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Abstract
In recent years, spaceborne synthetic aperture radar (SAR) technology has been considered 
as a complement to cooperative vessel surveillance systems thanks to its imaging 
capabilities. In this paper, a processing chain is presented to explore the potential of 
using basic stripmap single-look complex (SLC) SAR images of vessels for the automatic 
extraction of their dimensions and heading. Local autofocus is applied to the vessels’ SAR 
signatures to compensate blurring artefacts in the azimuth direction, improving both their 
image quality and their estimated dimensions. For the heading, the orientation ambiguities 
of the vessels’ SAR signatures are solved using the direction of their ground-range velocity 
from the analysis of their Doppler spectra. Preliminary results are provided using five 
images of vessels from SLC RADARSAT-2 stripmap images. These results have shown 
good agreement with their respective ground-truth data from Automatic Identification 
System (AIS) records at the time of the acquisitions.
Keywords: SAR, autofocus, vessel detection, feature analysis, surveillance.

Introduction
Synthetic Aperture radar (SAR) is a widespread technique used in the microwave remote 
sensing community for acquiring images of the Earth’s surface over any location. Current 
civilian spaceborne SAR sensors such as RADARSAT-2, TerraSAR-X or Sentinel-1 are 
able to provide high-resolution images that allow the identification of man-made objects. 
These sensors give rise to a wide range of possibilities for the development and analysis of 
algorithms for extracting special features from the SAR data, allowing the detection and 
classification of a variety of targets of interest.
In recent years, spaceborne SAR sensors have been considered an interesting source of 
information for vessel surveillance systems due to their imaging capabilities [Crisp, 2004; 
Estable et al., 2009; Brusch et al., 2011; Margarit, 2013]. These types of sensors are able 
to obtain images over any area of interest of the sea surface regardless of the weather 
conditions and natural illumination. In addition, they act as non-cooperative detection 
systems, i.e. the detection is performed without acknowledgment of the targets. Thanks to 
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these characteristics, the spaceborne SAR sensors can complement traditional cooperative 
monitoring systems such as the Automatic Identification System (AIS) [IMO, 2015] or 
the Vessel Monitoring System (VMS) [European Commission, 2015]. In addition, the use 
of SAR images would also expand their coverage farther from the coast line and provide 
information for data correlation in order to highlight suspicious activities.
While the vessel detection techniques using SAR images have achieved a level of 
refinement which presents low false alarm rates [Crisp, 2004; Tello et al., 2005; Staglianò 
et al., 2014], the classification and feature extraction algorithms still face great challenges 
related with the complex behaviour of the SAR signatures of the vessels. The extraction 
of the vessels’ features has been an active area of research to obtain useful information 
for monitoring systems like dimensions, heading, and speed. In the case of single-channel 
SAR images, the extraction of the dimensions of a vessel are typically obtained by, first, 
isolating its SAR signature using a constant false rate alarm (CFAR) approach, and then, 
computing its respective bounding box [Brusch et al., 2011; Estable et al., 2011; Zang et 
al., 2013]. Thus, a key factor of this procedure is the proper model of the sea clutter for 
the correct discrimination between the pixels of the vessel and the background. For the 
heading, additional information has to be extracted to solve the direction ambiguity of 
the main orientation of the bounding box. A common approach for this is the vessel wake 
analysis, from which the sailing direction and information about the motion of the vessels 
can be obtained. This approach usually considers the azimuth offset of the vessel with 
respect to the vertex of its wake in order to estimate the heading and range velocity of the 
vessel [Peng et al., 1996; Tunaley, 2003; Radius and Marques, 2008]; in this way, it exploits 
the well-known phenomenon of azimuth shifts of a moving target in the SAR image due 
to its motion in range direction [Raney, 1971]. In addition, the analysis of the shape of the 
wake alone is another option to estimate the direction and velocity of the vessel [Zilman 
et al., 2004]. However, these techniques are limited to the presence of the vessel’s wake, 
which is not always visible in the SAR images. Other more general approaches to estimate 
the velocity and heading of the vessels are based on the analysis of the received radar signal 
of moving targets; in particular, the analysis of the Doppler spectra of the vessels is often 
used in the estimation of their range-velocities. This technique has been reported to provide 
a good agreement with ground-truth data for spaceborne acquisitions [Dragosevic et al., 
2008; Brusch et al., 2011; Renga and Moccia, 2014], so it can be used as a tool to extract 
information about the motion of the vessels.
An additional problem of SAR images of moving targets is the likely presence of aberrations 
such as defocus [Raney, 1971]. In the case of vessels, their motion may induce these artefacts 
that affect the quality of their image, and as a consequence, undermine the extraction of 
geometrical features such as their dimensions and main orientation. In order to overcome 
this problem, autofocus of the vessels’ SAR signatures is required to compensate their 
defocus; examples of these procedures on spaceborne SAR acquisitions have been shown 
by Martorella et al. [2012] using an inverse SAR approach to refocus SLC spotlight images 
of vessels, or Santamaria et al. [2014] who use classical autofocus techniques on SLC 
vessels’ signatures from stripmap acquisitions. By improving the focusing of the vessels’ 
SAR signatures, better estimates of their features could be obtained.
In this paper, an automatic processing chain has been implemented to explore the potential 
of using spaceborne single-look complex (SLC) SAR images of vessels for automatic 
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feature extraction, namely their dimensions and heading, which is often information of 
interest in maritime surveillance systems. The SLC stripmap data have been selected 
because it allows the use of advanced post-processing techniques that require the phase 
information. Moreover, in comparison to acquisition modes such as spotlight or scanSAR, 
stripmap offers a good trade-off between image resolution and swath extension, which is 
a requirement in any monitoring application. The inputs of the algorithm presented are the 
SLC chips from detected vessels. They are obtained using the Wavelet-Transform Vessel 
Detection tool developed at the Universitat Politècnica de Catalunya (UPC) [Tello et al., 
2005]. An autofocus module is implemented to enhance the quality of the vessels’ SAR 
signatures in order to obtain better outlines of their contours and estimates of the dimensions 
and main orientation.. In addition, the likely sailing direction of the vessel, i.e. the heading, 
is obtained by the Doppler analysis of the received radar signal by assuming vessels to be 
slow-moving targets. The whole processing chain is intended to be automatic, so it can be 
used as an add-on module for the post-processing of a large number of detected vessels. The 
scope of this paper is to provide the outline of the whole processing chain and preliminary 
results using real RADARSAT-2 acquisitions.
This paper is organized as follows. The first section provides a brief overview of the feature 
extraction algorithm. The masking process used to isolate the vessels’ SAR signatures 
from the background is described in the second section. The third section addresses the 
application of the autofocus technique in the SAR signatures. The fourth section is devoted 
to the extraction of the dimensions and heading of the vessels. The preliminary results 
are presented in the fifth section using SLC chips from RADARSAR-2 acquisitions. The 
conclusions are presented at the end of this paper.

