP A 

 proposal 
[kWh] 

Hourly 

SOC STAGE 

  
energy 
[kWh] 

00:00 to 01:00 0.028 0.000 0.5600 Bulk 

01:00 to 02:00 7.736 7.707 0.5719 Bulk 

02:00 to 03:00 0.0001 0.0001 0.5719 Bulk 

03:00 to 04:00 0.0001 0.0001 0.5719 Bulk 

04:00 to 05:00 0.0001 0.0001 0.5719 Bulk 

05:00 to 06:00 0.0001 0.0001 0.5719 Bulk 

06:00 to 07:00 5.798 5.773 0.6216 Bulk 

07:00 to 08:00 2.922 2.897 0.6435 Bulk 

08:00 to 09:00 4.203 4.179 0.6768 Bulk 

09:00 to 10:00 4.589 4.564 0.7134 Bulk 

10:00 to 11:00 4.809 4.778 0.7516 Bulk 
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11:00 to 12:00 2.594 2.585 0.7703 Bulk 

12:00 to 13:00 0.000 0.997 0.7771 Absorption 

13:00 to 14:00 -7.565 -7.472 0.69999 Discharge 

14:00 to 15:00 0.000 0.000 0.69999 Float 

15:00 to 16:00 0.000 0.000 0.69999 Float 

16:00 to 17:00 0.000 0.000 0.69999 Float 

17:00 to 18:00 0.000 0.000 0.69999 Float 

18:00 to 19:00 0.000 0.000 0.69999 Float 

19:00 to 20:00 0.000 0.000 0.69999 Float 

20:00 to 21:00 0.000 0.000 0.69999 Float 

21:00 to 22:00 0.000 0.000 0.69999 Float 

22:00 to 23:00 0.000 0.000 0.69999 Float 

23:00 to 24:00 0.000 0.000 0.69999 Float 

Total 25.114 26.008 Difference -0.8941 

 

4.3. Summary Results  

4.3.1. Case 1 

The EMS determined the option D as the most suitable for the system. It should be taken 

into account that the EMS optimization program modification including additional “empty 

energy” time slots as well as the additional amount of energy consumed by the absorption 

phase modifies the cost function value. In order to quantify how the modifications, affect 

this value, the following simulations evaluating the total daily economic result in two 

different cases have been carried out: 

1) Base situation: EMS optimization program with no ESS restrictions (no additional 

time slots) 

2) Modified optimization program with ESS restrictions (Bulk-end-of-charge battery 

SOC = 0.8 and 4 time slots of 1h of empty energy after the bulk phase). 

The function to minimize is the daily operation cost expressed in [€/day] defined as [33]: 

Operation cost = 

t 24

t t1
 [Diesel Cost(t) + Grid Cost(t) + 

 Non-Critical Loads Penalty Cost(t) – Grid Income(t)] 

where t=t1, t2, …, t24 are the hourly intervals of a day, and: 

- Diesel Cost(t) is the diesel generator operation cost, taking into account a unitary cost of 

1.15 €/l. 

- Grid Cost(t) is  the  hourly cost  of  purchasing  the energy from the grid. The simulations 

have assumed an hourly tariff with time-dependent price levels: low (0.056 €/kWh) from 

02:00 to 07:00, medium (0.153 €/kWh) from 00:00 to 01:00 and from 08:00 to 13:00 and 

high (0.219 €/kWh) from 14:00 to 23:00. 

-Non-Critical Loads Penalty Cost(t) is the penalization cost for not supply energy to the 

non-critical loads. The penalty cost considered is 100 €/kWh. 
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-Grid Income(t) is the monetary income for selling the energy to the grid at 0.020 €/kWh. 

This shows that the operation cost of the Microgrid with the BC algorithm in one particular 

day got an increase difference of 1.5% in comparison with the same case without the 

algorithm (operation cost for Situation-1 is 52.335 €/day while in Situation-2 is 53.141 

€/day) This means that the cost of assuring an extension of the battery-bank lifetime 

reducing the early ageing factors is 0.252 €/day, in general terms, it may lead into an 

operational cost of 91.98 €/year. This slight cost increase can be assumed to assure an 

extension of the battery-bank lifetime. 

4.3.1. Case 2 

In this occasion, to quantify how the modifications affect the operational cost, the following 

simulations result in two events which were evaluated under the same cost function value 

as the Case 1, but considering the blackout of the main and the usefulness of the batteries 

supplies: 

1) Base situation: EMS optimization program with no ESS restrictions (no additional 

time slots) 

2) Modified optimization program with ESS restrictions (Bulk-end-of-charge battery 

SOC = 0.8 and 1 time slot of 1h of empty energy after the bulk phase). 

Restrictions: 

- Diesel Cost(t) is the diesel generator operation cost, taking into account a unitary cost of 

1.15 €/l. 

- Grid Cost(t). The simulations have assumed an hourly tariff with time-dependent price 

levels: low (0.056 €/kWh) from 02:00 to 07:00, medium (0.153 €/kWh) from 00:00 to 01:00 

and from 08:00 to 13:00 and high (0.219 €/kWh) from 14:00 to 23:00. 

-Non-Critical Loads Penalty Cost(t) is the penalization cost for not supply energy to the 

non-critical loads. The penalty cost considered is 100 €/kWh. 

-Grid Income(t) is the monetary income for selling the energy to the grid at 0.020 €/kWh. 

Finally, the operational cost of the Microgrid with the algorithm in this specific day and 

considering the blackout event, got an increase difference of 2.1% in comparison with the 

same situation without the algorithm (operation cost for Situation-1 is 55.897 €/day while in 

Situation-2 is 54.784 €/day)  

Then, the cost of guaranteeing an extension of the battery-bank lifetime respect to the early 

ageing factors is 1.113 €/day, in general terms, if this was the tendency during all the year, 

it may lead into an operational cost of 406.245 €/year. This cost increase, much higher than 

the previous case, can be assumed to assure an extension of the battery-bank lifetime. 

4.4. Battery Charger Selection 

 

Once the EMS has optimized the solution within its cost function evaluation, the execution 

orders must be sent to the BC to implement the selected charging procedure. The premise 

of the project is to develop a solution based on a commercial battery charger (BC) capable 

to implement the predictions of the modified EMS optimization program. 
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Table 9 shows the dynamical values generated by the algorithm at the option D from the 

case 1, which will be sent to the BC in order to perform the charging process. This table 

correspond to the plot of the fig. 24. 

TABLE 9. CASE 1 - EMS PROPOSAL AND ESS ALGORITHM COUNTERPROPOSAL – OPTION D 

Hours 00:00 to 01:00 

 
 

… 

12:00 to 13:00 

 
 

… 

22:00 to 23:00 23:00 to 24:00 

TIME [h] 0.083 

… 

1.000 12.083 

… 

13.00 22.083 

… 

23.00 23.083 

… 

24.00 

Available Energy 
[kWh] 

0.789 0.789 0.0 0.0 -4.896 -4.896 0.0 0.0 

Battery Cell 
Voltage [V] 

2.093 2.094 2.352 2.352 2.042 2.035 2.10 2.10 

Battery Current 
[V] 

15.00 15.00 124.51 37.006 -97.143 -100.22 0.0 0.0 

Required Energy 
[Kwh] 

62.803 62.829 585.69 174.07 -396.72 -407.88 0.0 0.0 

SOC [p.u] 0.50 0.505 0.78 0.812 0.814 0.773 0.773 0.773 

Note: The time variation is equal to 5 minutes, but in an hourly scale 5 minutes is equivalent 

to 0.0833 hours. 

As seen in table 9 the control references to be sent from the EMS to the ESS are the 

charging current for the bulk stage, the SOC end of bulk charge value and the battery 

voltages for the float and absorption stage. Driving a commercial Battery Charger to be 

compliant with the ESS reference values depends on the programmability of the BC. In this 

concern SMA and Victron commercial BC programmable characteristics (which are 

resumed in Appendices 3 and 4) have been analyzed. This analysis has revealed that SMA 

BC performs by itself a very careful management of the battery health but leaves less 

degrees of freedom to the user as the SOC values which are not easily accessible. For this 

reason Victron BC has been finally chosen as a platform able to implement the ESS control 

references. 
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5. Communication characteristics  

The main issue at this point is to assure the data transfer process from the algorithm solver 

to the EMS and from the EMS to the BC.  

5.1.1. From the Algorithm solver to EMS 

Being Matlab a Numerical computing software who needs a user to execute commands, 

and taking into account the EMS must obtain the results from the algorithm constantly and 

sequentially, an application was developed in order to give the EMS the control over the 

solver.  

Knowing that the EMS uses the spreadsheet Excel (developed by Microsoft-Office), a code 

in VBA (visual basic for applications) was developed to perform the Matlab program, 

creating an automatic process, which is on charge of the algorithm execution. Fig. 25 

shows an example of the app, where each time the button A “Battery Modelling” is clicked, 

Matlab process the information.  

The codification sentences used to develop the app can be found in the appendices. 

The purpose consists in establishing a connection between two independent softwares, 

later, and considering the developing of the EMS, the codification of the app can by 

modified to fit the global requirements. 

 

Fig. 25. Application - Microsoft Excel 

5.1.2. From EMS to BC (Victron-Quattro) 

Once the EMS has finished all the data managing process, execution orders are sent to all 

the actuators of the microgrid. Being the battery charger one of them, there must be a 

secure path for command the requests. 

All settings in the Victron-Quattro can be modified using the communication protocols CAN-

bus or Mod-bus. However, the last protocol has some communication limitations proper of 

the Victron [37], for this reason, the CAN-bus protocol is selected in this project. 

https://en.wikipedia.org/wiki/List_of_numerical_analysis_software
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5.1.2.1. Victron – CAN bus protocol 

The CAN-bus is a message-based protocol designed for microcontrollers and other 

artefacts to intercommunicate among each other in applications avoiding a host computer.  

