1. Corrections should be marked with the Adobe Annotation & Comment Tools below:

2. To save your proof corrections, click the ‘Publish Comments’ button. Publishing your comments saves the marked up version of your proof to a centralized location in Wiley’s Online Proofing System. Corrections don’t have to be marked in one sitting – you can publish corrections and log back in at a later time to add more.

3. When your proof review is complete we recommend you download a copy of your annotated proof for reference in any future correspondence concerning the article before publication. You can do this by clicking on the icon to the right of the ‘Publish Comments’ button and selecting ‘Save as Archive Copy...’.

4. When your proof review is complete and you are ready to send corrections to the publisher click the ‘Complete Proof Review’ button that appears above the proof in your web browser window. Do not click the ‘Finalize/Complete Proof Review’ button without replying to any author queries found on the last page of your proof. Incomplete proof reviews will cause a delay in publication. Note: Once you click ‘Finalize/Complete Proof Review’ you will not be able to mark any further comments or corrections.

Firefox, Chrome, Safari Users

If your PDF article proof opens in any PDF viewer other than Adobe Reader or Adobe Acrobat, you will not be able to mark corrections and query responses, nor save them. To mark and save corrections, please follow these instructions to disable the built-in browser PDF viewers in Firefox, Chrome, and Safari so the PDF article proof opens in Adobe within a Firefox or Chrome browser window.
Once you have Acrobat Reader open on your computer, click on the Comment tab at the right of the toolbar:

This will open up a panel down the right side of the document. The majority of tools you will use for annotating your proof will be in the Annotations section, pictured opposite. We've picked out some of these tools below:

1. Replace (Ins) Tool – for replacing text.
 - Strikes a line through text and opens up a text box where replacement text can be entered.
 - **How to use it**
 - Highlight a word or sentence.
 - Click on the Replace (Ins) icon in the Annotations section.
 - Type the replacement text into the blue box that appears.

2. Strikethrough (Del) Tool – for deleting text.
 - Strikes a red line through text that is to be deleted.
 - **How to use it**
 - Highlight a word or sentence.
 - Click on the Strikethrough (Del) icon in the Annotations section.

3. Add note to text Tool – for highlighting a section to be changed to bold or italic.
 - Highlights text in yellow and opens up a text box where comments can be entered.
 - **How to use it**
 - Highlight the relevant section of text.
 - Click on the Add note to text icon in the Annotations section.
 - Type instruction on what should be changed regarding the text into the yellow box that appears.

4. Add sticky note Tool – for making notes at specific points in the text.
 - Marks a point in the proof where a comment needs to be highlighted.
 - **How to use it**
 - Click on the Add sticky note icon in the Annotations section.
 - Click at the point in the proof where the comment should be inserted.
 - Type the comment into the yellow box that appears.
5. Attach File Tool – for inserting large amounts of text or replacement figures.

How to use it

- Click on the Attach File icon in the Annotations section.
- Click on the proof to where you’d like the attached file to be linked.
- Select the file to be attached from your computer or network.
- Select the colour and type of icon that will appear in the proof. Click OK.

END

6. Drawing Markups Tools – for drawing shapes, lines and freeform annotations on proofs and commenting on these marks.

How to use it

- Click on one of the shapes in the Drawing Markups section.
- Click on the proof at the relevant point and draw the selected shape with the cursor.
- To add a comment to the drawn shape, move the cursor over the shape until an arrowhead appears.
- Double click on the shape and type any text in the red box that appears.
Spray distribution evaluation of different settings of a hand-held-trolley sprayer used in greenhouse tomato crops

Jordi Llop,a Emilio Gila1,a Montserrat Gallart,a Felipe Contador,b and Mireia Ercilla a

Abstract

BACKGROUND: Hand-held-trolley sprayers have recently been promoted to improve spray application techniques in greenhouses in south-eastern Spain. However, certain aspects remain to be improved. A modified hand-held-trolley sprayer was evaluated under two different canopy conditions (high and low canopy density) and with several sprayer settings (nozzle type, air assistance and spray volume). In this study, the deposition, coverage and uniformity of distribution of the spray on the canopy have been assessed.

RESULTS: The deposition on leaves was significantly higher when flat-fan nozzles and air assistance were used at both high and low spray volumes. No differences were detected between the reference system at a high spray volume and the modified trolley at a low spray volume. Flat-fan nozzles with air assistance increased penetrability into the canopy.

CONCLUSIONS: Air assistance and flat-fan nozzles allow volume rates to be reduced while maintaining or improving spray quality distribution. The working parameters of hand-held sprayers must be considered to reduce environmental risk and increase the efficacy of the spraying process.

