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Abstract—This paper explores the use of compiler optimizations which optimize the layout of instructions in memory. The target is to

enable the code to make better use of the underlying hardware resources regardless of the specific details of the processor/

architecture in order to increase fetch performance. The Software Trace Cache (STC) is a code layout algorithm with a broader target

than previous layout optimizations. We target not only an improvement in the instruction cache hit rate, but also an increase in the

effective fetch width of the fetch engine. The STC algorithm organizes basic blocks into chains trying to make sequentially executed

basic blocks reside in consecutive memory positions, then maps the basic block chains in memory to minimize conflict misses in the

important sections of the program. We evaluate and analyze in detail the impact of the STC, and code layout optimizations in general,

on the three main aspects of fetch performance: the instruction cache hit rate, the effective fetch width, and the branch prediction

accuracy. Our results show that layout optimized codes have some special characteristics that make them more amenable for high-

performance instruction fetch: They have a very high rate of not-taken branches and execute long chains of sequential instructions;

also, they make very effective use of instruction cache lines, mapping only useful instructions which will execute close in time,

increasing both spatial and temporal locality.

Index Terms—Pipeline processors, instruction fetch, compiler optimizations, branch prediction, trace cache.
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1 INTRODUCTION

SUPERSCALARprocessors represent the major trend in high-
performance processors in the last several years. These

processors naturally evolve from pipelined architectures
and try to obtain higher performance in two ways: First, by
simultaneously executing several independent instructions
in parallel; second, by increasing the clock rate to speed up
instruction execution.

When designing a high-performance processor, it is
important to keep all parts of the processor balanced,
avoiding bottlenecks whenever possible. If we design a
high-performance processor capable of executing five
ALU operations at once, it is also important to ensure that
we can feed the ALU stage and retire those instructions
without stalling the pipeline. This means fetching and
decoding at least five instructions per cycle, to keep the
ALU stage busy, and writing results and graduating
instructions at a fast enough rate.

But, the fetch stage does not behave like other pipeline
stages in the sense that it cannot be widened by simply
replicating it or addingmore functional units. Furthermore, it
has to follow the control path defined by branch instructions
which have not been executed yet. The fetch stage quickly
evolved to include branch prediction and used it to fetch
instructions from speculative execution paths.

This ability to follow speculative paths independently of
the execution stages leads to a decoupled view of the
processor. The fetch engine reads instructions from memory
and places them in an instruction buffer following a
speculative path indicated by the branch prediction

mechanism. Then, an execution engine reads instructions
from the buffer and generates the required results, provid-
ing feedback to the fetch engine regarding the actual
outcome of branch instructions.

An analysis of the decoupled view of a superscalar
processor reveals that there are three main factors in fetch
performance: 1) memory latency: how long it takes to read
the instructions from memory, 2) fetch width: how many
instructions we can transfer each cycle, and 3) branch
prediction accuracy: how many transferred instructions
belong to the wrong execution path.

The time it takes to load the required instructions from
memory is computed, together with the time it takes to
execute the instructions. If the memory latency is large, it
can quickly become the major component in the execution
time. The main approach to reducing the memory latency is
the use of cache memories and prefetching schemes. Given
the popularity of this approach, instead of measuring
instruction memory latency, we will measure the instruc-
tion cache miss rate.

As we mentioned earlier, the fetch engine cannot be
widened by simply replicating its functional units. Fetching
more than one instruction per cycle requires a completely
new fetch architecture, capable of selecting which instruc-
tions are to be fetched. This fetch architecture also
determines how many instructions can be fetched simulta-
neously. The ability to fetch multiple instructions in a single
cycle becomes a more important fetch performance factor as
the issue width of the processor increases.

Finally, we must consider the presence of branch
instructions which disrupt the flow of instructions through
the pipeline. The problem arises when the outcome of a
branch is not known until several cycles after it has been
fetched, but we need to continue fetching instructions from
a speculative path. By the time the branch has been
resolved, several wrong path instructions may have entered
the pipeline and may need to be squashed. The squashing
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of wrong path instructions represents a wasted amount of
fetch cycles and directly affects fetch performance. The
frequency of this event mainly depends on the accuracy of
the branch prediction mechanism.

Given the importance of fetch performance in super-
scalar processors, we target an increase in the rate at which
useful instructions can be provided to the execution core.
However, we consider approaching fetch performance from
the software perspective. We consider the use of compiler
optimizations to adapt the existing applications to the
underlying fetch architecture. This software approach is
attractive for two reasons: First, it has a null hardware cost,
it does not require additional transistors, and does not
require additional power; second, it provides performance
improvements on already existing architectures, which
makes them immediately applicable.

The rest of this paper is organized as follows: In Section 2,
we discuss previous related work in the field of code layout
optimizations and how the software trace cache improves
on them. Section 3 describes the software trace cache
algorithm in detail. In Section 4, we describe the different
benchmarks used and our simulation setup. Section 5
presents an in-depth analysis of the performance impact of
the software trace cache on the different factors of fetch
performance and the overall impact on processor and
system performance. Finally, in Section 6, we present our
conclusions for this work.

2 RELATED WORK

The mapping of instruction to memory is determined by the
compiler. This mapping determines not only the code page
where an instruction is found, but also the cache line (or
which set in a set associative cache) it will map to.
Furthermore, a branch will be taken or not taken depending
on the placement of the successor basic blocks.

By mapping instructions in a different order, the
compiler has a direct impact on the fetch engine perfor-
mance. In this section, we provide a brief description of the
different algorithms proposed to select where each instruc-
tion should be mapped.

We can divide code layout optimizations in three parts:
the layout of the basic blocks inside a routine, the splitting
of a procedure into several different routines or traces, and
the layout of the resulting routines or traces in the address
space. In this section, we will describe some algorithms for
each of these optimizations and point out the benefits which
can be obtained from them.

