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Abstract. We define a new class of tree automata with constraints and prove decidability of the
emptiness problem for this class in exponential time. As a consequence, we obtain several EXPTIME-
completeness results for problems on images of regular tree languages under tree homomorphisms,
like set inclusion, regularity (HOM problem), and finiteness of set difference. Our result also has
implications in term rewriting, since the set of reducible terms of a term rewrite system can be
described as the image of a tree homomorphism. In particular, we prove that inclusion of sets of
normal forms of term rewrite systems can be decided in exponential time. Analogous consequences
arise in the context of XML typechecking, since types are defined by tree automata and some type
transformations are homomorphic.
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1. Introduction. Tree automata [7, 17] are a well studied formalism for rep-
resenting term languages. They characterize the “regular term languages,” a classi-
cal concept used, e.g., to describe the parse trees of a context-free grammar or the
well-formed terms over a sorted signature [25], to characterize the solutions of for-
mulas in monadic second-order logic [12], and to naturally capture type formalisms
for tree-structured XML data [4, 26]. Unfortunately, the expressiveness of plain tree
automata is rather limited, and hence, several extensions have been considered in
the literature. For example, tree automata with local disequality constraints allowed
proving EXPTIME-completeness of ground reducibility [8], tree automata with con-
straints between brothers allowed proving decidability of fragments of quantifier-free
formulas on one-step rewriting [6], tree set automata allowed generalizing results on
decidability of set constraints [19], and tree automata with global constraints allowed
proving decidability of extensions of monadic second order logic [2, 14].

In this paper we define a new variant of tree automata with constraints specially
suited to deal with problems on tree homomorphisms applied to regular tree languages.
A tree homomorphism can be defined by equations of the form H(f(x1, . . . , xn)) =
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Fig. 1. Recursive application of the tree homomorphism H to compute H(f(f(a, b), a)).

t, where t is a tree labeled by either alphabet symbols, or by H(x1), . . . , H(xn),
which may only appear at the leaves. For example, the image of the set of terms
over binary f and nullaries a, b by the tree homomorphism H defined by H(a) =
a, H(b) = a, H(f(x1, x2)) = g(H(x1), H(x1)) is the set of complete trees over binary
g and nullary a (see Figure 1). It is not difficult to prove that this language is not
regular. In general, nonlinear tree homomorphisms like H (due to the duplication
of the variable x1) may produce nonregular images. The homomorphism (HOM)
problem questions, for a given regular tree language L described by a tree automaton
and a tree homomorphism H , whether H(L) is regular.

The study of preservation of tree regularity by tree homomorphisms was intro-
duced in [27], and many partial or related results have been obtained since then [5,
11, 13, 15, 20, 22, 23, 24, 28]. HOM has recently been proved decidable in [21], to-
gether with other problems related to images of regular tree languages under tree
homomorphisms, like set inclusion and finiteness of set difference. The obtained time
complexity is triple exponential for all of them. In the present paper we extend the
work done in [21] by proving that all such problems are, in fact, EXPTIME-complete.
To this end, we define a new class of tree automata with constraints called tree au-
tomata with disequality and implicit HOM equality constraints (TAihom, �≈). TAihom, �≈
allow arbitrary local disequality constraints and a particular kind of equality con-
straints: the left-hand side of rules are terms containing states at some leaf positions,
and two positions with the same state implicitly define a local equality constraint
between such positions. Note that, in particular, equality constraints between non-
brother positions can be defined, as the left-hand side of the rules are not required
to be flat terms. We prove that the emptiness of TAihom, �≈ can be decided in expo-
nential time with respect to the number of different positions involved in the rules.
As a consequence, since the regularity (HOM problem), inclusion, and finiteness of
the set difference of images of regular tree languages under tree homomorphisms
can be reduced to the emptiness of TAihom, �≈ in exponential time, but preserving
the positions involved in the rules, the EXPTIME-completeness of all such problems
follows. Decidability of emptiness for TAihom, �≈ in exponential time also has impli-
cations in term rewriting, since the set of reducible terms of a term rewrite system
can be described as the image of a tree homomorphism. In particular, we prove
that inclusion of sets of normal forms of term rewrite systems can be decided in
exponential time. Analogous consequences arise in the context of XML typecheck-
ing, since types can be defined by tree automata and some type transformations are
homomorphic.

1.1. Approach to decide emptiness of TAihom, �≈ in exponential time. Tree
automata with disequality constraints (TA �≈) are a particular case of TAihom, �≈ where
only disequality constraints are allowed. Emptiness of TA�≈ was proved decidable
in exponential time in [8]. In the present paper, we generalize the approach used
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1232 C. CREUS, A. GASCÓN, G. GODOY, AND L. RAMOS

in [8] to TAihom, �≈. Roughly, the algorithm deciding emptiness of TAihom, �≈ looks for
an accepting run by iteratively generating all possible runs in increasing order of
size: new runs are constructed using the previous runs as direct subruns. In order
to guarantee termination, some runs are discarded when the algorithm realizes that
they cannot be subruns of the minimum accepting run. Below we briefly describe the
involved discarding criterion.

In order to determine that a run r′ cannot be a subrun of the minimum accepting
run, we prove that any run r having r′ as a subrun can be transformed into a smaller
run reaching the same state. Due to the equality constraints, such a transformation
requires replacing several identical subruns of r by other smaller subruns. The fact
that equalities of TAihom, �≈ are implicitly forced by identity of states provides a great
advantage to reason about such replacements: two positions p1, p2 are forced by the
automaton to have the same pending term whenever the same sequence of states
q1, q2, . . . , qn is found while traversing the run from the root to p1 and p2. This leads
us to introduce the concept of abstract position as a string of states q1q2 . . . qn that
implicitly represents the set of all positions that find q1, q2, . . . , qn while traversing
the run from the root to them. We adapt typical notation of subterm location and
replacement to abstract positions. For example, r|q1q2...qn denotes the subrun pending
at any of the positions referred by q1q2 . . . qn, and r[r′]q1q2...qn denotes the simulta-
neous replacement of all such subruns by a new subrun r′. It is easy to satisfy the
implicit equality constraints using such replacements, but in general the result is not
a correct run since the disequality constraints of a rule applied above the replaced
subruns might become unsatisfied. We extend an argument from [8] to prove that,
for each TAihom, �≈ A, there exists a natural number K exponentially bounded by |A|
satisfying the following property: given a run r, an abstract position P = q1 . . . qn,
and runs r1, . . . , rK smaller than r|P , if all the replacements r[r1]P , . . . , r[rK ]P falsify
different disequalities, then there exists a prefix P ′ of P and a run r′ smaller than
r|P ′ such that r[r′]P ′ does not falsify any disequality.

In general, finding such runs r1, . . . , rK satisfying the above conditions is not an
easy task. The following notion of independence, given in [8], helps to overcome this
problem: the runs r1, . . . , rK on terms t1, . . . , tK are independent with respect to
a set of positions P if, for each position p ∈ P , either all the terms t1|p, . . . , tK |p
are identical, or they are pairwise different. We prove that it is safe to discard a
new generated run r̄ if there exist certain r1, . . . , rK chosen among the previously
generated runs and such that r1, . . . , rK , r̄ are independent (with respect to the set of
positions P that can be affected by constraints), under certain additional conditions.
To efficiently detect those r1, . . . , rK , we define a new notion on sets of runs and
natural numbers K, namely, K-smallness. With this notion, when a set S is K-small,
but the addition of a new run r̄ gives rise to a non-K-small set S ∪ {r̄}, it follows the
existence of an independent subset S̃ of S ∪ {r̄} with size K and containing r̄.

1.2. Organization of the paper. In section 2 we introduce basic notation and
concepts related to terms, tree automata, and tree homomorphisms. In section 3
we define TAihom, �≈ and recall some results of [21]. In section 4 we introduce the
notions of independence and K-smallness and the corresponding results. In section 5
we define abstract positions and replacements and analyze disequality constraints.
In section 6, we give the algorithm deciding emptiness of TAihom, �≈ in exponential
time. In section 7 we show the consequences of this result by reducing other problems
to it. In particular, we prove that HOM is EXPTIME-complete. In section 8 we
conclude.

D
ow

nl
oa

de
d 

03
/2

3/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE HOM PROBLEM IS EXPTIME-COMPLETE 1233

2. Preliminaries.

2.1. Terms. In this section we introduce notation for terms, positions, replace-
ments, substitutions, and rewrite rules. For a survey see [1].

The size of a finite set S is denoted by |S|, and the powerset of S is denoted by
2S . A signature consists of an alphabet Σ, i.e., a finite set of symbols, together with
a mapping that assigns to each symbol in Σ a natural number, its arity. We denote
by arity(f) the arity of symbol f , by Σ(m) the subset of symbols in Σ of arity m, and
by maxarity(Σ) the maximum m such that Σ(m) is not empty. The set of all terms
over Σ is denoted T (Σ) and is inductively defined as the smallest set T such that for
every f ∈ Σ(m), m ≥ 0, and t1, . . . , tm ∈ T , the term f(t1, . . . , tm) is in T . For a term
of the form a() we simply write a. We fix the set X = {x1, x2, . . . } of variables, i.e.,
any set V of variables is always assumed to be a subset of X . The set of terms over
Σ with variables in X , denoted T (Σ,X ), is the set of terms over Σ ∪ X where every
symbol in X has arity zero.

By |t| we denote the size of t, defined recursively as |f(t1, . . . , tm)| = 1 + |t1| +
· · · + |tm| for each f ∈ Σ(m), m ≥ 0, and t1, . . . , tm ∈ T (Σ,X ), and as |x| = 1
for each x ∈ X . By height(t) we denote the height of t, defined recursively as
height(f(t1, . . . , tm)) = 1+max{height(t1), . . . , height(tm)} for each f ∈ Σ(m), m ≥ 1,
and t1, . . . , tm ∈ T (Σ,X ), as height(a) = 0 for each a ∈ Σ(0), and as height(x) = 0 for
each x ∈ X . A term t is called flat if its height is at most 1. Positions in terms are
sequences of natural numbers. Given a term t = f(t1, . . . , tm) ∈ T (Σ,X ), its set of po-
sitions Pos(t) is defined recursively as {λ}∪{i.p | i ∈ {1, . . . ,m} ∧ p ∈ Pos(ti)}. Here,
λ denotes the empty sequence (position of the root node) and . denotes concatenation.
The length of a position is denoted as |p|. Note that |λ| = 0 and |i.p| = 1+|p| hold. The
subterm of t at position p ∈ Pos(t) is denoted by t|p and is formally defined as t|λ = t
and f(t1, . . . , tm)|i.p = ti|p. For terms t, s and position p ∈ Pos(t), we denote by t[s]p
the result of replacing the subterm at position p in t by the term s. More formally,
t[s]λ is s and f(t1, . . . , tm)[s]i.p is f(t1, . . . , ti−1, ti[s]p, ti+1, . . . , tm). The symbol of t
occurring at position p is denoted by t(p). More formally, f(t1, . . . , tm)(λ) = f and
f(t1, . . . , tm)(i.p) = ti(p). We say that t at position p is labeled by f if f = t(p). For
a set Γ, we use PosΓ(t) to denote the set of positions of t that are labeled by symbols
in Γ. When a position p is of the form p1.p2, we say that p1 is a prefix of p, denoted
p1 ≤ p, and p2 is a suffix of p. If in addition p2 is not λ, then we say that p1 is a
strict prefix of p, denoted p1 < p. Moreover, with p − p1 we denote p2. We say that
two positions p1 and p2 are parallel, denoted p1 ‖ p2, if neither p1 ≤ p2 nor p2 ≤ p1
hold.

A substitution σ is a mapping from variables to terms. It can be homomorphically
extended to a function from terms to terms: σ(t) denotes the result of simultaneously
replacing in t every x ∈ Dom(σ) by σ(x). Substitutions are sometimes written as sets
of pairs {x1 �→ t1, . . . , xn �→ tn}, where each xi is a variable and each ti is a term.
A rewrite rule is a pair of terms l → r. The application of a rewrite rule l → r to a
term s[σ(l)]p at position p produces the term s[σ(r)]p. If R is a set of rewrite rules,
the application of a rule of R to a term s resulting in a term t is denoted by s →R t,
and the reflexive-transitive closure of this relation is denoted by →∗

R.

2.2. Tree automata. Tree automata and regular tree languages are well-known
concepts of theoretical computer science [16, 17, 7]. We assume that the reader knows
the Boolean closure properties and the decidability results on regular tree languages.
Here we only recall the notion of tree automata.
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Definition 2.1. A tree automaton (TA) is a tuple A = 〈Q,Σ, F,Δ〉, where Q is
a finite set of states, Σ is a signature, F ⊆ Q is the subset of final states, and Δ is a
set of rules of the form f(q1, . . . , qm) → q, where q1, . . . , qm, q are in Q, and f is in
Σ(m).

The size of A, denoted |A|, is |Q| plus the sum of sizes of all rules in Δ, where
the size of a rule of the form f(q1, . . . , qm) → q is m+ 2.

A run of A on a term t ∈ T (Σ) is a mapping r : Pos(t) → Δ such that, for each
position p ∈ Pos(t), if t(p) ∈ Σ(m), then r(p) is a rule of the form t(p)(q1, . . . , qm) → q,
and r(p.1), . . . , r(p.m) are rules with right-hand sides q1, . . . , qm, respectively. We say
that r(p) is the rule applied at position p. The run r is called accepting if the right-
hand side of r(λ) is a state in F . A term t is accepted by A if there exists an accepting
run of A on t. The set of accepted terms by A, also called the language recognized
by A, is denoted by L(A). A language L is regular if there exists a TA A such that
L(A) = L.

2.3. Tree homomorphisms.

Definition 2.2. Let Σ1,Σ2 be two signatures. A tree homomorphism is a func-
tion H : T (Σ1) → T (Σ2) that can be defined as follows. Let Xm represent the set
of variables {x1, . . . , xm} for each natural number m. The definition of a tree homo-
morphism H : T (Σ1) → T (Σ2) requires to define H(f(x1, . . . , xm)) for each function
symbol f ∈ Σ1 of arity m as a term tf in T (Σ2,Xm). After that, H(f(t1, . . . , tm)) is
defined recursively, for each term f(t1, . . . , tm) ∈ T (Σ1), as {x1 �→ H(t1), . . . , xm �→
H(tm)}(tf ).

The size of H, denoted |H |, is the sum of the sizes of all the terms tf .