Keywords: greenhouse; hand-held trolley; air assistance; deposition; coverage; nozzle type

1 INTRODUCTION

Producing high-quality food in a safer manner is one of the most important objectives in modern agriculture. This is especially important in intensive horticultural production, where the agriculture and food industry is seeking to produce high-quality foods by safe and sustainable procedures. Fresh vegetable production represents one of the most important agricultural businesses in southern Europe in general and in the south of Spain in particular, with many unsolved problems related to the lack of mechanisation, intensive use of plant protection products (PPPs) and in some cases undesirable episodes related to the residues on food.

According to Eurostat statistics (http://epp.eurostat.ec.europa.eu), the area devoted to protected crop cultivation in the European Community member states (MSs) is roughly 150,000 ha. The countries with the highest areas under protected cultivation are Spain (66,000 ha), Italy (34,600 ha), France (11,400 ha), the Netherlands (10,200 ha), Poland (6,300 ha) and Greece (4,900 ha).

One of the greatest risk factors affecting the economic, environmental and productive parameters in covered horticulture production is directly related to the use of PPPs during pest/disease control. Aspects of operator safety, residues on the produced food, environmental contamination and economic investment are problems linked to this specific and necessary labour; most of these are directly linked to the technology used during the process.

Hand-held spray guns and lances are the most widely used methods of crop protection in greenhouses, in spite of the heavy workload and high risk of operator exposure associated with these techniques. These spray application techniques have also proved to be less effective than spray boom equipment under many conditions. Hand-held spraying techniques are less expensive; however, they are less specific in practical use. Many growers also erroneously believe that high spray volumes and pressures are needed to assure good plant protection, achieving in some cases values of over 4000 L ha⁻¹. Given the high number of treatments per year, this constitutes a great risk of contamination and a considerable economic factor that deserves to be considered.

For these reasons, several improvements and new developments have appeared in the last 10 years with the aim of improving the spray application technology for use in greenhouses. The developments range from newly designed hand-held trolleys equipped...
with vertical booms, either with or without air assistance, to the sophisticated and expensive self-propelled and autonomous vehicles. The advantages of using vertical boom sprayers compared with using hand-held sprayers or lances have been widely reported in terms of coverage and uniformity of spray distribution. Self-propelled and autonomous sprayers have also attracted interest because of reduced operator exposure, improved work capacity and in some cases reduced application of PPPs while maintaining the efficacy of pest/disease control. However, problems have also been reported: poor penetration capacity exhibited by vertical boom sprayers without air assistance; management of hand-held trolleys depending on the soil type and sprayer design; difficulties of identifying accurate conditions for safe and efficient use of self-propelled sprayers, including aspects related to the high level of investment required.

The objective of this study was to improve the spray application process in Spanish greenhouses by modifying and improving an existing spray technology. A commercial hand-held-trolley sprayer (Carrettillas Amate, Almería, Spain) was selected, and its technical characteristics (incorporation of air assistance, different nozzle types, nozzle distance reduced from 50 to 30 cm, operation system) were modified. The modified sprayer was then compared with the original reference sprayer in two different tomato crop (Solanum lycopersicum L. cv. Velasco) greenhouses in El Ejido (Almería, south of Spain). The specific objectives of this work were: (a) to evaluate the effects of air assistance on spray distribution quality; (b) to determine the most suitable nozzle type and nozzle distribution along the boom; (c) to quantify the influence of canopy characteristics on the spray distribution quality; (d) to analyse the effect of applied spray volume on the efficiency of spray distribution quality and leaf deposition.