2.1 Basic Block Chaining

Basic block chaining organizes basic blocks into traces,
mapping together those basic blocks which tend to execute
in sequence. There have been several algorithms proposed
to determine which basic blocks should build a trace [2], [7],
[13], [20], [23], [24], [32].

The chaining algorithm used in [13], [23], [24], [32] is a
greedy algorithm, which, given a seed or starting basic
block, follows the most frequent path out of it as long as
that basic block has an execution frequency larger than a
given ExecThreshold and the transition has a probability
higher than a given BranchThreshold. This implies visiting

the routine called by the basic block or following the most
frequent control flow out of the basic block. If the most
likely path out of a basic block has already been visited, the
next possible path is taken. If there are no possible paths out
of a basic block, or the available paths do not pass the Exec
and Branch thresholds, the algorithm stops and the next
seed is selected.

A second alternative is the bottom-up algorithm proposed
in [20] and used in [5], [18], [31]. The heaviest edge in the
graph (the edge with the highest execution count) is
selected and the two basic blocks are mapped together.
The next heaviest edge is taken and processed in the same
way, building basic block chains. After all basic blocks have
been mapped to chains, the different chains are mapped in
order so that conditional branches map to forward/usually
not taken branches.

However, a control flow graph with weighted edges
does not always lead to a basic block representing the most
frequent path through a subroutine. The solution to this
problem is path profiling [2]. A path profile counts how
many times each path through a subroutine was followed,
not simply how many times a branch was taken/not-taken.
In this case, the correspondence between the profile data
and the basic block chains which should be built is
immediate.

Our basic block chaining algorithm derives from [32]. As
we show in Section 3, we improve their chaining algorithm
by automating some parts of the algorithm which required
human intervention, like the seed selection, and selecting
the Exec and Branch threshold values.

2.2 Subroutine Splitting

After a new ordering of the basic blocks has been
established for a given procedure, the frequently executed
basic blocks are mapped toward the top of the procedure,
while infrequently used basic blocks will move toward the
bottom of the procedure body. By splitting the different
parts of the procedure, we can significantly reduce its size,
obtaining a denser packing of the program.

We can distinguish two main ways of splitting a
procedure body. A coarse-grain splitting would split the
routine in two parts [5], [18], [20], [31]: one containing those
basic blocks which were executed in the profile (the hot
section) and another one containing those basic blocks
which were never executed for the profiling input (the cold
section).

A fine-grain splitting would split each basic block chain
as a separate procedure [13], [21], [32]. The end of a chain
can be identified by the presence of an unconditional
control transfer because, after reordering, it is assumed that
all conditional branches will be usually not-taken. Unused
basic blocks would form a single chain and be kept together
in a new procedure.

The procedures resulting from splitting do not adhere to
the usual calling conventions, there is no defined entry or
exit point, and they do not include register saving/
restoring. This is done to avoid overhead associated with
standard procedure control transfers.

As we show in [21], the benefits of the procedure
splitting optimization do not lay within the splitting itself: It
reflects on the improvements obtained with the procedure
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placement optimizations. Mapping smaller procedures
gives these optimizations a finer grain control on the
mapping of instructions without undoing what the basic
block chaining optimizations obtained.

2.3 Procedure Placement

Independently of the basic block chaining and procedure
splitting optimizations, the order in which the different
routines in a program are mapped has an important effect
in the number of code pages used (and, thus, on the
instruction TLB miss rate) and on the overlapping between
the different procedures (and, thus, on the number of
conflict misses).

The simplest procedure mapping algorithm is to map
routines in popularity order: the heaviest routine first and
then in decreasing execution weight order. This limits
conflicts among two equally popular routines.

The mapping algorithm used in [5], [18], [20], [21], [31] is
based on a call graph of the procedures withweighted edges,
where the edgeweight is the number of times each procedure
callwas executed. This algorithmcanbe extended to consider
the temporal relationship between procedures and the target
cache size information as described in [10]. Starting from the
heaviest edge, the two connected nodes aremapped together
andall incoming/outgoing edges aremerged together.When
two nodes containingmultiple procedures shouldmerge, the
original (unmerged) graph is checked to see which way they
should join: The two groups will merge at the strongest
relationshippoint in the original graph, reversing the order of
one or both of them if necessary. For example, if there are two
groups, AB and CD, and the strongest relationship in the
original graph is between A and C, the final ordering would
be BACD.

In [11], [14], an optimized procedure layout is generated
by performing a color mapping of procedures to cache lines,
inspired by the register coloring technique, taking into
consideration the cache size, the line size, the procedure
size, and the call graph.

The mapping algorithm used in [32] follows a completely
different approach, not based on the calling frequency of
the generated procedures. After all basic blocks have been
mapped to chains, the chains are ordered by popularity.
The most popular chains are mapped to the beginning of
the address space, while the least popular ones are mapped
toward the end.

In addition to mapping equally popular chains next to
each other, a fraction of the instruction cache is reserved for
the most popular basic blocks by ensuring that no other
code maps to that same range of cache addresses. These
basic blocks are pulled out of whichever chain they mapped
to and moved into this privileged cache space. This ensures
that the most frequently used basic blocks will never miss in
the cache. This reserved cache space is called the Conflict
Free Area (CFA). The size of the CFA is determined
experimentally.

We improve on this mapping algorithm by keeping all
the basic blocks in a chain together [24]. That is, instead of
mapping individual basic blocks into the CFA, we map the
whole chain, which increases spatial locality and avoids
taken branches. We also include a heuristic to determine the
CFA size automatically.

