
A Partial Breadth-First Execution Model for Prolog*

Jordi Tubella and Antonio Gonzilez

Departament d’ Arquitectura de Computadors
Universitat Politkcnica de Catalunya - Barcelona - Spain

Abstract

MEM (Multipath Execution Model) is a novel model
for the execution of Prolog programs which combines a
depth-first and breadth-first exploration of the search
tree. The breadth-first search allows more than one
path of the SLD-tree to be explored at the same time.
In this way, the computational cost of traversing the
whole search tree associated to a program can be de-
creased because the MEM model reduces the overhead
due to the execution of control instructions and also di-
minishes the number of unifications to be performed.
This paper focusses on the description of the MEM
model and its sequential implementation. Moreover,
the MEM execution model can be implemented in order
to exploit a new kind of parallelism, called path par-
allelism, which allows the parallel execution of unify
operations related to simultaneously traversed paths.

1 Introduction

Logic programming languages and, concretely, Pro-
log, as its most representative member, offer elegant
features to write symbolic applications.

A Prolog program consists of a set of clauses and
a query. From a declarative point of view [9], a pro-
gram determines if the query can be inferred from the
clauses for some variable bindings. From a procedural
point of view [9], the execution consists of applying
inference steps to a resolvent, which initially is the
program query, until it becomes empty. An inference
step tries to perform an SLD-resolution by unifying
the left-most goal in the resolvent with a clause whose
head has the same predicate name and arity. The
SLD-resolution was described by Kowalski [SI, and it
is based on the resolution inference rule introduced by
Robinson [lo]. In case there are more than one clause
to unify, the candidate clauses are tried in the order

‘This work has been supported by the Ministry of Education
of Spain under grant CICYT TIC 91/1036.

1063-6730/94 $4.00 0 1994 IEEE

they are written. When the unification is successful,
an inference has been performed and the left-most goal
in the resolvent is substituted by all subgoals in the
body of the clause. Then, execution attempts another
inference step. When the unification fails, the back-
tracking process tries another inference step for the
youngest goal that still has some candidate clauses to
unify with. The above procedure constitutes the stan-
dard depth-first left-to-right sequential execution of a
Prolog program. The sequence of inference steps is
depicted using an SLD-tree.

Most sequential architectures oriented to Prolog
are based on the Warren’s Abstract Machine (WAM)
[l]. This machine defines a set of data types, reg-
isters, memory areas, and instructions to implement
the standard depth-first left-to-right execution model
of Prolog. WAM instructions can be divided in con-
trol instructions, which are responsible for managing
the traversal of the SLD-tree related to a program, and
unify instructions, which perform the basic unification
operation of Prolog semantics. The main contribution
of this abstract machine has been the description of
the implicit control component in a Prolog program
in an imperative way. This allowed the change from
an interpretative execution of Prolog programs to the
execution of compiled WAM code. WAM implementa-
tions map the abstract machine into a general purpose
computer architecture or design specific architectures
to execute more efficiently WAM programs [7].

A disadvantage of the standard execution comes
from the repeated computation of the same resolvent
every time a new solution to a goal is found. These
executions of the same resolvent operate on different
binding environments corresponding to different paths
of the search tree, but the repeated execution of the
same control instructions is a source of overhead. An-
other disadvantage is the repeated execution of unifi-
cations with the same operands in different paths.

A novel model, called Multipath Execution Model
(MEM), is proposed in this paper. MEM overcomes
the sources of overhead exhibited by the standard

129

model by allowing to explore more than one path of
the search tree a t the same time. In MEM, control
instructions and unifications involving single binding
variables are executed only once for all paths being
simultaneously explored, while the rest of unifications
are repeated for each path. The way to achieve the
exploration of more than one path at the same time
is allowing a goal to be traversed in breadth-first or-
der. In this way, the breadth execution of a goal tries
to find all solutions to that goal before proceeding
with the next goal. The drawback of a breadth-first
search is that the computation state related to all the
paths being simultaneously explored must be stored
in memory, and its management is more complex than
in WAM. Due to the limitation of available memory,
an exhaustive breadth exploration may not be feasi-
ble and a partial breadth-first search combined with a
depth-first search and backtracking is more adequate.
This is the choice of MEM.