Overview of the feature extraction algorithm
This feature extraction algorithm is intended to be applied to SAR images of the detected 
vessels. Chips of SLC images from spaceborne stripmap acquisitions are considered as the 
inputs. The basic block diagram of the processing chain is shown in Figure 1. The main 
steps of the process can be summarized as follows: 1) a SLC chip containing a single vessel 
is selected as the input. 2) A masking process is applied to select the range bins that contain 
the SAR signature. 3) The range and ground-range velocity is estimated from the Doppler 
analysis using techniques such as Energy Balancing (EB) [Bamler, 1991] or Correlation 
Doppler Estimator (CDE) [Madsen, 1989]. 4) The autofocus procedure (e.g., Phase 
Gradient Autofocus (PGA) [Eichel et al., 1989] or Multiple Aperture Mapdrift (MAM) 
[Carrara et al., 1995]) is applied in azimuth to the signature to improve its image quality. 5) 
The enhanced SAR signature of the vessel is isolated from the sea clutter and a bounding 
box is computed. Finally, 6) the dimensions of the vessel are computed from the Universal 
Transverse Mercator (UTM) projection of the bounding box, and the heading ambiguity is 
solved with the direction of the ground range-velocity.

Masking
The masking of the SAR signature is used to automatically identify the range bins and 
the area that belongs to the SAR signature of the vessel. It is a previous step of both the 
application of the autofocus and the feature extraction.



Yam and Mallorqui	 Refocus and feature extraction of vessels’ SAR signatures

748

Figure 1 - Basic block diagram of the processing chain for the automatic 
feature extraction.

