
ALYA: MULTIPHYSICS ENGINEERING SIMULATION TOWARDS
EXASCALE

MARIANO VÁZQUEZ∗, GUILLAUME HOUZEAUX† , SEID KORIC‡ , ANTONI ARTIGUES†

, JAZMIN AGUADO-SIERRA† , RUTH AŔıS† , DANIEL MIRA† , HADRIEN CALMET† ,

FERNANDO CUCCHIETTI† , HERBERT OWEN† , AHMED TAHA‡ , EVAN DERING

BURNESS‡ , JOSÉ MAŔıA CELA† , AND MATEO VALERO†

Abstract. Alya is a multi-physics simulation code developed at Barcelona Supercomputing
Center (BSC). From its inception Alya code is designed using advanced High Performance Computing
programming techniques to solve coupled problems on supercomputers efficiently. The target domain
is engineering, with all its particular features: complex geometries and unstructured meshes, coupled
multi-physics with exotic coupling schemes and physical models, ill-posed problems, flexibility needs
for rapidly including new models, etc. Since its beginnings in 2004, Alya has scaled well in an
increasing number of processors when solving single-physics problems such as fluid mechanics, solid
mechanics, acoustics, etc. Over time, we have made a concerted effort to maintain and even improve
scalability for multi-physics problems. This poses challenges on multiple fronts, including: numerical
models, parallel implementation, physical coupling models, algorithms and solution schemes, meshing
process, etc. In this paper, we introduce Alya’s main features and focus particularly on its solvers.
We present Alya’s performance up to 100.000 processors in Blue Waters, the NCSA supercomputer
with selected multi-physics tests that are representative of the engineering world. The tests are
incompressible flow in a human respiratory system, low Mach combustion problem in a kiln furnace,
and coupled electro-mechanical contraction of the heart. We show scalability plots for all cases and
discuss all aspects of such simulations, including solver convergence.

Key words. Multi-physics coupling, Parallelisation, Computational Mechanics

1. Introduction. Across a range of engineering fields, the use of computational
models is pervasive in the whole design and manufacturing process. In complex sys-
tems, High Performance Computing (HPC) plays an essential role in simulation and
modelling. Researchers and manufacturing teams depend on HPC to create safe cars
and energy-efficient aircraft as well as effective communication systems and efficient
supply chain models. Availability of advanced HPC technologies has also fundamen-
tally altered the investigative paradigm in the field of biomechanics. But paradoxi-
cally, for many engineers and researchers, the existing hardware and software cannot
be used to solve their problems. There are many reasons why this happens, but we
focus here in only two. On one hand, current HPC systems lack the computational
power, network bandwidth and data storage needed for solving tomorrow’s real-world
engineering challenges. On the other hand, while emerging peta-scale computing is
already a strategic enabler of large-scale simulations in many scientific areas (such as
astronomy, biology and chemistry), even the most powerful hardware will fail to de-
liver on its full potential unless matched with simulation software designed specifically
for such environments.

Several papers describe the effort of performing large-scale simulations on super-
computers, covering key areas: molecular dynamics [26], mantle convection in solid
earth dynamics [3], massive N-body simulations [36], seismic wave propagation [25],
weather prediction [1] or fundamentals of turbulence on channels using the vortex
method [37]. A similar list can be obtained from the 2014 ACM Gordon Bell Prize in

∗Barcelona Supercomputing Center BSC-CNS, Campus Nord UPC, Barcelona, Spain and IIIA-
CSIC, Bellaterra, Spain (mariano.vazquez@bsc.es)

†Barcelona Supercomputing Center BSC-CNS, Campus Nord UPC, Barcelona, Spain
‡National Center for Supercomputing Applications-NCSA University of Illinois at Urbana-

Champaign, USA (koric@illinois.edu)

1

montse aragues
Texto escrito a máquina
© 2016 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

2 ALYA

High Performance Computing finalists. All these papers address very specific prob-
lems using particular algorithms adapted to both the problem and the architecture.
The majority of these codes use explicit time schemes, while a few of them use implicit
ones with optimal (multigrid) solvers. In most of these papers massive parallelism is
achieved for single-physics problems, in relatively simple geometries and on Cartesian
meshes.