All the functionalities in the Victron-Quattro are grouped in clusters of registers (VREGs), 

depending on the functionality of each one; this characteristic allows a large amount of 

manageable settings. 

Vregs may involve single or multiple associated topics. However, should not be initialized 

if there is no necessity.  

In a general description, Vregs are divided in two groups: static and dynamic. Static Vregs, 

which defines internal settings of the device, these ones are not meant not be sent 

intermittently, on the other hand, dynamic VREGs values (parameters) can be sent 

periodically. 

As seen in the Table 10, the Vregs are organized in pages using the higher byte of each 

register in hexadecimal notation [38].  

TABLE 10 VREG CLASSIFICATION 

Vreg Page Description 

0x00 Vreg commands 

0x01 Product information / Update 

0x02 to 0x7F Device Control 

0x80 to 0xEE 

 
Product specific, message depends on the 
device sending them 
 
 

0xF0 to 0xFF Reserved 

 

Because of particular purposes, pages from 0x02 to 0x7F and from 0x80 to 0xEE are 

registers that can be used by the user to manage the Quattro; these pages are specific for 

the control of the device. All the other pages are out of the interest of this project. 

The following tables indicate the most important parameters in order to control and 

supervise the BC: 

Table 11 states for the general aspects to control the device, changing the operational 

mode or request the state of the device are common actions in this section.  

TABLE 11. GENERAL SETTINGS 

VREG Function Type 
# of 
bits 

Characteristic Observations 

General aspects 

0x0200 
 Device 
Mode 

read / 
write 

un8 mode 

1: Charger Only (rw) 
2: Inverter Only (rw) 
3: On (rw) 
4: Off (rw) 
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0x0201 
 Device 
State 

read only un8 state 

0x00: Off 
0x01: Low Power Mode, 
0x02: Fault, 
0x03: Bulk, 
0x04: Absorption, 
0x05: Float, 
0x06: Storage, 
0x07: Equalize, 
0x08: Pass thru, 
0x09: Inverting, 
0x0A: Assisting, 
0x0B: Power Supply Mode, 
0x0C-0xFA: Reserved, 
0xFB: Test, 
0xFC: Hub-1, 
0xFD-0xFE: Reserved, 
0xFF: Not Available 

 

The Vregs shown in Table 12 allow the user to control or request the limit current on any 

of both inputs. One can notice the precision on this registers is in the order of 100 mA. 

TABLE 12. AC INPUTS  

VREG Function Type 
# of 
bits 

Characteristic Observations 

AC INPUTS 

0x0204 
AC active 
input 

read 
only 

un8 Active input 
The AC input being used (or 
the last used one). 

0x0210 
0x0220 

AC IN1/IN2 
Current Limit 

read 
only 

un16 limit The ac current limit in units of 
100mA. 

0x0211 
0x0221 

AC IN1/IN2  
Current Limit 
Min 

read 
only 

un16 limit The minimum acceptable 
current limit in 100mA 

0x0212 
0x0222 

AC IN1/IN2  
Current Limit 
Max 

read 
only 

un16 limit The current limit in steps of 
100mA. 

0x0213 
0x0223 

AC IN1/IN2  
Current Limit  
Internal 

read 
only 

un16 limit 
The current limit in 100mA. 

0x0214 
0x0224 

AC IN1/IN2  
Current Limit 
Remote 

read / 
write 

un16 limit Set the current limit to the 
passed value in 100mA 

 

Moreover, Table 13 identifies the registers that allow the user to control the battery settings, 

like the different limits of times or boundary voltages and currents. 
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TABLE 13. BATTERY SETTINGS 

VREG Function Type 
# of 
bits 

Characteristic Observations 

BATTERY SETTINGS 

0xEDFD 

Battery 
automatic 
equalization 
mode 

read 
write un8 

auto 
equalization 
mode 0=off (default), 1=on 

0xEDFC 
Battery bulk 
time limit 

read 
write un16 bulk time limit 0=off, time in 0.01 hours* 

0xEDFB 

Battery 
absorption 
time limit 

read 
write un16 

absorption 
time limit 0=off, time in 0.01 hours* 

0xEDFA 
Battery float 
time limit 

read 
write un16 float time limit 0=off, time in 0.01 hours* 

0xEDF9 

Battery 
repeated 
absorption 
time duration 

read 
write un16 

rep. abs. time 
duration 

time in 0.01 hours (default 1 
hour) 

0xEDF8 

Battery 
repeated 
absorption 
time interval 

read 
write un16 

rep. abs. time 
interval 

time in 0.01 days (default 7 
days) 

0xEDF7 

Battery 
absorption 
voltage level 

read 
write un16 

absorption 
voltage voltage in 0.01V 

0xEDF6 
Battery float 
voltage level 

read 
write un16 float voltage voltage in 0.01V 

0xEDF5 

Battery 
storage 
voltage level 

read 
write un16 

storage 
voltage voltage in 0.01V 

0xEDF4 

Battery 
equalization 
voltage level 

read 
write un16 

equalization 
voltage voltage in 0.01V 

0xEDF3 

Battery 
discharge 
voltage level 
(lower alarm 
boundary) 

read 
write un16 

discharge 
voltage voltage in 0.01V 

0xEDF2 

Battery 
temperature 
compensation 
setting 

read 
write un16 

temperature 
comp. 

voltage in 0.01 mV / degree 
centigrade 

0xEDF0 

Battery 
maximum 
current 

read 
write un16 

charge 
current limit current in 0.1A 

0xEDEF 

Battery 
voltage 
selection 

read 
write un8 

battery 
voltage 

0=automatic, 12/24/36/48. 
multiple voltages 

0xEDEB 
Battery 
overcharge 

read 
write un16 

overcharge 
voltage voltage in 0.01V 
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voltage level 
(upper alarm 
boundary) 

0xEDE9 
Battery power 
supply voltage 

read 
write un16 voltage 

Voltage in 0.01V. Voltage set 
point used when the charger 
operates in power-supply 
mode. 

 

Table 14 indicates the monitor battery settings. 

TABLE 14. BATTERY MONITORING SETTINGS 

VREG Function Type 
# of 
bits 

Characteristic Observations 

BATTERY MONITOR SETTINGS 

0x0FFE Time-to-go 
read 
only un16 TTG Time-to-go in minutes 

0x0FFF 
State of 
Charge 

read 
write un16 SoC 

State of Charge in 0.01% 
Range: 0.00 - 100.00% 

0x1000 
Battery 
Capacity 

read 
write un16 Capacity Battery capacity in Ah 

0x1001 
Charged 
Voltage 

read 
write un16 Voltage 

Charged voltage of the battery 
in 0.1V 

0x1002 
Charged 
Current 

read 
write un16 Tail current 

Charged current as percentage 
of the battery 
capacity (0x1000) in 0.1% 

0x1004 
Charge 
Efficiency 

read 
write un16 Efficiency 

The charge efficiency of the 
battery in % 
Range: 0 - 100% 

0x1006 
Current 
Threshold 

read 
write un16 Current 

Current threshold in 0.01A. 
Everything below 
this threshold is considered 0A. 

0x1008 
Low State-of-
Charge 

read 
write un16 

Low SoC 
set/clear Percentage in 0.1%. 

 

Finally, Table 15 allows setting the parameters related to the charger itself.   

TABLE 15. CHARGER SETTINGS 

VREG Function Type 
# of 
bits 

Characteristic Observations 

Charger settings 

0xEDDF 

Charger 
maximum 
current 

read 
only un16 

charger 
current current in 0.1A 
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0xEDDB 

Charger 
internal 
temperature 

read 
only sn16 

internal 
temperature 

Temperature in 0.01 degrees 
centigrade 

0xEDD7 
Charger 
current 

read 
only un16 

actual 
current current in 0.1A 

0xEDD6 
Charger 
power 

read 
only un16 actual power power in 0.01W 

0xEDD5 
Charger 
voltage 

read 
only un16 

actual 
voltage voltage in 0.01V  

 

Because the inverter settings can be managed directly from the Victron’s software HMI, the 

Vregs associated to this function are nor necessary, this settings are set only once at the 

operational beginning of the system. 

 

The following examples show how to manage the protocol in order to send, receive and 

perform a modification at the registers.  

 

A single PDU in CAN protocol is defined as follow: 

 

Initializer Addresses Identifier reg.L  reg.H Data Data Data Data 

7.0.0.EF FF.30 0x66 0x99 0x01 0x02 0x03 0x00 0x00 0x00 

 

The first two bytes are used to identify the manufacturer. Proprietary messages are sent 

with priority level 7. Then, the header for a single frame is 7.0.0.EF.tg.src, where src 

(source) is the sending CAN device and tg (target) the element. When tg is 0xFF the 

message will become in sent in broadcast. Next, 0x66 and 0x99 bytes correspond to the 

Victron’ manufacturer code. Then, the total header for all the messages is 7.0.0.EF. tg.src 

0x66 0x99. The codes in purple correspond to the Vreg identifier and the ones in blue to 

data. 

5.2. Bus can based data transfer 

 

Based on the state diagram at fig 26, which sums up the explains behavior of the ESS 

respect to the EMS, a description of how the Bus Can protocol must be used to follows the 

Victron sequence mode control is as follows: 
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Fig. 26. ESS State diagram  

Within the Victron-Quattro operational system, the Vreg 0x0201 (read) indicates the state 

operation: 

 0x00: Off 

 0x03: Bulk 

 0x04: Absorption 

 0x05: Float 

 0x09: Inverting 

 0x0A: Assisting 

 

Meanwhile the Vreg 0x0200 (read / write) indicates the device mode operation: 

 0x01 - Control (1): Charger Only  

 0x02 - Control (2): Inverter Only  

 0x02 - Control (3): On  

 0x02 - Control (4): Off  

For the example purposes, in this case, 0x30 is the device target (Victron - Quattro) and 

0x50 is the EMS address. 