In the algorithm, the masking process is based on the automatic selection of an intensity 
threshold since the inputs come from single-channel images. The high reflectivity of the 
vessel signature is exploited to discriminate the pixels that likely belong to the target from 
those of the sea clutter. A statistical distribution is used to model the reflectivity of the sea 
clutter in the SLC chip. Distributions such as K, Weibull, and Log-normal are well-known 
for modelling the reflectivity (in amplitude) of the sea clutter in SAR images [Ward et 
al., 2006]. In this algorithm, the log-Weibull distribution has been used in order to work 
directly with the intensity images in dB. On the one hand, it has been observed that this 
model presented a better agreement with the distribution of the sea clutter intensity than 
the log-Normal distribution in the high-resolution SLC SAR images analysed. On the other 
hand, the log-Weibull model offers the advantage of simpler mathematical tractability (in 
comparison with the K distribution, for instance). This makes the practical computation of 
their parameters easier by fitting its cumulative distribution function to the empirical data 
using advanced optimisation routines (based on the gradients) in high-level programming 
languages like MatLab and IDL/ENVI.
The a priori knowledge of the content of the input image makes the computation of the 
mask easier. It is assumed that there is only one vessel per image and that most of the 
pixels belong to the sea clutter. Then, a rough estimate of the parameters of the log-Weibull 
model is done considering the whole image. With a relaxed probability of false alarm 
(PFA), e.g. PFA = 0.05, the brighter pixels are selected, and the main cluster is obtained 
after the application of morphological operations [Haralick et al., 1987]. In the presented 
masking process, the morphological operations of opening and closing are used as filter 
mechanisms for the “salt and pepper” noise removal in the binary images [Ritter et al., 
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2000]. The opening and closing operations involves successively applying the two basic 
morphological operations of dilation and erosion using a structuring element (SE); this 
SE is the shape that interacts with the clusters and is directly related to the modification of 
their details after the application of an operator. Basically, the opening operation (eroding 
+ dilating) aims to suppress image details smaller than the SE while preserving the shape 
of unfiltered features; on the other hand, the closing operation (dilating + eroding) aims 
to fill holes and narrow gaps smaller than the structuring element [Ritter et al., 2000]. In 
the presented processing, a structuring element of 2x2 pixels is used for the opening and 
closing. Thus, after the intensity thresholding, isolated single pixels and small clusters are 
discarded, whereas small holes and gaps are filled. As a result, a smoother and cleaner 
mask is obtained. This preliminary mask is used to roughly separate the pixels that belong 
only to the sea clutter, using them to estimate once more the parameters of the statistical 
model.. The final mask for the vessel’s SAR signature is obtained with a more restrictive 
PFA, e.g. PFA=10-5, with the refined model of the statistics of the sea clutter intensity and 
the application, again, of the morphological operations. This final process is depicted from 
left to right in Figure 2.

Figure 2 - Process of computation of the final mask for the SAR signature: (left) thresholding of the 
brighter pixels based on a given PFA and the statistical model of the sea clutter intensity; (centre) 
direct mask after the thresholding; (right) final mask after the application of morphological 
operations (opening and closing).