Apart from the advantage of avoiding the execu-
tion of control instructions and certain unifications,
an additional benefit of the MEM execution model
is the possibility of processing in parallel unifications
involving multiple binding variables. A parallel uni-
fication unifies two Prolog terms for all paths being
simultaneously traversed. The individual unifications
performed in each path are independent because each
path has its own binding environment stored in mem-
ory. We call this type of parallelism path parallelism.

A preliminary definition of the MEM execution
model was presented in [13]. In [ll] D. A. Smith
presents Multilog as a data parallel language that com-
putes solutions to any arbitrary goal into a set of en-
vironments, and subsequent goals execute in this set
of environments, with unification being performed in
parallel. Multilog and MEM have been carried out
concurrently but independently. They have similar
objectives although their implementations are rather
different.

Another related work is the DAP Prolog system
proposed in [5], in particular its set mode operation.
This proposal extends the standard implementation of
Prolog in order to support sets of data and exploit par-
allelism for managing the different elements of a set.
There are several important differences between DAP
and MEM. First, DAP extends the semantics of Pro-
log with sets whereas MEM is transparent to the pro-
grammer (a standard Prolog program does not require
any modification to be executed by MEM). Second,
the source of parallelism in DAP is due only to facts
while, in MEM, multiple bindings to the same variable
can be obtained as a result of any type and number of

clauses. Finally, the implementation of MEM is sim-
pler since the different relationships that may happen
to have different sets makes the management of sets
very cumbersome in DAP.

In this paper, the MEM execution model and a se-
quential implementation are described. The rest of
the paper is organized as follows. Section 2 reviews the
standard depth-first execution model of Prolog and its
implementation using WAM. Section 3 describes the
Multipath Execution Model, along with several issues
of its implementation. Section 4 compares a sequen-
tial execution of both models. Section 5 introduces
the parallel processing capabilities of MEM. Finally,
the main conclusions are described in section 6.

2 Depth-first execution of Prolog

In this section, the standard depth-first left-to-right
execution model of a Prolog engine, and its implemen-
tation using the Warren’s Abstract Machine (WAM)
are reviewed.

2.1 Standard execution model

In the standard execution model, the computation
state, which identifies the state of a Prolog engine at
each moment, is represented by means of a resolvent
R, a binding environment B E , and a stack of goals
SG, that is,

cs.td = { R , B E , SG)

where R is a list of ordered goals containing the re-
maining goals to solve the program query, B E is a set
that contains all bindings performed by unification op-
erations since the beginning of the execution, and SG
contains elements of the form { R , B E } , representing
resolvents and their associated binding environments
that can lead to alternative program solutions. Ini-
tially, R is the program query, and BE and SG are
empty.

c S # t d , t n t t t a Z = {(program query), 0, s t a c k ()]

Given a resolvent R = (Gl,Gz,. . . , Gi), a solution
to goal GI is found when the resolvent becomes R =
(Gz, . . . , Gi). A solution to the program is found when
R becomes empty. In that case, the substitutions to
the variables are obtained through BE. All solutions
are found when R and SG are empty.

A Prolog engine continually performs inference at-
tempts on R in order to find a program solution, as
shown in figure 1. The computation of all solutions

130

I‘

Figure 1: Basic computation loop of a Prolog engine
based on the standard execution model.

to a program corresponds to a depth-first left-to-right
traversal of the associated SLD-tree. OR-trees can
also be used to depict the execution of a program. An
OR-tree is an SLD-tree where nodes are only related
to non-determinate goals. The update of the compu-
tation state at each inference attempt and the OR-tree
traversal are performed as follows.