Data Requirement steps: 
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To request the BC state (VREG 0x0201) the EMS should send:  

7.0.0.EF.30.50 0x66 0x99 0x01 0x00 0x01 0x02 0xFF 0xFF  

Then, some of the possible answers from the BC for this case can be:  

7.0.0.EF.FF.30 0x66 0x99 0x01 0x02 0x03 0x00 0x00 0x00    - Bulk stage mode on 

7.0.0.EF.FF.30 0x66 0x99 0x01 0x02 0x04 0x00 0x00 0x00    - Absorption stage mode on 

7.0.0.EF.FF.30 0x66 0x99 0x01 0x02 0x05 0x00 0x00 0x00    - Float stage mode on 

7.0.0.EF.FF.30 0x66 0x99 0x01 0x02 0x09 0x00 0x00 0x00    - Inverting operation 

 

If the request for the BC is the charger voltage (VREG 0xEDD5), then the EMS should 

send:  

7.0.0.EF.30.50 0x66 0x99 0x01 0x00 0xD5 0xED 0xFF 0xFF  

Answer, the BC charger voltage is 50 Volts:  

7.0.0.EF.FF.30 0x66 0x99 0xD5 0xED 0x88 0x13 0x00 0x00  

 

Request for the battery maximum current (VREG 0xEDF0):  

7.0.0.EF.30.50 0x66 0x99 0x01 0x00 0xF0 0xED 0xFF 0xFF  

Answer, the battery maximum current 10 Ampere:  

7.0.0.EF.FF.30 0x66 0x99 0x10 0x02 0x64 0x00 0x00 0x00 

Because this register has a resolution of 0.1, to get 10 A the sent value must be 100 in 

hexadecimal nomenclature, which is 64-Hex. 

 

Data Modification steps: 

Whenever a change in any of the registers is performed, the target device sends an ACK 

to notify the modification was succeeded. In this cases the examples are focused on 

changing the following settings: state of the BC, maximum battery current and the 

maximum SOC for the bulk stage. 

 

First, request the BC state (VREG 0x0200), sent from the EMS:  

7.0.0.EF.30.50 0x66 0x99 0x01 0x00 0x00 0x02 0xFF 0xFF  

Then, the answer from the BC is:  

7.0.0.EF.FF.30 0x66 0x99 0x00 0x02 0x01 0x00 0x00 0x00    - Chager Only 

Then, in order to modify the device mode operation (VREG 0x0200), the PDU from the 

EMS must be: 

7.0.0.EF.30.50 | 0x66 0x99 0xF0 0xED 0x02 0x00 0x00 0x00  

Answer, confirming the modification in VREG 0x0200: 

7.0.0.EF.FF.30 | 0x66 0x99 0x00 0x02 0x02 0x00 0x00 0x00  
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In this case, the mode operation has changes from “charger only” to “inverter only”; this 

means the EMS has planned a discharge stage either from the float or the absorption stage. 

  

In this case, in order to modify the battery maximum current to 15 Ampere (VREG 0xEDF0), 

the PDU must be:  

7.0.0.EF.30.50 | 0x66 0x99 0xF0 0xED 0x96 0x00 0x00 0x00  

Answer, confirming the modification in VREG 0xEDF0: 

7.0.0.EF.FF.30 | 0x66 0x99 0xF0 0xED 0x96 0x00 0x00 0x00  

Because this register has a resolution of 0.1, to get 10 A the sent value must be 150, in 

hexadecimal nomenclature is equal to 96-Hex. 

 

Finally, to adjust the maximum SOC value in bulk stage (VREG 0x0FFF) to 75%, the 

flowing data must be sent: 

7.0.0.EF.30.50 | 0x66 0x99 0xF0 0xED 0x4C 0x1D 0x00 0x00  

Answer, confirming the modification in VREG 0x0FFF: 

7.0.0.EF.FF.30 | 0x66 0x99 0xFF 0x0F 0x4C 0x1D 0x00 0x00  

This register has a resolution of 0.01%; if the required value for this setting is 75%, the sent 

value must be 7500, which in hexadecimal nomenclature is 1D4C-Hex. 
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6. Budget 

The purpose of this project is to develop a control algorithm considering the technical 

specifications of the commercial inverter Victron-Quattro related to the Machrek program, 

because of this reason no prototype was constructed. Therefore, the component list 

correspond to designing, planning, programming and simulating tasks.  

Then, basic commitments of a feasibility study are to demonstrate the viability of the 

business to Investors, owners and financial institutions and to estimate the potential 

Economical return of a business initiative 

6.1. Workload development 

 

The analysis formalizes and revalidates the idea of a business based in the developed 

project, reducing the risk associated with an investment decision. 

The approximate amount of time inverted in this projects was about 650 hours; this quantity 

includes all the tasks which were involved, since the organization of activities until obtain 

results and manageable data. In addition, there must be taken into account weekly 

meetings with the advisors, one hour/week with a senior engineer and two hour/week with 

a semi-senior engineer for 14 weeks.  

Table 16 summarizes the given information including prices: 

 TABLE 16. WORKLOAD DEVELOPMENT 

Activity Time [h] 

Research Activities 50 

Objectives Planning 
30 

Documentation  
40 

MatlabTM Training 
30 

Microsoft VBATM  Training 
10 

Development and codification 
160 

Tests 
70 

Results analysis 
40 

Prototype validation  
20 

Final report 
130 

Revision and correction 
60 

Software final presentation  
10 

TOTAL  650 
 

 

In addition, Figure 27 shows the time distribution of the involved activities: 



 

 59 

Fig. 27. Workload Distribution  

6.2. Economic analysis 

Table 17 shows the total cost involved in the project development; to carry out this, there 

must be taken into account the expenditures derived from the tasks, which were carried 

out (elaboration and validation of the prototype): 

TABLE 17. PROJECT DEVELOPMENT BUDGET 

Budget 

Item Details Price Quantity Cost [€] 

Office Computer depreciation 20%  200 [€] 1 u 200 

Office supplies 80 [€] GLB 80 

Office services bill 350 [€] 4 u 1400 

Printer depreciation 10% 15 [€] 1 u 15 

Software Licenses 2170 GLB 2170 

Human resources Junior Engineer 10 [€/h] 650 h 6500 

Semi-senior Engineer 45 [€/h] 28 h 1260 

Senior Engineer 80 [€/h] 14 h 1120 

Documents / Patents 2000  1 u 2000 

Sub Total     14745 

+ Incidents (5%)     737.25 

TOTAL     15482.25 

 

 

6.3. Financial viability 

 

The Financial viability consists of the preparation of forecasts in a medium term, within a 
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horizon of 5 years. Being forecasts for more than a year, it has a high degree of uncertainty; 

nevertheless, it is advisable to do it in order to have more information, which will support 

the decisions of the course to take, analyzing and correcting trends. This financial analysis 

consists of evaluating the current economic-financial situation of the project and its 

eventual future. With the financial plan, one can try to find out the future liquidity of the 

investment, which can make in the most opportune way to highlight its components.  

It is assumed that a business plan will be implemented, based on the growing needs of this 

type of product and the sales forecasts. Thus, Table 18 summarizes the information of the 

expected income and capital expenditures for this software lifetime estimated at 5 years 

and a sale price of € 2500 per software unit.  

TABLE 18. INCOME/EXPENSES QUANTIFICATION 

YEAR 0 1 2 3 4 5 

Sales Forecast [€] - 3.00 6.00 8.00 12.00 9.00 

Unitary price [€] - 2500.00 2512.50 2525.06 2537.69 2550.38 

Total Income  
revenues [€] 

0 7500.00 15075.00 20200.50 30452.25 22953.39 

Software budget  
development [€] 

-29234.00 - - - - - 

Advertising and  
marketing Expenses 
[€] 

- -800.00 -1400.00 -2000.00 -2500.00 -1800.00 

Technical Support and  
Maintenance [€] 

- -2000.00 -3000.00 -4500.00 -6000.00 -5000.00 

Total Expenses [€] -29234.00 -2800.00 -4400.00 -6500.00 -8500.00 -6800.00 

Result [€] -29234.00 4700.00 10675.00 13700.50 21952.25 16153.39 

Final result [€] -29234.00 -24534.00 -13859.00 -158.50 21793.75 37947.14 

 

Assuming an annual inflation of 0.5%, the results obtained are: 

NPV (5%) 26710€ 

IRR 27.43% 

Payback 4 years 

 

Taking as a reference the NPV (net present value) and IRR (internal rate of return), which 

are positive, one can assume that the development of this technology is profitable under 

the supposed conditions, although the joint evaluation of all the indicators in each particular 

circumstance will decide its Economic viability. 
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7. Environment Impact 

7.1. Project development 

 

All the activities related on designing and execution of the project were fully realized with a 

computer in an office, then, there is no significant direct impact on the environment. 

Therefore, the main environmental impact is generated by the consumption of the electricity, 

which supplies this device.  

The rational use of computer equipment and the correct environmental management of the 

office appliances (paper, printer cartridges, etc.) are considered as good environmental 

practices. 

7.2. Project Execution  

 

Since one of the main objectives of the project consist on the preservation of the lifetime of 

the batteries, the correct performance of the algorithm an all the related tasks will result on 

the diminution in the acquisition of the number of batteries and the correct managing of the 

non-used energy. Therefore, these effects could lead into the following positive results: 

 First, there is a high environmental cost related to the production and fabrication of 

batteries, then the longer we keep the batteries; the less of them will be by acquired.  