Definition 2.3. The HOM problem is defined as follows:
Input: A TA A and a tree homomorphism H.
Question: Is H(L(A)) regular?

2.4. Hardness results. We list some known hardness results that are related
to our setting.

Proposition 2.4. The following problems are EXPTIME-hard:
• The HOM problem (from [20]).
• The problems of deciding equivalence and inclusion between the languages

recognized by two TA (since universality of TA is EXPTIME-hard and can be
reduced to equivalence and to inclusion [7]) and finiteness of their difference
(since inclusion can be reduced to finite difference).

3. Tree automata with disequality and implicit HOM equality con-
straints. Decidability of HOM is tackled in [21] by reasoning on a new kind of
automata, which is obtained by a straightforward application of a homomorphism
to the rules of a TA (and adding equality and disequality constraints). Its main dis-
advantage is that dealing with constrained rules makes the presentation of technical
proofs a laborious task. For this reason, we define an equivalent kind of automata in
which equality constraints are implicitly encoded in the left-hand sides of the rules.
Intuitively, a state that appears duplicated in the left-hand side l of a rule implicitly
forces an equality test between all the positions of l where such state occurs.

Definition 3.1. A tree automaton with disequality and implicit HOM equality
constraints (TAihom, �≈) is a tuple A = 〈Q,Σ, F,Δ〉, where Q is a finite set of states, Σ
is a signature, F ⊆ Q is the subset of final states, and Δ is a finite set of rules of the
form l

c→ q, where l is a term in T (Σ∪Q)−Q, interpreting the states of Q as nullary
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symbols, and c, called the disequality constraint of the rule, is a conjunction/set of
unordered pairs of the form p̄1 ≈ p̄2 for arbitrary positions p̄1, p̄2. When all the rules
of A have an empty disequality constraint, we say that A is a TAihom.

A run of A on a term t ∈ T (Σ) is a partial mapping r : Pos(t) → Δ such that
r(λ) is defined and satisfying the following conditions for each position p for which

r(p) is defined, say, as a rule l
c→ q. For each position p′ ∈ Pos(l), it holds that r(p.p′)

is defined if and only if l(p′) ∈ Q. Moreover, if l(p′) is in Q, then r(p.p′) is a rule
with the state l(p′) as right-hand side. Otherwise, if l(p′) is in Σ, then l(p′) = t(p.p′).
In addition, (i) for each two positions p1, p2 ∈ Pos(l) satisfying l(p1) = l(p2) ∈ Q,
t|p.p1 = t|p.p2 holds, and (ii) for each two positions p̄1, p̄2 satisfying (p̄1 ≈ p̄2) ∈ c,
either one of p.p̄1, p.p̄2 is not in Pos(t) or both of them are and t|p.p̄1 = t|p.p̄2 holds.
We say that r is a weak run when conditions (i) and (ii) are not enforced. Moreover,
since t can be deduced from r, we often do not make explicit t and just say that r is
a (weak) run of A.

The state reached by a weak run r is the right-hand side of r(λ), and we say that
r is accepting if the state reached by r is in F . By L(A) we denote the language
recognized by A, that is, the set of terms t for which there exists an accepting run of
A on t. Given a weak run r of A on a term t, we define Pos(r) as Pos(t), height(r) as
height(t), and term(r) as t. Moreover, given a position p such that r(p) is defined, we
define the weak subrun r|p as the weak run of A on t|p described by r|p(p′) = r(p.p′).
Note that if r is a run, then so is r|p. Given two weak runs r1, r2 and a position p
such that r1(p) is defined and r1|p, r2 reach the same state, we define the replacement
r1[r2]p as the weak run r on term(r1)[term(r2)]p described as follows: r(p′) = r2(p̂) if
p′ is of the form p.p̂, and r(p′) = r1(p

′) otherwise.
The size of A, denoted |A|, is |Q| plus the sum of sizes of all rules in Δ, where

the size of a rule l
c→ q is |l| + |c| + 1, and |c| is the sum of the lengths of all the

occurrences of positions in c. By n �≈(A) we denote the number of distinct disequality
atoms in the rules of A. By h �≈(A) we denote the maximum among the lengths of the
positions occurring in disequality atoms in the rules of A. By Poslhs(A) we denote the
set of positions of left-hand sides of rules of A, i.e.,

⋃
(l

c→q)∈Δ
Pos(l). By hlhs(A) we

denote the maximum among the heights of the left-hand sides of the rules of A, i.e.,
max{|p| | p ∈ Poslhs(A)}. We just write n �≈, h �≈, Poslhs, hlhs when A is clear from the
context and denote by ‖A‖ the maximum among n �≈, h �≈, |Poslhs|, and hlhs.

The implicit equality constraints of a TAihom, �≈ can be assumed to ask for equality
not only of subterms but also of subruns. Runs holding this property are called
uniform.

Definition 3.2. Let A = 〈Q,Σ, F,Δ〉 be a TAihom, �≈. A run r of A is called uni-

form if, for each positions p, p1, p2 such that r(p) is defined as a rule l
c→ q satisfying

l(p1) = l(p2) ∈ Q, r|p.p1 = r|p.p2 holds.

Lemma 3.3. Let A be a TAihom, �≈. Then, any run of A can be transformed into a
uniform run on the same term and reaching the same state.

With the previous lemma it is clear that the classes of languages recognizable
by TAihom, �≈ with runs and with uniform runs coincide. We straightforwardly extend
the notion of uniform runs to the setting of weak runs and call them uniform weak
runs. Note that weak runs do not have to satisfy the disequality constraints or the
implicit equality constraints occurring in the rules applied, whereas a uniform weak
run guarantees that equality constraints are satisfied. For this reason, uniform weak
runs do not allow an equivalent of Lemma 3.3, i.e., it is possible that a weak run cannot
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be transformed into a uniform weak run recognizing the same term and reaching the
same state.

In the remainder of this section we summarize results from [21] that are relevant
to our goals. We cite them using the new formalism TAihom, �≈, as it is equivalent to
the model TAhom, �≈ used in [21]. (Such equivalence can easily be proved by means
of straightforward PTIME transformations in both directions.) As a first ingredient,
the following proposition establishes that the class TAihom can be used to represent
images of regular tree languages under tree homomorphisms.

Proposition 3.4 (from Proposition 4.6 and section 4.1 of [21]). There effectively
exists a polynomial P satisfying the following condition. Let A be a TA, and let H be a
tree homomorphism. Then, a TAihom B satisfying L(B) = H(L(A)) can be computed
in time P(|A|, |H |).

Now we state a technical construction that will be used to check inclusion between
images of regular tree languages under tree homomorphisms.

Proposition 3.5 (from Corollary 4.9, Proposition 4.13, and section 4.1 of [21]).
There effectively exist polynomials P1,P2 satisfying the following condition. Let A,B
be TAihom with signature Σ. Then, a TAihom, �≈ C satisfying L(C) = L(A)∩L(B) can be
computed in time 2P1(maxarity(Σ),|Σ|,‖A‖,log |A|,|B|), and such that ‖C‖ ≤ P2(‖A‖, ‖B‖).

The decision of HOM presented in section 7.1 of [21] consists in reducing such
a problem to a question of inclusion between two TAihom A,A′. From the previous
Proposition 3.5, it is clear that such a question can in turn be reduced to testing empti-
ness on a TAihom, �≈ B recognizing L(A) ∩ L(A′). The construction of A′ following the
simple algorithm of Definition 7.1 in [21] takes triple exponential time, complexity
that is good enough in the context of [21] as it does not increase their overall cost of
testing emptiness of B. Nevertheless, such construction can be refined using the ideas
presented in section 5.3 of [21], and combined with the complement construction of
section 3 and Lemma 4.8 of [21], in order to reduce the cost of constructing an au-
tomaton recognizing L(A′) to a single exponential. Thus, we can obtain the following
improved result.

Proposition 3.6 (from the ideas on the constructions in sections 3, 5.3, and 7.1
and Lemma 4.8 for constructing an automaton recognizing L(A′), Proposition 4.13,
section 4.1, and Lemma 7.3 of [21]). There effectively exist polynomials P1,P2 satis-
fying the following condition. Let A be a TAihom with signature Σ. Then, a TAihom, �≈
B satisfying that L(B) is empty if and only if L(A) is regular can be computed in time
2P1(maxarity(Σ),|Σ|,|A|), and such that ‖B‖ ≤ P2(‖A‖).

We recall one additional result from [21] that reasons about the finiteness of
the language recognized by TAihom, �≈. Intuitively, the authors reduce the question of
finiteness to a question of emptiness on a new automaton.

Proposition 3.7 (from the proof of Corollary 5.20 and section 5.3 of [21]).
There effectively exist polynomials P1,P2 satisfying the following condition. Let A be
a TAihom, �≈. Then, a TAihom, �≈ B satisfying that L(B) is empty if and only if L(A) is
finite can be computed in time 2P1(‖A‖,log |A|), and such that ‖B‖ ≤ P2(‖A‖).

4. Independent sets. The content presented in this section is rather abstract
and its results seem, at first look, to fit better in a handbook on combinatorics than in
a paper on tree automata. Nevertheless, in [8], similar notions were needed to prove
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EXPTIME-completeness of emptiness for tree automata with disequality constraints.
We explain the differences with such notions after Definition 4.1.

Before entering into the details, we give some intuition about how these results
are connected with the rest of the paper. Let P be the set of suffixes of positions
occurring in disequality constraints, let r be a uniform run recognizing a term t, let
P ′ be a set of positions of r that are forced by the automaton to have the same
pending terms, and let r1, . . . , rK be runs recognizing terms t1, . . . , tK and reaching
the same state as any of the identical runs r|p′ for p′ ∈ P ′. We will define that the
set {t1, . . . , tK , t|p′} is P -independent if for any p ∈ P either all t1|p, . . . , tK |p, t|p′ |p
coincide or are pairwise different. Note that P includes the positions p of r|p′ that
are involved in a disequality constraint tested just above p′. Intuitively, the fact that
{t1, . . . , tK , t|p′} is P -independent allows us to conclude that, for each of the positions
p inside r|p′ and involved in an atomic disequality constraint tested just above p′, we
can use any of the ri’s, except for at most one of them, to do a replacement at p′ that
still satisfies such constraint, as either all the ti’s coincide with t|p′ at p or all of them
are different at p.

In section 4.1, the notion of independence and how to detect it efficiently is
presented in a more abstract setting with tuples to simplify the presentation and
obtain more general results. In section 4.2, these results are adapted from tuples to
terms.

4.1. Independent sets of tuples. We assume a given set (the universe) U and
a natural number n, and work with n-tuples t = 〈e1, . . . , en〉 of elements of U . For
such a tuple t, with t[i] we denote the ith component ei. We denote the set of all
such possible tuples as T . For a given finite set of tuples, we are interested in finding
a “large” subset which is independent according to the following definition.

Definition 4.1. A finite set of tuples {t1, . . . , tk} ⊆ T is independent if for
all i ∈ {1, . . . , n}, either all elements t1[i], . . . , tk[i] are the same, or the elements
t1[i], . . . , tk[i] are pairwise different.

Note that if a set is independent, then any of its subsets also is.
In [8], it is proved for a fixed natural number K that, given a set S with Kn · n!

tuples, there effectively exists an independent subset S̃ of S with size K. This fact
is used in [8] to decide emptiness of tree automata with disequality constraints in
exponential time. In order to produce simpler arguments in our setting, we need
more than just the existence of such S̃. We also need to ensure that a certain tuple
t in S is also in S̃. As a first step, we note that, since all tuples of an independent
subset coincide at certain components, we can restrict our search of such S̃ to subsets
of S whose tuples already coincide with t at some fixed components.

Definition 4.2. Let S, t, I be such that t ∈ S ⊆ T and I ⊆ {1, . . . , n}. We define
the set of tuples coincidents(S, t, I) as {t′ ∈ S | ∀i ∈ I : t′[i] = t[i]}.

Note that, if t′ ∈ coincidents(S, t, I), then coincidents(S, t′, I) = coincidents(S, t, I).
For a natural number K, we define a counting property on sets of tuples, namely K-
smallness, that will be useful to construct an independent set of size K containing a
specific tuple t.

Definition 4.3. Let K be a natural number. Let S ⊆ T be a set of tuples. We
say that S is K-small if the following statement holds: ∀t ∈ S : ∀I � {1, . . . , n} :
|coincidents(S, t, I)| < Kn−|I| · (n− |I|)!.

The following lemma states that K-small sets are indeed “small.”
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Lemma 4.4. Let K be a natural number. Let S ⊆ T be a nonempty K-small set.
Then, |S| < Kn · n!.

Proof. Note that for any tuple t ∈ S, S = coincidents(S, t, ∅) holds. Thus, |S| =
|coincidents(S, t, ∅)| < Kn−|∅| · (n− |∅|)! = Kn · n!.

The following lemma holds by Definitions 4.2 and 4.3.

Lemma 4.5. Let K be a natural number. Let S ⊆ T be a set of tuples. Then,
checking whether S is K-small can be done with at most |S|2 · 2n · n comparisons
between elements occurring in the tuples of S.

In order to show that detecting K-smallness is enough for our purposes, we prove
in Lemma 4.10 that, given a set S and a tuple t ∈ S such that S−{t} is K-small but
S is not, there always exists an independent subset S̃ ⊆ S of size K and including
t. To this end, as a first ingredient, we relate the existence of an independent subset
of S with the existence of an edge-free subset of nodes of a graph. In the literature,
edge-free subsets of nodes are simply called independent. Here, we use this other
name in order to avoid confusion with our notion of independent sets of tuples.

Definition 4.6. Let G = 〈V,E〉 be an undirected graph. Let Ṽ be a subset of V .
We say that Ṽ is edge-free in G if each two nodes of Ṽ are not connected, i.e., if
{(u, v) | u, v ∈ Ṽ } ∩ E = ∅.

The graph where we want to find edge-free subsets of nodes is defined to have
coincidents(S, t, I) as its set of nodes, for a fixed I, and to have an edge between each
two different tuples t1, t2 if and only if t1 and t2 coincide at some component not in
I. This is defined formally as follows.

Definition 4.7. Let S, t, I be such that t ∈ S ⊆ T and I ⊆ {1, . . . , n}. We define
graph(S, t, I) as the undirected graph G = 〈V,E〉 with V = coincidents(S, t, I) and
E = {(t1, t2) ∈ V 2 | t1 = t2 ∧ ∃i ∈ {1, . . . , n} − I : t1[i] = t2[i]}.