3 THE STC ALGORITHM

The Software Trace Cache (STC) layout algorithm is largely
based on the work of Torrellas et al. [32], but includes
multiple improvements. We no longer use the ExecThres-
hold and BranchThreshold parameters used in [23], [24],
[32]. Instead, we build all our basic block traces in a single
pass of the algorithm, without any user intervention to
determine threshold values. We use an automatic process
for selecting the starting point of our basic block traces.
Finally, we map whole basic block traces into the Conflict
Free area (CFA) instead of mapping individual basic blocks.

3.1 Seed Selection

Our algorithm is based on profile information. Running the
training set on each benchmark, we obtain a directed graph
of basic blocks with weighted edges.

The first step, before we can organize the basic block set
into traces, is to select the seeds or starting points for those
traces. In [32], the operating system code is studied in detail
to find the most frequent entry points and a few subroutines
are selected. In [23], we analyze the code of a relational
database management system (DBMS) and select the entry
points for the different query operations as seeds.

However, a detailed analysis of source code is not always
feasible. For this reason, we have selected all subroutine
entry points as seeds. We maintain the list of seeds ordered
by basic block weight: from the most frequently executed
seed to the least executed one. We explore each seed in turn,
ignoring those seeds which have already been included in a
previous trace.

This automatic selection of seeds is an important
advantage of the STC over previous work in which the
seed basic blocks where selected by the user based on a
detailed analysis of the dynamic behavior of the application
or the analysis of source code.

3.2 Trace Construction

From the selected seed, we proceed using a greedy
algorithm which follows the most likely path out of a basic
block, recording the path followed as the required trace.
The algorithm follows paths regardless of them crossing the
subroutine boundary, effectively building traces which
cross multiple subroutines. The trace ends when all targets
from a basic block have been visited or a subroutine return
for the main procedure is encountered.

Loops are handled in the sameway. The algorithm follows
themost likely path though the loop body until the backward
branch edge is found. That back-edge is recognizedbecause it
leads to an already visited basic block. The main target of the
branch (the back edge) has already been visited and, so, the
secondary target (the fall-through path) is chosen. Loops are
not unrolled by the STC algorithm.

For example, following the graph in Fig. 1, the algorithm
starts from seed A1. From basic block A1, the algorithm
selects themost likely outgoingpath,which leads to blockA2.
Frombasic blockA2, themost likely outgoingpath leads to an
already explored seed C1. Discarded block B1 is already a
seed and will be explored later. The trace starting from seed
C1 and containing blocks C1 to C4 (excluding block C5) is
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then inlined after block A2. The algorithm continues at the
next sequential block A3 (the return point for trace C1-C4).

From basic block A3, the most likely outgoing path leads
to block A4. Discarded block A5 is added to the list of
unvisited seeds, which is maintained in weight order. From
basic block A4, the algorithm visits blocks A7 and A8,
adding discarded block A6 to the seed list. Fig. 1 shows the
resulting trace, including basic blocks from both routine A
and routine C.

The chain inlining step is a novel contribution of the STC
on top of what was done in [13], [32]. It allows the STC to
build long basic block chains without the need for a careful
seed selection based on source code analysis and makes the
use of threshold values unnecessary.

3.3 Trace Mapping

As shown in Fig. 2, we map the resulting traces in the order
they were created: from the most frequently executed one to
the least executed one. In this way, we map equally popular
traces next to each other, reducing conflicts among them.
Also, we divide traces in instruction cache-sized chunks and
leave anempty space at the beginningof eachblock except the
first one (the one containing the most popular traces).

All code gaps map to the same place in the instruction
cache so that there is no other code mapping to the same

place as the most popular traces, creating a conflict-free area

(CFA) for these traces which completely shields them from

interference.
The size of the CFA is among the most determinant

factors in the performance obtained using this mapping
algorithm. A larger CFA fits more of the most popular

traces, shielding them from interference, which reduces

conflict misses in the most important segments of the code.

However, it leaves less space in the instruction cache for the
remaining traces, increasing conflict misses among them.

Both factors balance each other and, after a given size,

further increases in the CFA size actually decrease instruc-
tion cache performance.

As a difference with previous work, we use heuristics in
order to determine an adequate CFA sizewithout requiring a

trial anderror approach.We take themost popular traces, one

at a time. Then, we compare the percentage of the total

execution time that it gathers compared to the percent of the
instruction cache that it requires. If the execution percent is

higher than the space taken in the cache, we include the trace

in the CFA. We then add the next trace and consider the
percent of the execution they take together and the fraction of

the cache they require. As long as the fraction of execution is

larger than the fraction of the instruction cache they require,
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we keep adding traces to the CFA, trying to balance the two

factors. For example, we would devote 32 percent of the

instruction cache to theCFAwhen the traces containedgather

32 percent of the program execution.
This heuristic depends on the execution frequency of the

traces built and the instruction cache size. For small caches,

the size of the CFA will also be smaller, while larger caches

allow for a larger CFA. Smaller codes which concentrate

most of their execution in a few traces will almost

completely fit in the CFA, while large codes with flat

execution profiles will have little or no use for a CFA.

4 SIMULATION SETUP

We have used a wide variety of workloads in this study,

including typical integer applications (a subsetof theSPEC’95

integer benchmarks)1 [22], [24], a DSS workload (TPC-D on

PostgreSQL) [23], [24], and an OLTP workload (TPC-B on

Oracle v8) [21]. Table 1 shows which workload is used in

each figure for the remainder of the paper.
For our DSS workload, we use a database with scale

factor 0.1 (100MB of raw data) and run a representative

subset of the read-only queries. We use a different subset of

queries to obtain the profile data (Q3,4,5,6,9,15) and the

performance simulation data (Q2,3,4,6,11,12,13,14,15,17).
The OLTP workload is set up and scaled in a similar way

to what was done in [3]. We use a TPC-B database with

40 branches and a size of over 900MB. To hide I/O latencies,

we use eight server processes per processor in this study.
Our performance evaluation and analysis experiments

consist of a mix of detailed processor simulation, full

system simulations, and direct machine measurements

using hardware counters.
The processor simulator is derived from the SimpleScalar

3.0 tool set, extended with an aggressive fetch engine

capable of fetching multiple sequential basic blocks in a

single cycle (the SEQ.3 engine described in [27]), a trace

cache [9], [19], [27], and dealiased branch predictors like

agree [30], bimode [15], and gskew [17].