Secondly, giving the microgrid the ability to storage the surplus energy in order to use it 

whenever is required by the EMS, allows the battery to work as an active element in the 

microgrid by taking care of the effects of its continuous use. Then, whenever is determined 

by the EMS, the batteries can be used to supply energy to the loads instead of the diesel 

generators. This behavior may generate a positive side effect, the possibility of non-diesel 

energy production, where the reduction on the emissions of global warming gases from the 

combustion of fossil fuels are involved. 

Then, the reduction of these emissions, contributes to the improvement of the quality of the 

area. 
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8. Conclusions and future development 

 
This project has suggested a procedure to integrate a Pb-acid ESS management algorithm 
into a global optimization program devoted to minimize a cost function of microgrid systems. 
This approach is based on a modification of the optimization program to support the proper 
charge/discharge stages of a battery bank handled by commercial BC. These stages are 
computed out of the optimization program to reduce both computation complexity and 
convergence problems. Simulation results have confirmed the feasibility of this procedure 
and have highlighted a slight cost function increase. This cost can be easily assumed to 
preserve the battery lifetime and thus to extend the microgrid proper operation time. 
 
However, the two major drawbacks consist in the lack of information related on how to 
calculate the proper time for the absorption stage and how measure of the SOH. Until now, 
after following the recommendations of the fabricants, one can only assume that the 
implemented method assures the extension on the life-time of the battery, but there is no 
feasible technique to prove how much or until when the batteries will work in a proper way. 
 
To partly mitigate these drawbacks, finding accurate methods on how to calculate both the 
SOH and the proper time for the absorption stage as well as an experimental verification 
of the suggested approach are mandatory. 
 
It is worth noting that the method can be extended to other storage technologies and other 
energy scenarios.  
 
Part of the developed project and the results presented in this TFM have been submitted 
in paper format in ISEE'17 (International Symposium on Industrial Electronics) organized 
by the IEEE, which will be held in Edinburgh from the 19th - 21th of June of the present 
year. The acceptance result is pending. 
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APPENDIX 1 

Matlab code program 

%Copetti`s Model 

clc 

close all 

clear all 

aux=('The SOC at the end of the BULK stage is 0.8'); 

disp(aux) 

SOC_MAX_B=0.8; 

SOC_O=input('Introduce the initial SOC of the Batteries SOC_O=  '); 

if SOC_O>=0.8  

    SOC_O=.79; 

    aux=['Then, initial SOC of the Batteries SOC_O:  ',num2str(SOC_O)]; 

    disp(aux) 

end  

Ta=input('Introduce the ambient temperature Ta=  '); 

Last_Day_Current=input('Introduce the last velue of the current=  '); 

C10=1875; 

I10=C10/10; 

t=5/60; 

VarTa=Ta-25; 

Ct=1.67*C10*(1+0.005*VarTa); 

    aux=('Due to the known value of C10=1875 Ah,'); 

    disp(aux) 

    aux=('The maximum charge current at the bulk stage is 187.5x2=375 Amps'); 

    disp(aux) 

%------------------------------------------------- 

            lineM=zeros(10,120); 

            veluesM=zeros(10,1152); 

            stagesM=zeros(10,576); 

            numberoftimesM=zeros(10,3); 

            %SOCM=zeros(10,6); 

            %positionM=zeros(10,6); 

            mat=0; 
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%------------------------------------------------- 

filename = 'PlanillasV4.xlsx'; 

for option=1:1:4 

    switch option 

        case 1 

            AV_E=xlsread(filename,'Option1','E7:KF7');%available energy 

        case 2 

            AV_E=xlsread(filename,'Option2','E7:KF7');%available energy 

        case 3 

            AV_E=xlsread(filename,'Option3','E7:KF7');%available energy 

        otherwise 

            AV_E=xlsread(filename,'Option4','E7:KF7');%available energy            

    end 

        AV_E=AV_E*1000/12; 

    final=length(AV_E); 

    if AV_E(1)<0  

        %Vc_O=2.085; 

        Vc_O=2.1; 

    end 

    %------------------------------------------------- 

    AV_E_table=zeros(1,24); 

    aux_e=0; 

    time=t:t:24; 

    for i=12:12:288 

        aux_e=aux_e+1; 

        if aux_e==1 

            AV_E_table(aux_e)=sum(AV_E(1:i)); 

        else 

            AV_E_table(aux_e)=sum(AV_E(i-11:i)); 

        end 

    end 

    for caso=option:1:4 

             vector_abs_on=zeros(1,288); 

            %---------------- CASE 1 HOUR ------------- 
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            if caso==1 || caso==2 || caso==3 || caso==4  

                for i=2:1:24 

                   if AV_E_table(i)==0 && AV_E_table(i-1)>0 

                       %asb(i)=1; 

                       for j=(i-1)*12+1:1:(i*12) 

                       vector_abs_on(j)=1; 

                       end 

                   end 

                end 

            end 

            %---------------- CASE 2 HOURS ------------ 

             if caso==2 || caso==3 || caso==4  

                for i=2:1:23 

                   if AV_E_table(i)==0 && AV_E_table(i-1)>0 && AV_E_table(i+1)==0 

                       %asb(i)=1; 

                       for j=(i)*12+1:1:((i+1)*12) 

                       vector_abs_on(j)=1; 

                       end 

                   end 

                end 

             end 

            %--------------- CASE 3 HOURS ------------ 

             if caso==3 || caso==4  

                for i=2:1:22 

                   if AV_E_table(i)==0 && AV_E_table(i-1)>0 && AV_E_table(i+1)==0 && 

AV_E_table(i+2)==0 

                       %asb(i)=1; 

                       for j=(i+1)*12+1:1:((i+2)*12) 

                       vector_abs_on(j)=1; 

                       end 

                   end 

                end 

             end    

           %-------------CASE 4 HOURS----------- 

            if caso==4  
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                for i=2:1:20 

                   if AV_E_table(i)==0 && AV_E_table(i-1)>0 && AV_E_table(i+1)==0 && 

AV_E_table(i+2)==0 && AV_E_table(i+3)==0 

                   

                       for j=(i+2)*12+1:1:((i+3)*12) 

                       vector_abs_on(j)=1; 

                       end 

                   end 

                end 

            end    

            %----------------------------------------------- 

            bulk=zeros(1,24); 

            vector_bulk_on=zeros(1,288); 

            for i=1:1:24 

              if AV_E_table(i)>=0 

                   %bulk(i)=1; 

                   for j=(i-1)*12+1:1:(i*12) 

                       if vector_abs_on(j)==0 

                         vector_bulk_on(j)=1; 

                       else 

                         vector_bulk_on(j)=0; 

                       end 

                   end 

              end 

            end 

            %------------------------------------------------- 

            SOC=zeros(1,final); 

            Q=zeros(1,final); 

            Vc=zeros(1,final); 

            nc=zeros(1,final); 

            RQ_E=zeros(1,final); 

            e=2.7172; 

            I_b=375; 

            if I_b>375  

                I_b=375; 
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                aux=['Then, the charge current is:  ',num2str(I_b),'Amps']; 

                disp(aux) 

            end 

 

            C=Ct/(1+0.67*(I_b/I10)^0.9); 

            I_b=I_b*ones(1,final); 

            %------------------------------- 

            %------------------------------- 

            flag=0; 

            inx=0; 

            aux=0; 

            minBulk_V=0; 

            lastBulk_I=0; 

            I_zero_a=0; 

            %------------------------------------------ 

            temporal=0; 

            time_abs=0; 

            time_float=0; 

            time_bulk=0; 

            time_negative=0; 

            abs_temp=0; 

            float_temp=0; 

            negativ_temp=0;%to calculate the current, i need to take into account only the 

number of times im executing the absorption stage 

            bulk_temp=0;%to calculate the current, i need to take into account only the number 

of times im executing the absorption stage 

            %------------------------------------------ 

            n=24;%Number of cells 

            Cb=zeros(1,final); 

            Vcb=zeros(1,final); 

            %------------------------------------------ 

            while flag==0 

                  inx=inx+1; 

                    if inx==final 

                        flag=1; 
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                    end 

            %---------------------------------------------- 

            %THIS PART IS PERFORMED IF THE AV_E IS NEGATIVE 

            %---------------------------------------------- 

                    if AV_E(inx)<0 

                        negativ_temp=negativ_temp+1;%to calculate the current, i need to take into 

account only the number of times im executing the absorption stage 

                        time_negative=negativ_temp*t; 

                        if inx==1 

                            I_b(1)=AV_E(1)/(t*24*Vc_O); 

                            SOC(1)=SOC_O-(-1)*I_b(1)*t/C; 

                            Vc(1)=(2.085-0.12*(1-SOC(1)))-(-1*I_b(1)/C10)*((4/(1+(I_b(1)*-

1)^1.3))+(0.27/(SOC(1))^1.5)+0.02)*(1-0.007*VarTa); 

                            RQ_E(1)=24*Vc(1)*I_b(1)*t; 

                            Cb(inx)=abs((1.67*C10)/((1+0.67*(I_b(inx)/I10)^0.9)*n*0.16)); 

                            Vcb(inx)=abs(I_b(inx)*t/Cb(inx)); 

                                                       

                        else 

                            I_b(inx)=AV_E(inx)/(t*24*Vc(inx-1)); 

                            %............................................ 

                            C=(C10*1.67*(1+0.005*VarTa)/(1+0.67*(-I_b(inx)/I10)^0.9)); 

                            %............................................ 