Table 1. Technical data of field trials

| Trial | Canopy density | Spray equipment | Applied volume rate (L.ha⁻¹) | Air assistance | Pattern | Type | VMD (μm) | Distance (m) | Flow rate (L.min⁻¹) | Pressure (bar) |
|-------|----------------|-----------------|-----------------------------|---------------|---------|------|--------|-------------|----------------|-----------------|---------------|
| T1 | High | Modified sprayer | 1000 | No | FF | XR 110 02 | 163.6 | 0.3 | 1.03 | 5.2 |
| T2 | High | Modified sprayer | 1000 | Yes | FF | XR 110 02 | 163.6 | 0.3 | 1.03 | 5.2 |
| T3 | High | Modified sprayer | 600 | No | FF | XR 110 015 | 163.6 | 0.3 | 0.63 | 3.8 |
| T4 | High | Modified sprayer | 600 | Yes | FF | XR 110 015 | 163.6 | 0.3 | 0.63 | 3.8 |
| T5 | High | Modified sprayer | 1000 | Yes | HC | ATR Brown | 143 | 0.3 | 1.03 | 10.0 |
| T6 | High | Modified sprayer | 600 | Yes | HC | ATR Brown | 147 | 0.3 | 0.63 | 9.0 |
| T7 | High | Reference sprayer | 1000 | No | FF | XR 110 02 | 99.9 | 0.5 | 1.60 | 13.0 |
| T8 | High | Reference sprayer | 600 | No | FF | XR 110 015 | 99.9 | 0.5 | 0.92 | 8.0 |
| T9 | Low | Modified sprayer | 1000 | No | FF | XR 110 02 | 163.6 | 0.3 | 1.03 | 5.2 |
| T10 | Low | Modified sprayer | 1000 | Yes | FF | XR 110 02 | 163.6 | 0.3 | 1.03 | 5.2 |
| T11 | Low | Modified sprayer | 600 | No | FF | XR 110 015 | 163.6 | 0.3 | 0.63 | 3.8 |
| T12 | Low | Modified sprayer | 600 | Yes | FF | XR 110 015 | 163.6 | 0.3 | 0.63 | 3.8 |
| T13 | Low | Modified sprayer | 1000 | Yes | HC | ATR Brown | 143 | 0.3 | 1.03 | 10.0 |
| T14 | Low | Modified sprayer | 600 | Yes | HC | ATR Brown | 147 | 0.3 | 0.63 | 9.0 |
| T15 | Low | Reference sprayer | 1000 | No | FF | XR 110 02 | 99.9 | 0.5 | 1.60 | 13.0 |
| T16 | Low | Reference sprayer | 600 | No | FF | XR 110 015 | 99.9 | 0.5 | 0.92 | 8.0 |

a For an intended forward speed of 3 km h⁻¹ and a row distance of 2.5 m for high canopy density and 2.8 m for low canopy density.

b Spray angle 110° for flat-fan nozzles (FF) and 80° for hollow-cone nozzles (HC).

c Volume median diameter (information provided by the nozzle manufacturers).

d Six nozzles for 0.3 m nozzle distance and four nozzles for 0.5 m nozzle distance.
(12.0 m s\(^{-1}\)) was detected at the highest output placed 1.8 m over the
ground. Great uniformity among air velocities was observed
(5.8% CV). Figure 1 shows the details of the two evaluated sprayers.
The two sprayers were tested with two different spray appli-
cation volumes: 600 and 1000 L ha\(^{-1}\). The high volume was first
established following standard application practices according to
the canopy characteristics. The low volume was then established
by a 40% reduction on the basis of best results from previous prac-
tical experience in greenhouses (Syngenta, unpublished data).

The intended calibration of the sprayer for accomplishing the
volume application rate was performed by establishing a fixed
forward speed and selecting the appropriate nozzle size and
pressure according to the required flow rate. However, the actual
spray volume was calculated according to the real forward speed,
row spacing and flow rate.

The working conditions for the reference sprayer were chosen
following the recommendations of the Spanish Plant Protection
Assessment Organisation.\(^1\) An extended-range flat-fan nozzle XR
110 (Spraying Systems Co., TeeJet Technologies, IL) was used at
high pressure (130.0 bar).

The modified sprayer was tested with two different nozzle types:
extended-range flat-fan (XR 110) nozzles and hollow-cone (ATR)
nozzles (80°) (Albuz-CoorsTek, Evereux, France). In this case, the
working pressure was adjusted according to the manufacturer’s
recommendations to obtain the intended volume rate. For all
trials, the forward speed was measured and adjusted to remain
as constant as possible around 3 km h\(^{-1}\). This value was obtained
after several previous tests made in order to find a comfortable
forward speed for the operator.

Note that all trials with the modified sprayer were conducted
with and without air assistance, except in the case of hollow-cone
nozzles, which were only tested with air assistance according to
their recommended use.\(^1\)\(^2\) The trial settings are summarised in
Table 1. Both sprayers were connected via a 30 m long hose
(0.025 m diameter) to a hand-held wheelbarrow with a tank capacity
of 100 L, and a piston pump (37 L min\(^{-1}\)) and a petrol engine
(3.5 kW) (Honda, Slough, UK) were used for feeding the sprayers.
This procedure simplified the feeding process with a more precise
tank concentration while avoiding the difficulties of connecting
the sprayers to the greenhouse installation.