The following lemma formally establishes the relation between independent sets
of tuples and edge-free sets of nodes of a graph.

Lemma 4.8. Let S, t, I be such that t ∈ S ⊆ T and I ⊆ {1, . . . , n}. Let S̃ be a
subset of coincidents(S, t, I) which is edge-free in graph(S, t, I). Then, S̃ is indepen-
dent.

Proof. Consider any i in {1, . . . , n}. If i ∈ I, then for any t′ ∈ coincidents(S, t, I)
we have t′[i] = t[i], and the notion of independence is satisfied for S̃ and such i.
Otherwise, if i ∈ I, then, since S̃ is edge-free in graph(S, t, I), for any t1, t2 ∈ S̃
we have that t1 and t2 are not connected in graph(S, t, I). Thus, by the definition
of graph(S, t, I) and the fact that i ∈ I, t1[i] = t2[i] follows. Hence, the notion of
independence is satisfied for S̃ and such i.

In the proof of Lemma 4.10, the existence of an edge-free subset of nodes is
concluded using, as a last ingredient, the following simple and well-known statement
from graph theory, where maxdegree(G) denotes the maximum among all degrees of
nodes of G. It was argued as a part of the proof of Theorem 2 in [8], and we include
a proof here to keep the paper self-contained.

Lemma 4.9. Let G = 〈V,E〉 be an undirected graph. Let u be a node of G.
Then, there exists a subset Ṽ of V which is edge-free in G, includes u, and satisfies

|Ṽ | = � |V |
maxdegree(G)+1�.
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Proof. Let G1 := G, u1 := u, and let G2 be the graph obtained from G1 by
removing u1 and all the nodes adjacent to u1. Note that no more than maxdegree(G)+
1 nodes have been removed. Now, choose a node u2 of G2 and let G3 be the graph
obtained from G2 by removing u2 and all the nodes adjacent to u2. Again, no more
than maxdegree(G) + 1 nodes have been removed. We proceed analogously until the

resulting graph is empty. In this process we have obtained � |V |
maxdegree(G)+1� or more

nodes u1, u2, . . . , including u, that form an edge-free set in G.

Lemma 4.10. Let K be a natural number. Let S ⊆ T be a set of tuples which is
not K-small. Let t ∈ S be a tuple satisfying that S − {t} is K-small. There exists an
independent set S̃ of tuples such that t ∈ S̃ ⊆ S and |S̃| ≥ K.

Proof. Since S is not K-small, there exists a set I � {1, . . . , n} and a tuple
t′ ∈ S satisfying |coincidents(S, t′, I)| ≥ Kn−|I| · (n− |I|)!. Among all the possible I’s
satisfying such a condition, we choose one maximal in size.

Note that t belongs to coincidents(S, t′, I), since otherwise, coincidents(S, t′, I) =
coincidents(S − {t}, t′, I), and hence, |coincidents(S − {t}, t′, I)| ≥ Kn−|I| · (n− |I|)!,
which implies that S−{t} is notK-small, contradicting the assumptions of the lemma.
Therefore, coincidents(S, t′, I) = coincidents(S, t, I). In other words, the mentioned
tuple t′ can be assumed to be t.

In the case |I| = n− 1, we have |coincidents(S, t, I)| ≥ Kn−(n−1) · (n− (n− 1))! =
K. In this case, note that coincidents(S, t, I) itself is necessarily an independent
set because its tuples coincide in all components but one, and hence they must be
all pairwise different at such a component. Thus, we conclude by defining S̃ as
coincidents(S, t, I).

At this point, we assume |I| < n− 1. Under this assumption, by the maximality
selection of I, the following condition holds:

∀t′ ∈ S : ∀I ′ � {1, . . . , n}, |I ′| = |I|+1 : |coincidents(S, t′, I ′)| < Kn−|I|−1·(n−|I|−1)!.

Now, we analyze some properties of G = 〈V,E〉 = graph(S, t, I). First, note that
|V | = |coincidents(S, t, I)| ≥ Kn−|I| · (n − |I|)!, since coincidents(S, t, I) is the set of
nodes of G. Second, we bound maxdegree(G) by bounding the degree of each node t′

of G as follows:

degree(G, t′) ≤
∑

i∈{1,...,n}−I

(∣∣{t′′ ∈ coincidents(S, t, I) | t′[i] = t′′[i]}
∣∣− 1

)

=
∑

i∈{1,...,n}−I

(|coincidents(S, t′, I ∪ {i})| − 1)

< (n− |I|) ·Kn−|I|−1 · (n− |I| − 1)!− 1
= Kn−|I|−1 · (n− |I|)!− 1.

Therefore, maxdegree(G) < Kn−|I|−1 · (n − |I|)! − 1. By Lemma 4.9, there exists a
subset S̃ of coincidents(S, t, I) which is edge-free in G, includes t, and satisfies

|S̃| =
⌈

|V |
maxdegree(G) + 1

⌉
≥

⌈
Kn−|I| · (n− |I|)!

Kn−|I|−1 · (n− |I|)!

⌉
= K

By Lemma 4.8, it follows that S̃ is an independent set.

In the following corollary we restate the result from [8] as a particular consequence
of Lemmas 4.4 and 4.10. This result is useful when it is not necessary to have a
distinguished tuple t in the independent subset.
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Corollary 4.11. Let K be a natural number. Let S ⊆ T be a set of tuples such
that |S| ≥ Kn ·n!. Then, there exists an independent subset of tuples S̃ ⊆ S satisfying
|S̃| ≥ K.

4.2. Independent sets of terms. Recall from the introduction that, given a
run r, a natural number K, and a set of positions P ′ that are forced by the automaton
to have the same pending terms, we will need to find runs r1, . . . , rK satisfying that
all the replacements r[r1]P ′ , . . . , r[rK ]P ′ falsify different disequalities. The notion of
independence of previous section adapted to terms helps to overcome this problem.

Definition 4.12. Let t ∈ T (Σ) be a term and let p be a position. We define
t↓p as t|p if p ∈ Pos(t) and as a fixed symbol ⊥ ∈ Σ otherwise. Let P be a set of
positions. Let p1, . . . , pn be the positions in P , ordered lexicographically.1 We define
TupleP (t) = 〈t↓p1

, . . . , t↓pn
〉. Let S ⊆ T (Σ) be a set of terms. We define TuplesP (S)

as {TupleP (t) | t ∈ S}. We say that S is P -independent if TuplesP (S) is independent.
Let K be a natural number. We say that S is (K,P )-small if TuplesP (S) is K-small.

Under certain additional conditions, we will see that if the run r has r̄ pending at
any of the positions in P ′, and the terms recognized by r1, . . . , rK , r̄ are independent
with respect to the set of positions P that can be affected by disequality constraints,
then all the replacements r[r1]P ′ , . . . , r[rK ]P ′ falsify different disequalities.

The results of the previous section adapted to terms show how such an indepen-
dent set can be detected, and with which complexity. Nevertheless, the translation of
such results from tuples to terms and positions requires the mapping TuplesP to be
injective, and this is not the case in general. In our concrete setting, this holds thanks
to the fact that the set of positions P that we will consider contains λ. (In fact, P will
be the set of positions that can be affected by the disequality constraints.) We will
consider sets of terms {t1, . . . , tm} ⊆ T (Σ) such that P ∩Pos(t1) = · · · = P ∩Pos(tm).
Note that in this case, {t1, . . . , tm} is P -independent if and only if for each p ∈ P ,
either p is not in any of the sets Pos(t1), . . . ,Pos(tm), or it is in all of them and either
t1|p = · · · = tm|p or the subterms t1|p, . . . , tm|p are pairwise different.

The following facts are straightforwardly implied by Lemmas 4.4, 4.5, and 4.10
and Corollary 4.11, respectively.

Lemma 4.13. Let P be a set of positions including λ and let K be a natural
number. Let S ⊆ T (Σ) be a nonempty (K,P )-small set of terms. Then, |S| <
K |P | · |P |!.

Lemma 4.14. Let P be a set of positions including λ and let K be a natural
number. Let S ⊆ T (Σ) be a set of terms. Then, checking whether S is (K,P )-small
can be done with at most |S|2 · 2|P | · |P | comparisons between elements of {t|p | t ∈
S ∧ p ∈ Pos(t) ∩ P} ∪ {⊥}.

Lemma 4.15. Let P be a set of positions including λ, let K be a natural number,
and let S ⊆ T (Σ) be a set of terms which is not (K,P )-small. Let t ∈ S be a term
satisfying that S − {t} is (K,P )-small. There exists a P -independent set S̃ of terms
such that t ∈ S̃ ⊆ S and |S̃| ≥ K.

Corollary 4.16. Let P be a set of positions including λ, let K be a natural
number, and let S ⊆ T (Σ) be a set of terms such that |S| ≥ K |P | · |P |!. Then, there
exists a P -independent set of terms S̃ ⊆ S satisfying |S̃| ≥ K.

1The concrete selected order for positions is not important at all, but we choose this one in order
to fix a precise definition.
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5. Constraint-satisfying replacements. In this section we study how to per-
form replacements on runs of TAihom, �≈ in a way that guarantees that all constraints
are satisfied, i.e., that the weak run resulting from the replacement is actually a run.
We start in section 5.1 focusing on the implicit equality constraints. This is the sim-
plest case since, in order to satisfy the equalities tested by the run, it can be proved
that it suffices to perform the replacement simultaneously at several parallel positions.
Moreover, these positions for the replacement can be easily defined by considering the
positions of the run involved in equality tests. The remaining sections are devoted
to disequality constraints. In section 5.2 we formalize a criterion to distinguish two
different kinds of disequality constraints. Intuitively, this distinction depends on how
“close” are the positions tested by the disequality constraint to the positions where
the replacement is performed. The “closest” ones are studied in section 5.3 and the
“furthest” ones in section 5.4.

Recall that the reason to study replacements on runs of TAihom, �≈ is to be able
to reason about the emptiness of the recognized language: if any “big enough” run
can be reduced by means of a decreasing replacement, then emptiness can be decided
by checking only “small” runs. In order to formalize the notion of such decreasing
replacements, we assume a given well-founded ordering�, total on terms, fulfilling the
strict size relation (if |t| < |t′|, then t � t′) and monotonic (if s � t|p, then t[s]p � t).
Note that a Knuth–Bendix ordering [3] with the standard term size comparison as
the first component satisfies these conditions. We consider this ordering extended to
runs r, r′ in a way such that r � r′ if term(r) � term(r′).

5.1. Equality constraints. We start by defining a kind of replacement that
satisfies all the implicit equality constraints occurring in the rules applied in a run.
Note that, in general, a simple replacement r[r′]p is not enough, since equality tests
checked at positions above p may become falsified after the replacement. To satisfy
these equality tests it is necessary that such a replacement is done at the same time at
all the subruns involved in an equality test, i.e., a replacement needs to be performed
simultaneously at multiple parallel positions. In order to simplify the definition of
these positions, we reason over uniform weak runs. Recall that uniform weak runs
satisfy the implicit equality constraints occurring in the rules applied, and moreover,
an implicit equality constraint asks for equality not only of subterms but also of weak
subruns. Using these properties of uniform weak runs and the fact that equality
constraints of TAihom, �≈ are implicitly defined by duplication of states, we can easily
define the positions for the replacement with the following notion of abstract positions.
Given a uniform weak run r and a position p ∈ Pos(r), we describe the abstract
position of p in r as a sequence of the form q1.q2 . . . qn.p̄, where q1, . . . , qn are states
and p̄ is a position. Intuitively, q1, . . . , qn are the states found while traversing r from
the root to p, and p̄ is the residual suffix of p after the last state.

Definition 5.1. Let A = 〈Q,Σ, F,Δ〉 be a TAihom, �≈. Let r be a uniform weak
run of A, and let p be a position in Pos(r). We define the abstract position of p in
r, denoted abstractr(p), recursively as follows, where we explicitly write r(λ) as a rule

l
c→ q. For the case where p is in PosΣ(l), abstractr(p) is defined as q.p. For the case

where p is of the form p1.p2, where p1 is a position in PosQ(l), abstractr(p) is defined
as q.abstractr|p1 (p2). We write abstract(p) when r is clear from the context.

We denote abstract positions as P , with possible subscripts, and say that P is a
pure abstract position when it is of the form q1 . . . qn.λ, for q1, . . . , qn ∈ Q.

Note that, for a uniform weak run r and a position p ∈ Pos(r), r(p) is defined
if and only if abstract(p) is a pure abstract position. Furthermore, if two positions
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1242 C. CREUS, A. GASCÓN, G. GODOY, AND L. RAMOS

p1, p2 ∈ Pos(r) satisfy that abstract(p1), abstract(p2) are pure and identical, then r(p1)
and r(p2) are defined and r|p1 and r|p2 are equal. Intuitively, according to the def-
inition of uniform weak run of a TAihom, �≈, for positions sharing the same sequence
of states q1 . . . qn from the root, the corresponding uniform weak subruns must coin-
cide. For this reason, with r|q1...qn.λ we denote such a uniform weak subrun, and with
r(q1 . . . qn.λ) the rule applied at the root position of r|q1...qn.λ. In addition, given a
uniform weak run r′ reaching the same state as r|q1...qn.λ, we denote as r[r′]q1...qn.λ
the result of replacing by r′ the uniform weak subrun at each position p holding
abstractr(p) = q1 . . . qn.λ. It is straightforward that such r[r′]q1...qn.λ is also a uniform
weak run. The following lemma formally states this property.

Lemma 5.2. Let A be a TAihom, �≈. Let r, r′ be uniform weak runs of A. Let P be
a pure abstract position of r such that r|P and r′ reach the same state. Then, r[r′]P
is a uniform weak run.

Proof. Since r|P and r′ reach the same state, r[r′]P is a weak run. To prove that
r[r′]P is uniform, we proceed by contradiction by assuming that there exist positions
p, p1, p2 such that r[r′]P (p) is defined as a rule whose left-hand side has the same
state at the positions p1, p2 and r[r′]P |p.p1 = r[r′]P |p.p2 . This is only possible if p.p1
and p.p2 belong to abstract−1

r (P ′) for some pure abstract position P ′ of r. Hence,
the replacement at P modifies the corresponding subruns in the same way, and thus,
r[r′]P |p.p1 = r[r′]P |p.p2 , a contradiction.