                            SOC(inx)=SOC(inx-1)-(-1)*I_b(inx)*t/C; 

                            Vc(inx)=(2.085-0.12*(1-SOC(inx)))-(-1*I_b(inx)/C10)*((4/(1+(I_b(inx)*-

1)^1.3))+(0.27/(SOC(inx))^1.5)+0.02)*(1-0.007*VarTa); 

                            RQ_E(inx)=24*Vc(inx)*I_b(inx)*t; 

                            abs_temp=0;%Each time the negative stage isactivated, the reset for 

time_abs is executed  

                            Cb(inx)=abs((1.67*C10)/((1+0.67*(I_b(inx)/I10)^0.9)*n*0.16)); 

                            Vcb(inx)=Vcb(inx-1)+I_b(inx)*t/Cb(inx); 

                        end 

            %---------------------------------------------- 

            %THIS PART IS PERFORMED IF THE AV_E IS POSITIVE 

            %---------------------------------------------- 

                        else 
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                            if inx==1 

                                SOC_AUX=SOC_O; 

                            else 

                                SOC_AUX=SOC(inx-1); 

                            end 

            %-----------------BULK STAGE---------------------------- 

                            if SOC_AUX<0.8  %BULK STAGE----------------------------------- 

                                   if vector_bulk_on(inx)==1 

                                            bulk_temp=bulk_temp+1; 

                                            time_bulk=bulk_temp*t; 

 

                                      if AV_E(inx)==0 

                                              Vc(inx)=2.1;%FLOAT STAGE------- 

                                              Vbat=2.1*n;%FLOAT STAGE-------   

                                          if inx==1 

                                              %if  Last_Day_Current<0 

                                                 R(inx)=(2.35-2.16)/Last_Day_Current; 

                                              %else 

                                                 %R(inx)=((1/C10)*(6/(1+ Last_Day_Current^0.6)+0.48/(1-

(Vcb(1)-2)/0.16)^1.2));  

                                              %end 

                                              I_b(inx)=(Last_Day_Current)-((Vbat-(n*2.098))/(n*R(inx))); 

                                                if I_b(inx)<0.00001 

                                                 I_b(inx)=0; 

                                                end                                       

                                              Cb(inx)=(1.67*C10)/((1+0.67*(I_b(inx)/I10)^0.9)*n*0.16); 

                                              SOC(inx)=SOC_O+I_b(inx)*t/C; 

                                              %Vcb(inx)=I_b(inx)*t/Cb(inx); 

                                              Vcb(inx)=SOC(inx)*0.16+2/24; 

                                              RQ_E(inx)=24*Vc(inx)*I_b(inx)*t;  

                                          else 

                                              if I_b(inx-1)<0 

                                                 R(inx)=(2.35-2.16)/375; 

                                              else 
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                                                 R(inx)=((1/C10)*(6/(1+I_b(inx-1)^0.6)+0.48/(1-(Vcb(inx-1)-

2)/0.16)^1.2));  

                                              end 

                                             %R(inx)=((1/C10)*(6/(1+I_b(inx-1)^0.6)+0.48/(1-(Vcb(inx-1)-

2)/0.16)^1.2));  

                                              I_b(inx)=((I_b(inx-1))-((Vbat-(n*2.098))/(n*R(inx)))); 

                                                if I_b(inx)<0.00001 

                                                 I_b(inx)=0; 

                                                end  

                                              Cb(inx)=(1.67*C10)/((1+0.67*(I_b(inx)/I10)^0.9)*n*0.16); 

                                              Vcb(inx)=Vcb(inx-1)+I_b(inx)*t/Cb(inx); 

                                              SOC(inx)=SOC(inx-1)+I_b(inx)*t/C; 

                                              %Vcb(inx)=SOC(inx)*0.16+2; 

                                              RQ_E(inx)=24*Vc(inx)*I_b(inx)*t;  

                                          end 

                                      else 

                                            aux=0; 

                                            if vector_bulk_on(inx)~=1 

                                               I_b(inx)=0; 

                                            end 

                                            while aux==0 

                                                if inx==1 

                                            %............................................ 

                                                    if I_b(1)==0 

                                                    C=1; 

                                                    else 

                                                    C=C10*1.67*(1+0.005*VarTa)/(1+0.67*(I_b(1)/I10)^0.9); 

                                                    end 

                                            %............................................ 

                                                    SOC(inx)=(SOC_O+I_b(inx)*t/C); 

                                                    Vcb(inx)=SOC(inx)*0.16+2/24; 

                                                    Cb(inx)=(1.67*C10)/((1+0.67*(I_b(inx)/I10)^0.9)*n*0.16); 

                                                else 

                                            %............................................ 

                                                    if I_b(inx)==0 
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                                                    C=1; 

                                                    else 

                                                    

C=C10*1.67*(1+0.005*VarTa)/(1+0.67*(I_b(inx)/I10)^0.9); 

                                                    end 

                                            %............................................ 

                                                    SOC(inx)=(SOC(inx-1)+I_b(inx)*t/C); 

                                                    Cb(inx)=(1.67*C10)/((1+0.67*(I_b(inx)/I10)^0.9)*n*0.16); 

                                                    Vcb(inx)=Vcb(inx-1)+I_b(inx)*t/Cb(inx); 

                                                end 

                                        

Vc(inx)=(2+0.16*SOC(inx))+(I_b(inx)/C10)*((6/(1+I_b(inx)^0.86))+(0.48/(1-

SOC(inx))^1.2)+0.036)*(1-0.025*VarTa); 

                                        minBulk_V=Vc(inx);%Storing the last Bulk voltage, this value will 

be the referencie for the absorption stage 

                                        RQ_E(inx)=24*Vc(inx)*I_b(inx)*t; 

                                       %-------------------------------------------- 

                                                         if AV_E(inx)>=RQ_E(inx) 

                                                               aux=1; 

                                                         else 

                                                               I_b(inx)=I_b(inx)-1; 

                                                         end 

                                                         if AV_E(inx)==0 

                                                             Vc(inx)=2.1; 

                                                         end 

                                               if inx>1  

                                                   if I_b(inx)>0 && vector_bulk_on(inx)==1 

                                                       lastBulk_I=I_b(inx); 

                                                   end 

 

                                               end  

                                            end 

                                      end    

                                   abs_temp=0;%Each time the bulk is activated, the reset for time_abs 

is executed   

                                   end 
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                            end 

              %------------------------------------------------------- 

              %-----------------BULK STAGE END------------------------ 

              %------------------------------------------------------- 

                        if SOC_AUX>=0.8 && vector_bulk_on(inx)==1 

                           temporal=1;  

                        end 

                        if (vector_abs_on(inx)==1 || temporal==1)%ABSORPTION STAGE/FLOAT 

STAGE---------------------------------------- 

                            temporal=0;  

                            %aux=0;  

                            if I_b(inx-1)<0 

                               R(inx)=(2.35-2.16)/375; 

                            else 

                               R(inx)=((1/C10)*(6/(1+I_b(inx-1)^0.6)+0.48/(1-(Vcb(inx-1)-

2)/0.16)^1.2));  

                             end 

               %--------------------------  

               %--------FLOAT STAGE------- 

               %--------------------------  

                             time_abs=abs_temp*t;%This step will allow us to know the total time of 

the absorption stage 

                             if (SOC_AUX>=0.95)  ||  (time_abs>=4) %FLOAT STAGE------- 

                                       Vc(inx)=2.1;%FLOAT STAGE------- 

                                       Vbat=2.1*n;%FLOAT STAGE------- 

                                       I_b(inx)=((I_b(inx-1))-((Vbat-(n*2.098))/(n*R(inx)))); 

                                       float_temp=float_temp+1; 

                                       time_float=float_temp*t; 

               %--------------------------  

               %-----END FLOAT STAGE------      

               %-----ABSORPTION STAGE----- 

               %--------------------------  

                             else %ABSORPTION STAGE 

                                 Vc(inx)=2.352;%ABSORPTION STAGE 
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                                 Vbat=2.352*n; 

                                 I_b(inx)=(I_b(inx-1))-((Vbat-(n*2.35))/(n*R(inx))); 

                                 I_last_abs=I_b(inx);   

                                 abs_temp=abs_temp+1; 

                            

                             end   %ABSORPTION STAGE/FLOAT STAGE   

               %--------------------------  

               %---END ABSORPTION STAGE--- 

               %--------------------------  

                             if I_b(inx)<0.00001 

                                 I_b(inx)=0; 

                             end 

                             Cb(inx)=(1.67*C10)/((1+0.67*(I_b(inx)/I10)^0.9)*n*0.16); 

                             SOC(inx)=SOC(inx-1)+I_b(inx)*t/C; 

                             %Vcb(inx)=Vcb(inx-1)+I_b(inx)*t/Cb(inx); 

                             %Vcb(inx)=SOC(inx)*0.16+2; 

                             Vcb(inx)=Vcb(inx-1)+I_b(inx)*t/Cb(inx); 

                             RQ_E(inx)=24*Vc(inx)*I_b(inx)*t;   

                             if SOC_AUX>=1 

                                 SOC(inx)=1; 

                                 RQ_E(inx)=0; 

                                 I_b(inx)=0; 

                                 Vc(inx)=Vc(inx-1); 

                             end 

                        end 

                        if vector_abs_on(inx)==0 && vector_bulk_on(inx)==0 && SOC_AUX>=0.8 

                            SOC(inx)=SOC(inx-1); 

                            I_b(inx)=0; 

                            Vc(inx)=Vc(inx-1); 

                            RQ_E(inx)=0; 

                        end 

                    end 

            end 

            %----------------------TIMES---------------------- 
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                hour_b=floor(time_bulk); 

                min_b=(time_bulk-hour_b)*60; 

                hour_a=floor(time_abs); 

                min_a=(time_abs-hour_a)*60; 

                hour_f=floor(time_float); 

                min_f=(time_float-hour_f)*60; 

                hour_n=floor(time_negative); 

                min_n=(time_negative-hour_n)*60; 