In this paper, we present three engineering-like cases of very different charac-
ter: incompressible flow in the respiratory system, the turbulent reactive flow in a
rotary kiln and non-linear solid mechanics coupled with electro-physiology of the hu-
man heart. In all cases, we use the same simulation tool: Alya, the BSC’s in-house
software. This paper describes the solution strategy and shows the performance on
supercomputers up to 100K processors.

As a matter of fact, most references mentioned above show code performance in
a larger core counts. So in order to fairly measure the novelty of this work, we must
consider the following:

• The three examples presented here show many of the potentially complex
aspects of a real-world engineering problem.

• Two of these problems are real multi-physics one, such as combustion or
cardiac electro-mechanics.

• All of them involve both implicit and explicit schemes and we analyze the
solver convergence properties all the way up to 100.000 processors.

• Two of them have complex geometries: the respiratory system and a complete
cardiac bi-ventricular geometry.

• Meshes are unstructured, including different element types: prisms in bound-
ary layers, tetrahedral, etc.

• Meshes are very large, up to more than four billion elements (4 × 109). We
also describe our strategy for producing such meshes.

• Alya’s algebraic solvers are programmed in-house, with no external libraries,
seamlessly integrated to the solution strategies.

• The problems involve fluid mechanics, non-linear solid mechanics, excitable
media, species and chemical reactions.

• All problems are run on the same supercomputer, which is made of general
purpose hardware.

As a matter of fact and until now, engineering, one-hundred thousand cores and
supercomputer were three concepts hardly found in the same sentence, unless in a
negative connotation. This paper represents an effort to turn the negative sense into a
positive one, leading the way toward Exascale computing in multiphysics engineering
simulations.

This paper addresses the performance of Alya on supercomputers, running on up
to 100.000 processors in Blue Waters, the sustained peta-scale system [31] hosted at
the University of Illinois’ National Center for Supercomputing Applications (NCSA).
Blue Waters consists of traditional Cray XE6 compute nodes and accelerated XK7
compute nodes in a single “Gemini” interconnect fabric. Only XE6 nodes where used
for this work, with each node containing two AMD “Interlagos” processors and a total
of 16 floating point cores (NCSA, USA). Performance is measured through scalability
when simulating coupled multi-physics problems in complex geometries coming from
different domains.

2. Alya general view. Alya (see for instance [30, 15, 12, 5, 17]) is a simulation
code developed at Barcelona Supercomputing Center (BSC-CNS) since 2004, whose

MULTIPHYSICS ENGINEERING SIMULATION TOWARDS EXASCALE 3

main architects are authors GH and MV. Alya is not a born-sequential simulation
code which was parallelized afterwards. Instead, it was designed from scratch as a
multi-physics parallel code. It’s main features are the following:

• It solves discretized partial differential equations (PDEs), preferring varia-
tional methods (particularly Finite Elements).

• Space discretisation is based on unstructured meshes, with several types of
elements, such as hexaedra, tetraedra, prisms, pyramids... linear, quadratic...

• Both explicit and implicit time advance schemes are programmed.
• Depending on the case, staggered or monolithic schemes are programmed.
However, staggered schemes with coupling iterations are preferred for large
multi-physics problems.

• Parallelisation is based on mesh partitioning (for instance using Metis [24])
and MPI tasks, which is specially well-suited for distributed memory ma-
chines. On top of that, some heavy weight loops are parallelized using
OpenMP threads. Both layers can be used at the same time in a hybrid
scheme.

• Alya sparse linear algebra solvers are specifically developed, with a tight
integration with the overall parallelisation scheme. There are no third-parties
solver libraries required.

