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ABSTRACT

In this paper, we are interested in the comparison of several kinds
of methods for fundamental frequency estimation and GCI (Glottal
Closure Instant) detection. These methods operate in various do-
mains (time-, frequency- or joint ime-frequency domains). Their
performances have been compared for both fundamental frequency
estimation and voicing decision tasks as well as GCI detection,
where applicable. This comparison was designed to be as unbiased
as possible, so as to reflect the intrinsic properties of each method.
A method based on a “Bormn-Jordan” kernel bilinear time-frequency
representation of speech signals achieves the best performance in
terms of GCI detection accuracy but is not as robust to inter-speaker
variability as the SIFT algorithm. An auditory model, which has
been applied on the same data in a previous study, has been shown
to compare favourably to other methods (such as SIFT) in adverse
noisy conditions only.

‘1.\ INTRODUCTION

The work presented here should be seen as a first step towards the
preparation of an experimental framework devoted to systematic
evaluation and comparison of FO (fundamental frequency) estim-
ation methods, including GCI (Glottal Closure Instant) detection
methods. A common, low ambient noise, continuous speech data-
base has already been recorded and labeled for this purpose [8]. This
smdy consists of a comparison between several kinds of methods
for GCI detection (a SIFT-based method, a Frobenius Norm based
method and two bilinear time-frequency based methods) and for FO
estimation (a modulated gaussian wavelets based algorithm and an
AMPEX based algorithm).

The performance of the various methods have been evaluated for
both fundamental frequency estimation and voicing decision tasks
as well as GCI detection, when applicable. This evaluation is not
performed for only one configuration of parameters but for a range
of values of the most influencial parameters. In other words, for each
tested aigorithm, such values have been varied between each data-
base processing session. A brief presentation of the methods to be
compared is given in section 2. Section 3 is devoted to the compar-
ison framework itself and presents the database for evaluation and
the evaluation criteria. Results are presented and discussed in sec-
tion 4.

2. PRESENTATION OF THE COMPARED
METHODS

2.1. GCI estimation methods

The methods as they are presented below do not actally produce
series of GClIs, but a one-dimensional temporal signal the peaks of
which are expected to indicate GCls. This resulting signal can then
be used in several ways, to extract GCIs or to locate the voiced
frames for example. For each of the techniques presented below, the
GCl detection process can be seen as a chain of four successive pro-
cessing steps:

1. Acoustic speech signal pre-emphasis (optional).

2. Transformation aiming at producing peaks at GCls.

3. Post-processing aiming at increasing contrasts in the resulting
signal (optional).

4. Peak picking operation.

These four steps are from now on referred to by their item number.
In this section, we focus mostly on step 2 and ignore step 4, which
will be addressed below (see section 3.2).

A SIFT-basedmethod. This method, proposedby Planteetal. [2],
operates in the time domain. It consists of a SIFT based filtering of
the speech signal extracting the so-called residual signal. Steps 1 to
3 can be arbitrarily sequenced the following way:

1. The signalis first passed to a pre-emphasis module improving
the accuracy of the LPC (Linear Predictive Coding) analysis
(performed on 25.6 ms asynchronous windows, overlapping
by 12.8 ms).

2. The filter corresponding to the vocal tract is calculated from
the LPC coefficients and the residual signal is obtained by in-
verse filtering. In order to increase the residual amplitude for
voiced frames, the residual signal is weighted by the energy fa-
tio between the original and the pre-emphasised versions.

3. In practice, the residual signal generally contains some noise
comresponding to vocal tract characteristics. To remove some
of this, the signal is clamped, low-passed filtered and its envel-
ope is calculated using a Hilbert transform.
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A Frobenius norm based method. This method was proposed by
Ma et al. {1] as an alternative to more conventional methods based
on LPC. It relies on the computation of the Frobenius norm of a
matrix M(m,p+1) the rows of which are formed with sequences of
speech signal samples, using a simple rectangular sliding window of

- length p 4+ 1 samples (shifted sample by sample between two suc-
cessive rows). It has been demonstrated in {1] that the Frobenjus
norm of matrix M can be also expressed in terms of its p+ 1 singu-
lar values o; (assuming that m > p 4+ 1 and that m has full column
rank, i.e. p + 1). The following expression C (whose computation
does not require any eigenvalue decomposition) is expected to pro-
duce peaks at GCls:

1 1 & 1 'R
= L mpp = L =L 3

=1 ge=1 =l

It should be mentionned that steps 1 and 3 are absent in the original
version of this method.

Two bilinear time-frequency representation based methods. In
this study we only consider one bilinear TFR (Time-Frequency Rep-
resentation) based method of epoch detection. The effect of using
two different kernels for this method is investigated:

e the Born-Jordankemel,
e the cone-shaped kemel (or cone kernel).