For the full system simulations, we use the Alpha port of

the SimOS environment [26]. SimOS-Alpha is a simulation

environment which simulates Alpha multiprocessor hard-

ware (processor, MMU, disk, caches) in enough detail to run

system-level hardware and unmodified application code.

Our simulations run froma checkpoint takenwhile theOLTP

workload is in a steady state and run for 500 additional

transactions on a simulated 4-processor Alpha system. Our

SimOS setup uses a 1GHz single-issue pipelined processor

with 64KB, 2-way instruction and data caches, and a 1.5MB

unified L2 cache. Memory latencies assume chip-level

integration: 12-cycles L2 hit, 80-cycles local memory, 120-

150 cycles for 2-hop and 3-hop remote memory. We also use

SimOS to obtain application traces which were used to

analyze instruction cache behavior in detail.
The most significant results included in the paper are

those obtained using real optimized applications on a real

machine. The fact that the results obtained with this set up

closely match those obtained via simulation makes us

strongly confident of the validity of our study.
Our hardware experiments consisted of running our

OLTP benchmark for 5000 transactions. Using DCPI [1], we

measured execution time, instruction cache misses, and

instruction TLB performance. We performed these experi-

ments on two different Alpha platforms: an 8-processor

21164 and a dual processor 21264.
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1. All except go for which we could not obtain profile information due to
problems with the pixie tool and compress, which we considered too small
to be representative.

TABLE 1
Workloads Used in Each Section and Figure for This Paper



5 PERFORMANCE IMPACT

This sectionpresents ouranalysis of the impact of theSTCand
other code layout optimizations on all three aspects of fetch
performance. Using detailed simulation of specific compo-
nents and indirect performance metrics, we are able to
explain the reasons for the performance improvements
obtained.

Our results show that code layout optimizations not only
improve instruction cache performance by avoiding conflict
misses, but that they also make much better use of the
available cache space, thus reducing capacitymisses, and that
spatial locality is the main advantage of optimized codes.

We also show that, after optimizations, it is possible to
feed even the most aggressive superscalar processor by
reading only chains of sequential instructions.

Our analysis of the impact of layout optimizations on the
branch prediction mechanism shows that they can have a
positive impact in the simple two-level adaptive predictors
and a small negative impact on dealiased predictors.
However, the improvements in other aspects of fetch
performance overcome this slight drop in prediction
accuracy.

Finally, we analyze the impact of layout optimizations in
other elements beyond the fetch engine and find that they
not only have a positive impact on the instruction memory
hierarchy, but that they also improve data memory
performance due to reduced interference between instruc-
tions and data.

5.1 Impact on the Instruction Cache

In this section, we examine the impact of code layout
optimizations on the instruction memory latency, that is,
how long it takes to fetch an instruction from memory.
Because the main approach to reducing memory latency is
the use of caches, the performance metric we use is the
instruction cache miss rate.

Fig. 3a shows the the average instruction cache miss rate
for the SPECint95 and the PostgreSQL database of a
baseline cache setup (direct mapped) compared to that of
the same cache running optimized codes, and two hard-
ware optimized setups. The code layout optimizations
explored are those proposed by Pettis and Hansen (PH)
[20], Torrellas et al. (TXD) [32], and the Software Trace
Cache (STC). The hardware optimized setups are a 2-way
set associative cache and a 16-way fully associative victim
buffer. None of the hardware optimized setups uses an
optimized code layout.

The results in Fig. 3a show that code layout optimiza-
tions have a very significant impact on the instruction cache
miss rate for all explored cache sizes, much larger than the
two hardware optimizations explored. The instruction
cache miss rate of a 16KB instruction cache running
optimized codes is lower than that of a 64KB cache running
unoptimized codes. This shows that optimized codes make
more effective use of the available cache space, requiring a
smaller cache to fit the instruction working set.

Comparing the STC with other code layout optimiza-
tions, our results show that the STC offers lower instruction
cache miss rates than either the Pettis and Hansen or the

Torrellas et al. optimizations, especially for the smaller

cache sizes.
Code layout optimizations are very effective at reducing

instruction cache miss rates. The usual explanation for this

miss rate reduction is that a careful layout of the routines

may reduce the number of conflict misses and that is the

main aspect where code layout optimizations differ from

each other. However, we will show that layout optimiza-

tions do not only have an impact on conflict misses.
Fig. 3b shows the number of instruction cache misses of

two versions of a commercial database management system

(DBMS) running an OLTP workload (TPC-B). Commercial

databases are very large codes, with flat execution profiles,

which suffer from heavy capacity problems rather than

conflict misses.
The results in Fig. 3b show that code layout optimiza-

tions also have a significant impact on the number of misses

of such big workloads, although the number of conflict

misses cannot be reduced because the working set is too

large to fit in the cache, regardless of the layout of routines.
It is also interesting to examine the relative number of

misses of the optimized DBMS application compared to the

unoptimized code, that is, for each instruction cache and

line size, the percentage of misses still present in the

optimized application. For example, on a 64KB cache with

128-byte lines, the optimized binary has only 45 percent of

the misses of the unoptimized code.
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comparison with other software and hardware optimizations.

(b) Instruction cache misses on the DBMS application.



The analysis shows that, even for large workloads which
do not fit in the instruction cache, code layout optimizations
can obtain important miss reductions (up to 76 percent
reduction for a 512KB cache with 256-byte lines).