• Alya includes some geometrical tools which operate on the meshes for smooth-
ing, domain decomposition or mesh sub-division. In particularly, the latter
is a key tool for large-scale simulations [13].

Alya is organized in a modular way: kernel, services and modules, which can
be separately compiled and linked. Each module represents a single set of Partial
Differential Equations (PDE) for a given physical model. To solve a coupled multi-
physics problem, all the required modules must be active and interacting following
a well-defined workflow. Alya’s kernel controls the run: it contains the solvers, the
input-output workflow and everything related to the mesh and geometry. The kernel
and the modules enable a given Physical problem to be completely solved The ser-

vices are supplementary tools, notably the parallelisation service or the HDF5 writer.
Kernel, modules and services have well-defined interfaces and connection points.

2.1. Computational Mechanics Equations. Let us establish the theoretical
setup and very briefly summarize the transition from continuous problem formulation
to a discrete one in Alya. Generally speaking, Alya deals with Computational Me-
chanics problems that can be modelled through conservation laws expressed as a set
of partial differential equations:

∂∗

t Φ
α = ∂xi

Fα
i = ∂xi

Cα
i + ∂xi

Kα
i

where Φα labels the unknown for the equation α of the set. Fα
i is the compact

notation of the fluxes for each of the equations, being divided in two terms, Cα
i and

Kα
i , for convenience. Pleae note that the temporal derivative ∂∗

t Φ
α is starred to note

that it can be of first (like in fluid flows or excitable media) or second order (like
in solid mechanics or unsteady turbulenf flows). Latin subindices label the space
dimensions of domain Ω. To these equations, boundary and initial conditions must
be added depending on the problem under study.

The variational form is obtained by projection on a spaceW with its usual proper-
ties, where Ψ ∈ W is the test function or the characteristic function depending on the

4 ALYA

context (finite elements, finite volumes, collocation, etc.). After integrating-by-parts
some of the fluxes (say the K ones), we obtain

∂∗

t

∫

ΨαΦαdΩ =

∫

Ψα∂xi
Cα

i dΩ−

∫

∂xi
ΨαKα

i dΩ

+

∫

ΨαKα
i nid∂Ω.(2.1)

Boundary conditions on the fluxes K are imposed through the last term, being
∂Ω the domain boundary and ni its exterior normal vector. The interpolation space
where the variational form solution is to be found is (in practice) the same as W ,
explicitly time independent. For that reason, the time derivative has been taken out
of the space integral, with, for the sake of simplicity, the additional hypothesis that Ω
is not changing with time. In any case, if the domain is varying in time some additional
terms are computed, as in the case of Arbitrarian Lagrangian-Eulerian schemes. These
equations govern problems in fluid mechanics, solid mechanics, chemical reactions,
quantum mechanics, heat transfer, etc. for each multi-physics component of the
problem.

The modelling equations contain all the “physics” of a given problem, and dis-
cretized in time and space in a certain way, they are programmed in what we called
above a module. Therefore, the module’s main task is to compute the elementary
matrix and righ-hand-side of its corresponding set of equations, including all the nu-
merical subtleties, boundary conditions, material models and so on. These matrices
are assembled in a global matrix and a global right-hand-side vector, creating the
algebraic system.

In Alya, the preferred method to discretize in space the weak form Equation 2.1
is the finite element method. When additional numerical stabilisation is required, we
usually follow the so-called Variational MultiScale method (see for instance [14] for
incompressible or [20] compressible flows). Time is discretized using finite differences
to obtain either explicit or implicit schemes of different orders.

Time and space discretisation of the weak form leads to an algebraic system:

Au = b(2.2)

These algebraic systems can be very large. In Alya, we prefer to solve them using
iterative methods which are very well suited for parallel programming. According
to the problem solved, we follow a wide range of iterative strategies. On one hand,
the explicit schemes, which can be viewed as the most simple iterative method with
a unique simple (Richardson) iteration per time step. On the other hand, iterative
schemes such as GMRES, BiCGSTAB, CG [27] or Deflated CG [28, 19] are chosen
depending on the case. Both explicit and implicit schemes are illustrated in Figure
1. Apart from the time loop, a linearisation loop may be necessary for non-linear
problems when using implicit schemes.