The previous fact is equivalent to saying that a replacement r[r′]P defined by
means of a pure abstract position P necessarily satisfies the equality tests. However,
note that nothing is guaranteed about the disequality constraints occurring in the
rules applied in r[r′]P , even in the case where r and r′ are uniform runs. Dealing with
disequality constraints requires more complex arguments, and we present them in the
following sections.

Before concluding this section, we give some additional definitions on abstract
positions. This formalism, besides simplifying the previous Lemma 5.2, also helps
in making the remaining reasonings of our work simpler and more accessible. For
this reason, we are interested in adapting some typical operations on positions to the
setting of abstract positions. In particular, we need to relax the conditions on abstract
positions by allowing concatenations of the form P.p, where P is a pure abstract
position and p is a position. We also need to compare abstract positions between them
by means of a prefix relation. Such a relation is more complex for abstract positions
than for positions, since an abstract position implicitly represents a set of positions.

Definition 5.3. Let A be a TAihom, �≈. Let r be a uniform weak run of A, and
let P, P̄ be abstract positions of r more explicitly written of the form q1 . . . qn.p and
q̄1 . . . q̄m.p̄, respectively. We say that P is a prefix of P̄ , denoted P ≤ P̄ , if n ≤ m,
q1 . . . qn = q̄1 . . . q̄n, and the following conditions hold:

• If n = m, then p ≤ p̄.
• If n < m, then the left-hand side l of the rule r(q1 . . . qn.λ) has an occurrence

of state q̄n+1 in the subterm l|p.
Moreover, we say that P is m− n steps above P̄ . We say that P is a strict prefix of
P̄ , denoted P < P̄ , if P ≤ P̄ and P = P̄ . We say that P and P̄ are parallel, denoted
P ‖ P̄ , if neither P ≤ P̄ nor P̄ ≤ P hold.

Let P be a pure abstract position of r more explicitly written of the form q1 . . . qn.λ.
Let p be a position in Pos(r|P ). By the concatenation P.p we denote the abstract
position q1 . . . qn−1.abstractr|P (p).
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It is important to remark that the previous definitions on abstract positions con-
tradict a usual intuition on positions. Consider two parallel abstract positions P1

and P2 of a uniform weak run r and note that, even though they are parallel, it is
possible that both of them are prefix of a common abstract position P of r, i.e., that
P1, P2 ≤ P . It is easy to see that this is only possible in the case where P1, P2,
and P can be written of the form q1 . . . qn.p1, q1 . . . qn.p2 and q1 . . . qn.qn+1 . . . qm.p,
respectively, with p1 and p2 being parallel positions and n < m, and moreover, the
left-hand side of the rule r(q1 . . . qn.λ) has an occurrence of the state qn+1 below the
positions p1 and p2. The following technical lemma proves that, in the particular case
where one of P1, P2 is a pure abstract position, it is not possible that both of them
are prefix of P .

Lemma 5.4. Let A be a TAihom, �≈. Let r be a uniform weak run of A. Let P1, P2

be parallel abstract positions of r such that at least one of them is pure. Then, there
is no abstract position P of r such that P1 ≤ P and P2 ≤ P .

Proof. Assume without loss of generality that P1 is pure, and consider any ab-
stract position P of r such that P1 ≤ P . In order to conclude, it suffices to prove
P2 ≤ P . Let P1 and P2 be more explicitly written of the form q1 . . . qn.λ and
q1 . . . qi.q̄i+1 . . . q̄m.p2, respectively, where q1 . . . qi is the maximal common prefix of
P1 and P2. Note that since P1 ≤ P2 and P1 is pure, necessarily i < n. In the case
where i = m, the left-hand side of the rule r(q1 . . . qi.λ) does not have any occurrence
of the state qi+1 below position p2: otherwise P2 ≤ P1 contradicting the assumption
that P1 and P2 are parallel. Hence, in this case P2 ≤ P . In the case where i < m, we
have that qi+1 = q̄i+1, and hence, P2 ≤ P follows again. This concludes the proof.

As a final remark, note that an abstract position is defined with respect to a con-
crete uniform weak run, which leads to some counterintuitive cases when comparing
abstract positions of different uniform weak runs. For example, consider two uniform
weak runs r1 and r2 and positions p1 ∈ Pos(r1) and p2 ∈ Pos(r2). Clearly, it is possible
for p1 and p2 to be equal and yet abstractr1(p1) = abstractr2(p2), and it is also possible
that P = abstractr1(p1) = abstractr2(p2) and yet abstract−1

r1 (P ) = abstract−1
r2 (P ). For

these reasons, comparing abstract positions of r1 and r2 can only be done when r1
and r2 are “similar.” In our setting, we are interested in the case where r1 and r2 can
be written of the form r[r′1]P and r[r′2]P , respectively, for some uniform weak runs
r, r′1, r′2 and pure abstract position P of r. Note that in such case, an abstract position
P1 of r1 and an abstract position P2 of r2 can be compared if P is not a strict prefix
of P1 or P2.

5.2. Classifying disequality constraints. We now consider the disequality
constraints of the rules applied in r[r′]P , where r and r′ are uniform runs and P is a
pure abstract position of r such that r|P and r′ reach the same state. Recall that r[r′]P
is necessarily a uniform weak run as stated in Lemma 5.2. Moreover, since r and r′

are uniform runs, for r[r′]P to satisfy all the constraints—and thus be a run—it only
remains to prove that the disequality constraints of rules applied at prefixes of P are
satisfied. That is, we have to show that term(r[r′]P )|p̄.p̄1 = term(r[r′]P )|p̄.p̄2 holds for
each triplet of positions 〈p̄, p̄1, p̄2〉 satisfying the following conditions: r(p̄) is defined,
the atom p̄1 ≈ p̄2 occurs in the disequality constraint of the rule r(p̄), abstractr(p̄) < P ,
and p̄.p̄1, p̄.p̄2 ∈ Pos(r[r′]P ). We can generalize this idea to abstract positions in
order to simplify further reasonings. Consider any two such triplets 〈p̄, p̄1, p̄2〉 and
〈p̄′, p̄1, p̄2〉 such that abstractr(p̄) = abstractr(p̄

′). Note that, since r is a uniform run,
it follows that r|p̄ = r|p̄′ . Therefore, a replacement at P satisfies term(r[r′]P )|p̄.p̄1 =
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term(r[r′]P )|p̄.p̄2 if and only if it also satisfies term(r[r′]P )|p̄′.p̄1 = term(r[r′]P )|p̄′.p̄2 . In
other words, different triplets with the same abstract positions are actually equivalent
and we only need to reason about one of them. The following definition formalizes
these triplets with abstract positions. Moreover, it also distinguishes the case where
the positions are “close” to P , i.e., the test involves subterms of term(r′), from the
one where the positions are “far” from P .

Definition 5.5. Let A be a TAihom, �≈. Let r be a uniform weak run of A, and let
P be a pure abstract position of r. Let P̄ be a pure abstract position of r such that
P̄ < P , and let p̄1, p̄2 be positions such that the atom p̄1 ≈ p̄2 occurs in the disequality
constraint of the rule r(P̄ ). We say that a disequality is tested (by r) at 〈P̄ , p̄1, p̄2〉.
Moreover, we say that it is a close disequality (of r) with respect to P if P ≤ P̄ .p̄1 or
P ≤ P̄ .p̄2, and otherwise, we say that it is a far disequality (of r) with respect to P .
We say that it is falsified if p̄1, p̄2 ∈ Pos(r|P̄ ) and term(r|P̄ )|p̄1 = term(r|P̄ )|p̄2 .

When r and P are clear from the context, we just say that a disequality tested at
〈P̄ , p̄1, p̄2〉 is close/far and omit that the distinction is done with respect to P . In our
setting, since we want to reason about the disequality tests falsified when performing
a replacement, such an implicit P corresponds to where the replacement takes place.
In some cases, when p̄1, p̄2 are clear from the context or not relevant, we just say that
a disequality is tested at P̄ . Finally, we say that a disequality tested at 〈P̄ , p̄1, p̄2〉 is
tested d steps above P if P̄ is d steps above P . We deal with close and far disequalities
separately in the following sections.

5.3. Close disequalities. We first tackle the falsified close disequalities in the
replacement r[r′]P . Recall that, in this case, such disequalities are necessarily tested at
triplets 〈P̄ , p̄1, p̄2〉, where P̄ < P and P ≤ P̄ .p̄1∨P ≤ P̄ .p̄2. Note that these conditions
imply that the tests involve a subterm of term(r′) pending at some position p′, where
p′ is suffix of p̄1 or p̄2. We define the set of such suffixes as follows.

Definition 5.6. Let A be a TAihom, �≈. We define the set of positions suff �≈(A) as
the set of suffixes of the positions occurring in the disequality constraints of the rules
of A, i.e., {p | ∃(l c→ q) ∈ Δ, ∃p1, p2 : (p1.p ≈ p2) ∈ c}, where Δ is the set of rules of
A. (Recall that disequality atoms are unordered pairs.) We just write suff �≈ when A
is clear from the context.

In order to define replacements that do not falsify any close disequality, we first
introduce an equivalence relation ∼A on terms, induced by a TAihom, �≈ A. Intuitively,
two terms are equivalent if they share the same set of positions among the positions in
suff �≈, and moreover, they satisfy the same equality and disequality relations among
subterms at such positions.

Definition 5.7. Let A be a TAihom, �≈. We define the equivalence relation ∼A on
T (Σ) as t ∼A t′ if and only if

• Pos(t) ∩ suff �≈ = Pos(t′) ∩ suff �≈ and
• ∀p1, p2 ∈ Pos(t) ∩ suff �≈ : (t|p1 = t|p2 ⇔ t′|p1 = t′|p2).

Note that reflexivity, symmetry, and transitivity of ∼A are straightforward.
Now, consider a specific disequality tested by the uniform run r at 〈P̄ , p̄1, p̄2〉, and

assume that it is a close disequality with respect to a pure abstract position P of r.
Given some candidate uniform runs r1, . . . , rn for replacements of the form r[ri]P , we
prove that at most one of those replacements can falsify the close disequality tested at
〈P̄ , p̄1, p̄2〉 if r|P , r1, . . . , rn recognize distinct terms that are ∼A-equivalent and form
a suff �≈-independent set.

D
ow

nl
oa

de
d 

03
/2

3/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE HOM PROBLEM IS EXPTIME-COMPLETE 1245

Lemma 5.8. Let A be a TAihom, �≈. Let r be a uniform run of A, and let P be a pure
abstract position of r. Let a close disequality with respect to P be tested at 〈P̄ , p̄1, p̄2〉.
Let r1, . . . , rn be uniform runs of A reaching the same state as r|P and such that the
terms term(r|P ), term(r1), . . . , term(rn) are pairwise different and ∼A-equivalent and
form a suff �≈-independent set. Then, for at most one i ∈ {1, . . . , n}, the replacement
r[ri]P falsifies the close disequality tested at 〈P̄ , p̄1, p̄2〉.

Proof. We start considering the case {p̄1, p̄2} ⊆ Pos(r|P̄ ). This is straightfor-
ward, since the assumptions that term(r|P ), term(r1), . . . , term(rn) are ∼A-equivalent
and 〈P̄ , p̄1, p̄2〉 is close with respect to P guarantee that {p̄1, p̄2} ⊆ Pos(r[ri]P |P̄ ) for
each i ∈ {1, . . . , n}, and thus, in all the replacements the close disequality tested at
〈P̄ , p̄1, p̄2〉 is trivially satisfied. Hence, from now on we assume {p̄1, p̄2} ⊆ Pos(r|P̄ )
and note that {p̄1, p̄2} ⊆ Pos(r[ri]P |P̄ ) follows for each i ∈ {1, . . . , n}.

We reason on the underlying terms. Let t = term(r|P̄ ), and let si = term(ri)
for each i ∈ {1, . . . , n}. Note that t|p̄1 = t|p̄2 holds. Let S be the set of positions
of t where the replacements take place, i.e., S = {p ∈ Pos(t) | ∃p̄ ∈ abstract−1

r (P̄ ) :
abstractr(p̄.p) = P}. (Note that the set could be equivalently defined changing the
existential quantifier in the condition by a universal quantifier.) By definition, S is
a nonempty set of parallel positions, and moreover, the subterms of t pending at
the positions in S are all identical. To ease the presentation, we denote by t|S the
subterm of t pending at any of the positions in S, and by t[si]S the simultaneous
replacement in t of all the subterms pending at positions in S by si. Note that, by
the assumptions of the lemma, t|S , s1, . . . , sn are distinct terms, ∼A-equivalent, and
form a suff �≈-independent set. In order to conclude, it suffices to show that at most
one i ∈ {1, . . . , n} satisfies t[si]S |p̄1 = t[si]S |p̄2 .

By the assumption that 〈P̄ , p̄1, p̄2〉 is close with respect to P , it follows that there
exists p ∈ S such that p ≤ p̄1 or p ≤ p̄2. Since both cases are symmetric, without loss
of generality we assume p ≤ p̄1. Let p̄

′
1 be p̄1 − p and note that p̄′1 ∈ suff �≈. Now, we

distinguish cases depending on p̄2 and the positions in S. First, assume that there
exists p′ ∈ S such that p′ ≤ p̄2. Let p̄′2 be p̄2 − p′ and note that p̄′2 ∈ suff �≈. In
this case, it suffices to prove that at most one i ∈ {1, . . . , n} satisfies si|p̄′

1
= si|p̄′

2
.

But, since t|S ∼A si and t|S |p̄′
1
= t|p|p̄′

1
= t|p̄1 = t|p̄2 = t|p′ |p̄′

2
= t|S |p̄′

2
, it follows

that si|p̄′
1
= si|p̄′

2
for all i ∈ {1, . . . , n}. Second, assume that p̄2 is parallel to all

positions in S, and consider any i, j ∈ {1, . . . , n} such that t[si]S |p̄1 = t[si]S |p̄2 and
t[sj ]S |p̄1 = t[sj ]S |p̄2 . Note that, in this case, this condition is equivalent to saying
si|p̄′

1
= t|p̄2 and sj |p̄′

1
= t|p̄2 . It suffices to note that necessarily i = j: otherwise,

t|S |p̄′
1
= si|p̄′

1
= sj |p̄′

1
since {t|S, s1, . . . , sn} is suff �≈-independent, and thus, t|p̄1 = t|p̄2

since t|S |p̄′
1
= t|p|p̄′

1
= t|p̄1 , contradicting t|p̄1 = t|p̄2 . Third, assume that there exists

p′ ∈ S satisfying p̄2 < p′. Then, for all i ∈ {1, . . . , n} it follows height(t[si]S |p̄1) <
height(t[si]S |p̄2), and thus, t[si]S |p̄1 = t[si]S |p̄2 .