Autofocus step
The SAR processing is based on the application of matched filtering in both range and 
azimuth dimensions to obtain the final image. In the range dimension, this process is 
straight forward due to the complete knowledge of the generated radar pulse signal. In 
contrast, in the azimuth dimension, it relies on the modelling of the range variation during 
the extension of the synthetic aperture. Thus, discrepancies between this model and to the 
actual evolution of the range introduce phase errors, whose quadratic and higher order 
terms produce the most severe deterioration by defocusing the SAR image [Raney, 1971; 
Carrara et al., 1995].
In the case of stripmap images from spaceborne SAR sensors, some assumptions can be 
made in the analysis of the expected motion of the vessels and the phase errors in their 
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received radar signal. First, the platform trajectory in this type of acquisition is virtually 
stable, so it can be assumed that, after the processing of the image with the proper Doppler 
rate and Doppler centroid, localized blurring artefacts are mainly produced by targets in 
motion. Secondly, the typical sailing speed of medium/large vessels is a lot lower than the 
speed of the sensor’s platform, so the vessels can be considered slow-moving targets. In 
these conditions, the scatterers of the vessels are assumed to remain mainly in the same 
range resolution cell during the effective observation time for stripmap acquisitions. Thus, 
its signature is expected to be deteriorated more significantly in the azimuth direction, 
in particular, by its range acceleration component which modifies the expected Doppler 
rate [Raney,1971]. This change in the Doppler rate translates into blurring effects that are 
commonly observed along the azimuth direction of the vessels’ SAR signatures in maritime 
images. In this paper, local application of the autofocus techniques in azimuth direction is 
considered in order to enhance the quality of the SAR signatures of the vessels, which can 
be used later to extract a more reliable estimation of its features.
The aim of the autofocus techniques is to automatically improve the focus of the final image 
by estimating the phase errors from the SAR signal, and then, applying the respective error 
compensation. Second and higher order phase errors are usually the ones that the autofocus 
techniques look to compensate since they are responsible for the most severe deterioration 
of the SAR image [Carrara et al., 1995]. In this algorithm, three widely used autofocus 
techniques were implemented to compensate the defocus in the azimuth direction: phase 
gradient autofocus (PGA) [Eichel et al., 1989], multiple aperture mapdrift (MAM) [Carrara 
et al.,1995], and an image contrast based autofocus (ICBA) [Cumming et al., 2015]. PGA 
follows a non-parametric approach; it does not assume an explicit model of the phase error 
function, which means that it could compensate arbitrary high order phase errors. PGA 
estimates the gradient of the phase error as a function of the aperture time of the received 
SAR signal, so the phase error is obtained through the integration of this gradient with 
respect to the time. In contrast, MAM follows the model-based approach by assuming an a 
priori polynomial function to model the phase error; then, it analyses iteratively the relative 
shifts between (two or more) non-overlaping subapertures from which the coefficients of 
the polynomial phase error function can be derived. The ICBA technique implemented also 
uses the model-based approach, and the idea is to apply a multidimensional optimisation 
to get the polynomial coefficients of the phase error function that maximizes an objective 
function related to the contrast of the image.
The common implementation of the autofocus techniques assumes that the same phase error 
affects the whole image. But in some cases, large vessels may present different defocus 
along the range bins due to their rotational motion. Thus, the processing algorithm allows 
the user to select the application of the autofocus techniques as a single function obtained 
from all the range bins or in an independent range-bin (IRM) mode; the latter is proposed 
in this implementation to overcome the variation of the defocus in the SAR signature along 
the range direction. In the IRM mode, each range bin is considered independently, so a 
phase error function is obtained and compensated for each range bin of the vessel’s SAR 
signature. Figure 3 shows an example of a typical SAR signature of a vessel with defocus 
artefacts and the refocused image by using the MAM technique in the IRM mode; the peak 
value intensity is increased by 3.61 dB, and the different defocus along the range direction 
is compensated.
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Feature extraction: dimensions and heading
Dimensions
The automatic extraction of the dimensions of the vessels is done directly on the intensity 
image. First, it requires the isolation of the SAR signatures from the sea clutter; then, the 
computation of the corresponding bounding box from which the dimensions are computed. 
This basic geometry is assumed because most of the SAR signatures of medium/large 
vessels observed in SAR images tend to appear as quasi-rectangular shapes.
Once the autofocus has been done, the enhanced SAR signature is extracted by masking the 
sea clutter. The signature is used to compute the main orientation of the distribution of the 
pixels by using the Principal Component Analysis (PCA) approach [Jollifre, 2002]; with the 
computation of the centre of mass, the main and secondary axes of the box are obtained. These 
axes are used as the references to compute the sides of the box that fits the contour of the 
signature of the vessel. Finally, the locations of the vertices of the bounding box are mapped 
to UTM coordinates, and the dimensions in the ground projection are computed (Fig. 4).

Figure 3 - Example of the refocus of a vessel’s signature applying the MAM technique (in 
IRB mode). (Left) Original SLC chip; (right) SLC chip after autofocus. Dynamic range of 
30 dB. Intensity normalized with respect to the maximum value of the refocused image.

Figure 4 - Diagram of the computation of the dimensions and heading of the vessel from its 
bounding box and the direction of its ground-range velocity.



Yam and Mallorqui	 Refocus and feature extraction of vessels’ SAR signatures

752

Heading
The main axis of the bounding box provides the orientation of the vessel at the moment of 
the SAR acquisition. Nevertheless, the heading still needs to be defined in an unambiguous 
way. Instead of analysing the reflectivity of the SAR signature or the wake to determine the 
bow and stern of the vessel, the motion of the vessel is exploited, in particular, its ground-
range velocity.
In typical conditions of a travelling vessel, it can be assumed that its translational motion 
is more significant in the horizontal plane than in the vertical direction. Consequently, 
the ground-range velocity component of the vessel could be seen as the most significant 
contributor to the induced range velocity. It is a well-known effect that a range velocity 
component appears as a linear term in the phase history of the SAR signal [Raney, 1971], 
causing a shift in the Doppler centroid frequency of:

∆ f v
DC

r= [ ]2
1

λ

with vr as the range velocity component, and λ the wavelength of the carrier frequency of 
the SAR sensor. Thus, a measure of this component is obtained from the Doppler analysis 
of the SAR signal of the vessel by using methods of fractional Doppler centroid estimation 
such as Energy Balancing (EB) [Bamler, 1991] or Correlation Doppler Estimator (CDE) 
[Madsen, 1989]. With the assumption that the vessel is moving mainly in its horizontal 
plane, the direction of is used to determine the direction of the unitary vector heaû , which 
is associated to the main axis of the bounding box as shown in Figure 4. Then, its UTM 
projection allows obtaining the heading of the vessels with respect to the North. There is 
the intrinsic assumption that the ground-range velocity of the vessel, grv , is proportional 
to rv . In this paper, only the direction of rv  is used as indicator of the likely of motion 
of the vessel due to two factors: 1) in real conditions, the motion of the vessels could be 
more complex than the one assumed, which could affect the magnitude of the ground-range 
velocity, although it can be expected that at least its direction remains correct; and, 2) the 
relation of D fDC  and rv  in Equation [1] is expected to be only an approximation when 
using SLC images due to the suppression of part of the Doppler spectra in the windowing 
process of the image formation [Cumming et al., 2015]. Thus, the magnitudes of rv  and the 
estimated D fDC  would not be truly proportional in this case.

Preliminary results
The feature extraction algorithm was tested with experimental SLC data. For this, the 
inputs are SLC chips from stripmap SAR data acquired during the campaigns of the 
European Project NEREIDS [Margarit, 2013]. They belong to RADARSAT-2 HH-stripmap 
acquisitions done in 2014 near the coast of Ålesund, Norway, with Range-Azimuth 
resolution of around 2.6m x 2.7m (or, Ground-range-Azimuth resolution of around 3.7m x 
2.7m); Table 1 summarizes the main acquisition parameters of these images. Five SLC chips 
of SAR signatures of vessels were selected due to the available ground-truth data. Their 
positions in the geocoded image were positively cross-checked with the AIS information at 
the time of the SAR acquisition.



753

European Journal of Remote Sensing - 2016, 49: 745-758

Table 1 - Main parameters of RADARSAT-2 acquisitions.
Parameter Value

Mode SLC stripmap
Channel HH
Location Ålestund, Norway
Carrier frequency 5.40 GHz
Azimuth resolution 2.46 m - 2.99 m
Range resolution 2.66 m
Ground-range resolution 3.57 m - 3.92 m
Incidence angle 42.7° - 48.2°

Figure 5 - Input SLC chips number 1, 2, and 3 (top row), and their respective output after the 
application of the processing chain (bottom row). Dynamic range of 30 dB. Intensity normalized 
with respect to the maximum value of the processed images for each pair of SLC chips.

Figure 5 shows three of the input SLC chips employed along with their respective outputs 
after the application of the algorithm. The autofocus processing (MAM) has improved the 
vessels’ SAR signatures by better concentrating the energy of the scatterers in the azimuth 
direction, obtaining a signature that resembles more the typical quasi-rectangular shapes. 
In addition, a visual inspection of the bounding boxes shows that their dimensions and 
main orientations correspond to the distribution of the improved SAR signatures, which is 
crucial in order to get a good estimation of these parameters. Table 2 contains the results of 
the extracted data after processing the five chips and their respective AIS information at the 
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time of the respective acquisitions. The estimates of the ground-range velocity, using the 
EB and CBE techniques are also included in this Table, but only to show the agreement with 
the actual value obtained from the AIS information. The absolute errors of these estimated 
features are presented in Table 3.

Table 2 - AIS data and the feature extracted after processing the SLC chips.
AIS Data

Chip
number

Heading
[°]

Length 
[m]

Width
[m]

vg
[m/s]

IMO
number

1 50 89 12 -3.31 9145140

2 44 93 15 5.38 9334404

3 97 94 17 -2.78 9432646

4 241 78 17 -4.95 9617973

5 212 119 19 -3.46 9272735
Extracted data from processing

Chip 
number

Heading 
[°]

Length 
[m] Width [m] EB vg 

[m/s]
CDE vg 

[m/s]
1 55.4 84.6 14.8 -5.77 -4.54

2 39.9 103.0 22.5 8.87 8.85

3 110.0 103.6 20.1 -4.21 -3.57

4 234.2 89.7 26.4 -3.59 -4.28

5 208.4 127.3 43.7 -0.8 -2.61

Table 3 - Absolute error, |Dataextracted -DataAIS|, between the extracted features 
and the AIS data.

