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ABSTRACT

Despite the large amount of methods and applications of augmented reality, there is little homogenization on the software
platforms that support them. An exception may be the low level control software that is provided by some high profile
vendors such as Qualcomm and Metaio. However, these provide fine grain modules for e.g. element tracking. We are more
concerned on the application framework, that includes the control of the devices working together for the development of
the AR experience. In this paper we present a software framework that can be used for the development of AR applications
based on camera-projector pairs, that is suitable for both fixed, and nomadic setups.
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1. INTRODUCTION

Augmented reality (AR) is a growing field that entered mainstream mainly thanks to the ubiquity of mobile
devices. However, relying on the use of a mobile device for AR puts some limitations on the features that such
a system may provide. Projection-based augmented reality, on the other hand, permits setups that let the user
free hands to perform all sorts of interactions, such as virtually writing on physical documents. We are
concerned on the development of systems for Human-Computer Interaction (HCI), and we will show examples
of applications that provide different types of interaction using this approach. Among the different possible
projection-based AR systems, we are more interested in fixed or nomadic setups. A key advantage is that since
fixed setups do not require that the user moves cameras or projectors, such systems are easier to calibrate and
less prone to accidents. Nomadic solutions [Huber et al. 2012] are in between fixed systems and mobile
projected user interfaces [Huber, 2014]. They use pico-projectors that are placed on a fixed position for the
duration of the experience. Therefore, they share the advantage of fixed systems in terms of usage: once set up,
the user may have her hands free, which provides more flexibility for the interaction. On the other hand, like
with mobile projected user interfaces, these are harder to calibrate. We will demonstrate our framework on a
nomadic and a fixed setup.

Most setups use special purpose libraries and programs that have been developed hardware-dependent. This
hinders the reproduction of an equivalent system in a different place if any of the hardware components are
changed (e.g. substituting a projector because larger resolution or brightness is required).

To address this problem, we have developed a device independent, modular software framework, that
abstracts the hardware layers into modules, and facilitates the substitution of the any module (camera, projector,
input device) with little effort. The system also abstracts the capture and visualization modules. This way, the
input can be addressed by naked hand gestures, or with other input devices, and the output can be carried out
by simply drawing images or text, or with a more complex set of widgets able to simulate a full-featured virtual
desktop. The key modules of our system are: Hardware Abstraction Layers, Data Abstraction Layer,
Communication Protocol, Visualization Module, Interaction Module, and Application Logic. These
components are sufficient to implement a vast amount of different setups, and most of the configurations can
be achieved with little changes. Some applications will require extra modules, as we will see later when we



describe some application examples. In the following, we will describe the different parts of the system, the
two different setups we built based on this framework, and demonstrate its utility using an augmented document
demo application to play music.

2. OVERVIEW OF THE SYSTEM AND RELATED WORK

The field of augmented reality is continuously evolving. With the explosion of mobile devices, augmented
reality has gone mainstream, with users of all backgrounds using it for a wide variety of uses such as maps
navigation, museum guides, and a bunch of professional applications. Most systems are commonly
implemented as see-through systems. This imposes the limitation of requiring a device to be placed between
the user and the reality, and sometimes its manipulation is cumbersome or poses limitations on the user
freedom. On the other hand, projector-based augmented reality, does not let the user freely change its location,
but it may essentially free her hands so that a wider set of interactions may be available (e.g. the Sprout PC
[Hewlett-Packard, 2015] by HP). Despite the great variety of such systems, software is far from standardized.
Many examples are proprietary, and others are just research-based demonstrations, with the focus placed on
the interaction or visualization features, more than the software architecture that makes them possible.

Other previous research has focused on similar problems with a lower degree of generalization, such as in
the case of the CAMPAR framework [Sielhorst et al., 2006] tailored to the operating room, with a special
emphasis on the synchronization of devices. The approach by Kolomenski [Kolomenski 2013] is similar to
ours in the devices used (camera, projector, IR pens...), like other systems [Linder and Maes, 2010, Mistry and
Maes, 2009, Weiley and Adcock, 2013], but here we concentrate on the software modularization part. We do
not focus on robot-operated systems (i. e. [Tsuji et al., 2013, Bernier et al., 2012]), since our approach is
intended to be closer to a nomadic system. We also focus on projected-based AR instead of see-through
approaches [Spindler et al., 2012], or systems that require external worn devices [Kim, 2012], since the
environments we are interested on (e. g. public libraries), require freedom and little number of external devices.
Freehand interaction promotes experimentation, and facilitates user rotation. Moreover, the lack of mobile parts
improves the durability of the setups.