Now we are ready to construct a replacement r[r′]P that does not falsify any
close disequality. From the previous result, it is clear that a single candidate r′ for
the replacement at P might not suffice, and instead, we require some uniform runs
r1, . . . , rn such that n is greater than the number of different close disequalities in
r. Moreover, these r1, . . . , rn must reach the same state as r|P and satisfy that
term(r|P ), term(r1), . . . , term(rn) are pairwise different and ∼A-equivalent and form a
suff �≈-independent set. These conditions are enough to guarantee that if r[ri]P falsifies
a close disequality tested at 〈P̄ , p̄1, p̄2〉, then no other r[rj ]P with i = j can falsify
the close disequality tested at 〈P̄ , p̄1, p̄2〉. The following lemma states the number
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n of needed candidates to construct m replacements that do not falsify any close
disequality.

Lemma 5.9. Let A be a TAihom, �≈. Let m be a natural number, and let n = h �≈ ·
n �≈ + m. Let r be a uniform run of A, and let P be a pure abstract position of r.
Let r1, . . . , rn be uniform runs of A reaching the same state as r|P and such that the
terms term(r|P ), term(r1), . . . , term(rn) are pairwise different and ∼A-equivalent and
form a suff �≈-independent set. Then, there exists a subset {i1, . . . , im} of {1, . . . , n}
such that the replacements r[ri1 ]P , . . . , r[rim ]P do not falsify any close disequality.

Proof. Note that by Lemma 5.8, each close disequality can be falsified in at most
one of the replacements r[r1]P , . . . , r[rn]P . Also note that, since a close disequality
can be tested at most h �≈ steps above P and there are n �≈ different disequality atoms in
the rules of A, it follows that there are at most h �≈ ·n �≈ different close disequalities that
we need to consider. Therefore, n−h �≈ ·n �≈ = m of the replacements r[r1]P , . . . , r[rn]P ,
say, r[ri1 ]P , . . . , r[rim ]P , do not falsify any close disequality.

The previous result is not enough for our purposes, since the arguments in sec-
tion 5.4 need a bound for the case where the candidate terms are not assumed to
be ∼A-equivalent or form a suff �≈-independent set. These assumptions are neces-
sary when the replacement must be performed at a fixed pure abstract position P of
the uniform run r, but not when such P can be chosen among several possibilities.
Hence, consider some pure abstract positions P1, . . . , Pn of r such that r|P1 , . . . , r|Pn

reach the same state and recognize distinct terms. We prove that, when n is “big
enough,” there exists a subset {i1, . . . , im} of {1, . . . , n} such that the replacements
r[r|Pi1

]Pim
, . . . , r[r|Pim−1

]Pim
do not falsify any close disequality with respect to Pim .

The value of such n is given by means of the function Bclose of Definition 5.12, which
uses as intermediate result the following bound for the number of equivalence classes
induced by the relation ∼A.

Definition 5.10. Let A be a TAihom, �≈. We define Beq(A) as 2
|suff �≈| · |suff �≈||suff �≈|.

Lemma 5.11. Let A be a TAihom, �≈. The number of different equivalence classes
induced by ∼A is bounded by Beq(A).

Proof. The first condition of the definition of ∼A induces as many equivalence
classes as there are subsets of suff �≈, and this is bounded by 2|suff �≈|. The second
condition of the definition of ∼A depends on which subterms pending at positions in
suff �≈ are equal or different. This condition induces as many equivalence classes as
the number of partitions of the set suff �≈, and this is bounded by |suff �≈||suff �≈|. The
statement follows by combining both bounds.

We now give the concrete definition of Bclose for the number of needed candidates.

Definition 5.12. Let A be a TAihom, �≈. Let m be a natural number. We define
Bclose(A,m) as (h �≈ · n �≈ +m)|suff �≈| · |suff �≈|! · Beq(A).

Lemma 5.13. Let A be a TAihom, �≈. Let m be a natural number, and let n =
Bclose(A,m). Let r be a uniform run of A. Let P1, . . . , Pn be pure abstract positions
of r such that the subruns r|P1 , . . . , r|Pn reach the same state and recognize pairwise
different terms. Then, there exists a subset {i1, . . . , im} of {1, . . . , n} such that r|Pi1

�
· · · � r|Pim

and the replacements r[r|Pi1
]Pim

, . . . , r[r|Pim−1
]Pim

do not falsify any close
disequality.

Proof. By Lemma 5.11, there are n′ := n/Beq(A) pure abstract positions among
P1, . . . , Pn satisfying that the terms recognized by the subruns at such positions
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are ∼A-equivalent. Without loss of generality, we assume that these n′ pure ab-
stract positions are the first ones, i.e., that the terms term(r|P1 ), . . . , term(r|Pn′ ) are

∼A-equivalent. Since n′ is (h �≈ · n �≈ + m)|suff �≈| · |suff �≈|!, by Corollary 4.16 there
exists a suff �≈-independent subset of {term(r|P1 ), . . . , term(r|Pn′ )} with size n′′ :=
h �≈ · n �≈ + m. Without loss of generality, we assume that this subset is formed by
the terms recognized by the subruns at the n′′ first pure abstract positions, i.e., that
{term(r|P1 ), . . . , term(r|Pn′′ )} is suff �≈-independent. We also assume without loss of
generality that term(r|P1 ) � · · · � term(r|Pn′′ ). Let the im of the statement be
defined as n′′. By Lemma 5.9 applied on r, Pim , and r|P1 , . . . , r|Pn′′−1

, it follows
that there exists a subset {i1, . . . , im−1} of {1, . . . , n′′ − 1} such that the replace-
ments r[r|Pi1

]Pim
, . . . , r[r|Pim−1

]Pim
do not falsify any close disequality. We conclude

the proof by assuming without loss of generality that i1 < · · · < im−1, and thus,
r|Pi1

� · · · � r|Pim−1
� r|Pim

.

5.4. Far disequalities. We start with a result on far disequalities analogous to
the statement on close disequalities of Lemma 5.8. More precisely, consider a specific
disequality tested by the uniform run r at 〈P̄ , p̄1, p̄2〉, and assume that it is a far
disequality with respect to a pure abstract position P of r. Given some candidate
uniform runs r1, . . . , rn for replacements of the form r[ri]P , we prove that at most one
of those replacements can falsify the far disequality tested at 〈P̄ , p̄1, p̄2〉. In contrast
with Lemma 5.8, in this case the only needed assumptions on r1, . . . , rn are that they
reach the same state as r|P and recognize pairwise different terms.

Lemma 5.14. Let A be a TAihom, �≈. Let r be a uniform run of A, and let P be
a pure abstract position of r. Let a far disequality with respect to P be tested at
〈P̄ , p̄1, p̄2〉. Let r1, . . . , rn be uniform runs of A on distinct terms and reaching the
same state as r|P . Then, for at most one i ∈ {1, . . . , n}, the replacement r[ri]P
falsifies the far disequality tested at 〈P̄ , p̄1, p̄2〉.

Proof. We start considering the case {p̄1, p̄2} ⊆ Pos(r|P̄ ). This is straightfor-
ward, since the assumption that 〈P̄ , p̄1, p̄2〉 is far with respect to P guarantees that
{p̄1, p̄2} ⊆ Pos(r[ri]P |P̄ ) for each i ∈ {1, . . . , n}, and thus, in all the replacements
the far disequality tested at 〈P̄ , p̄1, p̄2〉 is trivially satisfied. Hence, from now on we
assume {p̄1, p̄2} ⊆ Pos(r|P̄ ) and note that {p̄1, p̄2} ⊆ Pos(r[ri]P |P̄ ) follows for each
i ∈ {1, . . . , n}.

We reason on the underlying terms. Let ti = term(r|P̄ .p̄i
) for i ∈ {1, 2}, and note

that t1 = t2 holds. For i ∈ {1, 2}, let Si be the sets of positions of ti where the replace-
ments take place, i.e., Si = {p ∈ Pos(ti) | ∃p̄ ∈ abstract−1

r (P̄ ) : abstractr(p̄.p̄i.p) = P}.
By definition, Si is a (maybe empty) set of parallel positions, and moreover, the
subterms of ti pending at the positions in Si are all identical. As in the proof of
Lemma 5.8, we denote by ti[s]Si the simultaneous replacement in ti of all the sub-
terms pending at positions in Si by a term s. In order to conclude, it suffices to show
that at most one term s satisfies t1[s]S1 = t2[s]S2 .

We assume that there exists a term s satisfying t1[s]S1 = t2[s]S2 and prove that
it is unique. Note that, for each position p1 ∈ S1, there is no position p2 ∈ S2 such
that p1 < p2 or p2 < p1: otherwise, the condition t1[s]S1 = t2[s]S2 would be false
for any s. Also, note that S1 = S2: otherwise, the condition t1[s]S1 = t2[s]S2 would
imply t1 = t2 since all the replaced subterms of t1 and t2 are identical by definition.
Hence, there exists a position p ∈ (S1 − S2) ∪ (S2 − S1). Without loss of generality,
assume that such a p is in S1 − S2. The condition t1[s]S1 = t2[s]S2 and the fact that
any position in S2 is parallel with p implies s = t2|p, and we are done.

D
ow

nl
oa

de
d 

03
/2

3/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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It is clear from the previous result that a single candidate r′ for the replacement
r[r′]P is not enough to guarantee that no far disequality is falsified. In particular, given
some candidates r1, . . . , rn recognizing distinct terms, each specific far disequality can
only be falsified by one of the ri’s when performing the replacement at P . In contrast
to our arguments in section 5.3 dealing with close disequalities, note that the number
of far disequalities is not bounded. For this reason, the definition of the number
n of needed candidates is more complex. We start with the following intermediate
lemma where we only consider far disequalities that are “near” P , i.e., far disequalities
tested at a bounded distance from the pure abstract position where the replacement
is performed.

Lemma 5.15. Let A be a TAihom, �≈. Let m, k be natural numbers, and let n =
k · n �≈ + m. Let r be a uniform run of A, and let P be a pure abstract position of
r. Let r1, . . . , rn be uniform runs of A on distinct terms reaching the same state as
r|P and such that, for a given natural number d, the replacements r[r1]P , . . . , r[rn]P
do not falsify any far disequality tested at most d steps above P . Then, there exists
a subset {i1, . . . , im} of {1, . . . , n} such that the replacements r[ri1 ]P , . . . , r[rim ]P do
not falsify any far disequality tested at most d+ k steps above P .

Proof. Note that by Lemma 5.14, each far disequality can be falsified in at most
one of the replacements r[r1]P , . . . , r[rn]P . Also note that, among the far disequalities
that are tested at most d+ k steps above P , we do not need to consider the ones that
are tested at most d steps above P since they are already satisfied by assumption.
Hence, since there are n �≈ different disequality atoms in the rules of A, it follows that
there are at most k ·n �≈ different far disequalities that we need to consider. Therefore,
n− k · n �≈ = m of the replacements r[r1]P , . . . , r[rn]P , say, r[ri1 ]P , . . . , r[rim ]P , do not
falsify any far disequality tested at most d+ k steps above P .

Now we are ready to tackle the far disequalities that are not “near” P . Consider
that we have candidates r1, . . . , rn such that the replacements r[r1]P , . . . , r[rn]P do not
falsify any close disequality. We assume that all of them falsify some far disequality,
since otherwise, no further arguments would be needed. We define an n “big enough”
to guarantee that we are able to construct from subruns of r and from r1, . . . , rn
new candidates r′1, . . . , r

′
n for replacements at a pure abstract position P ′ < P such

that, again, r[r′1]P ′ , . . . , r[r′n]P ′ do not falsify any close disequality. Note that in the
case where all of them falsify some far disequality, this argument can be iterated
to obtain new candidates r′′1 , . . . , r

′′
n to perform replacements at a P ′′ < P ′ < P ,

i.e., at a pure abstract position closer to the root. Hence, we are guaranteed to
eventually find a replacement that does not falsify any far disequality. The number
n of needed candidates is given by means of the function B of Definition 5.16 and
the proof of this fact is given in Lemma 5.17. The function B takes two natural
numbers M and N for which we do not give a concrete definition until Lemma 5.19.
At this point it suffices to assume that they satisfy M · N ≥ B(A,M,N) = n. In
order to illustrate the definition of B, we sketch the steps that we perform in the
proof of Lemma 5.17 to construct the new candidates r′1, . . . , r

′
n and to find the new

pure abstract position P ′ for the replacement. We start by noting that, since all the
replacements r[r1]P , . . . , r[rn]P falsify far disequalities, we can consider the maximal
pure abstract positions P̄1, . . . , P̄n such that, for i ∈ {1, . . . , n}, the replacement r[ri]P
falsifies a far disequality tested at P̄i. We also assume without loss of generality that
P̄1 ≥ P̄2 ≥ · · · ≥ P̄n by reordering the runs ri if necessary (see Figure 2). Now, the
proof proceeds as follows:
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P̄i

P̄i.p̄i2

P̄i.p̄i1

P̄i.p̄i1.p
′
i

Qi = P̄i.p̄i2.p
′
i

P

P̄1

P̄2

P̄3

P̄n

P̄n−1

P̄n−2

...

...

Fig. 2. Abstract positions of the uniform run r that are considered in Lemma 5.17. (The single
path depicted should be understood as all paths in r with abstract position P .)

• As an initial step, we need the pure abstract positions P̄1, . . . , P̄n to be spaced
between them. In particular, we want any two P̄i, P̄j to be more than h �≈+hlhs
steps away from each other. To this end, we first remove from P̄1, . . . , P̄n any
repetition of pure abstract positions. Recall that, by Lemma 5.14, the far
disequalities falsified by a candidate ri are necessarily different from the far
disequalities falsified by any other candidate rj . However, since a rule may
have several different disequality atoms, it follows that we can have several
occurrences of identical P̄i’s. But there are at most n �≈ occurrences of the
same element, and hence, it is possible to take from P̄1, . . . , P̄n a selection
with n1 := n/n �≈ distinct pure abstract positions, say, P̄1, . . . , P̄n1 . Finally, we
can take a new selection with n2 := n1/(1+h �≈+hlhs) pure abstract positions
from P̄1, . . . , P̄n1 , say, P̄1, . . . , P̄n2 , that are more than h �≈ + hlhs steps away
from each other.