Given a resolvent R = (GI, G2,. . . , Gi),
GOAL-SELECTION chooses the left-most goal in R,
that is GI, in order to attempt an SLD-resolution by
means of its unification with a clause head having the
same predicate name and arity. F-CLAUSESELECTION
chooses the first written candidate clause. If there
are no candidate clauses, the backtracking process is
started. If there are more than one candidate clause,
the resolvent R and the binding environment BE are
pushed onto SG. This point corresponds to a node
in the OR-tree, which has as many child branches as
candidate clauses to unify with goal GI. Then, execu-
tion continues unifying goal GI with the head of the
chosen clause Gi : -G11, G12,. . . , Glj.

The UNIFICATION operation determines whether
these two first-order predicates match and, in that
case, computes the most general unifier. If the uni-
fication succeeds, an INFERENCE has been performed.

P- P. CL r.

Figure 2: Sample Prolog program.

131

R = (p l l , ~ 1 2 , ~ 1 3 , ~ 2 , q, r)
BE = (..., (vuriablehinding), ...)
SG = stack(Up, q, r), BE’), Npl, p2, q, r), BE”))

(b)

Figure 3: (a) OR-tree for the sample program of figure
2; (b) computation state after the second inference
(unification of goal pi/O).

Bindings in the most general unifier are added to BE
and goal GI in R is substituted by all the subgoals in
the body of the clause, that is the resolvent becomes
R = (G11,G12,. . ., Glj, G2, . . . , Gi). Then, execution
continues attempting another inference in R.

If the unification of GI and the Gi fails, the
BACKTRACKING operation updates R and BE with
the value of the topmost element in SG. Then,
B-CLAUSE-SELECTION chooses the next candidate
clause not tried yet in order to unify it with the left-
most goal in R. In the case that this clause is the last
candidate to unify with, the topmost element in SG
is popped. Then, execution continues with another
unification operation. Figure 3.a shows the OR-tree
associated to the sample program of figure 2, while
figure 3.b shows the computation state after the sec-
ond inference has been performed.

2.2 Implementation based on the WAM

The Warren’s Abstract Machine (WAM) has be-
come a widely accepted architectural model to imple-
ment the standard Prolog depth-first left-to-right ex-
ecution model [l]. The objective in this subsection is
to review the most relevant aspects of WAM in order
to compare it with the implementation of MEM to be
presented in the next section.

WAM instructions for the goals in R are stored in
the code area. Given a resolvent

R = (G~II,G~~~,...,G~~,,GIZ,...,G~~ , . . . ,Gz,...,Gn)

register P points to the left-most goal in the resolvent
(G111); the rest of the goals belonging to the same

clause are sequentially accessed; register CP points to
the goal to be executed when all the subgoals be-
longing to the current clause are solved (Glz); and
environments in a STACK memory store the addresses
of the remaining goals (Gz).

Bindings of variables in the BE of the computation
state are stored in different memory areas depending
on the type of the variable. There are three types of
variables: temporary, which are variables used only by
one goal of a clause, and stored in registers Ai; perma-
nent, which are variables used by more than one goal,
and stored in the environments of the STACK mem-
ory; and unsafe variables, which are permanent vari-
ables whose environment in the stack is deallocated,
moved to a HEAP memory. Also note that when a
variable binding is a compound term (list or struc-
ture), the elements of the compound term are stored
in the heap. To obtain the substitution of a variable,
a deref erence operation follows the chain of bindings
that unifications may have created.

Elements in SG of the form { R , B E } are stored in
choice points in the STACK memory. R is identi-
fied by storing in a choice point the contents of regis-
ters Ai, CP and E. Obviously, a complete copy of BE
is not stored due to the amount of memory it needs.
Only the necessary information to restore a BE in
backtracking is stored in a choice point.

Unification is done argument by argument with dif-
ferent WAM instructions. Whenever an argument in
the head of the clause is a ground term, WAM opti-
mizes the unification with specific instructions. If the
argument is a compound term, their elements are se-
quentially unified. When the operands to unify are
variables, a call to the general unification procedure is
performed. This procedure uses a small stack, called
PDL, in case that both arguments are compound terms.
Bindings obtained by the unification are stored di-
rectly in BE. To implement the restoring of BE in
backtracking, addresses of variables to be bound are
stored in a TRAIL memory if the variable may be later
unbound, that is, if it is younger than the current
choice point.