Our system consists on a set of decentralized modules that communicate to each other with the use of a
communications system (see Figure 1-right). In this system, several channels are open, and the modules can
freely register to receive the messages of the different kinds of information.

e Hardware abstraction layers: A set of modules are used to hide the nitty gritty details of the hardware
specific components from the rest of the system. They thus allow the substitution of a camera or
projector element without affecting the rest of the system (Figure 1-left, bottom modules).

e Communication protocol: Passing message system that the different modules connect to. It allows is
easily parallelization, with different modules on different platforms (computers, mobiles, servers) in a
transparent way. Figure 1-right shows and example of massage passing.

e Interaction module: The interaction module tracks the user input and issues messages corresponding
to the different interactions that are detected (Figure 1-left, second row).

e Visualization module: This system is in charge of the rendering of the different elements to be
visualized (Figure 1-left, second row).

e Data abstraction layer: It is in charge of the input and output of the data that has to be red/written
from/to disk (see Figure 1-left, top left module). In many cases this module will be a simple one, but
in some others, it might imply working against a more complex database system.

e Application logic: This component is the one that defines the current running application. Again, the
communication with the other components is handled via messaging (Figure 1-left, top right module).

Apart from the fixed modules, which are common for most applications, other, extra modules can be
implemented. Most of these will be application-specific, and we will not deal with them in this paper. We only
mention them here for completeness, and they may appear in some examples later.
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Figure 1. Architecture of our framework. The architecture of modules is shown in left scheme. Right image
shows a full example of message passing throughout the system. Upon a hand gesture by the user, a tap, the
system generates a submenu. The different modules issue messages into the system and the application logic
decides the actions (e.g. opening a submenu) also through message passing.

3.1 Developed modules

For the realization of our system, we developed the following modules: Projector HAL, Camera HAL,
Application Logic, Communications Module, Interaction Module, Visualization Module, and the Data
Abstraction Layer.

The Hardware Abstraction Layers are pretty simple, they abstract the access to images in the case of the
camera, and the projection in the case of the projector. The camera images are queued in a buffer, and the
interested modules can read them. The Application Logic is different in each case. However, since it makes
strong use of the other modules, it commonly requires few lines of code. The Communications Module is the
skeleton that vertebrates the whole system. All the information that is captured or generated is put into the
communication system, and the modules that require it, register to the convenient channels. It has been
implemented using Google Protobuffers [Google Developers, 2015] over a ZeroMQ [iMatrix Corporation
2012] transport protocol. Protocol Buffers are a language and platform-neutral system for serializing structured
data. They are also extensible, which makes them quite useful in many communication systems. ZeroMQ is a
messaging transport protocol is a transport layer protocol for exchanging messages between two peers over a
connected transport layer such as TCP. In our system, all the modules that may generate data or commands
puts messages into a channel, and the modules that wish to read this information only have to register to those
channels. This way we achieve a hardly hierarchical structure that is easy to maintain and whose modules can
be replaced simply.

We can see a working example of this protocol in a subset of the modules in Figure 1-right. In this example
we show how a tap in @a menu can be interpreted by our system and generate a submenu. The top-left image is
a clipped version of the whole system, where only the modules intervening in the tap processing and reaction
are shown. The bottom right part, encodes the different modules with the same colors to facilitate the reading.
First, the camera generates a new frame where the hand is tapping on a concrete region of the working space.
The camera HAL, as expected, generates a message with the image as the contents. The hand tracking auxiliary
module reads the image and detects a tap. This tap is then passed to the system through another message
(msgTap). The interaction module receives this message and passes the information to the application logic,
which is aware of the elements that have been rendered (this can be achieved directly or through previous check
with the visualization module). Then, the application logic decides that a new submenu must be opened, and
passes this information to the visualization module as a new message that carries out a command, msgSubMenu.