Absolute error 

Chip 
number

Heading 
[°]

Length 
[m] Width [m] EB vg 

[m/s]
CDE vg 

[m/s]

1 5.4 4.4 2.8 2.46 1.23

2 4.1 10.0 7.5 3.49 3.47

3 13.0 9.6 3.1 1.43 0.79

4 6.8 11.7 9.4 1.36 0.67

5 3.6 8.3 24.7 2.66 0.85

μe 6.9 8.8 9.5 2.3 1.4

σe 3.4 2.5 8.0 0.80 1.1

In general, the dimensions and heading extracted were similar to the ground-truth information 
for this small dataset. Having the input images Ground-range-Azimuth resolution of around 
3.7m x 2.7m, an average error of 8.8m and 9.5m were obtained for the length and width of 
the vessels, respectively; for the heading, the average error was 6.9°; for the ground-range 
velocities, the average errors were 2.3m/s and 1.4m/s using the EB and CDE techniques, 
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respectively. These results suggest that 1) the dimensions of the vessels could be inferred 
(approximately) from the dimensions of their processed SAR signatures despite the defocus 
aberrations of the original images; the dimensions of the vessels have been overestimated 
in most of the cases, and this could be attributed to artefacts that may broaden the extracted 
contour of the SAR signatures like the vessel-sea reflections and secondary lobes from 
highly reflective scatterers. 2) The statistical model used for the sea clutter was a good 
descriptor of its intensity distribution in the processed SLC chips, allowing the computation 
of a mask that fits closely the contours of the vessels’ SAR signatures. And, 3) solving the 
orientation ambiguity with the direction of the ground-range velocity of the vessels is a 
simple and effective approach for determining their heading, and no further analysis of 
their reflectivity distribution or their wakes (which are not always visible) is required for 
identification of the stern and bow of the vessels.
Due to the loose assumption of the simplified motion of the vessel and the use of SLC 
data, it was expected that the magnitude of the ground-range velocities would show only 
a similar trend to the ground-truth data. The motion of a vessel is far more complex in 
reality, presenting translational and rotational motions over their three axes; this means that 
its range velocity component is, in fact, the result of the combination of all these motions. 
As a consequence, the estimated range velocity can only be considered an approximation 
of the real motion of the vessel. On top of that, using SLC data implies that the vessel’s 
azimuth spectrum has already been modified and partially suppressed of during the image 
formation. By comparing both estimation techniques for the Doppler centroid frequency, 
similar results were obtained for the ground-range velocity, although the estimates from the 
CDE tended to be closer to the ground-truth data. This can be attributed to the sensitivity 
of the EB technique to asymmetries in the Doppler spectrum envelopes of the vessels’ 
Doppler spectra and their modifications due in the SLC image formation.

Conclusions
Spaceborne SAR technology is an attractive candidate as an external source of information 
for vessel surveillance systems. It provides high resolution imaging at a global scale 
regardless of the weather conditions and natural illumination. In this paper, a processing 
chain has been implemented to explore the potential of using single-look complex (SLC) 
SAR images from stripmap acquisitions to extract information of interest about the vessels. 
The convenience of using SLCs is due to its availability and post-processing capabilities; 
all civilian spaceborne SARs can provide it, and as a consequence, the revision time of 
an area is not tied to a specific type of SAR sensor. Moreover, the stripmap mode offers 
a practical advantage regarding the acquisition of high-resolution images of areas of tens 
of kilometres, which makes its suitable for expanding the coverage of the surveillance 
systems.
The SLC chips containing the SAR signatures of the vessels were processed to automatically 
obtain their dimensions and heading. The defocusing distortions due to motion of the 
vessel were compensated by the local application of autofocus techniques such as PGA 
or MAM, improving the quality of the SAR signatures. The combination of the automatic 
selection of an intensity threshold and morphological operations provided a quick way to 
effectively isolate the SAR signatures of the vessels based on their reflectivity. Then, from 
their bounding boxes, their dimensions are extracted. The heading ambiguity was solved 
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by the analysis of the effects of the motion of the vessels on their respective SAR signals.
The processing chain was tested with five SLC chips from a RADARSAT-2 stripmap 
image. The preliminary results are closely related to the values of the ground-truth data 
given by the AIS information near the time of the respective acquisitions. The dataset used 
is small and analysis with more examples is required for a complete characterization of the 
algorithm. Nevertheless, the results are encouraging for the use of the presented processing 
chain as a tool for the automatic extraction of information of any number of detected vessels 
in stripmap SLC SAR images.
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