2.1.1. Multiphysics and Coupling schemes. In the 2011 report by W. Gropp
et al. Multiphysics simulations: challenges and opportunities [7], the authors profile
a definition of multiphysics from a computational mechanics’ point of view:

Semantically, a multiphysics system consists of more than one component
governed by its own principle(s) for evolution or equilibrium, typically conser-
vation or constitutive laws. A major classification in such systems is whether

MULTIPHYSICS ENGINEERING SIMULATION TOWARDS EXASCALE 5

Fig. 1. Typical explicit and implicit schemes, with its basic MPI communication strategy.

the coupling occurs in the bulk (e.g., through source terms or constitutive
relations that are active in the overlapping domains of the individual com-
ponents) or whether it occurs over an idealized interface that is lower di-
mensional or a narrow buffer zone (e.g., through boundary conditions that
transmit fluxes, pressures, or displacements).

In Alya, multiphysics problems are defined by the major classification of the quote:
multigrid, contact problems, multi-code coupling, overset meshes or adjoint-based
optimisation, all of them lying within the definition. The wide context allows us to
study general solutions, considering especially both the coupling algorithms and the
parallel programming issues.

In this paper, we focus on the kind of multiphysics where all happens in the same
domain and domain discretisation. In these cases, coupling is physical and achieved
through coupling Alya modules. The main features are:

• All problems are solved in the same mesh, so no interpolation is required.
• The total number of degrees of freedom is equal to the number-of-nodes times

the total number-of-variables that defines the problem. Each module covers a
set of variables. For instance, when incompressible flow is coupled with ther-
mal transport, the unknowns pressure, velocity (module 1) and temperature
(module 2) are sufficient to define the problem.

• As the preferred scheme is the staggered one, the full problem matrix can
be decomposed into blocks corresponding to each module solved or “physics”
modelled. At each time step, the modules are advanced one after the other
and, if required, coupling iterations can be performed to increase accuracy
and/or robustness. When more than two modules are coupled, the itera-
tive scheme can be indeed very complex, including sub-time-stepping, block
grouping and relaxation. This allows using different time iteration schemes
for each physic although on the same mesh, providing that they are all syn-
chronized. For instance, if problem A uses a time step ten times smaller than
problem B, for each problem B time step, 10 problem A time steps are run.

• Scalability is measured based on the total CPU-time used per time step.
Therefore, if one of the modules is not properly scaling, it will strongly de-

6 ALYA

grade the overall scalability.

2.2. Parallelisation layer. The parallelisation paradigm in Alya is a sub-structuring
method, using a Master-Worker interaction model between the CPUs. Sub-structuring
methods consist essentially in distributing the work among the Workers, leaving the
Master in charge of general tasks like I/O. Most of the iterative solvers available in
Alya are classical solvers like GMRES or Conjugate gradient, and their convergence
do not depend on the number of CPUs when used in parallel. Preconditioners using
coarse space corrections (Multigrid, Deflated Conjugate gradient) are implemented
independently of the number of CPUs as well, so mesh partition has no effect in
solver’s convergence. This is not a restriction but a deliberate decision. The fact is
that if a set of solver parameters is tuned to achieve convergence on a given number of
CPUs, one would like to obtain the same convergence using more CPUs without any
change in these parameters. This is a crucial point when considering industrial-realm
complex simulations where the user usually does not necessarily have time to try dif-
ferent sets of parameters depending on the number of available CPUs. Things are
much worse when considering multiphysics, where each sub-problem is solved with its
own convergence strategy. Nevertheless, domain decomposition methods like Additive
Restricted Schwarz (RAS), Block LU (one block per subdomain), Schur complement
solvers, as well as subdomain dependent preconditioners like linelet [29] are also avail-
able in Alya. These solvers and preconditioenrs are generally used whenever classical
solvers appear not to be robust enough.