            %-----------------DATA MANAGING--------------------- 

            bloquear_bulk=0; 

            bloquear_abs=0; 

            bloquear_neg=0; 

            posicion_bulk=zeros(1,2); 

            posicion_abs=zeros(1,2); 

            posicion_neg=zeros(1,2); 

            cuantos_bulk=0; 

            cuantos_abs=0; 

            cuantos_neg=0; 

            posicion_maxsoc_bulk=zeros(1,2); 

            j=0; 

            k=0; 

            l=0; 

            for i=2:1:288 

               if (0<I_b(i-1)<I_b(i))&&(Vc(i)<2.352)&& bloquear_bulk==0 

                   bloquear_bulk=1; 

                   bloquear_abs=0; 

                   bloquear_neg=0; 

                   cuantos_bulk=cuantos_bulk+1; 

                   j=j+1; 

                   posicion_bulk(j)=i; 

               end 

               if (0<I_b(i)<I_b(i-1))&&(Vc(i)==2.352)&& bloquear_abs==0 

                   bloquear_bulk=0; 

                   bloquear_abs=1; 
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                   bloquear_neg=0; 

                   cuantos_abs=cuantos_abs+1; 

                   k=k+1; 

                   posicion_abs(k)=i; 

                   posicion_maxsoc_bulk(k)=i-1; 

               end 

               if  0>I_b(i)&& bloquear_neg==0 

                   bloquear_bulk=0; 

                   bloquear_abs=0; 

                   bloquear_neg=1; 

                   cuantos_neg=cuantos_neg+1; 

                   l=l+1; 

                   posicion_neg(l)=i; 

               end 

            end 

            SOC_Max_hour=0; 

            SOC_Max_min=0; 

                %disp('---------------------------------------------') 

                 aux=['Number of times the bank of batteries will enter in BULK MODE: 

',num2str(cuantos_bulk)]; 

                disp(aux) 

                 aux=['Maximum reachable SOCs at BULK will be:  ']; 

                 disp(aux) 

                for i=1:1:length(posicion_maxsoc_bulk) 

                    SOC_Max_hour=floor(posicion_maxsoc_bulk(i)*t); 

                    SOC_Max_min=(posicion_maxsoc_bulk(i)*t-SOC_Max_hour)*60; 

                     aux=['SOC(',num2str(i),')= ',num2str(SOC(posicion_maxsoc_bulk(i))),' at 

',num2str(SOC_Max_hour),'h:',num2str(SOC_Max_min),'m']; 

                     disp(aux) 

                end 

                 aux=['Number of times the bank of batteries will enter in ABSORPTION MODE: 

',num2str(cuantos_abs)]; 

                 disp(aux) 

                 aux=['Number of times the bank of batteries will enter in DISCHARGING 

MODE:',num2str(cuantos_neg)]; 
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                 disp(aux) 

                 disp('---------------------------------------------') 

            %**************************PLOTS******************** 

            abs_cont=zeros(1,288); 

            ok=0; 

            inc=0; 

            vector=zeros(1,2); 

            for i=2:1:288 

                if Vc(i)==2.352 

                    abs_cont(i)=1; 

                end 

                if abs_cont(i)~=abs_cont(i-1) 

                    inc=inc+1; 

                    vector(inc)=(i-1)*t; 

                end 

            end 

            x_plot=zeros(length(vector),2); 

            for i=1:1:length(vector) 

            x_plot(i,:) = [vector(i) vector(i)]; 

            end 

            y_V=[2 2.4]; 

            y_I=[-200 200]; 

            y_R=[-1000 1000]; 

            y_A=[-1000 1000]; 

            y_S=[.4 1]; 

            i=0; 

            Time_plot=t:t:24; 

            %------------------------------------------- 

             figure 

            subplot(5,1,1) 

            plot(Time_plot,Vc,'g','LineWidth',1.4); 

            hold on 

              grid on 

              grid minor 
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             for i=1:1:length(vector) 

                plot(x_plot(i,:),y_V,'Color','k') 

             end 

             set(gca,'xtick',[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]) 

             set(gca,'FontSize',24); 

            legend('VOLTAGE','Location','northoutside','Orientation','horizontal') 

             ax = gca; % Get handle to current axes. 

             ax.GridAlpha = .3;  % Make grid lines less transparent. 

 

            subplot(5,1,2) 

            plot(Time_plot,I_b,'b','LineWidth',1.4); 

            hold on 

              grid on 

              grid minor 

             for i=1:1:length(vector) 

                plot(x_plot(i,:),y_I,'Color','k') 

             end 

            set(gca,'xtick',[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]) 

             set(gca,'FontSize',24); 

            legend('CURRENT','Location','northoutside','Orientation','horizontal') 

             ax = gca; % Get handle to current axes. 

             ax.GridAlpha = .3;  % Make grid lines less transparent. 

                  

            subplot(5,1,3) 

             plot(Time_plot,RQ_E,'r','LineWidth',1.4); 

            hold on 

            grid on 

             grid minor 

              for i=1:1:length(vector) 

             plot(x_plot(i,:),y_R,'Color','k') 

              end 

           set(gca,'xtick',[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]) 

              set(gca,'FontSize',24); 

              legend('REQUIRED ENERGY','Location','northoutside','Orientation','horizontal') 
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              ax = gca; % Get handle to current axes. 

              ax.GridAlpha = .4;  % Make grid lines less transparent. 

  

             subplot(5,1,4) 

             plot(Time_plot,AV_E,'g','LineWidth',1.4); 

             hold on 

             grid on 

             grid minor 

              for i=1:1:length(vector) 

              plot(x_plot(i,:),y_A,'Color','k') 

              end 

        set(gca,'xtick',[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]) 

              set(gca,'FontSize',24); 

              legend('AVAILABLE ENERGY','Location','northoutside','Orientation','horizontal') 

              ax = gca; % Get handle to current axes. 

              ax.GridAlpha = .4;  % Make grid lines less transparent. 

 

             subplot(5,1,5) 

             plot(Time_plot,SOC,'b','LineWidth',1.4); 

             hold on 

             grid on 

             grid minor 

              for i=1:1:length(vector) 

              plot(x_plot(i,:),y_S,'Color','k') 

              end 

            set(gca,'xtick',[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]) 

              set(gca,'FontSize',24); 

              legend('SOC','Location','northoutside','Orientation','horizontal') 

              ax = gca; % Get handle to current axes. 

              ax.GridAlpha = .4;  % Make grid lines less transparent. 

            %----------EXPORT------------ 

            Time_table=zeros(1,24); 

            RQ_E_table=zeros(1,24); 

            AV_E_table=zeros(1,24); 
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            SOC_table=zeros(1,24); 

            NU_E_table=zeros(1,24); 

            aux=0; 

            NU_E=AV_E-RQ_E; 

            for i=12:12:288 

                aux=aux+1; 

                Time_table(aux)=Time_plot(i); 

                SOC_table(aux)=SOC(i); 

                if aux==1 

                    NU_E_table(aux)=sum(NU_E(1:i)); 

                    RQ_E_table(aux)=sum(RQ_E(1:i)); 

                    AV_E_table(aux)=sum(AV_E(1:i)); 

                else 

                    NU_E_table(aux)=sum(NU_E(i-11:i)); 

                    RQ_E_table(aux)=sum(RQ_E(i-11:i)); 

                    AV_E_table(aux)=sum(AV_E(i-11:i)); 

                end 

            end 

            %---------EXPORT V2---------- 

            %SOCM=zeros(10,6); 

            %positionM=zeros(10,6); 

                mat=mat+1; 

 lineM(mat,:)=[Time_table RQ_E_table/1000 AV_E_table/1000 SOC_table 

NU_E_table/1000]; 

                valuesM(mat,:)=[Vc I_b RQ_E SOC]; 

                stagesM(mat,:)=[vector_bulk_on vector_abs_on]; 

                numberoftimesM(mat,:)=[cuantos_neg cuantos_abs cuantos_bulk]; 

                %SOCM=SOC(posicion_maxsoc_bulk);     

                %positionM=posicion_maxsoc_bulk*t; 

    end 

end 

               

xlswrite(filename,lineM','mlab','A1'); 

xlswrite(filename,valuesM,'mlab','A121'); 

xlswrite(filename,stagesM,'mlab','A131'); 
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xlswrite(filename,numberoftimesM,'mlab','A141'); 
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APPENDIX 2. 

VBA code program 

Sub CustomFunctionOneOutput() 

'----------------------------------------------- 

'This app executes the MATLAB function "copettifunc" using the MATLAB COM Automation 

Server. 

'---------------------------------------------- 

   'Declaring variables. 

    Dim Base   As Double 

    Dim Matlab      As Object 

    Dim mFilePath   As String 

    Dim Result      As String 

    'Input value. 

    Base = Sheet1.Range("O17").Value 

    ' MATLAB object (the COM server). 

    On Error Resume Next 

    Set Matlab = CreateObject("matlab.application") 

    'In the case of error inform the user and exit the macro. 

    If Err.Number <> 0 Then 

        MsgBox "Could not open Matlab!", vbCritical, "Matlab Error" 

        Exit Sub 

    End If 

    On Error GoTo 0 

    'Specify the location of the m file  

    mFilePath = ThisWorkbook.Path 

    'Load the m file in MATLAB. 

    Matlab.Execute ("cd('" & mFilePath & "\')") 

    'Execute the function. 

    Result = Matlab.Execute("copettifunc(" & Base & ")") 

End Sub 
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APPENDIX 3 

SMA SUNNY ISLAND – BATTERY CHARGER 

 

The SMA [37] device is supposed to be a fundamental element within the Microgrid, storing 

the generated solar power and working intelligently with the EMS in the energy 

consumption process. In addition, it has an energy management that keeps the system 

running in case of critical situations. 