The principle of TFR based methods, reported by Navarro and Es-
quertra, is inspired by the work of Flandrin, who has proposed a non-
parametric time-frequency formulation of a general class of receiv-

ers [7].

Given an observation f(t) of a signal and Cyy(t, f; ¥) its Cohen’s
class TFR using kernel ¥, an adaptation of Flandrin's receiver has
been proposed in {7] in order to make it suitable for practical issues
of GCI detection (where (T') is some shortintegration time interval):

M AD) = / / Cyy(t = 1, w; W)Cy (b3 W)de S
o J(1) 2n

According to the four step processing scheme described above, step
1is ignored, step 2 is achieved by evaluating expression (1) for each
signal sample and step 3 includes a contrast enhancement operation
followed by a compression of the dynamic range (by application of
a logarithm).

2.2. FO estimation methods

A modulated gaussian wavelets based algorithm. The algorithm
proposed by Janer is based on a family of 17 gaussian wavelets,
whose mother wavelet dilation parameter has been tuned so that the
whole family behaves like a Bark scale filter-bank [4]. The first step
of this algorithm consists in picking peaks in each of the 17 bands.
Then, for each single band, each new peak mark is either validated or
rejected according to a criterion based on the time interval between
consecutive marks.
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The rest of the algorithm then relies on the following twofold gen-
eral assumption. For each glottal cycle, at least one of the 17 detect-
ors will aiways produce a mark and such marks will always fall ina
common small time interval (with respect to the current glottal cycle
length). All marks which are produced during the first phase are
stacked. This operation results in a time series of clusters of marks ;
the time interval between two consecutiveclusters being expected to
provide an estimate of the corresponding local glottal cycle length.
In a ast step, this series of marks is processedin order to select only
one mark per cluster.

FO estimation based on an auditory model. In a previous study,
FO estimation accuracy of an auditory model was evaluated using
the same speech database as in the current study {2]. This model
contains the key elements of the AMPEX algorithm but its last step
consists in using the cochlear nucleus onset units. The latter select-
ively enhance pitch periodicities by summing cochlear nerve activity
over wide frequency bands (7 barks) and performing a sort of peak
picking operation.

3. COMPARISON SCHEME
3.1. Database for evaluation

‘We used a database created at Keele University [3], which aims at
providing a common general framework for the evaluation of FO
and GCI estimation methods. It includes two kinds of signals: tra-
ditional acoustic speech signals and laryngograph signals (single
speaker recording). Five adult female speakers and five adult male
speakers were recorded in low ambient noise conditions using a
sound-proof room. Each utterance consisted of the same phonetic-
ally balanced English text. In each case, the acoustic and laryngo-
graph signals are time-synchronised (i.c. start and end at the same
instants) and share the same sampling rate value of 20,000 Hz.

For GCI detection performance evaluation, we designed our own
GCI reference label files, as advised in [3], using a technique which
consists in estimating the GCls by looking for the minima of the first
derivative of the laryngogram signal [5]). As far as the evaluations
related to V/U (Voiced/Unvoiced) decision and FO estimation were
concemed, we used the reference files provided in the Keele data-
base, which contain a V/U decision and a pitch estimate for each
10ms block of speech. Segments where no consistent and obvious
decision could be made by visual inspection are labeled as uncertain
and ignored during the evaluation.

3.2. Pre- and post-processings for GCI pro-
duction

The results presented in section 4 were obtained through two series
of evaluations, the first of which involves the original GCI detection
methods as they are described in section 2.1 above. This means that
they can differ in step 1 (preprocessing), step 3 (post-processing be-
fore peak picking) and of course in step 2, embodying each method’s
peculiarities.

In the second series of evaluations, step 1 was added when absent.
This has been achieved by equalising the energy level of the original



acoustic speech signal overtime. Step 3 has been skipped for all the
tested methods. In both series of evaluations, a common moduie of
peak picking (step 4), based on morphological filtering has been ap-
plied (see [7] for more detail about this module).

Parameter setting. Like any other method, the ones described
above are sensitive to parameter values such as analysis window
lengths, thresholds, etc. We have chosen to freeze these paramet-
ers in the evaluation sessions. Only one of themn has been tuned for
each method and each uttered sentence, i.e. the eventual bias in GCI
estimation (see next section).