Further analysis of these results show that larger caches
obtain better miss reductions. In our present case, this trend
holds up to the 512KB cache because the workload already
fits there, even in the unoptimized form. The same trend is
present for the instruction cache line size: Longer cache
lines obtain better miss reductions. The results in Fig. 3b
show that the unoptimized application does improve
performance as the cache line and size increase, but the
optimized application improves faster than the baseline.

This trend shows that layout optimized codes exploit
larger caches and longer cache lines better than unopti-
mized ones. Next, we analyze the reasons for these
improvements in terms of spatial and temporal locality.

5.1.1 Spatial Locality

Code layout optimizations modify the basic block mapping
to align branches toward their not taken direction, increas-
ing the number of sequentially executed instructions. This
increase in the sequence length translates immediately into
an increase in spatial locality.

Our results on the commercial DBMS system show that
there is a significant increase in the average sequence length
from the baseline to the optimized application: from
7 instructions to 10 instructions. However, this increase is
not enough to justify all the improvements seen in the
instruction cache performance.

Fig. 4a shows a detailed breakdown of the number of
sequences of each length for both binaries. The graph shows
that there is a 30 percent decrease in the number of
sequences of length 1 and a large increase in the number of
sequences of length 17. That is, we are reducing the number
of short sequences and increasing the number of long
sequences. However, there is still more spatial locality than
that explained by the basic block chaining optimization.

Fig. 4b shows the percentage of times that a number of
unique words are used in a 128-byte cache line before it is
replaced (32 instructions per cache line), for both the
baseline and optimized application.

The results in Fig. 4b show that the optimized application
uses the whole cache line over 60 percent of the time. That is,
in most cases, all instructions in a cache line will be executed
at least once before that cache line is replaced. Such behavior
is not present in the unoptimized application and would
explain the improved instruction cache performance.

The basic block chaining optimization alone does not
explain this full usage of cache lines as most executed
sequences are not long enough to fill an entire cache line. It
is the combination of the routine splitting and the
procedure ordering optimizations that causes this high
percentage of cache lines to be fully used.

The routine splitting optimization separates the useful
instructions from those which will rarely or never be
executed, which reduces the size of the procedure. Then, the
procedure ordering moves the useless instructions away
and maps procedures which execute close in time next to
each other. After this optimization, we not only execute

longer sequences of instructions, but, when a sequence is
terminated, it is likely that the target sequence is in the same
cache line.

By reducing the size of the procedures, optimized codes
are able to better exploit larger sized caches by not wasting
space to store instructions which will not be executed. And,
they obtain higher improvements from longer cache lines
because they exploit spatial locality, which increases
significantly.

5.1.2 Temporal Locality

We have shown that optimized codes compact the useful
sections of the code in a reduced number of cache lines,
moving unused parts of the code toward the bottom of the
program. This reduced size may have an impact on the
temporal reuse of instructions.

Fig. 5 shows the number of cycles during which a given
line has been present in the cache before being replaced.
That is, we measure the lifetime of a cache line from the
moment it is loaded into the cache to the moment it is
evicted. Note that the X-axis showing the lifetime is in a
logarithmic scale: A single step through the axis means the
cache line was active for double the amount of time.

Our results show that cache lines have an extended
lifetime in the optimized binary. The average lifetime has
moved from 219 cycles to 220 or more cycles, meaning that
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system. (a) Code layout optimizations increase the number of
sequentially executed instructions. (b) Layout optimized codes use all
the instructions in a cache line before it is replaced.



cache lines are available for twice the amount of cycles.

Because we require fewer cache lines, we can keep a given

cache line for longer before having to replace it, offering

more opportunities for temporal reuse of instructions.
We have also measured the average number of times that

a given instruction is used every time it is loaded into the

cache. That is, every time we load a cache line, we count

how may times each instruction was used before the line

was replaced.
Our results show that the baseline (unoptimized)

application does not use over 50 percent of what is loaded

into the cache, while the optimized application uses over

80 percent of what is loaded (only 18 percent is left unused).

This reflects the code compaction which we saw in the

previous section.
If we examine the percentage of instructions which are

used more than once, we see an increased reuse in the

optimized application: 16 percent of all instructions are

used twice, compared to a mere 10 percent in the

unoptimized code. There is an increased percentage of

instructions in all other reuse categories in the optimized

application thanks to the increased lifetime of cache lines.

5.2 Impact on the Fetch Width

The layout of basic blocks in memory may also have an

effect on the effective fetch width.
The presence of branches disrupts the fetch sequence,

but it is taken branches which actually interrupt it. It is

difficult to fetch both a taken branch and its target in the

same cycle, as is done in the branch address cache [33] and

the collapsing buffer [6]. It requires fetching multiple cache

lines per cycle and a complex instruction alignment net-

work, which may add extra pipeline stages.
Meanwhile, it is easy to fetch a not-taken branch and its

target in the same cycle because they reside in consecutive

memory positions. It is not necessary to fetch additional

cache lines nor to realign the instructions to reflect the

actual execution flow.
As will be shown in Section 5.3, code layout optimiza-

tions are very successful at aligning branches toward their

not taken direction, reaching an 80 percent not-taken rate

among conditional branches. Furthermore, 60 percent of all

executed branches are always not taken.

Fig. 6 shows the impact of code layout optimizations on a
fetch engine capable of fetching up to three sequential basic
blocks per cycle (the SEQ.3 engine described in [27]) and a
trace cache architecture.

The results in Fig. 6 show that code layout optimizations
such as the one proposed by Pettis and Hansen [20] and the
Software Trace Cache effectively increase the number of
instructions provided by the fetch engine each cycle,
reaching a performance level close to that of a trace cache.

Comparing the STC with the Pettis and Hansen
optimized code, our results show that the STC offers a
better fetch width, in addition to the improved instruction
cache miss rate observed in the previous section.