2.2.1. Master-Worker strategy. All the details on the parallelisation of Alya
can be found in papers such as [15, 11, 19]. We give here the general idea of the Master-
Worker strategy. In the cases shown here, the Master reads the mesh and performs the
partition of the element graph with METIS [24], an automatic mesh partitioner which
balances the number of elements while minimising the subdomain boundary/interface
surfaces, that is the communications. However, when initial meshes are very large, a
parallel HDF5 format is preferred, so each Worker reads its corresponding part. For
the pure MPI strategy, each MPI task will be in charge of each subdomain, which are
the Workers. The Workers build the local matrices (Ai) and right-hand side (bi), and
are in charge of the resulting system solution in parallel. In the assembly stage, very
few communications are needed between Workers and the scalability only depends
essentially on the load balancing. Basically only few MPI AllReduce are required to
compute the solution’s residual, critical time step, etc.

2.2.2. Communication types and scheduling. In the iterative solvers, two
main types of communications are usually needed.

• Global communications via MPI AllReduce, which are used to compute resid-
ual norms, time steps and scalar products involved in algebraic solvers;

• Point-to-point communications via MPI ISend and MPI IRecv, which are used
in algebraic solvers when sparse matrix-vector (SMV) products are needed.

We mentioned earlier that the parallelisation of Alya is based on a sub-structuring
approach in which most of the solvers and preconditioners are implemented indepen-
dently of the number of subdomains. Therefore the parallel solution is, up to round
off errors, the same as the sequential one at any moment because mesh partition is
only used for distributing work without changing the sequential algorithm. Figure
1 shows these two types of communications in explicit and implicit schemes. The
element loop consists of the local (to each subdomain) matrix and RHS assemblies
and does not involve communication. Therefore, the parallel performance of the ex-

MULTIPHYSICS ENGINEERING SIMULATION TOWARDS EXASCALE 7

Fig. 2. Left: Scheduling strategy on a simple example. Top, optimum and communication
scheduling in 3 steps. Bottom, Bad communication scheduling in 5 steps.

plicit scheme is expected to be dominated by the load balance. Another key issue
of communication is scheduling [2]. In Alya, a relatively simple but efficient scheme
is used, based on coloring and build upon the adjacency graph of each subdomain.
Colors group adjacencies that has no common communications which then can be
scheduled in non-overlapping stages. Figure 2 shows the kind of problem that can
arise when data transfer is not properly scheduled. In this case, four subdomains
have to exchange data with all the others. The optimum scheduling is shown on the
top part of the figure. On the bottom part, no scheduling is used and subdomains
try to exchange their boundary data in a lexical order. In the first communcation
step, subdomains 3 and 4 cannot send their data to subdomain 1, as this one is being
exchanging data with subdomain 2.

2.2.3. Data structure. A specific data structure for distributed memory par-
allelisation has been used and can be briefly explained through a simple example
illustrated in Figure 3. It shows an example of mesh partitioning into four subdo-
mains (top left) and its corresponding node numbering (top right). In each Worker,
interior nodes are first ordered. Then, boundary nodes (grey) are divided into own

boundary nodes and others bounday nodes. The tag own boundary nodes cannot be re-
peated in more than one subdomain and are obtained by partitioning the subdomain
boundary with METIS partitioner. The own boundary node definition is useful when
scalar products are needed to avoid repeating the contribution of boundary nodal
values. The nodes involved in scalar products are shown in Figure 3 (right) with a ×

sign, being 13 nodes in this particular case (bottom left). Finally, the nodes involved
in the MPI ISend and MPI IRecv after a SMV are shown (bottom right).