Backtracking updates R and BE in the compu-
tation state with the topmost element in SG. R is
updated by getting registers Ai, CP and E from the
current choice point. BE is restored by untrailing the
variables bound since the creation of the current choice
point. Backtracking also performs garbage collection.
In the HEAP memory, it is done by updating register
H to the value it had when the current choice point was
created, while in the STACK and TRAIL memories is
implicitly done by their LIFO structure.

3 Partial breadth-first execution

In this section, the Multipath Execution Model
(MEM) is described. First, the main ideas are pre-
sented. A more detailed description along with several
issues about its implementation can be found in the
enclosed subsections.

Multipath does not impose any modification in the
semantics of standard Prolog. It does not require nei-
ther any change in the syntax except for the inclusion
of annotations that the programmer may use to give
hints about the most convenient type of search. These
hints are not mandatory since the compiler performs a
static analysis to determine the type of search for each
goal. However, since the programmer has a detailed
knowledge of his program, these hints may improve
the task of the compiler in some cases.

The main feature of Multipath is that it allows a
given goal to be executed in depth-first, breadth-first
or partial breadth-first order. The choice among these
three options can be made by the programmer, the
compiler and the execution model itself a t run time.

In this context, a partial breadth-first execution of
a goal means to explore in breadth-first order some
(but not all) of the alternative clauses with the same
name and arity, and go back to explore the remain-
ing ones by means of backtracking. These remaining
clauses may be then explored in any of the three pos-
sible orders (depth, breadth or partial breadth).

In general, those goals that have a large number of
solutions are suitable to be explored in breadth-first
order. This is determined at compile time or anno-
tated by the programmer. The algorithm used by the
compiler to detect the most convenient search for a
goal is not described in this paper due to its complex-
ity. In any case, the final decision about the execution
of a goal will be taken at run time. A goal whose ex-
ecution has been designated as depth-first will always
be explored in this order. However, a goal for which
the compiler or programmer has proposed a breadth-
first search will be executed in that order only if a t run
time there are enough resources (especially memory)
to support that type of execution. Otherwise, a par-
tial breadth-first or even a depth-first search will be
adopted again depending on the available resources.

A goal that is executed in breadth or partial
breadth order may result in some variables bound to
multiple values. For instance, in the following code:

p(Y> :- q(X) ,r(X,Y>.
q(1). r(2,3>.
q(2). r(3,4).
q(3). r(4,5).

132

a breadth execution of q/ i results in X being bound
to three different values 1, 2 and 3.

The multiple bindings that result from a (partial)
breadth execution of a goal are then processed all to-
gether afterwards. In the previous example, when X
is dereferenced during the execution of r/2 the result
will be that it is bound to three different values: 1,
2 and 3. This is equivalent to say that the execution
model explores several paths (branches) of the SLD-
tree at the same time in a single flow of control.

3.1 Multipath execution model

A detailed operation of the Multipath execution
model (MEM) is described below by explaining how
the computation state of a program changes during its
execution. Moreover, a MEM-tree is presented. This
tree is equivalent to the SLD-tree and allows to rep-
resent the single flow of control when traversing more
than one path.

In the MEM execution model there are two kinds
of paths: CURRENT paths, which are those being
traversed with the objective to become solutions to
a breadth goal or to the program; and SOLUTION
paths, which are those paths suspended as solutions to
previous breadth goals. Note that breadth goals may
be nested; that is, during the execution of a breadth
goal, another breadth goal may be invoked (see figure
4). The representation of a MEM-tree is explained
below when describing the Multipath operations.