For the sake of the reader, we have avoided a thorough description on the parameters and the current format
that each message may carry, but there are easy to imagine.



The Interaction Module is the one in charge of getting the input from the user and convert this input into
commands or information that is broadcast to the interested modules. We have implemented it in two different
flavors: hand-based gestures, and IR-pen gestures. In Section 5 we provide more details on the interaction
modules. The Visualization Module renders all the objects that are projected onto the working area. We have
created a lightweight Ul library built on top of SFML graphics tool [Gomila, 2015]. SFML is a multi-
framework library that provides a simple interface to various multimedia components of the operative system.
The principal feature of the Ul we have developed is that it allows the 3D rendering of 2D widgets in order to
correct the projection deformation induced by an arbitrarily-tilted projector. Moreover, it also serves as a pipe
between the gesture module and the application, namely it detects on which widgets the gestures are performed
and forwards this information. Finally, an image-based positioning algorithm has been implemented in order
to avoid widgets from leaving the workspace when the object from which they are hanging is moved. Adjusting
a resolution parameter finer positioning can be achieved at the expense of an increased processing time.

The backoffice system, Data Abstraction Layer, deals with persistent data. In one of the use cases we
developed, for example, we dealt with documentary information. As a result, a database was required, in this
case we used an Oracle database of documents with hand generated annotations. The result of the interaction
with the application also generated a set of new annotations. These were also stored along the database. This
required a module to handle this data. All of this can be abstracted from the application, and in some particular
cases, where the data lacks the generalization of the framework we propose, may require slightly more effort,
but most common data will be treated simply by a generic data abstraction module.

These developed modules are common to all applications and only little modifications to to some of the
systems may be required if we change the input or output devices. In our case, we did not have to change
anything for the transition of our nomadic system to the fixed system.

Each application will use all of the previous modules, but the Application Logic is dependent on the
application to be developed. Therefore, it will be different for every application, but the other components can
be simply used as is. Together with these modules, we found that other components can be commonly required
in many scenarios, these are enumerated here:

e Rendering subsystem: For the visualization part, several strategies can be used, in our case, we

developed a library of visual objects and a library of visual feedback elements.

e Document tracker: When the application scenario is intended to simulate a virtual desk, the tracking

of documents becomes a must. Therefore, this module may be of great utility.

Some of the scenarios we worked with throughout the development of the project dealt with documents. In
some cases, the scenario consisted in augmenting the document, by adding some information on demand, and
in some other cases, the document was used as input (for identifying or capturing images, etc.). In all these
cases, apart from the concrete software for capturing or identifying elements, there is the need of tracking the
document in the scene. Therefore, a simple document tracker was implemented and used to provide information
both for the input (e.g. capturing information) and output (e.g. projecting extended information onto the
document) systems.

3.2 Interaction

The interaction with our system can be carried out using two different techniques: hand-based, and with
IR-pens. The most important advantage of the hand-based interaction is the lack of external elements. However,
the most important limitation, is the hand segmentation. Since each user may have a different skin color, and
the illumination conditions change along the day, the hand interaction lacks some degree of robustness. This
is especially true, and may be a problem, for nomadic systems. Unfortunately, since in most places, we are not
able to control the illumination totally, this may become a problem, although not as severe, for fixed systems.
Ideal conditions should ensure the light is constant along the day, which is not common in most places.

On the contrary, the IR-pens require a third camera with its extra calibration stage. This is an extra element
(though still maintaining a low cost at the hardware part). However, they present less problems when
interacting because with the IR signal, the system is less dependent on illumination condition changes.
Moreover, the calibration stage is quite simple since it does not suffer the illumination changes and therefore
is quite straightforward.

In any case, our system has the gestures implemented in the interaction module, and they are independent
on the way they are captured. That is, the same gesture can be performed by a hand or by an IR-Pen, in our



case, since these two trackers were implemented, but it would be easy to perform equivalent gestures with other
external devices such as the MYO Armband or the Leap Motion, the only issue is the concrete gesture tracker,
but the interaction module remains the same.

In order to properly determine the gestures, and to maintain uniformity, the gestures are performed in three
stages, as shown in Figure 2:

Initialization: The gesture is detected and identified. Initial visualization cues are provided.