• We now consider each selected P̄i and their corresponding positions p̄i1, p̄i2
of the far disequality tested at P̄i and falsified by r[ri]P , and consider com-
mon extensions of P̄i.p̄i1, P̄i.p̄i2 defined by positions p′i satisfying that either
P̄i.p̄i1.p

′
i or P̄i.p̄i2.p

′
i is pure in r and the terms pending at such abstract posi-

tions in r are still different (and note that the terms pending at such abstract
positions in r[ri]P must coincide). We prove that for each of such p′i, one of
the extensions, say, P̄i.p̄i1.p

′
i, is a prefix of P , and that the other one, i.e.,

P̄i.p̄i2.p
′
i, is parallel to P . Among all the possible p′i, we choose a minimal

one in size such that the extension P̄i.p̄i2.p
′
i parallel to P is pure. Thanks

to the fact that the selected P̄1, . . . , P̄n2 are spaced between them by more
than h �≈ + hlhs steps, this extension can be done for each P̄i without reaching
any larger P̄j . Let Qi be the extension P̄i.p̄i2.p

′
i. We prove that the subruns

r|Q1 , . . . , r|Qn2
recognize distinct terms.

• At this point, we split {1, . . . , n2} into two subsets depending on how close
the corresponding P̄i’s are to P : one subset with the n3 closest ones and
the other with the n4 := n2 − n3 remaining ones. Say they are {1, . . . , n3}
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1250 C. CREUS, A. GASCÓN, G. GODOY, AND L. RAMOS

and {n3 + 1, . . . , n2}, respectively. Recall that each P̄i is the maximal pure
abstract position where a far disequality is falsified by the replacement r[ri]P .
This means that the P̄i’s that are furthest from P necessarily correspond to
the replacements where all the falsified far disequalities are “very far” from
P . We now extract M +1 indexes from {1, . . . , n3}, say, {1, . . . ,M +1}, such
that, for each i ∈ {1, . . . ,M}, the replacement r[r|Qi ]QM+1 does not falsify
any close disequality with respect to P̄M+1. Moreover, for each of such i, we
extract a set of N indexes from {n3 + 1, . . . , n2} such that, for each of such
indexes j, the simultaneous replacement r[r|Qi ]QM+1 [rj ]P does not falsify any
close disequality with respect to P̄M+1. We prove that n3 := |Q|·Bclose(A,M+
1+(2·h �≈+hlhs)·n �≈) suffices to guarantee the existence of such M+1 indexes,
where the factor |Q| is required in order to guarantee that r|Q1 , . . . , r|QM reach
the same state as r|QM+1 . For each of such i ∈ {1, . . . ,M} the generation
of the subset of size N from {n3 + 1, . . . , n2} must be done depending on i
since, even though for all j ∈ {n3 + 1, . . . , n2} the replacement r[rj ]P does
not falsify any disequality below P̄M+1, it might be the case that it falsifies
some such disequality when combined with the replacement at QM+1. We
prove that n4 := N + (2 · h �≈ + hlhs) · n �≈ suffices to guarantee the existence of
such N indexes.
To summarize, it is possible to combine each of the M replacements at
QM+1 with the N corresponding replacements at P , and thus we can de-
fine the M · N ≥ B(A,M,N) = n needed candidates as runs of the form
r[r|Qi ]QM+1 [rj ]P |P̄M+1

and the abstract position P ′ as P̄M+1.
By considering the values given to n1, n2, n3, and n4 in the previous explanation,
we can finally define the global bound B(A,M,N) and prove the main result of this
section.

Definition 5.16. Let A be a TAihom, �≈. Let M,N be natural numbers. We define

B(A,M,N) = n �≈ · (1 + h �≈ + hlhs) ·
(
|Q| · Bclose(A,M + 1 + (2 · h �≈ + hlhs) · n �≈)

+ N + (2 · h �≈ + hlhs) · n �≈
)
.

Lemma 5.17. Let A = 〈Q,Σ, F,Δ〉 be a TAihom, �≈. Let M,N be natural numbers
satisfying M · N ≥ B(A,M,N). Let n = B(A,M,N). Let r be a uniform run of A,
and let P be a pure abstract position of r. Let r1, . . . , rn be uniform runs of A on
distinct terms reaching the same state as r|P and such that r1, . . . , rn � r|P and each
one of the replacements r[r1]P , . . . , r[rn]P falsifies at least one far disequality but does
not falsify any close disequality. Then, there exists a pure abstract position P ′ < P of
r and uniform runs r′1, . . . , r

′
n of A on distinct terms reaching the same state as r|P ′ ,

and such that r′1, . . . , r
′
n � r|P ′ and each one of the replacements r[r′1]P ′ , . . . , r[r′n]P ′

does not falsify any close disequality.

Proof. For each i ∈ {1, . . . , n}, let P̄i be the maximal pure abstract position such
that the replacement r[ri]P falsifies a far disequality tested at P̄i. Without loss of
generality, we assume that P̄1 ≥ P̄2 ≥ · · · ≥ P̄n by reordering the runs ri if necessary.
Note that |term(r|P̄1

)| ≤ |term(r|P̄2
)| ≤ · · · ≤ |term(r|P̄n

)|. By Lemma 5.14 and the
fact that there are n �≈ different disequality atoms in the rules of A, it follows that
for each pure abstract position P ′ < P at most n �≈ of the pure abstract positions P̄i

coincide with P ′. Thus, we can choose a subset S of {1, . . . , n} with size

n′ := n/(n �≈ · (1 + h �≈ + hlhs)) = |Q| · Bclose(A,M + 1 + (2 · h �≈ + hlhs) · n �≈)
+ N + (2 · h �≈ + hlhs) · n �≈
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satisfying that P̄j is more than h �≈ + hlhs steps above P̄i for each i, j ∈ S with i < j
and that P̄i is more than h �≈ + hlhs steps above P for each i ∈ S. Without loss of
generality, we assume that S is {1, . . . , n′}. Note that P̄1 > P̄2 > · · · > P̄n′ and
|term(r|P̄1

)| < |term(r|P̄2
)| < · · · < |term(r|P̄n′ )|.

Consider any k in S. Since the replacement r[rk]P falsifies a disequality tested
at P̄k, it follows that there exist positions p̄k1, p̄k2 such that the atom p̄k1 ≈ p̄k2 oc-
curs in the disequality constraint of the rule r(P̄k), and moreover, term(r|P̄k

)|p̄k1
=

term(r|P̄k
)|p̄k2

and term(r[rk]P |P̄k
)|p̄k1

= term(r[rk]P |P̄k
)|p̄k2

. Let pk be the shortest
position such that at least one of P̄k.p̄k1.pk, P̄k.p̄k2.pk is defined in r (i.e., corresponds
to a pure abstract position of r), and moreover, term(r|P̄k

)|p̄k1.pk
= term(r|P̄k

)|p̄k2.pk

and term(r[rk]P |P̄k
)|p̄k1.pk

= term(r[rk ]P |P̄k
)|p̄k2.pk

. Note that |p̄k1|, |p̄k2| ≤ h �≈ and
|pk| ≤ hlhs, which implies that P̄i is not a prefix of P̄k.p̄k1.pk or P̄k.p̄k2.pk for each i ∈ S
with i < k, and neither P is prefix of P̄k.p̄k1.pk or P̄k.p̄k2.pk. Also note that P̄k.p̄k1.pk
and P̄k.p̄k2.pk are necessarily parallel and at least one of them is a prefix of P ,
since otherwise, either term(r|P̄k

)|p̄k1.pk
= term(r|P̄k

)|p̄k2.pk
or term(r[rk ]P |P̄k

)|p̄k1.pk
=

term(r[rk ]P |P̄k
)|p̄k2.pk

would be impossible. By Lemma 5.4, without loss of general-
ity, we can assume that P̄k.p̄k1.pk is a prefix of P and that P̄k.p̄k2.pk is not a prefix
of P . Let p′k be the shortest extension of pk such that P̄k.p̄k2.p

′
k is defined in r

(i.e., corresponds to a pure abstract position of r), and moreover, term(r|P̄k
)|p̄k1.p′

k
=

term(r|P̄k
)|p̄k2.p′

k
and term(r[rk]P |P̄k

)|p̄k1.p′
k
= term(r[rk]P |P̄k

)|p̄k2.p′
k
. Note that in the

case where P̄k.p̄k2.pk already corresponds to a pure abstract position of r, p′k is just
pk. In any case, we have |p′k| ≤ hlhs. Let Qk be the pure abstract position P̄k.p̄k2.p

′
k.

Observe that all of such Qk are parallel with P .
We prove that the terms term(r|Q1 ), . . . , term(r|Qn′ ) are distinct by showing that

term(r|Qi ) is a strict subterm of term(r|Qj ) for each 1 ≤ i < j ≤ n′. From the
fact that P̄j is more than h �≈ + hlhs steps above P̄i, it follows that P̄j .p̄j1.p

′
j is a

strict prefix of P̄i, and thus also of Qi. Hence, term(r|Qi) is a strict subterm of
term(r|P̄j

)|p̄j1.p′
j
. Moreover, since Qi is parallel with P , term(r|Qi ) is also a strict

subterm of term(r[rj ]P |P̄j
)|p̄j1.p′

j
. Since term(r[rj ]P |P̄j

)|p̄j1.p′
j
= term(r[rj ]P |P̄j

)|p̄j2.p′
j
,

it follows that term(r|Qi ) is also a strict subterm of term(r[rj ]P |P̄j
)|p̄j2.p′

j
, i.e., of

term(r[rj ]P |Qj ). Finally, since Qj is parallel with P , term(r|Qi ) is also a strict subterm
of term(r|Qj ).

Let m = M + 1 + (2 · h �≈ + hlhs) · n �≈, and consider the first |Q| · Bclose(A,m)
elements of S, i.e., {1, . . . , |Q| · Bclose(A,m)}. Necessarily, there exists Bclose(A,m)
elements among them, say, {1, . . . ,Bclose(A,m)} without loss of generality, such that
the subruns of r at the pure abstract positions Q1, . . . , QBclose(A,m) reach the same
state. By Lemma 5.13, there exists a subset {i1, . . . , im} of {1, . . . ,Bclose(A,m)}
such that r|Qi1

� · · · � r|Qim
and the replacements r[r|Qi1

]Qim
, . . . , r[r|Qim−1

]Qim

do not falsify any close disequality. Moreover, by Lemma 5.15, there exists a subset
{j1, . . . , jM} of {i1, . . . , im−1} such that the replacements r[r|Qj1

]Qim
, . . . , r[r|QjM

]Qim

do not falsify any far disequality tested at most 2 · h �≈ + hlhs steps above Qim . Note
that, since P̄im is at most h �≈ + hlhs steps above Qim , the replacements do not falsify
any disequality tested at most h �≈ steps above P̄im , and hence, they do not falsify any
close disequality with respect to P̄im .

Now, consider the last |S| − |Q| · Bclose(A,m) remaining elements of S. Observe
that S′ := S − {1, . . . , |Q| · Bclose(A,m)} = {|Q| · Bclose(A,m) + 1, . . . , n′} = {n′ −
(N +(2 · h �≈+ hlhs) · n �≈)+ 1, . . . , n′}. Also, note that, for each i ∈ S′, the replacement
r[ri]P does not falsify any disequality tested below or at P̄im . Thus, for each i ∈ S′

and each k ∈ {1, . . . ,M}, since P̄im .p̄im1.p
′
im and P̄im .p̄im2.p

′
im are parallel, it follows
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that the replacement r[r|Qjk
]Qim

[ri]P does not falsify any disequality tested below or

at P̄im .p̄im1.p
′
im . Recall that |p̄im1| ≤ h �≈ and |p′im | ≤ hlhs. By Lemma 5.15, for each

fixed k ∈ {1, . . . ,M}, we can choose a subset Sk of S′ with size N such that, for each
i ∈ Sk, the replacement r[r|Qjk

]Qim
[ri]P does not falsify any disequality tested below

or at P̄im , and moreover, it does not falsify any disequality tested at most h �≈ steps
above P̄im , i.e., it does not falsify any close disequality with respect to P̄im . Let rki be
r[r|Qjk

]Qim
[ri]P |P̄im

for each k ∈ {1, . . . ,M} and each i ∈ Sk. Note that all such rki’s
are uniform runs of A on distinct terms reaching the same state as r|P̄im

. Moreover,
each of such rki satisfies rki � r|P̄im

, and the replacement r[rki]P̄im
, which in fact

produces r[r|Qjk
]Qim

[ri]P , does not falsify any close disequality with respect to P̄im .

Observe that there are M · N ≥ n of such rki’s. Thus, by defining P ′ as P̄im and
r′1, . . . , r

′
n as n of such rki’s, the lemma follows.

At this point it is clear that, by iterative applications of Lemma 5.17, we can
construct a replacement that does not falsify any disequality or implicit equality
constraint—i.e., a replacement that produces a run—whenever we have B(A,M,N)
candidates for the replacement that do not falsify any close disequality. Moreover,
note that since the candidates considered are smaller than the subrun being replaced,
such replacement necessarily decreases the size of the starting run. The following
corollary is an immediate consequence of this fact stating that, when the starting run
is accepting, then it is not a minimum accepting run since we can decrease its size by
performing such a replacement.

Corollary 5.18. Let A be a TAihom, �≈. Let M,N be natural numbers satisfying
M · N ≥ B(A,M,N). Let n = B(A,M,N). Let r be an accepting uniform run of
A, and let P be a pure abstract position of r. Let r1, . . . , rn be uniform runs of A
on distinct terms reaching the same state as r|P and such that r1, . . . , rn � r|P and
each one of the replacements r[r1]P , . . . , r[rn]P does not falsify any close disequality.
Then, r is not a minimum accepting run.

In order to conclude, it only remains to prove that there exist M and N satisfying
M ·N ≥ B(A,M,N). In the following lemma we give concrete values for M and N
that satisfy that condition. Note that there exist alternative definitions, but the ones
we use are rather straightforward and lead to a simple proof.

Lemma 5.19. Let A be a TAihom, �≈. Let M = n �≈ · (1 + h �≈ + hlhs) + 1 and N =
n �≈ · (1 + h �≈ + hlhs) · (|Q| · Bclose(A,M + 1+ (2 · h �≈ + hlhs) · n �≈) + (2 · h �≈ + hlhs) · n �≈).
Then, M ·N = B(A,M,N).