The computation state in the MEM model is repre-
sented by the current breadth goal CBG, the current
resolvent C R , a set of current binding environments
SCBE, a set of breadth goals SBG, and a stack of
goals SG, that is

C S W E M = {CBG, C R , S C B E , S B G , SG]

The function of each element of the computation state
is next defined.

CBG specifies the breadth goal being solved. A
breadth goal is identified by two elements: the resol-
vent once the breadth goal is solved (N R) , and the
breadth nesting level (BNL) . The objective of N R is
to identify the point where the breadth goal is invoked,
and the objective of BNL is to identify different in-
stances of recursive breadth goals, when they are the
last goal of a clause.

CBG = (N R , B N L }

C R specifies the remaining goals to solve CBG and
it is represented by an ordered list of goals.

C R = (GI , G,)

133

I

I+

II
4

8
.............

e4
II
GI E

so
paths

Figure 4: Shape of MEM-trees.

SCB E contains the binding environments corre-
sponding to the CURRENT paths. Each BE is a set
of variablelbinding elements. The representation of a
binding environment is an implementation issue that
is briefly sketched in the next subsection.

SCBE = (B E , , {. ... uariable/binding,. . .}, B E j }

SBG contains information about breadth goals with
pending alternatives to explore. The information
for each entry in SBG consists of three elements:
{BG,SSBE, NBG}. BG is the identification of the
breadth goal; SSBE are all the binding environments
associated with the SOLUTION paths already found
to the breadth goal; and NBG is the next breadth
goal to solve once BG is solved.

SBG = {. . . , (B G , S S B E , N B G } , . . .)

SG is a stack of goals with pending clauses to try.
Each element is of the form {BG, R , SBE} . BG is a
breadth goal with pending clauses; R is the resolvent
to solve BG; and SBE are the binding environments
associated to the paths that are visible for that goal.

SG = s lack(. . . . (B G , R , S E E] , . . .)

1 T -~

,
Initially, one path is explored with its binding envi-

ronment empty, and SG and SBG are empty.

C S M E M , t n i l i o l = {
C E G = to, 01,
CR = (program query),
SCBE = {e} ,
S E G = 0 ,
SG = s t a c k ()

1

A breadth goal CBG is said to be solved when C R
becomes empty. In this case, there are as many solu-
tions to CBG as elements in SCBE. Each element
in SCBE when goal CBG = {(), 0) is solved corre-
sponds to a solution to the program. All solutions to
a program are found when CBG = {() ,O}, CR = 0,
SG = stack() , and SBG = 8.

A MEM inference engine continually performs in-
ference attempts that modify the computation state.
The basic operations are summarized in figure 5 and
explained in the next paragraphs.

GOAL-SELECTION selects the left-most goal in C R
(as stated by the computation rule) in order to at-
tempt an inference.

F-CLAUSESELECTION selects a clause to be uni-
fied with the left-most goal in the resolvent. If there
are more than one candidate clause, they are tried in
the order they are written. Thus, f-clauseselection
always selects the first one. Note that f- stands for
forward execution to differentiate it from the clause
selection operation to be performed in backward ex-
ecution (see below). Let us suppose that the resol-
vent of the computation state in a certain moment is
CR = (G I , Gz, . . . , Gi) and the first candidate clause
to try is G: :- G11, . . . , Glk. If GI has a breadth
attribute and there are enough resources (memory) to
allow its (partial) breadth execution, a new breadth
goal is added to SBG with no solutions found so far,
and CBG and C R are updated in the following way:

S B G - SBG U {{GI, 0, C B G } }
CBG +- { (G z , , . . , G, I N R c B G) , B N L C B G + 1)

C R - (G I)

where NRCEG and BNLCBG are the identifiers of the
current breadth goal CBG. If there are more than one
candidate clause to unify with, {CBG, CR, SCBE} is
pushed onto SG.

push(SG, {CEG, C R , SCBE})

In the MEM-tree, depth goals are represented with
circular nodes, while breadth goals are represented

Figure 5: Basic execution loop of a Prolog engine
based on MEM.

with triangular nodes. Execution continues unifying
GI with Gi.