 

Fig.  SMA – Sunny Island [37] 

It is a robust but simple device for microgrid systems and can be personalized for specific 
uses. The Sunny Island comes with the capability to administrate the charging and 
discharging phases fully automatically, increasing the electrical resilience of the batteries. 
 
Consequently, catastrophically events such as overcharging or energy deployment of the 
batteries are carefully avoided. It comes with a proprietary management system that 
assures the performance stated by the battery manufacturers in both architecture 
connections, isolated or connected to the grid [38]. 
 
 
The battery charger 
 

This device adapts itself to the current operating conditions of the battery by the 

employment of a self-learning SOC algorithm. Then, the charging and discharging 

procedures are fully delimited and monitored by the BC controller in real time. This makes 

easier measuring the state of charge and the real capacity of the batteries, allowing the 

determination of the SOC based on the real-effective capacity rather than the value rated 

by the battery manufacturer. The described characteristic is more effective as the battery 

gets old, as well as under harassed environments or in low temperature conditions. The 

result is a substantial upgrading in the precision of the measures [38]. 

Moreover, the advanced management of the Sunny Island automatically decides the most 

favorable charging strategy for the battery depending on its situation and type. This aspect 

supports to the improvement of the charge regulation by evading the inaccuracies on 

determining the SOC over long periods of time and preventing overcharging circumstances 
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when the battery is fully charged [39]. This is exceptionally remarkable to assure a longer 

battery durability. 

In addition, in case of available power, it is used optimally to charge the batteries by 

identifying the exceeding energy from the difference between the source and the loads.  

These characteristics reduce the necessity of replacing the battery bank in short 
operational periods, increasing the independence from the grid. 
 

Battery Charging Aspects [18] 

The Sunny Island complies the battery charging with the recommended three phases: 

 • Bulk (Constant current phase) 

 • Absorption (Constant Higher - voltage phase)  

 • Float (Constant Lower - voltage phase) 

Which work as follow: 

Bulk - Constant Current Phase: The main role of battery management is to limit the 

current to the maximum permissible value; this can be set by the user, in this case by the 

EMS.  

However, the bulk charging current can also be limited by two other parameters:  

• Nominal currents of the external energy sources.  

• Maximum AC charging current of the Sunny Island. 

Whenever one of those values is reached, the battery current will be limited by the 

constraint that triggered the limit condition. The constant current phase ends when the cell 

SOC of the battery reaches the SOC-end-of-charge value for the relevant battery type.  

Absorption – Higher Constant Voltage Phase  

At the higher constant voltage phase, the battery voltage is limited at a constant value. For 

this voltage phase, the battery management chooses one of the following three charging 

processes: Boost charge, Full charge and Equalization charge. The unique difference 

among them is the voltage magnitude which is near the gassing voltage, the Sunny Island 

and its self-learning characteristic, determine the adequate value according the 

circumstances related to operating time and temperature. 

Through different communications protocols, the EMS can adjust the voltage level and the 

charging time of the absorption phase.  

Float Charge – Lower Constant Voltage Phase 

The battery management reduces the voltage from the absorption to the float voltage 

charge. The stage remains activates until the float charge one of the following conditions:  

• The electric discharges has reached 30% of the nominal capacity.  

• The SOC is lower than 70% of the charging capacity.  

Then battery management switches to the bulk phase. 
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Technical characteristics 

Technical data Sunny Island 

AC output (loads / stand-alone grid) 

Rated grid voltage / AC voltage range 230 V / 202 V ... 253 V 

Rated frequency / frequency range (adjustable) 50 Hz / 45 Hz ... 65 Hz 

Rated power (for Unom / fnom / 25 °C / cos ϕ = 1) 6 000 W 

AC power at 25 °C for 30 min / 5 min / 3 sec 8 000 W / 9 100 W / 11 000 W 

Rated current / maximum output current (peak) 26 A / 120 A 

Total harmonic factor output voltage / power factor with rated 
power 

< 4 % / -1 ... +1 

AC input (PV array, grid or MC box) 

Rated input voltage / AC input voltage range 230 V / 172.5 V ... 264.5 V 

Rated input frequency / allowable input frequency range 50 Hz / 40 Hz ... 70 Hz 

Maximum AC input current 50 A 

Maximum AC input power 11 500 W 

Battery DC input 

Rated input voltage / DC voltage range 48 V / 41 V ... 63 V 

Maximum battery charging current 140 A 

Rated DC charging current / DC discharging current 115 A / 136 A 

Battery type / battery capacity (range) FLA, VRLA / 100 Ah ... 10 000 
Ah 

Charge control IUoU charge procedure  

Efficiency / self-consumption 

Maximum efficiency 95% 

Self-consumption without load / standby < 26 W / < 4 W 

Protective devices (equipment) 

AC short-circuit / AC overload ● / ● 

DC reverse polarity protection / DC fuse – / – 

Overtemperature / battery deep discharge ● / ● 

Overvoltage category as per IEC 60664-1 III 

General data 

Dimensions (width x height x depth) 467 mm x 612 mm x 242 mm 

Priority 63 kg 

Operating temperature range -25 °C ... +60 °C 

Protection class (according to IEC 62103) I 

Climatic category according to IEC 60721 3K6 

Degree of protection according to IEC 60529 IP54 

Features / function 

Operation and display / multifunction relay External via SRC-20 / 2 

Three-phase systems / parallel connection ● / ● 

Integrated bypass / multicluster operation – / ● 

State of charge calculation / full charge / equalization charge ● / ● / ● 
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Integrated soft start / generator support ● / ● 

Battery temperature sensor / data cables ● / ● 

 

Limitations 

 
As a first approach, the SMA integrates a complex and precise battery management 
algorithm that results in a proper solution for not supervised microgrids. This means that 
the Sunny Island and its proprietary algorithm set its own operating instructions for the 
energy management [18]. 
 
Although the SMA gives the EMS great programmability characteristics, these are focused 
only to the configuration settings and not to the entire control of the equipment; therefore, 
the system cannot be considered as flexible as it should. As pointed before, the uncertainty 
of the system lies in the determination of SOC, this values must be fully manageable, 
however, with the SMA this parameter is not accessible to the user. The BC disposes a 
locked software environment, which complicates the task of controlling the equipment 
externally.  This is mainly because the Sunny Island was conceived as a primary element 
in the microgrid administration, taking the decisions of the energy management related to 
the batteries [18].  

Then, the proper operation of the Sunny Island creates a disparity with the EMS, where the 

BC is not an actuator anymore, but operating in parallel with the main processing system. 

This functionality may be avoided by turning off much of the devices settings; the Sunny 

Island disposes a Modbus interface [18] in order to allow the data transfer with another 

device, eluding the SMA proprietary software. Consequently, after analyzing all the 

possible communication’s features, the result is that the charging process would be still 

locked from external manipulations.   

On the other hand, the SMA algorithm procedure lacks on the forecast analysis of the 
supply/consumption energy, this means that the concept of microgrid energy balance is not 
fully developed. For instance, at the beginning of the operation day the ESS charging 
process takes place whenever there is an exceeding amount of energy from the suppliers, 
this means the battery will be charged by the main grid instead of the energy surplus from 
the renewable energy, then the unique criteria for the charging is the presence of the 
available energy. 
 
While the Sunny Island is intended exclusively for the specific supervision of battery 
lifespan [38] – [39], the EMS generates a global analysis where battery operation and 
preservation features are part of a complex system. The cost optimization criteria is the 
principal characteristic, resulting in a much more complete solution.  

It must be noted, that the purpose of this project is to develop an algorithm to manage the 

battery energy balance process, which is mainly the correct control of the voltage, current 

and time of each of the three charging phases, as well as the SOC (state of charge). Then, 

even when the voltages and currents of the phases can be regulated externally by the 

Modbus interface, it is not possible to control the time operation of each one, to decide 

when each phase will be activated or turned off nor the SOC end of charge.  

The EMS is able to fix the events based on the minimization of the cost function that is 
established on the production and consumption forecasting. A hierarchical decision-making 
process gives the feasibility of the system, where all the elements of the microgrid, including 
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the BC, are subordinated. It is precisely the estimation of the future events that allows the 
performance of the network. 

To solve the incompatibility inconvenient, the project was reevaluated with the intention of 

changing the BC and finding a device that engages the needed requirements of the system.   

The new element must offer the same technical characteristics as the SMA, but have to 

integrate an improved and much flexible controllability feature by releasing the settings 

parameters. Selecting the correct charger for this specific situation is relevant to guarantee not 

only all requirements are accomplished but also to avoid the choosing of an over specified 

element, this may result in a more expensive solution. 

However, after evaluated a range of commercial devices the Victron Quattro, a 10kVA bi-

directional and fully administrable inverter is introduced in order to manage the bank battery, 

offering an alternative in this energy exchange situation.  
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Victron Quattro – Bidirectional Converter 

The Victron Quattro is a combination of an inverter, battery charger and transfer switch in 

one device. Whenever AC power is available, the inverter-charger uses this energy to 

recharges the battery bank, as seen in the following image:  

 

Fig. Victron - Quattro [11] 

In case the AC power supply is disconnected, the unit inverts DC battery power to provide 

the required energy to the AC output.  

 

Fig.  Internal configuration – Victron Quattro [11] 

The Quattro comes with two AC inputs, which incorporates an internal transfer switch, as 

seen in the previous figure. Then, there is the possibility to connect two independent AC 

power supply sources to the BC, this means, the grid and a generator, or two other options. 

The Quattro will automatically connect to the active one. 

A brief description of the Victron-Quattro and its main characteristics are specified as follow. 