But, the benefits of code layout optimizations are not
restricted to architectures which fetch consecutive basic
blocks. The trace cache allows the fetch engine to fetch
nonconsecutive basic blocks in a single cycle, but it also
experiences a significant performance boost when com-
bined with code layout optimizations. Our results show that
a small 16KB trace cache used on a layout optimized code
has better performance than a much larger trace cache using
unoptimized code.

The trace cache reads the dynamic instruction stream and,
so, is unaffected by the layout of instructions in memory.
However, the trace cache is not a standalone fetch mechan-
ism. If the requested trace is not present in the trace cache, it
has to be fetched from a secondary fetch path, usually a
sequential fetch engine. It is in those cases when code layout
optimizations help a small trace cache to increase perfor-
mance: If the secondary fetch engine has a performance close
to that of the trace cache, it is less critical to miss in the trace
cache. A full comparison of the fetch performance of the STC
and the trace cache can be found in [24], [25].

5.3 Impact on the Branch Predictor

We have shown that code layout optimizations have a
positive impact on the instruction cache performance and
that they increase the effective fetch width, but we have not
examined the impact of the code layout on the branch
prediction mechanism. In this section, we provide such an
in-depth analysis, extending what was done in [4], [12].

A better instruction cache performance means that
instructions can be provided faster, without waiting for the
lower memory hierarchy levels. An increased fetch width
means that, each time we fetch instructions, a larger amount
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Fig. 5. Instruction cache lines have an increased lifetime in layout

optimized codes.

Fig. 6. Code layout optimizations effectively increase the fetch width of

baseline and trace cache fetch architectures.



of instructions is provided. But, if we negatively impact the

branch prediction accuracy, wewill be fetching very fast, and

very wide, but from a wrong speculative path.

5.3.1 Effect on Static Prediction

In this section, we will examine the prediction accuracy that

some simple static branch prediction schemes achieve for

the examined benchmarks. The static strategies examined

are: predict that all branches will be taken, predict that all

branches will be not taken, predict that backward branches

will be taken and forward branches will not, and predict

that a branch will always take its most usual direction based

on profile information [8], [29].
Fig. 7 shows the branch prediction accuracy of some

simple static branch prediction strategies: always taken,

always not taken, backward taken forward not taken

(BTFNT), and the profile-based predictor, for both the

original code layout and the compiler optimized layouts.

For the optimized layout, we show results for the same

input set used for training (self-optimized) and for a

different input set (cross-optimized). The prediction accu-

racy of an 8KB gshare predictor [16] is shown for

comparison purposes.
The simple static prediction approaches prove quite

useless for the baseline code layout with near 50 percent

prediction accuracy, only the BTFNT predictor reaches

60 percent and doesn’t go under 50 percent for any of the

studied benchmarks (individual benchmark results not

shown). On the other hand, the profile static predictor

proves very accurate, predicting correctly over 90 percent of

the branches. This shows that branches can be predicted

statically, but not with this simple strategy.
We optimize the code layout using the Software Trace

Cache (STC) algorithm, which targets an increase in the

sequentiality of the code, that is, it reorders basic blocks so

that branches tend to be not taken.
Once we have optimized the code layout, the static

branch prediction accuracy changes dramatically. The Not

Taken and the BTFNT predictors now predict correctly over

80 percent of the branches, losing some accuracy in the

cross-trained test. This 80 percent prediction accuracy

shows that static branch prediction can be very accurate

for these optimized code layouts, but it is still much lower

than what can be achieved with modern two-level adaptive

branch predictors like gshare.

To gain further insight on this high predictability of
optimized binaries, we explore in depth the changes in
branch behavior introduced by the code layout optimization.

Examining the branch classification for the original code
layout, we observe that 36 percent of the branches are
always not taken, while 32 percent are always taken. The
rest of the branches are evenly spread across all taken
percent values, with a slightly higher peak for branches that
are 50 percent taken. This explains the low prediction
accuracy obtained because branches do not seem to follow
such simple behavior rules.

By optimizing the code layout, we can reverse the
direction of those branches which are taken more than
50 percent of the time. This way, a branch which was taken
80 percent of the time will now only be taken 20 percent of
the time.

The classification for the optimized code layout shows that
wewere quite successful at reversing the branch direction for
those usually taken branches. The fraction of always taken
branches is reduced from 32 percent to 10 percent and most
categories over 50percent takenalsopresent reductions in the
number of branches. This leads to a significant increase in the
number of always not taken branches, from 36 percent to
59 percent.Withmost highly biased branches in the not taken
side and most other branches moving from over 50 percent
taken to mostly not taken, the prediction accuracy of an
always not taken (or BTFNT) predictor increases signifi-
cantly, as we have seen in Fig. 7.

Not all mostly taken branches can be reversed due to
limitations in the algorithm. For example, loop terminations
cannot be reversed (unless we perform loop unrolling)2 and
conditional branches explored late in the algorithm may
find themselves with only one open path to follow,
corresponding to the taken target. These explain why we
could only reduce always taken branches from 32 percent to
10 percent.

The increase in the number of usually not taken branches
explains the different behavior of the two code layouts
regarding static branch prediction. Further increases in
static prediction accuracy can be expected of a code layout
optimization that explicitly targets a specific branch pre-
dictor, like the BTFNT predictor, or uses code replication
techniques to use path information in its static predictions.

Next, we will examine how this change in branch
direction affects dynamic branch prediction.

5.3.2 Effect on Two-Level Adaptive Predictors

Fig. 8a shows the effect of code reordering on dynamic
prediction accuracy for the gshare [16], PAg [34], [35], and
bimodal predictors [29]. Predictor sizes from 512 bytes to
16KB are explored for both the baseline (dotted line) and the
optimized code layout (solid line).