Proof. It follows by replacing the N in the definition of B by the definition of N
in the statement and factoring the result. More precisely, let X = n �≈ · (1+h �≈+hlhs)
and Y = (|Q| · Bclose(A,M +1+(2 · h �≈+ hlhs) · n �≈)+ (2 · h �≈+ hlhs) · n �≈) and note that
M = X + 1 and N = X · Y . Then, B(A,M,N) = X · (Y +N) = X · (Y +X · Y ) =
X · ((1 +X) · Y ) = (1 +X) ·X · Y = M ·N .

6. Emptiness decision algorithm. In this section we introduce an algorithm
that decides the emptiness of the language recognized by TAihom, �≈ in exponential
time. In contrast to the previous section, we can now refrain from reasoning on runs
since most of the information they provide is superfluous in our current setting. In
particular, the only relevant data that the algorithm needs from a run is the term it
recognizes and the state it reaches. For this reason, we focus on a formalism simpler
than runs, namely, (term, state)-pairs defined as follows.
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Definition 6.1. Let A = 〈Q,Σ, F,Δ〉 be a TAihom, �≈. A (term, state)-pair 〈t, q〉 ∈
T (Σ)×Q is called a feasible pair of A if there exists a run of A on t reaching q, and
moreover, it is called accepting if such run is accepting, i.e., if q ∈ F .

We compare (term, state)-pairs by the lexicographic extension of � and an ar-
bitrary total ordering on states. We also use � to denote the ordering on (term,
state)-pairs.

Two sets of feasible pairs, called Definitive and Candidates, are maintained as data
structures of the algorithm. Initially, Definitive is empty, and Candidates has all the
feasible pairs 〈t, q〉 such that there exists a run with only one applied rule on t and
reaching q. At each iteration, the minimum pair 〈t, q〉 with respect to � in Candidates
is considered. The pair 〈t, q〉 is added to the set Definitive unless it is realized that
it cannot be used to construct the minimum term with respect to � of L(A). This
fact can be detected using the results of the previous section. Corollary 6.4 is a
consequence of Corollary 5.18 and Lemma 5.9.

Definition 6.2. Let A = 〈Q,Σ, F,Δ〉 be a TAihom, �≈. Let 〈t, q〉, 〈t′, q′〉 ∈ T (Σ)×Q
be feasible (term, state)-pairs. We say that 〈t′, q′〉 is a piece of 〈t, q〉 if there exists a
run r of A on t reaching q such that there is a position p ∈ Pos(t) satisfying that r(p)
is defined, r|p reaches q′, and t|p = t′.

Definition 6.3. Let A be a TAihom, �≈. Let M,N be natural numbers defined as
in Lemma 5.19. We define K(A) as h �≈ · n �≈ + B(A,M,N).

Corollary 6.4. Let A = 〈Q,Σ, F,Δ〉 be a TAihom, �≈. Let t, s1, . . . , sK(A) be dis-
tinct terms in T (Σ) with runs of A on them reaching a state q ∈ Q and such that
{t, s1, . . . , sK(A)} is suff �≈-independent, t ∼A s1, . . . , sK(A), and s1, . . . , sK(A) � t.
Then, 〈t, q〉 is not a piece of the minimum accepting pair of A.

According to the previous corollary, in order to discard the addition of 〈t, q〉
to Definitive, we should consider the set {s | 〈s, q〉 ∈ Definitive ∧ s ∼A t} and
check whether it has a subset {s1, . . . , sK(A)} such that {t, s1, . . . , sK(A)} is suff �≈-
independent. The time complexity of searching for such subset is too high for our
goals. Fortunately, section 4.2 gives us an alternative criterion to determine, in some
cases, that such a subset exists. Along the execution of the algorithm we preserve
an invariant stating that each of such sets {s | 〈s, q〉 ∈ Definitive ∧ s ∼A t}
is a (K(A)+1, suff �≈)-small set of terms. If the addition of t to this set makes it
non(K(A)+1, suff �≈)-small, then, by Lemma 4.15, it follows the existence of the sub-
set {s1, . . . , sK(A)} mentioned above. Thus, in this case we must discard the pair
〈t, q〉, since it is not a piece of the minimum accepting pair of A.

In the case where the pair 〈t, q〉 is not discarded, it is added to the set Definitive
and used to generate new feasible (term, state)-pairs, which are added to Candidates.
This generation is performed (i) using the left-hand sides of rules in Δ to determine
the symbols in the top-most positions of the new terms, (ii) using the feasible (term,
state)-pairs in Definitive to instantiate the states appearing in such left-hand sides,
and also (iii) guaranteeing that the specific pair 〈t, q〉 is used for the instantiation.
This last condition ensures that all the pairs added to Candidates are new, i.e., that
the algorithm has still not considered them to be added to Definitive (although they
may be already in Candidates due to a previous generation). This generation is defined
formally as follows.

Definition 6.5. Let A = 〈Q,Σ, F,Δ〉 be a TAihom, �≈. Let S ⊆ T (Σ) × Q be a
set of feasible (term, state)-pairs. Let 〈t, q〉 ∈ S be a feasible (term, state)-pair. We
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1254 C. CREUS, A. GASCÓN, G. GODOY, AND L. RAMOS

define the set of instantiations of Δ with S and 〈t, q〉 as the set of feasible pairs:

{
〈t′ = l[t1]p1 . . . [tn]pn , q

′〉 | ∃(l c→ q′) ∈ Δ, {p1, . . . , pn} = PosQ(l),
∀i ∈ {1, . . . , n} : 〈ti, l(pi)〉 ∈ S,
∃i ∈ {1, . . . , n} : 〈ti, l(pi)〉 = 〈t, q〉,
∀i, j ∈ {1, . . . , n} : (l(pi) = l(pj) ⇒ ti = tj),
∀(p̄1 ≈ p̄2) ∈ c : (p̄1, p̄2 ∈ Pos(t′) ⇒ t′|p̄1 = t′|p̄2)

}
.

When there are no more pairs in Candidates to be considered, the algorithm stops
and states nonemptiness if there is a (term, state)-pair in Definitive where the state
is final. We present in Algorithm 6.1 a formalization of the previous explanations.

Algorithm 6.1 Emptiness decision for the language recognized by a TAihom, �≈ A.

Input: a TAihom, �≈ A = 〈Q,Σ, F,Δ〉.
Data structures: Definitive,Candidates sets of elements in T (Σ)×Q.

(1) Insert in Candidates the pairs 〈l, q〉 such that there exists a rule (l
c→ q) ∈ Δ

with l ∈ T (Σ) and satisfying ∀(p̄1 ≈ p̄2) ∈ c : (p̄1, p̄2 ∈ Pos(l) ⇒ l|p̄1 = l|p̄2).
(2) While Candidates is not empty:

(a) Let 〈t, q〉 be the smallest pair in Candidates with respect to �.
(b) Remove 〈t, q〉 from Candidates.
(c) If {s | 〈s, q〉 ∈ Definitive ∧ s ∼A t} ∪ {t} is (K(A)+1, suff �≈)-small:

(i) Insert 〈t, q〉 in Definitive.
(ii) Insert in Candidates all the elements in the set of instantiations of

Δ with Definitive and 〈t, q〉.
(3) If there is a pair 〈t, q〉 ∈ Definitive with q ∈ F , then output “NON-EMPTY,” else

output “EMPTY.”

Example 6.6. Consider the signature Σ with binary symbols h, g and a nullary
symbol a, and the language of terms over Σ of the form h(t1, t2) satisfying that t1, t2
are different complete trees over g and a. Such language is recognized by the TAihom, �≈
A = 〈{q, q′, qaccept},Σ, {qaccept}, {a → q|q′, g(q, q) → q|q′, h(q, q′)

1�≈2−→ qaccept}〉,
where we use l → q|q′ to simultaneously denote the rules l → q and l → q′.

In order to apply Algorithm 6.1, we first need to fix an ordering � for terms. We
choose a natural recursive definition: for distinct terms t, t′, if |t| < |t′|, then t � t′,
and in the case |t| = |t′| (which implies that the sizes are at least 2 since t = t′), t � t′

if (t(λ) = g∧t′(λ) = h)∨(t(λ) = t′(λ)∧t|1 � t′|1)∨(t(λ) = t′(λ)∧t|1 = t′|1∧t|2 � t′|2).
To lexicographically extend the ordering to (term, state)-pairs we simply assume
〈t, q〉 � 〈t, q′〉 � 〈t, qaccept〉.

We execute Algorithm 6.1 step by step. First, Candidates := {〈a, q〉, 〈a, q′〉} is set
at step 1. Second, step 2 is executed repeatedly, where the first four iterations proceed
as follows (to ease the presentation, we do not discuss (K(A)+1, suff �≈)-smallness in
detail):

1. The �-minimum pair extracted from Candidates is 〈a, q〉. Since Definitive is
still empty, step 2(c) is satisfied with a trivial (K(A)+1, suff �≈)-smallness test.
Hence, Definitive := {〈a, q〉}, and the pair 〈a, q〉 and the current Definitive are
used to instantiate two new feasible pairs for Candidates:

Candidates := {〈a, q′〉} � {〈g(a, a), q〉, 〈g(a, a), q′〉}.

2. The �-minimum pair extracted from Candidates is 〈a, q′〉. Now, Definitive is
nonempty, but its subset {s | 〈s, q′〉 ∈ Definitive} is, and thus, step 2(c) is

D
ow

nl
oa

de
d 

03
/2

3/
17

 to
 5

.1
96

.8
9.

22
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE HOM PROBLEM IS EXPTIME-COMPLETE 1255

satisfied. Hence, Definitive := {〈a, q〉, 〈a, q′〉}. In this case, the instantiation
does not produce any feasible pair: since it is required that the current pair
〈a, q′〉 is used in the instantiation, the only transition rule that we can use is

h(q, q′)
1�≈2−→ qaccept, but it is easy to see that the disequality constraint 1 ≈ 2

cannot be satisfied with the current feasible pairs in Definitive. Hence

Candidates = {〈g(a, a), q〉, 〈g(a, a), q′〉}.

3. The �-minimum pair extracted from Candidates is 〈g(a, a), q〉. Now, note
that {s | 〈s, q〉 ∈ Definitive ∧ s ∼A g(a, a)} is empty since suff �≈ = {λ, 1, 2}.
Thus, again step 2(c) is satisfied. Hence, Definitive := {〈a, q〉, 〈a, q′〉, 〈g(a, a), q〉},
and the instantiation produces three new feasible pairs:

Candidates := {〈g(a, a), q′〉} � {〈g(g(a, a), g(a, a)), q〉, 〈g(g(a, a), g(a, a)), q′〉,
〈h(g(a, a), a), qaccept〉}.

At this point it would be possible to conclude L(A) = ∅ due to the presence
of the feasible pair 〈h(g(a, a), a), qaccept〉 in Candidates. Nevertheless, the
algorithm does not stop its execution until Candidates is empty.

4. The �-minimum pair extracted from Candidates is 〈g(a, a), q′〉. As before,
step 2(c) is satisfied since {s | 〈s, q′〉 ∈ Definitive ∧ s ∼A g(a, a)} is empty.
Hence, Definitive := {〈a, q〉, 〈a, q′〉, 〈g(a, a), q〉, 〈g(a, a), q′〉}, and the instan-
tiation produces one new feasible pair:

Candidates := {〈g(g(a, a), g(a, a)), q〉, 〈g(g(a, a), g(a, a)), q′〉,
〈h(g(a, a), a), qaccept〉} � {〈h(a, g(a, a)), qaccept〉}.

In the next iteration of step 2, the algorithm will extract from Candidates the pair
〈h(a, g(a, a)), qaccept〉 generated in the fourth iteration (which is, in fact, the �-
minimum accepting pair of A) and insert it into Definitive. Hence, once Candidates is
completely emptied, the algorithm will halt with output “NON-EMPTY,” as expected.
Note that, in the detailed iterations, the feasible pairs instantiated are all new, even
though this is in general not the case: the instantiation might produce feasible pairs
that are already in Candidates. (The new pairs are only guaranteed to be �-greater
than all the feasible pairs in Definitive.)

Now it remains to prove that our algorithm is correct and terminates in the desired
time.

Lemma 6.7. Let A be a TAihom, �≈. Algorithm 6.1 on input A takes time in

2O(|suff �≈|2·|Poslhs|·log |A|).

Proof. Let A be 〈Q,Σ, F,Δ〉 more explicitly written. First note that, by Defi-
nitions 5.10, 5.12, 5.16 and 6.3 and Lemma 5.19, K(A) is in 2O(|suff �≈|·log |A|). Now,
consider any maximal subset of Definitive with (term, state)-pairs having the same
state and with all the terms belonging to the same equivalence class of ∼A and note
that, since Algorithm 6.1 guarantees that such subset is (K(A)+1, suff �≈)-small, by

Lemma 4.13 it follows that its size is in 2O(|suff �≈|2·log |A|). By Lemma 5.11, there
are |Q| · Beq(A) of such subsets, and thus, we have that the size of Definitive is

in 2O(|suff �≈|2·log |A|). Each time a pair is added to Definitive, new pairs are gener-
ated and added to Candidates. When this happens, the maximum number of new
pairs that can be generated in the instantiation is bounded by |Δ| · |Definitive||Poslhs|.
Hence, the number of pairs inserted in Candidates during the whole execution is in
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2O(|suff �≈|2·|Poslhs|·log |A|). Since each iteration of the algorithm removes a pair from
Candidates, it follows that the number of iterations is in 2O(|suff �≈|2·|Poslhs|·log |A|).