Three phase capability 

A unique element cannot offer the possibility to manage 3 phases loads, then, three units 

can be connected and organized to provide the three-phase system, as is shown in the 
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following figure. Nonetheless, each unit is able to manage up 10 kVA at the output; 

consequently, a maximum of six sets of three units can be arranged in parallel to deliver 

180kVA power, which means a charging capacity of 2500 A. 

 

Fig. 23. Three phase structure – Victron Quattro [11] 

Power Control 

If any of the power sources presents a limited energy production, a current limit can be 
configured on each input. Then, the battery charger will consider the loads in order to take 
any unused energy to charging purposes, avoiding the overload of the supply inputs.   

The UPS functionality (Uninterruptible Power Supply) is also available, in case of a supply 
failure or there is no presence of energy at any of the inputs, the Quattro changes the 
functionality from charging to inverter operation, taking over the supply of the loads. 

 

Power Assist  

This characteristic allows the Quattro to work in parallel with the energy source in case of 

any current shortfall (co-supply feature), delivering extra energy from the batteries, avoiding 

an energy misbalance at the loads. Therefore, by discharging the batteries, the peak 

demands can be assimilated by the BC, as well the peak demands can go forward to the 

charging process.  

Two AC Outputs 

The BC has two outputs, being the AC-OUT-1 the most significant one; it presents the no-

break (UPS) characteristic, taking over the energy requirements of the devices connected 

in case of an input failure. This event takes less than 20 milliseconds; hence, no electronic 

device will suffer any interference.  
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In contrast, AC-OUT-2 delivers energy only when the inputs are active. Therefore, no 

critical loads are connected in this output.  

 

Fig.  Victron Quattro - scheme [11] 

Battery Charger 

The batteries are charged in case of excess power or whenever the EMS establish it using 

the energy delivered by the inputs, and discharged when consumption exceeds production.  

Victron´s technology is based on a smart system to implement the charging process using 

four regulated stages: Bulk, Absorption, Float, and Storage. The three firsts steps were 

explained in the chapter 2 (Charge stages of the Battery charger). Nonetheless, the 

purpose of the Storage mode consists in keeping the battery charged without any energy 

consumption. This stage is activated if the time of the float stage is extended by more than 

24 hours, applying a voltage even lower than in the previous stage [12]. Due to the no 

energy consumption characteristic and the lack of dynamics, this stage is not taken 

into account in this work. 

Additionally, if the batteries are not discharged in a long period in the order of days, once 

a week the BC activates the absorption stage to refresh the batteries voltage. This step 

must be done in order to prevent the stratification of the electrolyte, the main cause of early 

battery failure 

Technical parameters 

Within all the range of Quattro's chargers options, the model used in this project is 

48/10000/140-100/100. This code stands for: 48 is the nominal voltage of the batteries, 

10000 is the maximum power in kVA that is able to manage, 140-100 is the range of current 

in case an auxiliary battery is connected and the last number 100 is the maximum current 

at each output.   

TABLE 2. VICTRON QUATRO – TECH. SPECIFICATIONS 

Quattro Model: 48/10000/140-100/100 

AC inputs (2x)  Input voltage range: 187-265 VAC  
Input frequency: 45 – 65 Hz Power factor: 1 
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Maximum feed through current 
(A) 

AC-IN-1: 100 A AC-IN-2: 100 A 

INVERTER 

Input voltage range (V DC) 38 – 66V 

Output (1) Output voltage: 230 VAC ± 2% Frequency: 50 Hz ± 0.1% 

Output power at 25°C (VA) 
Non-linear load, crest factor 3:1 

10000 

Output power at 25°C (W) 8000 

Output power at 40°C (W) 6500 

Output power at 65°C (W) 4500 

Peak power (W) 20000 

Zero load power (W) 20 

CHARGER 

Max. Charge voltage 
'absorption' (V DC) 

57.6 

Max. Charge voltage 'float' (V 
DC) 

55.2 

Max. Storage mode (V DC) 52.8 

GENERAL 

Protection a) output short circuit 
b) overload 
c) battery voltage too 
high 

d) battery voltage too low 
e) temperature too high 
f) 230 VAC on inverter output 
g) input voltage ripple too high 

VE.Bus communication port For parallel and three phase operation, remote monitoring  
and system integration 

General purpose com. Port 2X 

Common Characteristics Operating temp.: -40 to +65˚C Humidity (non-condensing): 
max. 95% 

ENCLOSURE 

Common Characteristics Protection category: IP 21 

Weight (kg) 45 

Dimensions (hxwxd in mm) 470 x 350 x 280 

 

Equalization 

Because of production tolerances, irregular temperature distribution and variations in the 

ageing characteristics of particular cells, it is possible that individual cells in a chain could 

become overstressed leading to premature failure of the cell. With every charge - discharge 

cycle the weaker cells will get weaker until the battery fails.  

During discharging, the weakest cell will have the greatest depth of discharge and will tend 

to fail before the others. It is even possible for the voltage on the weaker cells to be reversed 

as they become fully discharged before the rest of the cells also resulting in early failure of 

the cell. There is a danger that once it has reached its full charge it will be subject to 

overcharging until the rest of the cells in the chain reach their full charge. Once a cell has 

failed, the entire battery must be replaced and the consequences are extremely costly.  
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At each charging and discharging cycle, a small amount of sulphate is adhered to the plates. 

When using three-state chargers, this small amount decreases significantly, but not in its 

entirety. Then, the sulphate adhered will increase. If the lead sulphate remains in the plates 

for long periods of time, it will harden and crystallize and consequently will reduce the 

capacity of the battery, increasing its internal resistance and making it impossible to deliver 

an adequate amount of energy in its terminals. When this happens, the battery becomes 

unusable; it is not possible to remove the crystallized sulphate. 

Equalization is a charging method whose purpose is to return the batteries to their storage 

capacity, increase efficiency and extend life. This is achieved by a voltage overload applied 

in a controlled manner on the batteries. The process of equalization must be carried out 

periodically, under inspection. 

This high voltage causes a vigorous charge within each cell and brings all cells to similar 

levels, incorporating a cell balancing scheme to prevent individual cells from becoming 

overstressed.  

In the equalization mode, the Quattro will charge with increased voltage for one hour. 

State of Charge determination 

The calculation of the SOC, is performed by internal measures of the charge and discharge 

currents, for this reason, no DC loads are supported in this system. 

The charge and discharge rates affect the effective capacity of a cell because the 

electrochemical activities in the cell take precise time to be completed, then, they are not 

able to track the instantaneous electrical stimulus on the cell. 
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Glossary 

Battery bank: It is a set of batteries connected together in parallel or in series. 

Definition Distributed Energy Systems (DES): is a term, which encompasses a diverse 

array of generation, storage and energy monitoring, and control solutions. 

Distributed energy resources (DER): are smaller power sources that can be aggregated 

to provide power necessary to meet regular demand. 

Prediction model: it is a dynamic model of the future behavior of a micro-grid. Future 

behavior is related to a standard to be optimized. 

Protocol data unit (PDU): Information that is delivered as a unit among peer entities of 

a network and that may contain control information, such as address information, or user 

data, also known as a service data unit. 

Operating cost curve: is the function that relates the hourly cost of fuel consumption [€ / 

h of operation] to the generated power expressed in [kW] of a non-renewable energy 

source. 

MATLAB (matrix laboratory):  is a multi-paradigm numerical computing environment and 

fourth-generation programming language. It is a proprietary programming language 

developed by MathWorks. 

Renewable energy: Is energy that is collected from renewable resources, which are 

naturally replenished on a human timescale, such as sunlight, wind, rain, tides, waves, and 

geothermal heat. 

Renewable resource: Is a natural resource, which replenishes to overcome resource 

depletion caused by usage and consumption, either through a biological process or through 

other naturally recurring processes in a finite amount of time in a human time scale. 

Spread Sheet: Is an interactive computer application for organization, analysis and storage 

of data in tabular form. 

Visual Basic for Applications (VBA): Is an implementation of Microsoft's event-driven 

programming language Visual Basic 6 and it’s an associated integrated development 

environment. 

Time horizon: is the absolute time of completion for the forecast horizon in seconds 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Network_address
https://en.wikipedia.org/wiki/Payload_(computing)
https://en.wikipedia.org/wiki/Payload_(computing)
https://en.wikipedia.org/wiki/Service_data_unit
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Event-driven_programming
https://en.wikipedia.org/wiki/Event-driven_programming
https://en.wikipedia.org/wiki/Visual_Basic
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment


 

 96 

List of Terms and Abbreviations 

 

AC   Alternating current 

AIMMS  Advanced Interactive Multidimensional Modeling System 

BC  Battery Charger 

C   Battery capacity at the charge/discharge constant current [Ah] 

Cb   Battery capacitance [F] 

Cp   Polarization capacitor [F] 

C10   Charge/discharge capacity in 10 h at 25ºC [Ah] 

dt   Duration of the time interval considered in hours 

DOD   Depth of discharge 

DC   Direct current 

ESS  Energy Storage System 

EMS   Energy Management System 

GAMS  General Algebraic Modeling System 

I10   Charge/discharge current in 10 h at 25ºC [A] 

n   Number of battery cells 

Pb-Acid  Lead–acid battery 

PDU  Protocol data unit 

pu  Per-unit system 

PVS   Photovoltaic system 

R   Internal resistance of the battery [Ω] 

SOH   State of Health 

SOC   State of Charge 

UPS   Uninterruptible power supply 

VBA  Visual Basic for Applications 

Vbat   Battery bank voltage [V] 

Vc   Cell voltage [V] 

Vcb   Internal electromotive force of the battery [V] 

Vcp   Polarization voltage [V] 

Vg   Gasification voltage given by the manufacturer [V] 

VREG   Clusters of registers  

ΔT   Temperature variation referred to 25ºC [ºC] 
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