3.3. Evaluation scheme

Correcting the bias in the GCI estimation. A first series of tests,
the results of which are not reported here, has revealed biases in the
GCI estimates which are speaker dependent [6). If bmin denotes
the optimal length of time interval, which, when added to each GCI
estimate (for a given method) minimises the global error, then val-
ues of bmin measured for each speaker and each utterance suggest
that this bias is stationary at the speaker level but may vary signi-
ficantly from one speaker to another (and from one method to an-
other). Then, before starting any further performance evaluation,
we decided to correct this bias for each method, each speaker and
each uttered sentence. In other words, what is evaluated hereafter is
the ability to produce accurate detection of some event in the glottal
cycle. The problem of how this event is related to the glottis’ closure
has been ignored.

Error types (GCI detection). We distinguished between the four
following types of ecror (for a given RM R;):

¢ fine error (f.e.), if a given AM A, is such that the error E;,;
(see below) is below some threshold (set to 0.1),

o grosserror(g.e.), if E; ; is above this threshold,
o non-detection (n.d.), when there is no AM in V'(j),

e false insertion (fi.) (or redundant inserrion), when there are
more than one AM in V(7). We distinguish then between three
sub-cases: all these AMs fall in the gross error case, some do
and other ones don’t, or none of them do (referred below as
case 1, case 2 and case 3, respectively).

E.; = |e:,;| can be seen as the glontal cycle synchronised and nor-
malised error*:

(Ai - R;)/(Rj41 — R;) ifA:i>R;

@ ey ={ (Ai ~ Bj)/(R; = Rj—1) otherwise

Error types (FO estimation). Voiced/unvoiced decision and FO es-
timation were simultaneously obtained from GCI detection meth-
ods by performing an autocorrelation of their resulting signal (out-
put of step 3). Apart from the voicing error types VU (Voiced-to-
Unvoiced) and UV (Unvoiced-to-Voiced), we only looked at the
fine- and gross- error types, which again are defined according to

1 The normalisation included in this definition frees the performance res-
ults from any dependency on FO.

the FO reference value of the corresponding local 10ms frame (with
a threshold set to 0.1), so as to be pitch independent:

€) En =|(F0a(n) — FOr(n))/FOr(n)|

where F04(n) (resp. FOg(n))is the algorithm (resp. reference) FO
estimate for frame of index nn.

34. Algorithm operating characteristics

In the case of GCI detection, the morphological filtering based peak
picking process is mostly sensitive to one of its parameters, namely
the size of the structuring element. Asa consequence, when the data-
base is successively processed for different values of this parameter,
different scores are obtained. Performances related to some criterion
(e.g. non-detection error) improve whilst others are get worse (e.g.
false insertion percentage). The same phenomenon occurs with the
autocorrelation when one is varying the voicing decision threshold.
Performance results discussed in the next section were obtained by
varying these parameters between each database processing session.

4. COMPARISON RESULTS AND
DISCUSSION

4.1. Evaluation results

Performance results take the form of two-dimensional cross-plots,
The legend associated with the last figure also applies to the previ-
ous ones. The results obtained with the “origina” methods, i.e. as
they are presented in section 2.1 are plotted with solid lines whereas
results obtained with “homogenised” pre- and post-processings (see
section 3.2) are plotted with dashed lines®.

4.2.

The graphs presented in this paper do not show the high degree of
inter-speaker variability existing in the results. Hence, the distance
between curves that one can visually observe should not be inter-
preted as a statistically significant difference. As far as GCI detec-
tion is concerned (figure 1), the best results were obtained by the
bilinear TFR based method when associated with the Born-Jordan
time-frequency kemel. However, this method seems particularly
sensitive to the choice of its associated kemnel. The SIFT-based
method tumed out to be the most robust to speaker characteristics
as far as the bias in GCI estimation was concemed (see section 3.3).

Discussion

The modulated gaussian wavelets based method realises the best
performance relative to the voicing decision ability tests. Consid-
ering FO estimation (figures 2 and 3), the best results were obtained
by the SIFT-based method in its “homogenised form”, i.e. without
any application of a Hilbert transform before autocorrelation. This
changing in score indicates that the corresponding resulting signal
is less contrasted than the one resulting from the Bom-Jordan ker-
nel method. The auditory model has been shown in previous studies
to compare favourably to the SIFT-based method in adverse noisy

20Once displayed from the proceedings CD-ROM, graphs should appear
in color.
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conditions {2] while achieving poorer performances when applied
to the database used in this study.

5. CONCLUSION

We have presented a comparison of methods for FO estimation and
GCl detection. Although none of them was originally designed with
the intention to be used for voicing decision, we also evaluated their
performance in this task. The Born-Jordan kernel time-frequency
representation based method achieves the best global resuits and
suggests that joint time-frequency analysis is a promising technique
for GCI detection. Nevertheless, none of the methods investigated
is significantly better than the others, neither globally nor if the eval-
uation criteria are considered individually.
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Figure 2: VU error pet. vs fine error mean.
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Figure 3: VU error pct. vs UV error pet.
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