It remains to prove that each iteration takes time in 2O(|suff �≈|2·|Poslhs|·log |A|). To
avoid double exponential blowup, we consider a directed acyclic graph (DAG) repre-
sentation for terms. More precisely, the algorithm uses a DAG as an internal data
structure, where each node is labeled by a symbol f ∈ Σ and has arity(f) ordered out-
edges. In this way, each node of the DAG implicitly represents a term over Σ, and thus,
each of the terms considered by the algorithm is simply a reference to the appropriate
node in the DAG. Additionally, we consider that the DAG is minimum, meaning that
each two distinct nodes of the DAG represent different terms. (Note that each time
a new node has to be inserted into the DAG, it can be checked in linear time with
respect to the size of the DAG whether the DAG already contains a node representing
the desired term.) This implies that the total size of the representation, i.e., the size
of the DAG, equals the number of distinct terms generated by the algorithm, which
is in 2O(|suff �≈|2·|Poslhs|·log |A|). Now, we analyze the cost of performing each of the steps
in the loop when using such an internal data structure. For step 2(a), it is necessary
to select the minimum pair in Candidates with respect to �. To this end, it suffices
to compute, for each two distinct nodes of the DAG representing terms t, t′, whether
t � t′. The cost of this computation is polynomial with respect to the size of the
DAG when using a dynamic programming scheme, and hence, this step takes time in
2O(|suff �≈|2·|Poslhs|·log |A|). For step 2(c), ∼A-equivalence with a term t must be checked:
this consists in testing, for each node of the DAG representing a term t′ and each two
positions p1, p2 ∈ suff �≈, whether the subterms of t, t′ pending at positions p1, p2 exist,
and when they do, whether t|p1 , t|p2 are represented by the same node of the DAG
(i.e., are equal terms) if and only if t′|p1 , t

′|p2 are represented by the same node of the
DAG (i.e., are equal terms). Also for step 2(c), it is necessary to test (K(A)+1, suff �≈)-
smallness: by Lemma 4.14, this requires at most |Definitive|2 · 2|suff �≈| · |suff �≈| equal-
ity comparisons between subterms, and such comparisons consist simply in checking
whether the nodes of the DAG representing the involved subterms coincide. Thus,
this step also takes time in 2O(|suff �≈|2·|Poslhs|·log |A|). Finally, for step 2(c)(ii), we need
to insert into the DAG the newly instantiated terms, and also avoid the insertion of
repeated elements in Candidates. As justified before, inserting a node into the DAG
takes linear time with respect to the size of the DAG, as we need to keep the DAG
minimum. Avoiding repeated elements in Candidates is straightforward: it suffices to
check whether Candidates already contains a (term, state)-pair with the same state
and referencing the same node of the DAG as the (term, state)-pair to be inserted.

Hence, this also takes time in 2O(|suff �≈|2·|Poslhs|·log |A|), and we are done.

We now prove Algorithm 6.1 to be correct.

Lemma 6.8. Let A = 〈Q,Σ, F,Δ〉 be a TAihom, �≈. Let 〈t, q〉 ∈ T (Σ) × Q be a
feasible (term, state)-pair of A satisfying that it is not generated by Algorithm 6.1 on
input A. Then, there exists a feasible pair 〈t′, q′〉 ∈ T (Σ) × Q of A such that it is a
piece of 〈t, q〉 and is discarded by Algorithm 6.1 on input A.

Proof. We proceed by induction on height(t). Let r be a run of A on t reaching

q and let l
c→ q be the rule applied at root position in r. Let p1, . . . , pm be the

positions in PosQ(l). Note that necessarily m > 0, since otherwise the pair 〈t, q〉 is
generated at step 1 of Algorithm 6.1. Let t1, . . . , tm be the terms t|p1 , . . . , t|pm and
q1, . . . , qm be the states l(p1), . . . , l(pm), respectively. Note that height(ti) < height(t)
since pi = λ and that qi is the state reached by the subrun r|pi for all i ∈ {1, . . . ,m}.
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Since 〈t, q〉 is not generated by Algorithm 6.1 on input A, there exists i ∈ {1, . . . ,m}
satisfying that 〈ti, qi〉 is either discarded or not generated. Note that such imust exist,
since otherwise, 〈t, q〉 is generated at step 2(c)(ii) of Algorithm 6.1, contradicting the
definition of 〈t, q〉.

In order to conclude, first assume that 〈ti, qi〉 is discarded. In this case, the
statement holds by defining the pair 〈t′, q′〉 of the lemma as 〈ti, qi〉. Next, assume
that 〈ti, qi〉 is not generated. In this case, by induction hypothesis, there exists a
feasible pair 〈t̂, q̂〉 ∈ T (Σ) ×Q of A such that it is a piece of 〈ti, qi〉 and is discarded
by Algorithm 6.1 on input A. Hence, the statement holds by defining the pair 〈t′, q′〉
of the lemma as 〈t̂, q̂〉.

We are finally ready to prove the soundness and completeness of Algorithm 6.1.

Lemma 6.9. Let A be a TAihom, �≈. Then, L(A) is empty if and only if Algo-
rithm 6.1 on input A outputs “ EMPTY.”

Proof. Let A = 〈Q,Σ, F,Δ〉. The left-to-right direction follows trivially, since in
this case it is not possible to generate a feasible pair 〈t, q〉 ∈ T (Σ)×Q of A satisfying
that q ∈ F , and hence, the algorithm necessarily outputs “EMPTY.” For the other
direction, we proceed by contradiction by assuming that there exists an accepted
term, but the algorithm cannot find any accepting pair of A and outputs “EMPTY.”
Let 〈t, q〉 ∈ T (Σ) × Q be the minimum accepting pair of A with respect to �. By
assumption, 〈t, q〉 is either discarded or not generated by the algorithm. The former
case is not possible, since it implies that Definitive contains at least one pair 〈t′, q〉
such that t′ ∼A t, and therefore 〈t′, q〉 is an accepting pair of A, contradicting the
fact that the algorithm finds no accepting pairs of A. Hence, assume that 〈t, q〉 is
not generated by the algorithm. By Lemma 6.8, it follows that there exists a feasible
pair 〈t′, q′〉 of A such that it is a piece of 〈t, q〉 and is discarded by the algorithm.
Consider that the execution of the algorithm is at the iteration when the pair 〈t′, q′〉
is discarded and let S be {s | 〈s, q′〉 ∈ Definitive ∧ s ∼A t′} ∪ {t′}. We know that
S − {t′} is (K(A)+1, suff �≈)-small, but S is not. Hence, by Lemma 4.15, it follows

that there exists a suff �≈-independent set of terms S̃ ⊆ S including t′ and satisfying

|S̃| ≥ K(A) + 1. By definition, all the terms in S̃ − {t′} also have runs of A on them
reaching the state q′, are ∼A-equivalent to t′, and are smaller than t′ with respect to
�. By Corollary 6.4, it follows that 〈t′, q′〉 is not a piece of the minimum accepting
pair of A, contradicting the selection of 〈t, q〉.

The next corollary follows from Lemmas 6.7 and 6.9.

Corollary 6.10. The emptiness of the language recognized by a TAihom, �≈ A can

be decided with time complexity 2O(|suff �≈|2·|Poslhs|·log |A|).

7. Consequences. The following theorem just states the same as Corollary 6.10
but without the detailed time complexity.

Theorem 7.1. Deciding the emptiness of the language recognized by a TAihom, �≈
A is in EXPTIME.

Theorem 7.2. Deciding the finiteness of the language recognized by a TAihom, �≈
A is in EXPTIME.

Proof. By Proposition 3.7, a TAihom, �≈ A′ such that L(A′) is empty if and only if
L(A) is finite can be computed in exponential time with respect to |A|. Moreover,
the bounds on h �≈(A′), n �≈(A′), |Poslhs(A′)|, and |A′| are such that, by Corollary 6.10,
the emptiness of L(A′) can be decided in exponential time with respect to |A|.
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Now we give decidability results on the images of regular tree languages under
tree homomorphisms.

Theorem 7.3. The inclusion problem for images of regular tree languages under
tree homomorphisms, i.e., deciding H1(L(A1)) ⊆ H2(L(A2)) for TA A1, A2 and tree
homomorphisms H1, H2 given as input, is EXPTIME-complete.

Proof. By Proposition 3.4, two TAihom A′
1 and A′

2 recognizing H1(L(A1)) and
H2(L(A2)), respectively, can be computed in polynomial time with respect to the size
of the input. By Proposition 3.5, a TAihom, �≈ A recognizing L(A′

1) ∩ L(A′
2) can be

computed in exponential time with respect to the size of the input. Moreover, the
bounds on h �≈(A), n �≈(A), |Poslhs(A)|, and |A| are such that, by Corollary 6.10, the
emptiness of L(A) can be decided in exponential time with respect to the size of the
input. Thus, we conclude by noting that emptiness of L(A′

1) ∩ L(A′
2) is equivalent

to H1(L(A1)) ⊆ H2(L(A2)) and that the problem is EXPTIME-hard by Proposi-
tion 2.4.

Corollary 7.4. The equivalence problem for images of regular tree languages
under tree homomorphisms, i.e., deciding H1(L(A1)) = H2(L(A2)) for TA A1, A2 and
tree homomorphisms H1, H2 given as input, is EXPTIME-complete.

Theorem 7.5. The finite difference problem for images of regular tree languages
under tree homomorphisms, i.e., deciding the finiteness of H1(L(A1))−H2(L(A2)) for
TA A1, A2 and tree homomorphisms H1, H2 given as input, is EXPTIME-complete.

Proof. By Propositions 3.4, 3.5, and 3.7, a TAihom, �≈ A such that L(A) is empty if

and only if H1(L(A1))∩H2(L(A2)) is finite can be computed in exponential time with
respect to the size of the input. Moreover, the bounds on h �≈(A), n �≈(A), |Poslhs(A)|,
and |A| are such that, by Corollary 6.10, the emptiness of L(A) can be decided in ex-
ponential time with respect to the size of the input. Thus, we conclude by noting that
the finiteness of H1(L(A1))∩H2(L(A2)) is equivalent to the finiteness of H1(L(A1))−
H2(L(A2)), and that the problem is EXPTIME-hard by Proposition 2.4.

Theorem 7.6. The HOM problem is EXPTIME-complete.

Proof. Assume a given TA A and a tree homomorphism H . By Propositions 3.4
and 3.6, a TAihom, �≈ A′ such that L(A′) is empty if and only if H(L(A)) is regular
can be computed in exponential time with respect to |A| and |H |. Moreover, the
bounds on h �≈(A′), n �≈(A′), |Poslhs(A′)|, and |A′| are such that, by Corollary 6.10, the
emptiness of L(A′) can be decided in exponential time with respect to |A| and |H |.
Thus, we conclude by noting that the problem is EXPTIME-hard by Proposition 2.4.

Our results have also implications in the context of term rewriting. The set of
reducible terms of a term rewrite system can be described as the image of a regular
tree language under a tree homomorphism, and the set of normal forms, i.e., the set
of terms for which no rule can be applied, is just its complement. Thus, we can
decide the inclusion and equality of such sets with respect to two given term rewrite
systems in exponential time. Since ground reducibility is a particular case of such
problems and it is shown EXPTIME-hard in [8], we conclude that these problems are
EXPTIME-complete.

Corollary 7.7. For any given term rewrite system R, let Red(R) and NF(R)
be the set of reducible terms and the set of normal forms, respectively, with respect
to R. Deciding Red(R1) = Red(R2), Red(R1) ⊆ Red(R2), NF(R1) = NF(R2), and
NF(R1) ⊆ NF(R2) for given term rewrite systems R1, R2 is EXPTIME-complete.
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In [18], the question Rel(L1) ⊆ L2 is shown to be decidable for given regular
tree languages L1, L2 and where the relation Rel is defined in several ways according
to a given term rewrite system R. Tree homomorphisms are used to describe the
image of L1 through this relation: two tree homomorphisms Hl and Hr and a tree
language Rc are defined satisfying Rel(L1) = Hr(H

−1
l (L1) ∩ Rc), so that deciding

Rel(L1) ⊆ L2 is done by testing Hr(H
−1
l (L1) ∩ Rc) ⊆ L2. The tree homomorphisms

Hl, Hr depend only on the rewrite system R. The tree language Rc depends also
on the relation Rel. Our results allow us to improve the results in [18] where Rc is
a regular tree language. These are when Rel is one of the following relations: the
one rewriting step, the one parallel rewriting step, the one-pass innermost-outermost
step for left-linear term rewrite systems, and the one-pass outermost-innermost step
for right-linear term rewrite systems (see [18] for details). In those cases, we are
able to extend the results to decide the question Rel1(L1) ⊆ Rel2(L2). Analogously,
tree homomorphismsH1,l, H1,r, H2,l, H2,r and regular tree languages R1,c, R2,c can be
defined such that Rel1(L1) = H1,r(H

−1
1,l (L1) ∩ R1,c) and Rel2(L2) = H2,r(H

−1
2,l (L2) ∩

R2,c), so that deciding Rel1(L1) ⊆ Rel2(L2) is done by testing H1,r(H
−1
1,l (L1)∩R1,c) ⊆

H2,r(H
−1
2,l (L2)∩R2,c). Under the given assumptions, H−1

1,l (L1)∩R1,c and H−1
2,l (L2)∩

R2,c are regular languages. Thus, the above inclusion relates two images of regular
tree languages under tree homomorphisms.

Corollary 7.8. Deciding H1,r(H
−1
1,l (L1) ∩ R1,c) ⊆ H2,r(H

−1
2,l (L2) ∩ R2,c) is

EXPTIME-complete for given tree homomorphisms H1,l, H1,r, H2,l, H2,r and given
regular tree languages L1, L2, R1,c, R2,c.

Corollary 7.9. Deciding Rel1(L1) = Rel2(L2) and Rel1(L1) ⊆ Rel2(L2) is
EXPTIME-complete for given regular tree languages L1, L2 and a given term rewrite
system R, where Rel1,Rel2 are defined as either the one rewriting step, the one par-
allel rewriting step, the one-pass innermost-outermost step if R is left-linear, or the
one-pass outermost-innermost step if R is right-linear.

8. Conclusion. We have proved EXPTIME-completeness of set inclusion, regu-
larity (HOM problem), and finiteness of set difference for languages defined as images
of regular tree languages under tree homomorphisms. Hence, we have determined
the exact complexity of HOM and other problems that were already proved decidable
in [21]. To this end, we have used some intermediate results from [21]. It would be
interesting to study whether such intermediate results can be obtained in a simpler
and clearer manner using the new class of tree automata presented here. Also, we
have obtained simpler combinatoric arguments than the ones used in [8]. That paper
proves decidability in exponential time of emptiness for the particular case of tree au-
tomata with disequality constraints. Hence, it could be interesting to study whether
those proofs can be rewriten with the present approach in order to make them more
accessible. In [10], the emptiness of deterministic and complete reduction automata
is proved decidable. It could be also interesting to study whether our techniques can
be applied to this problem in order to improve the obtained time complexity.
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J. Symbolic Comput., 20 (1995), pp. 215–233.

[11] M. Dauchet, S. Tison, and M. Tommasi, Réduction de la non-linéarité des morphismes
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