Updating: Gesture is performed by the user. Visual cues identify and communicate the gesture to the user.

Finish: Gesture finishes. If an action is linked to the gesture, it is triggered.
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Figure 2. The different stages of the gestures that can be determined by our system.

Note that the figure determines a state machine that is updated throughout the gesture tracking. Each of the
boxes correspond to messages issued by gesture tracker to the system. Therefore, the interested modules can
read them and act accordingly. In our case, the Visualization Module is aware of the gestures being carried out
and generates the appropriate visual cues to inform the user that a certain gesture is being detected and where.

Figure 3. Interaction with the IR-pen system with one and two pens respectively.

For many of the gestures, especially when they last long, the visualization system will provide some visual
cue to help the user understand that the gesture has been determined. The different visual cues may go from
projecting the input point as a circle, to more elaborated effects such as marking a certain button or menu entry
as selected. Since in our case we have implemented a set of widgets that cover the main elements of a virtual
desktop, many of these visual cues are implemented as different states of the widgets (e.g. selected vs non-
selected). Other effects are simply provided with the interaction of the widgets. For example, when performing
a drag-and-drop operation, the element is moved as the user drags its virtual position. This is shown for instance
in Figure 3-left. In the first case, a drag-and-drop operation (indicated by arrows on the left) is being carried
out by the user. The visual cue that communicates the behavior is the actual translation of the rectangle in
purple. We can also perform other two-hands operations such as scaling, as shown in Figure 3-right. The
displacement of the pens is also indicated here with the blue arrow, and the user will see an effective
incremental resizing of the object while the gesture is not finished.

The gesture management module has been implemented agnostic of the interaction element. We have
designed a set of one-hand or two-hand gestures that include simple taps, swipes, and so on, that can be
implemented both by hand or IR-pen. In both cases, the user can work with one hand/pen or with two, and the



detected gestures are equivalent for the hand and the pen. The different gestures that are detected when
operating with a single hand (tap, scroll, flick, and drag-and-drop) are shown in Figure 4 (4 leftmost gestures).
Zoom and resize are easier using two input points. We detect them with the use of two hands (Figure 4 —
rightmost images). Input position is determined by detecting a contact between the index and the thumb.
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Figure 4. The one-hand gestures that can be detected by our system: tap, slide, flick, and rotate.

4. EXAMPLE SETUPS

We have developed two different setups, a nomadic and a fixed system. With the aid of the previously
described modules, few extra packages were required.

The nomadic system, was intended to show the capabilities of a projection-based augmented reality system
paired with a camera and with hand or IR-pen interaction. The main features of the system were the portability
and the flexibility in mount therefore, several aspects had to be implemented in an adaptive way, which greatly
increases the difficulty of the software development. These, were the main decisions we had to take:

e Hardware: The hardware, if the system has to be moved, must be light and easy to mount. We chose

a small Logitech C615 and a pico-projector from MicroVision, the MicroVision Showwx (an always-
in-focus projector), together with an articulated arm that had a heavy basis to be stable on the table.

e Calibration: The calibration system may not rely on fixed environment, so several elements such as

illumination, background, and so on, must be taken into account in case the system moves.

Figure 5. The initial setup of the nomadic system and fixed setup (right) built in a public library. The fixed
setup has the projector/camera pair fixed in a structure that is attached to the ceiling. This way, the users have
free space around them to experiment and freely perform gestures to interact with the application.

The selected hardware with the initial nomadic setup is shown in Figure 6-left. A second version, with a
more professional look, was also created with the use of a shell printed using a 3D printer. After a thorough
analysis of capabilities of the different devices in the market, in terms of quality, image resolution, distance of
projection/capture, and so on. The selected set is affordable and easy to transport. Its total cost was less than
$500. For the PC, we used a commodity portable device (less than $1000), with no special features, since the
computational requirements of whole system are low. The body of the system consisted on a modified lamp
arm and a couple of plastic pieces printed on a 3D printer to fit the camera and projector.