Clearly, the STC increases the prediction accuracy of the
examined branch predictors, especially for the smaller
predictor sizes. Both the gshare and the bimodal predictors
seem to converge at infinite predictor size, which points out
that the benefits of using the STC are related to prediction
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2. We considered a branch as always taken if it is taken over 95 percent of
the time, so a loop with 20 iterations is terminated by an always taken
branch.

Fig. 7. Static branch prediction accuracy for the original and optimized

code layouts (self and cross-trained).



table interference. The larger the table, the less interference,
the closer the prediction accuracy for both layouts.

Fig. 8b shows the percent of dynamic branches which
introduce conflicts in the prediction tables of the gshare
branch predictor with both the baseline and the optimized
code layouts. We classify conflicts in three groups: neutral
interference when the conflict does not change the predic-
tion and positive or negative if the conflict changes the
prediction for good or bad.

As expected, there is a significant reduction in the
number of negative conflicts when the STC layout is used
with the gshare branch predictor. For example, a 1KB gshare
goes down from 1.45 percent of negative conflicts to
0.79 percent using the optimized code layout.

Intuitively, the increase in the number of not-taken
branches favors positive interference because it is more
likely that, when two branches interfere, they both behave
the same way (both not taken), resulting in a positive or
neutral conflict.

The total amount of conflicts shows a different behavior.
The optimized code layout has fewer neutral conflicts for
small predictor sizes, but it ends up with a larger amount of
neutral interference for the largest configurations.

We will look further into this neutral interference
increase in the next section, where we will examine
dealiased branch prediction schemes.

5.3.3 Effect on Dealiased Predictors

Given that the use of an optimized code layout is reducing
the negative interference found in the dynamic prediction

tables, it is interesting to examine what happens with
modern branch predictors that are already organized to
minimize such interference, like the agree [30], bimode [15],
and gskew [17], [28] predictors. We will refer to these
predictors as dealiased branch prediction schemes.

Fig. 9 shows the prediction accuracy of the dealiased
predictors with both the baseline and the optimized code
layouts. The prediction accuracy of the gshare predictor
with the optimized layout is shown for reference purposes.

These results show that, for small predictor sizes, the use
of optimized code layouts obtains equivalent or higher
accuracy, even in the dealiased branch predictors. The
advantage of the optimized layouts is especially clear in the
0.4KB gskew predictor, which increases prediction accuracy
from 93.5 percent to 94.4 percent.

For medium and large predictor sizes, all dealiased
branch predictors obtain higher accuracy with the baseline
code layout, the difference being especially significant with
the 16KB agree predictor, which obtains a 96.2 percent
accuracy with the baseline layout and a 95.8 percent with
the optimized code.

A more important result shows that the use of a large
agree or bimode predictor with the optimized code layout
does not yield significant improvements over a gshare
predictor. Only the gskew predictor obtains significantly
better results than the gshare predictor when using the
optimized code layout.

We have also examined the percent of dynamic branches
which introduce conflicts in the prediction tables of the
gshare branch predictor with the optimized code layout and
the agree predictor using both code layouts.

These results show that the agree prediction scheme with
a nonoptimized layout obtains a slightly better negative
interference reduction than the optimized code layout. It is
surprising that, using the agree predictor, the optimized
code layout has more negative conflicts than the baseline.

From these results, it seems that the dealiased predictors
prove more effective at reducing interference than the
optimized code layout, but the more important result is that
it seems more difficult to reduce conflicts in an optimized
binary. The fact that the optimized code layout has more
total interference for the larger predictor sizes can explain
this higher fraction of negative conflicts.

The fact that a dealiased predictor like agree, using an
optimized binary, obtains worse results than a gshare
predictor points to some other factor hindering the
performance of these predictors.

The high fraction of not taken branches found in the
optimized code layout (80 percent of all branches are not
taken) may be hindering the branch distribution in the BHR.
When working with an optimized binary, the BHR will tend
to be full of zeros, causing many possible BHR values to be
never or rarely used, leading to a worse branch distribution
and a loss of useful information to make a correct prediction.

We have analyzed this BHR distribution factor by
counting the number of times each possible history value
was found in an 11-bit global history predictor for both code
layouts. The results show that the baseline code evenly
spreads the usage of all possible BHR values, with a high
peak at the value with all 1s (all taken branches), while the

RAMIREZ ET AL.: SOFTWARE TRACE CACHE 31

Fig. 8. Impact of code layout optimizations on two-level adaptive branch

predictors. (a) Prediction accuracy using two-level predictors.

(b) Dynamic branches which cause interference in the gshare prediction

tables.



STC layout has a much higher concentration of uses in the
values with many 0s (85 percent of all BHR values had eight
or more 0s and 20 percent were all 0s).

This negative effect is especially visible in the GAg
predictor, which depends exclusively on the correct dis-
tribution of the BHR values. The interference reduction
cannot compensate for the poor value distribution, causing
a loss of accuracy when using optimized codes.3

This does not happen in the gshare predictor because it
XORs the branch address with the branch history, hiding
this effect and causing the interference reduction effect to
dominate.

The dealiased predictors do not benefit from the inter-
ference reduction effect because they are quite good at
reducing it themselves, thus they only suffer the negative
BHR effect and lose accuracywith the optimized code layout.

5.4 Overall Performance Impact

In this section, we examine the impact of code layout
optimizations on the overall processor and system perfor-
mance. Although code layout optimizations usually target
the L1 instruction cache performance, they have a sig-
nificant impact on other components of the fetch engine and
other levels of the memory hierarchy.