To quantify the leaf deposit and coverage at different parts of
the canopy, a fluorescent tracer (Helios SC 500; Syngenta Crop
Protection AG, Basel, Switzerland) was used at 0.1% v/v. The
calculated amount of tracer was added to the external tank and
mixed thoroughly.

2.2 Canopy characterisation

Field tests were carried out at El Ejido (Almeria, south-eastern
Spain) on a representative commercial tomato (Solanum lycoper-
sicum L cv. Velasco) production system (plastic greenhouse) of this
zone. The two sprayers were tested in two different greenhouses,
each with different canopy characteristics. Greenhouse 1 had a
plastic greenhouse with 0.4 between plants and a row spacing of
2.5 m (2 plants m\(^{-1}\)) in a twin-row system (two rows growing close
together and separated by 0.4 m). The greenhouse had a typical
configuration for south-eastern Spain, consisting of a main corrid-
or and several aisles coming from this corridor. The average aisle
length was 30 m.

Greenhouse 2 had a plantation pattern of 0.4 m between plants
and a row spacing of 2.8 m (1.8 plants m\(^{-1}\)) in a twin-row system
with 0.3 m separation. This greenhouse had the same configura-
tion as greenhouse 1 (30 m).

In both cases, the canopy was completely characterised. Geo-
metric parameters (canopy height, canopy width) and derived
parameters (leaf wall area,\(^\text{11}\) tree row volume\(^\text{32–34}\) and leaf
area density\(^\text{35–36}\) were calculated after the field measurements
(Table 2). For leaf area measurements, four plants were randomly
selected along the row. The leaf area and the corresponding
leaf area index were determined by estimating the area/weight
ratio.\(^\text{37–39}\) The total weight of each plant (only leaves) was mea-
sured in the laboratory immediately after cutting it, and an 80 g
sample of tomato leaflets picked randomly was measured with
a LI-COR LI 3100C electronic planimeter (LI-COR, Lincoln, NE).
Equations (1) and (2) indicate the area/weight ratios obtained for
greenhouses 1 and 2 respectively:

\[
A = 1.9502 \cdot g + 0.0095 \quad (1)
\]

\[
A = 1.5613 \cdot g + 0.0084 \quad (2)
\]

where \(A\) is the leaf surface (m\(^2\)) and \(g\) is the leaf weight (g).

2.3 Layout of trials in greenhouses

Different rows of tomato plants were strategically selected in
each greenhouse to avoid cross-spraying between the different tests,
leaving a boundary zone for this purpose. For every test, one
complete row was sprayed from both sides, following the normal procedure concerning the direction during two-sided sprayings (Fig. 2). The trials were arranged to maintain practical management of both tests and sprayer equipment.

Sampling zones were defined by the height (top, middle and bottom) and depth (peripheral edge and centre or internal edge) of the canopy. In total, six different positions were distinguished. For each zone, ten samples composed of five tomato leaflets each were collected after the spraying process, placed into hermetically sealed plastic bags, and stored until analysis in the laboratory. Samples were randomly collected along the canopy row.

Environmental conditions (temperature and relative humidity) during the trials were recorded. For greenhouse 1, temperature ranged from 14.4 to 19.5 °C, and relative humidity (RH) from 55 to 83.9%. For greenhouse 2, temperature ranged from 16.0 to 22.0 °C, and RH from 55.0 to 60.0%.

2.4 Procedure for spray distribution evaluation

The spray distribution was evaluated by analysing three parameters: (1) spray deposit on leaves, expressed by the amount of tracer per unit leaf area (ng cm⁻²); (2) spray coverage, which represents the percentage of leaf surface covered by the fluorescent tracer used as the active ingredient; (3) penetration index (PI), which enables the spray deposit measured in the external parts of the canopy to be compared with that in the internal part.

Immediately after the collection, all the samples were weighed individually, and the data were transformed to leaf area per bag (cm² of leaf surface per sample) by applying the previously determined surface-weight factor. This value together with the tracer concentration made it possible to determine the deposition per unit leaf surface (ng cm⁻²) and the tracer concentration in the tank. This value together with the tracer concentration in the tank, the spray volume dose (L ha⁻¹), the temperature, and the relative humidity enabled the spray deposit measured in the external parts of the canopy to be related to that in the internal part.

Parameter \(E \) was defined in order to analyse the relative deposition of the tracer contained in the internal and external parts of the canopy according to the equation

\[
PI = \frac{1}{E} \cdot \frac{d_1}{100}
\]

where \(d_1 \) is the actual deposit, \(d_2 \) is the actual deposit per unit of leaf surface (ng cm⁻²), \(V \) is the spray volume dose (L ha⁻¹) and \(T_c \) is the tracer concentration in the tank (mg L⁻¹).