UNIFICATION is performed for every CURRENT
path, that is, once for each element in SCBE. The
unification operation fails if every individual unifica-
tion in each BE fails, otherwise succeeds. BEs related
to failed paths are eliminated from SCBE.

If unification succeeds, the left-most goal in the re-
solvent is substituted by all the subgoals in the body
of the clause, and bindings representing the most gen-
eral unifier performed in each path are added to the
corresponding element in SCBE:

C R +- (GI], . ~ , G I ~ ~ G z ~ ~ . . ~ G s)
SCBE +- (BE1 U 81,. . . ,BE, U e,}

When eventually the current resolvent (CR) in
the computation state becomes empty the breadth
goal CBG is solved (this operation is called
BREADTH-GOAL-SOLVED? in figure 5, and represented
with a square in the MEM-tree). At this time, it is de-
cided whether the execution continues with a breadth-
first or a depth-first search, that is, with a backward
or a join of paths operation, respectively.

A BREADTH-first search is possible if two conditions
hold. The first condition is that the current breadth
goal (CBG) has still more potential solutions. The
second condition restricts the breadth-first search to
a maximum number of paths. If this number is ex-
ceeded, the breadth-first search is turned into a depth-
first search, and thus, a join of paths operation is per-
formed. In this case, the current goal is executed in
a partial breadth-first order. This restriction is in-
troduced in the execution model for implementation

134

A breadthnode

i j j joinofpaths
...I.. .. A

Figure 6: (a) Example of MEM-tree; (b) Example of
computation state.

reasons, mainly due to the requirement of storing in
memory the BE of each path.

In the Multipath execution model, when a unifi-
cation fails, execution does not continue immediately
with a backtracking operation. There is a BACKTRACK
condition that considers the existence in SBG of a
breadth goal with SOLUTION paths that has no pos-
sibilities to obtain more solutions. In this case, a join
of paths operation is executed. Otherwise, a backward
operation is executed.

The JOIN-OF-PATHS operation joins all SOLUTION
paths found so far to the youngest breadth goal of the
SLD-tree. The SOLUTION paths become CURRENT
paths. The join of paths also updates C R and CBG:

S C B E t SCBE U S S B E s E G (c E G)

C R + N R C E G

CBG + NBGSEG(CBG)

where SBG(CBG) is the entry in SBG with its
breadth goal equals to CBG, and SSBESBG(CBG)
and NBGSBG(CBG) are elements of that entry. In the
MEM-tree, this operation is represented with dashed
lines that collect all solutions.

In case of a BACKWARD operation to the youngest
branch alternative of the SLD-tree, the main actions
are to store every CURRENT path as a SOLUTION
path in the entry associated to CBG in SBG, and to
restore the computation state with the value of the
topmost element in SG:

SBG t {. . . , {CBG, {SSBE U S C B E) , N B G } , . . .}

{CBG, CR, SCBE} t t o p (S G)

Entries in SBG are not needed when their associ-
ated breadth goals have no solutions already computed
and there is no possibility to find more solutions to
them. These entries are deleted from SBG when this
condition is detected in the join-of-paths and back-
ward operations.

B-CLAUSE-SELECTION selects the next candidate
clause to be unified with the left-most goal in CR. In
case this clause is the last one, the topmost element
in SG is popped.

Operations described above are continually re-
peated until all program solutions have been found.
This is detected in the backtrack condition. Figure
6.a shows the MEM-tree associated to the sample pro-
gram of figure 2, where goals p/O, pi/O and q / O are
determined to be explored in breadth-first order. Fig-
ure 6.b shows the computation state after the second
inference has been performed.

3.2 Implementation issues of the MAM

The implementation of the MEM is done by intro-
ducing some extensions to the WAM. This modified
WAM is called Multipath Abstract Machine (MAM).

A difference between WAM and MAM is the ex-
istence of two types of variables: single and melti-
p l e . The former are the conventional variables used by
WAM. These variables have a unique binding shared
by all paths that can be simultaneously traversed. The
latter are variables that may be bound to multiple val-
ues at the same time.