Fig. 10a shows the number of misses in the instruction
TLB and the shared L2 cache for a commercial database
management system running an OLTP benchmark, using
both unoptimized and optimized code. The misses in the

shared L2 cache have been classified as either instruction

misses, or data misses.
Our results show a reduction in the number of instruction

TLB misses. Procedure placement optimizations move un-

used routines toward the end of the procedure, condensing

the useful code in fewer pages, which explains this result.
The L2 shared cache shows a significant reduction in the

number of instruction misses as a consequence of the

careful layout of routines and basic blocks. A code which

has been mapped to avoid conflicts in the L1 will also avoid

conflicts in the larger L2.
A more surprising result is the significant reduction in

L2 data misses. The increase in instruction spatial locality

makes the code fit in fewer code pages and the decreased L1
and L2 instruction miss rate leaves more space in the shared

L2 cache for the data to sit more comfortably, reducing

conflicts among data and instructions, which leads to fewer

data misses.
These results show that code layout optimizations have a

positive impact not only on theL1 instruction cache, but on all

levels of the memory hierarchy. This allows the performance

improvements to go beyond what could be obtained by

merely improving the instruction cache miss rate.
Fig. 10b shows the average processor performance

measured in instructions per cycle (IPC) for the SPECint95

benchmarks using unoptimized and optimized codes for a

variety of instruction cache sizes and a perfect instruction

cache. Results are shown for a processor with a realistic

branch predictor and a perfect branch predictor.
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Fig. 9. Effect of the optimized code layout on dealiased branch predictors. (a) Agree predictor. (b) Bimode predictor. (c) Gskew predictor.

3. Results not shown for brevity, see [22] for a complete set of graphs.



The results in Fig. 10b show that processor performance

using layout optimized codes is higher than that of

unoptimized codes using an instruction cache of twice the

size. Moreover, the performance of the unoptimized

binaries saturates after 128KB are devoted to the instruction

cache, while the performance of optimized codes with a

32KB cache is higher than that of unoptimized codes using a

perfect instruction cache.
There is more than just an instruction cache performance

improvement to consider: A fetch width increase, a better

branch prediction accuracy, a lower TLB miss rate, and

fewer data misses to the L2 all contribute to increasing

performance.
When using perfect branch prediction, the improved

prediction accuracy advantage of the optimized binaries

dissolves and unoptimized codes can reach a higher

performance. Still, optimized codes using a 32KB instruc-
tion cache reach the same performance as unoptimized
codes on a 128KB cache.

Fig. 10c shows the relative execution time of our
commercial database application as we include different
code layout optimizations. The optimization combinations
explored include: procedure ordering alone (porder), basic
block chaining alone (chain), basic block chaining with
procedure splitting (chain+split), basic block chaining with
procedure ordering (chain+porder), and all optimizations
together (chaining, splitting, and ordering). We show results
for real machine runs on two different Alpha platforms.

Our results show that most of the performance improve-
ment obtained derives from the basic block chaining
optimization, which is mainly responsible for the increased
spatial locality experienced. The next big step in perfor-
mance is encountered when we add routine splitting and
procedure ordering on top of the basic block chaining. The
routine splitting provides an extra degree of freedom to the
procedure ordering optimization, which now can move
away the unused portions of a routine, compacting the code
so that most cache lines contain only useful instructions.

Overall, our results show that code layout optimizations
can reduce execution time by 25 percent in a difficult and
important workload domain such as commercial databases.
Furthermore, our results show that the performance
improvements obtained are consistent across different
processor generations.

6 CONCLUSIONS

In this paper, we have described the Software Trace Cache
(STC), a code layout optimization which targets not only the
instruction cache performance, but also the effective fetch
width of the fetch engine.

We analyze the performance impact of the software trace
cache and other code layout optimizations on all three
aspects of fetch performance: the instruction cache miss
rate, the effective fetch width, and the branch prediction
accuracy.

Our results show that code layout optimizations
provide significant improvements to the instruction cache
performance, not limited to a conflict miss reduction.
Optimized codes make much more effective use of the
available cache space, packing only useful instructions in
a cache line and moving unused sections of the code
toward the end of the executable. This tight packing of
instructions leads to a high increase in spatial locality and
an increased lifetime of cache lines, which offers extended
opportunities for temporal reuse.

We also show that layout optimizations can increase the
effective fetch width of the front-end engine. A fetch engine
capable of fetching multiple consecutive basic blocks
increases performance to a level close to that of a trace
cache and a small trace cache using optimized codes has a
performance higher than that of a much larger trace cache
running unoptimized applications.

Having a positive impact on the instruction cache and
the fetch width may be worthless if we are decreasing the
branch prediction accuracy. But, we show that such is not
the case. Layout optimized codes are more amenable to
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Fig. 10. Overall performance impact of code layout optimizations.

(a) Impact on the memory hierarchy. (b) Impact on the processor IPC

(SPEC-Int). (c) Impact on the overall system performance (OLTP).



branch prediction using either static branch predictors or
simple 2-level adaptive branch predictors. Only for deal-
iased branch predictors did we experience a slight
performance drop in the branch predictor. However, the
loss in prediction accuracy is more than compensated by the
increased cache hit rate and fetch width.

Finally, we also examine the impact of code layout
optimizations on the whole memory hierarchy and find that
optimized codes have not only better instruction memory
performance, but also better data memory performance due
to the reduced conflict rate between data and instructions.
Our results show that processor performance increases
beyond what could be provided by a mere instruction cache
performance increase, confirming that fetch width, branch
prediction accuracy, and data memory performance are also
important performance contributions by code layout opti-
mizations. Our experiments with a commercial database
application running an OLTP workload on real machine
runs show that layout optimized codes can reduce execu-
tion time by 25 percent.

In this paper, we have advocated the use of compiler
optimizations to increase fetch and processor performance,
without the need for complex and expensive hardware
modifications. We have improved on previous work on
code layout optimizations with the STC and analyzed, in
detail, the reasons for the increased fetch and processor
performance. Our results show significant performance
improvements by adapting the software to the character-
istics of the underlying hardware.
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