The degrees of leaf coverage on the upper and lower sides were also measured. Sample leaves collected on each trial at each position were photographed using ultraviolet light with a Canon 450D camera (Canon Europa NV, Amstelveen, The Netherlands). The obtained pictures were evaluated with FluorSoft, a software program dedicated to image analysis (Syngenta image analysis). The results were expressed as the percentage of the leaf surface covered by the tracer in relation to the total leaf surface.

4.3 Penetration index (PI)

The penetration index (PI) was calculated by taking into consideration the deposition levels measured at the two external parts of the canopy, because the sprayer circulation was arranged to spray the canopy completely from both sides.

\[
d_i = \frac{d \cdot 10^5}{V \cdot T_c}
\]

where \(d_i \) is the normalised tracer deposit rate per unit leaf surface (ng cm⁻²), \(d \) is the actual deposit per unit of leaf surface (ng cm⁻²), \(V \) is the spray volume dose (L ha⁻¹) and \(T_c \) is the tracer concentration in the tank (mg L⁻¹).

\[
PI = \frac{1}{E} \cdot \frac{d_1}{100}
\]

where \(I_1 \) and \(E \) are the average coverages at the internal and external parts of the canopy respectively.

Parameter \(E \) was calculated by taking into consideration the deposition levels measured at the two external parts of the canopy, because the sprayer circulation was arranged to spray the canopy completely from both sides.
2.5 Data analysis

The effects of the different parameters evaluated (application volume, nozzle type, canopy density, nozzle distance, air assistance, sample position) on spray deposition and spray coverage were examined by analysis of variance (ANOVA), with the treatment as a source of variation, followed by the Student–Newman–Keuls post hoc test.

Prior to statistical analysis, the data were transformed (square root for deposition data and arcsine for coverage data) to homogenise variances. In addition, residual analyses were also performed. All statistical analyses were performed with R software (R Development Core Team, Vienna, Austria, 2012).

3 RESULTS

An overview of the data collected shows the influence of the canopy and spray volume on the deposition and coverage on the leaves (Table 3). A significantly high deposition level was obtained in the greenhouse with a low canopy density and a high volume rate; conversely, the opposite was observed with a high canopy density and a low application rate. Coverage was also affected by canopy characteristics, and the combination of low canopy density and low application rate yielded the lowest average coverage on both sides of the leaves.

Considering leaf deposition and coverage as principal factors for evaluating spray quality, Figs 4 and 5 show the average level of deposition and coverage, respectively, obtained for all tests, with the combination of flat-fan nozzles and air assistance yielding the highest deposition levels. In general, flat-fan nozzles yielded higher levels of deposition than hollow-cone nozzles, irrespective of other parameters. The effects of nozzle type and air assistance were unclear in terms of coverage. However, coverage levels tended to increase with hollow-cone nozzles. Importantly, the influence of canopy characteristics on coverage was notable, resulting in the highest levels on high-density canopies. The following section includes a detailed analysis of the results, with a particular focus on canopy characteristics, following the same procedure carried out in previous studies.

3.1 High-canopy-density greenhouse

3.1.1 Spray deposition

Table 4 shows the results of average deposition and coverage for each test in the case of a high canopy density. For each value, the uniformity in the whole canopy volume was measured by calculating the coefficient of variation (CV) in every case. Deposition levels show significant differences among treatments, with tests T2 and T4 (flat-fan nozzles with air assistance) yielding the highest values. In contrast, the same nozzles without air assistance and the reference sprayer yielded the poorest results in terms of coverage. Notably, the lowest CV values, indicative of the most uniform deposition for the whole canopy, were also obtained in tests T2 and T4. This effect was opposite to that found in the case of hollow-cone nozzles, indicating great variability among the different sampling zones in the canopy.

A detailed analysis of coverage levels indicates no significant differences ($P < 0.05$) among treatments. Interestingly, however, a tendency for coverage levels to decrease was observed when...
canopy density was reduced. Considering the volume application rate, flat-fan nozzles with air assistance generated the best results in terms of deposition, with no significant differences relative to the reference test (T7). The same combination of nozzle and air assistance also yielded the best results in terms of deposition in the case of a low application rate, albeit with significant differences compared with the rest of treatments. In this case, the lowest deposition levels were obtained in the reference test (T8).