The type of a variable is determined at compile
time. A variable that is instantiated inside the scope
of a breadth goal is declared to be multiple. In other
words, the compiler determines that a variable is sin-
gle when it can assure that the variable will have at
most one binding during execution. A variable never
changes its type during execution time.

135

Single variables are stored as in the WAM. A
new memory area, called MBE (Multi-Binding Environ-
ment), is added in order to store multiple variables.
A multiple variable has the same address in all BEs
where it is visible. A new register HV points to the top
of MBE.

In MAM, there are two kinds of engines: a Main
Engine (ME), which is responsible for controlling the
traversal of the search tree, and several Unification
Enganes (UEs), which are responsible for performing
unification operations on the BEs. Each UE manages
one BE, and the maximum number of UEs is a param-
eter of MAM.

The MAM instructions are the same as in the WAM
but their semantics are slightly modified in order to
manage multiple BEs. Those instructions referencing
a multiple variable must repeat its operation for ev-
ery element in SCBE, and thus, they are executed by
different UEs.

The implementation of the backward operation de-
fined in MEM requires to allocate a number of new
UEs, and to initialize their BEs to reflect the computa-
tion state at the time the last choice point was created.
This is currently done by copying the contents of CUR-
RENT or SOLUTION BEs to the new BEs and un-
trailing multiple variables bound since the creation of
the choice point. Alternatively, other techniques simi-
lar to the ones used to exploit OR-parallelism could be
used instead of copying (e.g., hash-windows, binding-
arrays [SI).

4 Comparison MAM vs. WAM

We have implemented sequential emulators for both
WAM and MAM abstract machines. A set of bench-
mark programs have been run on a DEC 3800 system
whose CPU is an Alpha 21064 microprocessor. All
benchmarks were taken from [la] excepting bits -pal ,
which is taken from [ll].

Results are shown in figure 7. We can observe that
the sequential breadth-first execution performed by
MAM may be advantageous over a standard WAM
implementation. Note that these figures compare two
different execution models running on the same hard-
ware. The speed-ups are between 1 and 4 except for
bits -pal , which has an speed-up of 13. Therefore, the
improvements achieved by MAM are significant since
they are obtained without any additional hardware.
Regarding the number of TJEs, the best performance
is achieved with 200 UEs.

The advantages of a sequential execution of MEM
rely on avoiding the execution of control instructions

Sequential MAM vs. WAM

I - \

.. .

- - _
. - . . . : - 2L-’L :- ~- - . - ~

-. - _ _ /--- - - - - - .. -~ ---- , . , ___ ...__..._.._.._.. - -. . ---
I

2w 4w 6w 800 I d 0

number of UES

Figure 7: Speed-up of sequential MAM vs. WAM.

and unifications of single variables in the simultane-
ously explored paths. In bits -pal , performance is
better because the average number of paths is very
high compared with the rest of the benchmarks. A
number of UEs greater than 200 is not beneficial due
to the amount of parallelism exhibited by programs,
which is related with the average number of CUR-
RENT paths. Increasing the number of UEs requires
more memory at run time. This results in a decrease
of the cache hit ratio and an increase in the number of
page faults, which in turn, increases the average mem-
ory access time. Results prove that the advantages
overcome the overhead imposed by the breadth-first
exploration and confirm the feasibility of an execution
model based on a combined depth-first, and breadth-
first search.

5 Parallel execution of MEM

Another benefit of the MEM execution model is
the possibility of executing in parallel the unification
operations for each binding environment in the com-
putation state. We call this kind of parallelism path
parallelism. The sources of parallelism most related to
path parallelism are unification parallelism and data
parallelism.