2.2.4. Sparse matrix-vector product. Using the data structure and the schedul-
ing introduced earlier, the Sparse Matrix Vector (SMV) product is computed together
with a non-blocking send-receive as follows:

1. Perform local SMV product yi = Aixi on boundary nodes;
2. Exchange yi with neighbors using non-blocking MPI ISend and MPI IRecv

according to the communication scheduling;
3. Perform local SMV product yi = Aixi on interior nodes;
4. Synchronize the solution updates with MPI WaitAll.

8 ALYA

Fig. 3. Organisation of data in Alya and types of communications.

3. Multiphysics simulation examples. In this paper we analyse Alya’s par-
allel behaviour through three different examples:

• The human respiratory system: transient incompressible flow.
• The kiln furnace: transient multi-species reacting flow using a low-Mach ap-
proximation of the Navier-Stokes equations.

• The electro-mechanical cardiac model: transient non-linear solid mechanics
and excitable media.

In all cases we start with meshes in the range of a few million elements, which are
progressively subdivided in parallel using the algorithm described in [13], in order
to produce sufficiently large meshes to feed a large count of cores. As noted also in
other works [23, 16], an automatic local mesh refinement tool should be a key feature
in any engineering simulation tool. Once a good large mesh is generated, this tool
can provide finer ones effortlessly, preserving the general structure of the original one.
Keep in mind that with just one cycle, the elements count can be multiplied by eight.
Before analysing the parallel performance, we proceed to briefly describe each of the
examples and their associated numerical strategies. It is worth to know that two out
of three cases represent the largest problem solved so far in its respective domain:
combustion in kiln furnaces and electro-mechanical coupling in cardiac modelling.

3.1. The respiratory system - Implicit incompressible Navier-Stokes
(Example 1). Computational simulation enables the mechanics of respiratory air-
flow to be explored in detail, with considerable potential benefits for health protection.
Resolving the complex time-dependent flow in the large airways poses a severe chal-

MULTIPHYSICS ENGINEERING SIMULATION TOWARDS EXASCALE 9

lenge. Various compromises are generally made, such as restricting the portion of the
airways considered and approximating the flow conditions or physics. In this example,
the unsteady flow in a subject-specific model of the domain that extends from the
face to the third branch of the bronchopulmonary tree is simulated.

The whole airway geometry was defined from a single subject, identified via ret-
rospective examination of CT images obtained from clinical records at St Marys Hos-
pital, Paddington, United Kingdom. Consent was obtained to use this data as the
basis for airway segmentation and reconstruction. Segmentation of the airways was
performed using the Amira package (TGS Europe) and required some manual inter-
vention, particularly in the nasal airways. There, the fine bone structure challenges
the resolution typical of data acquired under routine clinical protocols, but the fidelity
of the reconstructed data was carefully checked by ENT surgeons. Translation of the
coarse segmentation into a smooth surface was performed using in-house, curvature
adapted smoothing procedures. Mesh generation was accomplished in stages, using
the Gambit and TGrid packages (Ansys Ltd.). This work was done in collaboraiton
with D. Doorly and A. Bates from Imperial College London (UK).

The solution of this problem involves the incompressible Navier-Stokes equations.
The time discretisation is based on a second order Backwards Finite Differences (BFD)
scheme and the linearisation is carried out using the Picard method. The space
discretisation and stabilisation is based on the variational multiscale method (VMS)
and is extensively described in [14]. At each time step and linearisation iteration, the
following system is solved:

[

Auu Aup

Apu App

] [

u
p

]

=

[

bu

bp

]

(3.1)

where u and p are velocity and pressure nodal unknowns. The simultaneous solution
of the complete system is usually referred to as the “monolithic” scheme. In order to
avoid complex preconditioners to account for the velocity-pressure coupling involved
in the monolithic system solution, an algebraic fractional alternative, introduced and
described in [11] is used. This scheme enables to segregate the solutions of the velocity
and pressure at the algebraic level, by solving the pressure Schur complement using
an iterative method (herein the so-called Orthomin(1)).