Figure 6 shows the levels of leaf deposition obtained in every sample zone of the canopy, arranged separately by test and spray volume rate. Application of 1000 L ha\(^{-1}\) led to spray deposition on the external part of the canopy becoming highest at medium height in all treatments, with the top centre position of the canopy being the most difficult area to spray. This tendency was similarly maintained at 600 L ha\(^{-1}\), except in the case of hollow-cone nozzles with air assistance, where the deposition in different canopy zones was highly uniform. Interestingly, low deposition levels were obtained in all cases on the internal part of the canopy, especially on the highest part of the crop profile. In general, no run-off episodes were detected visually at the two spray volumes selected.

3.1.2 Leaf coverage

Figure 7 shows the coverage levels on different parts of the canopy and sides of the leaves, generated after the image analysis procedure developed for this experiment. The results indicate a similar pattern among the tests, regardless of the spray volume applied. In all cases, coverage levels for the upper sides of leaves were higher than those for their undersides, on both the external and internal parts of the canopy. The lowest coverage levels were always obtained on the undersides of the leaves located in the internal part of the canopy. In general, the combination of low coverage levels on the internal part of the canopy and on the undersides of the external leaves led to a reduction in average coverage for the low spray volume rate (Table 3).

3.1.3 Spray penetration into the canopy

The PI was defined and calculated with the aim of evaluating the amount of product that arrives at the internal part of the canopy in relation to the amount of product deposited in the external zones of the crop (Fig. 8). At a high spray volume (1000 L ha\(^{-1}\)), the joint effect of air assistance and flat-fan nozzles increased penetration capability, with PI values near 60%. In contrast, hollow-cone nozzles yielded the worst results in terms of penetration. The highest PI values obtained with the reference sprayer (T7) could be related to the excessive working pressure (13 bar), which differed substantially from the recommended values for this type of nozzle. In the case of a low spray volume (600 L ha\(^{-1}\)), the highest PI was obtained with hollow-cone nozzles (56.2%), always with air assistance, owing to the high deposition levels measured in the internal part of the canopy. This result agrees exceptionally well with the deposition obtained in other sampling zones in the internal part of the canopy. Similar PI values were obtained with the reference sprayer technology (T8) and with the combination of flat-fan nozzles and air assistance (T4).

3.2 Low-canopy-density greenhouse

3.2.1 Spray deposition

An overall analysis of the obtained results in the case of low canopy density also reveals significant differences (P < 0.05) among treatments, both in terms of deposition and leaf coverage (Table 5). As observed in the case of high canopy density, the combination of air assistance and flat-fan nozzles (T10) yielded the highest deposition levels and the lowest CV values. Hollow-cone nozzles at both spray volume rates (T13 and T14) yielded the lowest levels of leaf deposition.
A detailed analysis of the liquid distribution among the canopy sampling zones (Fig. 9) indicates diverse behaviour between treatments, depending on the spray volume. Whereas most treatments at a higher spray volume generated higher deposition levels on the external (rather than internal) part of the canopy, treatment with flat-fan nozzles and air assistance yielded no differences among canopy zones. For a low spray volume, no tests yielded significant differences ($P < 0.05$) among canopy zones, except at the top internal position where the zone was the most difficult to cover. Once again, flat-fan nozzles without air assistance yielded the poorest deposition results in the internal part of the canopy.

3.2.2 Leaf coverage

An overall evaluation of the leaf coverage results at a low canopy density shows no significant differences within treatments, either at high or low spray volumes (Table 5). A separate analysis by leaf side and canopy position shows a similar distribution, regardless of the spray volume (Fig. 10), with generally less coverage in the case of 600 L ha$^{-1}$. Relative differences between the upper- and lower-side leaf zones were similar in all tests, regardless of the canopy sampling zone and spray volume rate.

3.2.3 Spray penetration into the canopy

The PI was also calculated separately according to the spray volume (Fig. 11). In both cases, flat-fan nozzles with air assistance yielded the highest PI values, with the value obtained at 1000 L ha$^{-1}$ (70% penetration) being the highest among all tests. This value confirms reports on evaluating the distribution across the canopy. Similar PI values were found for the rest of the treatments. This behaviour was repeated in the case of a low spray volume.
4 DISCUSSION

The research carried out here shows the important effects of canopy density, spray application rate and working parameters (mainly regarding nozzle settings and air assistance) on the final quality of spray distribution on tomato plants in greenhouses. In general, the highest leaf deposit levels are obtained at low canopy densities. This tendency is reversed in the case of leaf coverage, where a tendency for coverage to decrease is observed in the case of low canopy densities.