The calibration was a second, important issue. Since the nomadic system can be built in different places,
we need a calibration process that is able to adapt to different lighting conditions. There are two different
aspects (that involve many variables) that may be taken into account when calibrating such a system: a)
Illumination: Conditions may change between different places, so the calibration system must be as robust as
possible to lighting changes, and b) working area conditions: The size, color, and orientation of the working
area may change due to physical limitations. Although no large room is necessary to fit all the elements, the
available space may change from place to place. The calibration can be started as required, since it also uses
the same messaging system to communicate the different found matrices, and it uses a background subtraction
to increase robustness. The general process follows these steps:

Detect the homography between projector and camera

Estimate camera parameters.

Detect the orientation and size of the valid working area.

Calculate the remaining homographies with the working area.

(Optional) Calibrate other external gesturing elements, e.g. IR-pen.

(Optional) Set-up other input devices, e.g. tablet, that requires some communication set-up.
. Communicate the homographies.

The calibration stage involves several steps: The first step, where the projector-camera homography is
calculated, is achieved by projecting three rectangles with the projector. These three rectangles have different
RGB colors and are read by the camera. Then, from these rectangles, the camera parameters are estimated by
detecting the rectangles' corners. Next, we use an auxiliary document inside the working area to determine its
orientation and size. We determine the maximum valid working space by fitting the largest rectangle in the
limits of the camera viewing space and projector space. Once we have the homographies, they are broadcast to
the whole system, so that all modules, can read them. From now on, all the communication referring to
projected virtual elements, is be carried out in working space. The visualization system is in charge of
positioning the elements properly, and automatically repositioning them to avoid occlusions when necessary.

The fixed system is composed by a Basler ac2500-14gc camera and a projector InFocus IN 3138HDA,
which provides HD projection with 4000 ANSI lumen. Moreover, this system also uses an IR camera, which
is basically a very similar camera, a Basler ac2500-14gm with an IR longpass filter (850nm, M27x0,5mm) for
the IR Pens. The devices here, in contrast with the nomadic system, can be of higher quality, and the distance
of the projector to the surface is of 2.2m, and the area of projection is about 1.1m wide (16:9). The main
difference of the fixed system with the nomadic one is the intended use. The objective in this one is to have a
living lab in a public library where the users may experiment with projected augmented reality technologies.
More specifically, the users will be, mainly, children, and therefore, we have developed a set of small toy
applications to be used by the children. In Figure 6-right we can see how the fixed system looks. The fixed
system uses the same, previously enumerated software packages to perform all the tasks. The only difference
with the previous system is that the projectors and cameras have a larger resolution and can be placed at a
larger distance, so that we can build a fixed system that is less prone to accidents.

NOUA WM

Figure 6. The music toy application where children can play with different instruments.



One of the toy applications we have developed is a music player. In this application, the user shows a music
score that the system is able to detect and interpret. The user only has to select the note, and the system plays
it. The system can also change the instrument that plays the music by letting the user choosing among a set of
predefined instruments. Everything happens in a very user-friendly way, by providing most of the options as
icons the users may select. We can see an example of this application in Figure 6, where the projected elements
such as the piano tiles or the instrument icons are all interaction widgets. The system tracks the document
position, so if it changes, the widgets are automatically rearranged accordingly. The user can choose the
instrument, play a note, or play the whole song.

CONCLUSIONS AND FUTURE WORK

In this paper we have presented a software framework tailored for the rapid development of augmented
reality setups that are based on the projector-camera pair. The system is highly distributed and all components
execute individually and communicate through a communication system based on Google Protocol buffers
over a ZeroMQ transport layer. All the modules communicate using a protocol defined by the Communications
Module that is the center of all the system. We can even attach external devices (e.g. a tablet) to the
communications system. The development of a simple application with our new framework can take as few as
a week if no other hardware elements have to be added. It consists basically on reprogramming the Application
Logic module to fulfill the users' needs. Besides the general modules, we have also implemented other modules
for document tracking, widget rendering, and so on, that are easily integrated and can be shared by other
modules. In future we want to continue developing the system, but concentrating on new features that may be
driven by new example applications, or new input devices.

The authors acknowledge the project support for the project by TIN2014-52211-C2-1-R by the Spanish
Ministerio de Economia y Competitividad with EU FEDER funds.
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