Path parallelism is a particular case of data par-
allelism. Data parallelism consists in the concurrent
treatment of multiple bindings of variables. In the
literature, data parallelism has been exploited in the

136

context of OR-parallel systems [4]. In this approach,
after binding a variable to multiple values, execution
can continue in parallel exploring the subtrees related
to each binding in an independent way. For each one
of these subtrees, just one of the bindings is visible. In
path parallelism, variables get multiple bindings as a
result of the sequential execution of a non-determinate
goal. When all bindings are collected, parallelism is
exploited when a unify operation is performed on vari-
ables with multiple bindings.

Path parallelism is also different from unification
parallelism [2]. In unification parallelism, parallel uni-
fications are performed on different arguments of a
goal for a single binding environment. In this case,
there may be data dependences among the unifica-
tions. In path parallelism, the parallel execution cor-
responds to unifications of the same argument for dif-
ferent binding environments. In this case there are no
data dependences.

In general, all operations to be performed by UEs
(dereferences, unifications, BE copies) can be executed
in parallel. In this way, tasks in path parallelism
are fine-grained, but data sharing among UEs is not
needed and synchronization with the ME is seldom re-
quired. In [3], a parallel implementation of MEM is
described in more detail.

6 Conclusions

A novel execution model for Prolog programs
(MEM) that combines a depth-first and a breadth-
first exploration of the search tree has been presented.
The main characteristics of MEM is the simultaneous
traversal of more than one path of the SLD-tree. A
modification of the Warren’s Abstract Machine to ac-
commodate the features of the MEM model has also
been presented. Performance improvement of MEM
over the standard depth-first traversal depends on
three factors: the overhead added by the breadth-first
search management, the ratio of the number of control
instructions over the total number of executed instruc-
tions, and the average number of paths being simulta-
neously traversed. The results presented in this paper
confirm that a combined depth-first and breadth-first
search is advantageous over the standard depth-first
search for usual Prolog programs.

The simultaneous traversal of more than one path
enables the exploitation of a new kind of parallelism,
called path parallelism. In path parallelism, accesses
or unifications into the binding environments related
multiple paths being simultaneously traversed may be
executed in parallel. This type of parallelism, which

is different from OR and unification parallelism, may
contribute to increase substantially the performance of
the system. Although path parallelism is fine-grained,
it can be exploited very efficiently because the amount
of synchronization and data sharing that it requires is
rather low.

References

[l] H. Ait Kaci. Warren’s Abstract Machine. MIT
Press, 1991.

[2] W.V. Citrin. Parallel Unification Scheduling
in Prolog. Technical report UCB/CSD 88/415,
Berkeley University. 1988.

[3] A. Gonzilez and J . Tubella. The Multipath Par-
allel Execution Model for Prolog. In Proc. of
PASCO’94. World Scientific Pub. To appear.

[4] P. Heuze. Using Data-Parallelism in Elipsys.
Technical report elipsys-003. ECRC, Munich
(Germany), 1989.

[5] P. Kacsuk. DAP Prolog: A Parallel Array Exten-
sion of Prolog. In Proc. of CONPAR’88, British
Computer Society (editor). 1988.

[SI P. Kacsuk and M. Wise (editors). Implementa-
tions of Distributed Prolog. John Wiley & Sons.
1992

[7] P.M. Kogge. The Architecture of Symbolic Com-
puters. Mc-Graw-Hill, 1991.

[8] R.A. Kowalski. Predicate Logic as a Program-
ming Language. Information Processing 74, pp.
569-574, Stockholm, North-Holland, 1974.

[9] J . W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, 1987.

[lo] J .A. Robinson. A Machine-oriented Logic Based
on the Resolution Principle. Journal ACM 12, 1,
pp. 23-41, Jan. 1965.

[Ill D. A. Smith. Multilog: Data Or-Parallel Logic
Programming. In Proc. of ICLP’93. MIT Press,
1993.

[la] E. Tick. Parallel Logic Programming. MIT Press,
1991.

[13] J. Tubella and A. Gonzalez. MEM: A New Ex-
ecution Model for Prolog. Microprocessing and
Microprogramming, vol. 39, pp. 83-86, North-
Holland, 1993.

137

I T- -