Air assistance has been demonstrated to be an interesting tool to improve the quality of spray application. In general, all treatments with air assistance yielded better results in terms of deposition in the internal canopy zones. However, no benefit was observed at the canopy periphery, a zone easily exposed to application. This trend was demonstrated at the two evaluated canopy densities, regardless of the spray application rate. This is especially marked in the case of flat-fan nozzles, with PI values ranging from 52.6 to 70.3%. Exceptionally, hollow-cone nozzles with air assistance yielded the highest PI value (52.6%) when a low spray volume was applied at a high canopy density. These results are in concordance with Foqué et al.,14 who reported a high effect of joint air support and flat-fan nozzles. Derksen et al.42 concluded that air assistance of 20 m s-1 in spray trials in bell peppers provided no advantage in the amount of spray retained on the foliage, but it produced more desirable spray quality on foliage and resulted in more spray retained on the whole fruit. PI values of treatments with air assistance were higher than those obtained without air assistance. In this last case, PI values ranged from 26.1 to 50%; this indicates that in some part of the canopy the spray liquid retained by the leaves was only a quarter of the total deposited in the external part of the canopy. This fact directly relates to the efficacy of applying a certain spray, in terms of pest/disease control, as already reported by Sánchez-Hermosilla et al.16

The highest coverage levels obtained with air assistance, especially on the undersides of the leaves, agreed with the results of Lee et al.,18 who concluded that a sprayer equipped with flat-fan nozzles and air assistance improves the deposits on the upper and lower surfaces. Given the low canopy density, no clear effect of air assistance was found.

No clear effect of nozzle type was detected in the case of high canopy density. In contrast, tests carried out at low canopy density revealed a tendency for deposition to increase when flat-fan nozzles and air assistance were selected, yielding results superior to those obtained with hollow-cone nozzles. Considering the ability to penetrate into the internal parts of the canopy,
Table 5. Low-canopy-density average deposition, with values of standard error of the mean (SEM), coefficient of variation (CV) of the deposition and coverage

<table>
<thead>
<tr>
<th>Trial</th>
<th>Volume rate application (L ha(^{-1}))</th>
<th>Code</th>
<th>Deposition (ng cm(^{-2}))</th>
<th>CV (%)</th>
<th>Coverage (%)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1000</td>
<td>T9 flat fan no air</td>
<td>3.45 ± 0.27 ab</td>
<td>62.9</td>
<td>31.5 ± 3.20 ab</td>
<td>86.4</td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
<td>T10 flat fan air</td>
<td>3.95 ± 0.28 a</td>
<td>41.3</td>
<td>30.7 ± 2.74 ab</td>
<td>75.9</td>
</tr>
<tr>
<td>13</td>
<td>1000</td>
<td>T13 hollow cone air</td>
<td>2.33 ± 0.19 c</td>
<td>67.3</td>
<td>33.1 ± 2.87 a</td>
<td>72.5</td>
</tr>
<tr>
<td>15</td>
<td>1000</td>
<td>T15 reference</td>
<td>3.00 ± 0.25 bc</td>
<td>64.5</td>
<td>31.4 ± 3.09 ab</td>
<td>83.5</td>
</tr>
<tr>
<td>11</td>
<td>600</td>
<td>T11 flat fan no air</td>
<td>2.76 ± 0.24 bc</td>
<td>72.6</td>
<td>19.5 ± 2.29 c</td>
<td>99.6</td>
</tr>
<tr>
<td>12</td>
<td>600</td>
<td>T12 flat fan air</td>
<td>3.20 ± 0.18 ab</td>
<td>41.6</td>
<td>22.4 ± 2.41 bc</td>
<td>92.7</td>
</tr>
<tr>
<td>14</td>
<td>600</td>
<td>T14 hollow cone air</td>
<td>2.67 ± 0.21 bc</td>
<td>60.9</td>
<td>21.3 ± 2.09 bc</td>
<td>83.2</td>
</tr>
<tr>
<td>16</td>
<td>600</td>
<td>T16 reference</td>
<td>2.71 ± 0.24 bc</td>
<td>72.2</td>
<td>20.9 ± 3.10 c</td>
<td>125.9</td>
</tr>
</tbody>
</table>

\(^a\) Values followed by the same letter (in columns) indicate no significant difference.

Figure 8. High-canopy-density values of penetration index (PI) separated by high (left) and low (right) volume rates.