This strategy offers two main advantages. Firstly, with respect to the monolithic
scheme, one shot of the method involves the separated solution of a non-symmetric
system for the momentum equation and a symmetric system for the pressure (a Lapla-
cian) which accounts for the continuity equation. Therefore, specific solution schemes
are used for each sub-system. The momentum equations usually converge very well,
even with a simple diagonal preconditioner, solved with a GMRES or a BiCGSTAB.
The continuity equation is solved with the Deflated Conjugate Gardient solver (DCG)
[19], together with a linelet preconditioner when anisotropic boundary layers [29] are
present. Secondly, with respect to classical fractional step methods, no fractional er-
rors are introduced, guaranteeing that the solution converges to that of the monolithic
case. What is important to note here is that the solution strategy which consists of
solving the pressure Schur complement instead of attacking directly the monolithic
scheme, should be understood as part of the algebraic solution strategy of the Navier-
Stokes system, and not a fancy trick to get away from this scheme.

Figure 5 shows the strong scalability and efficiency for the respiratory system
problem, for a 345M elements hybrid mesh (tetrahedra, prisms, pyramids). Scala-
bility is measured comparing the CPU time taken to solve one simulation time step

10 ALYA

Fig. 4. Respiratory system. Initial mesh (top) and close up view with streamlines.

in an increasing number of processors. Efficiency higher than 0.8 is sustained on up
to 24K processors and it starts to degrade due to the higher ration of communica-
tions/computing time if higher number of processors is employed. The bars plot at
the botton gives the average-elements-per-core figure. This is very useful to establish
a sweet spot, which depending on the problem physics and size, sets the number of
processors you need to maintain a high efficiency. If we choose 0.80 as the limit, for
this case the sweet spot is around 15.000 elements per core.

We have also performed a study of the efficiency of the deflated CG (so-called
DCG), for a 550M element mesh. The DCG involves the solution of a coarse problem,
using a direct solver, to accelerate the convergence by providing a mechanism to
damping out the low frequency errors. In order to keep the number of iterations
of the DCG solver constant when refining the mesh, one can increase the number
of groups, as shown in Figure 6. It shows the decrease in number of iterations as
a function of the number of groups which is the size of the coarse problem solved
by the DCG. By multiplying the number of groups by four (from 500 to 2000, i.e.
making finer the coarse problem), the number of iterations required to achieve the
convergence criterion is reduced by a factor 1.7. The second plot shows the relative
efficiencies of the solver as a function of the number of groups and number of CPUs.
The DCG solver involves an reduction operation of the size of the number of groups,
and therefore it is expected that its efficiency decreases drastically with the numbers
of groups and CPUs [19]. This is confirmed by observing Figure 6. For example, on
10240 CPUs, the CPU time is decreased by a factor 1.4 instead of 1.7 in number of
iterations. On 2560 CPUS, this factor is 1.66, which is almost optimum.

MULTIPHYSICS ENGINEERING SIMULATION TOWARDS EXASCALE 11

Fig. 5. Respiratory system. Scalability, efficiency and average-elements-per-core.

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 400 800 1200 1600 2000

N
um

be
r

of
 it

er
at

io
ns

Number of groups

 0

 20

 40

 60

 80

 100

 2000 4000 6000 8000 10000 12000

E
ffi

ci
en

cy
 %

Number of CPUs

500 groups
1000 groups
2000 groups

Fig. 6. Respiratory system. Deflated Conjugate Gradient behaviour: number of iterations (left)
and relative efficiency.

12 ALYA

3.2. The kiln furnace - Implicit incompressible Navier-Stokes, chemical
reactions and combustion (Example 2). At the heart of the cement production
process lies the kiln, a tilted rotary oven where raw materials are heated up to reaction
temperatures to form small pellets called clinker, which is then ground to make cement
powder [21]. In addition to reducing its raw material consumption, improving the
efficiency of cement kiln is a main concern of the industry, as the kiln is the main
consumer of energy in the production process.