Figure 9. Low-canopy-density average levels of deposition on leaves separated by test and sampling zone for a spray volume of 1000 L ha\(^{-1}\) (left) or 600 L ha\(^{-1}\) (right). Values with the same letter indicate no significant differences.
hollow-cone nozzles with air support yielded low deposition levels in the canopy. These results are in line with those reported by Foqué et al., who found similar results for spray application to laurel crop. This fact may be explained by the results reported in previous studies, which stated that the small droplet generated by hollow-cone nozzles produced initial momentum dissipation and, as a consequence, a reduction in kinetic energy. Braekman et al. and Foqué et al. postulated that a coarse spray had higher momentum and therefore greater capacity to penetrate the canopy. Together with other important factors such as air assistance, this can explain why flat-fan nozzles at low pressure generally yield the highest deposition levels. These results also demonstrate the important influence of canopy characteristics (crop height and width) and air assistance in leaf deposition.

Other parameters, such as distance between nozzles and canopy, nozzle angling or spray direction, can affect the coverage inside the plants. A spray distance of 30 cm to the stem proved to be more effective when spraying conically shaped plants in a bay laurel crop. Regarding nozzle angling, different results were obtained concerning its influence on deposition and coverage. Foqué et al. concluded that angling the spray did not result in a higher deposition or penetration capacity compared with the standard vertical spray boom. However, later research carried out by the same authors found a positive trend from using a forward spray angle.

In relation to leaf coverage, the results demonstrated that the differences among tests were lowest when the canopy density was highest. In contrast, in the case of low canopy density, the effect of spray application rate was greater than that of nozzle type. However, regardless of canopy density and spray application volume, similar results of coverage on both sides of the leaves were observed in all zones of the canopy. This suggests that the main factor affecting deposition and coverage is the presence of air assistance.

The average leaf deposition levels obtained at a low canopy density were higher than those obtained at a high canopy density. Moreover, clear differences in average deposition were shown between external and internal parts of the canopy. The sample height zone (top, middle and bottom) has been identified as an influential factor on spray distribution into the canopy. These results agree with those of Derksen et al., who reported that spray canopy position is also a significant factor for foliar deposition with artificial targets.

Generally, important differences between leaf coverage for the different parts of the leaf (upper and lower sides) were observed in all evaluated tests. These results were expected and agree with those obtained by Lee et al. and Sánchez-Hermosilla et al. The highest coverage levels were always found on the upper sides of the leaves in an external part of the canopy.
By considering the effect of applied volume rate on the quality of spray distribution, the sprayer settings were observed to have an influence far greater than that of the volume application rate. There were no clear benefits from increasing the water volume rate. The results are in accordance with the conclusions reported by Sánchez-Hermosilla et al. Notably, air assistance configurations allowed a reduction in the volume application rate without significant differences at either canopy density.

ACKNOWLEDGEMENTS
This research was developed under the Cátedra Syngenta-UPC (http://catedrasyngenta.upc.edu) and was partially funded by the Spanish Ministry of Economy and Competitiveness (SAFESPRAV Project AGL2010-22304-C04-04) and ERDF (European Regional Development Fund).

REFERENCES
17 Carretilas de pulverización de fitosanitarios, más segura, más eficaz y más cómoda. AEPLA, Madrid, Spain, pp. 12–13 (2011).
25 Derksen RC, Miller AS, Ozkan HE and Fox RD, Spray deposition characteristics on tomatoes and disease management as influenced by droplet size, spray volume, and air-assistance. ASABE Annual Meeting, St Joseph, MI (2001).
26 Rincón VJ, Páez F, Sánchez-Hermosilla J, Pérez J and Callejón Á, Estimation of leaf-area index in greenhouse tomato crop to determine the volume rate to spray. CIGR AgEng, Valencia, Spain (2012).
QUERIES TO BE ANSWERED BY AUTHOR

IMPORTANT NOTE: Please mark your corrections and answers to these queries directly onto the proof at the relevant place. DO NOT mark your corrections on this query sheet.

Queries from the Copyeditor:

AQ1. Please confirm that given names (red) and surnames/family names (green) have been identified correctly.

AQ2. In other Crop Prot references in this paper, the issue number is given. For consistency, please provide the issue number here.

AQ3. ‘300’ has been changed to ‘p. 300’. Please confirm that this is correct.

AQ4. In other Crop Prot references in this paper, the issue number is given. For consistency, please provide the issue number here.

AQ5. In other Crop Prot references in this paper, the issue number is given. For consistency, please provide the issue number here.

AQ6. In other Crop Prot references in this paper, the issue number is given. For consistency, please provide the issue number here.