The kiln rotates at a fixed frequency of about 5 rpm. Its length ranges between
50 and 180 meters, and its diameter between 2 and 4 meters. On the high part of
the kiln the raw material is fed in, sometimes as a dry powder and others as a wet
sludge, where it begins the process of clinkerisation. On the lower part of the kiln a
large burner ejects fuel, typically pulverised coal or waste material. The burner has
a primary air injector, and secondary and tertiary injectors that add swirl motion
to the flow acting as a flame stabilisation mechanism, which can be up to 10 meters
long. The walls of the kiln are a mixture of refractory bricks and metal. Furthermore,
cement stuck to the walls around the lower third of the oven forms a coating shell
critical for operation of the kiln.

In this example, the gaseous phase of a rotary kiln is simulated using large-eddy
simulation (LES). The numerical scheme is based on a staggered algorithm that solves
the Navier-Stokes equations at the low-Mach limit, the enthalpy transport equation
expressed in terms of temperature and the transport and reaction of the chemical
species. In this case, we consider six chemical species to represent the oxidation of
methane.

The flow equations are solved using a second order Backwards Differences Scheme
(BDF) with a Newton-Raphson linearisation method. The momentum and continuity
equations are solved with unsymmetric and symmetric iterative solvers respectively.
For the momentum equations, the GMRES is considered to be the best choice while
the Conjugate Gradient (CG) or Deflated CG are the choices for the continuity equa-
tion [19, 15]. The GMRES solver is also used to solve the enthalpy transport and the
species mass fractions. A block Gauss-Seidel iterative method is employed to solve
the species mass fraction independently until the targeted convergence. Each single
species equation is solved with the GMRES as well.

In this problem, [13], four different levels of mesh subdivision have been consid-
ered, referred to here as h = 1, 1/2, 1/4, 1/8, from the coarsest to the finest, respec-
tively. The numbers of elements are 8.25M , 66.0M , 528M and 4.22B, respectively.
The time step size is computed as a multiple of the critical time step. Figure 8 shows
the average time step values of the first ten steps, computed for the four meshes.

Figure 9 shows the strong scalability and efficiency for the kiln furnace simula-
tion. The plots show the total scalability, measured summing up the CPU times for
all the Physical problems solved, namely low Mach, temperature and chemical reac-
tions. In this example we show the results for two meshes: 528M (called DIV2) and
4.22B elements (called DIV3). For DIV2 (labelled “DIV2 Ref 1K”) the scalability
is measured all the way from 1024 up to 100K cores, with the sweet spot around
16K average elements per core. Beyond that point, efficiency falls below 0.80. For
DIV3, i.e. the largest mesh, we run the last three points of the plot, 32768, 65536
and 100000 cores (labelled “DIV3 Ref 32K”). In this case, we use the CPU time for
32768 as the scalability normalising value. Finally, and in order to be fair with the
comparison, we have added a third curve: the scalability and efficiency plots for DIV2
also normalised with 32768 instead of 1024 (labelled “DIV2 Ref 32K”). As expected,

MULTIPHYSICS ENGINEERING SIMULATION TOWARDS EXASCALE 13

Fig. 7. Kiln furnace. Original mesh close-up (top) and cut with velocity contours.

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
st

ep

h

Fig. 8. Kiln furnace. Time step values for the four meshes.

“DIV2 Ref 32K” is very close to a translation upwards of “DIV2 Ref 1K”. On the
other hand, “DIV3 Ref 32K” presents a much better scalability and efficiency, with a
sustained large efficiency up to 100.000 cores.

Apart from the scalability, we present some convergence results of the solvers of
the momentum (GMRES) and continuity equations (DCG). In the present case, the
number of DCG groups in maintained constant at a rather small value of 200 (i.e. for
the meshes sizes considered in this example). Figure 10 compares the converges of the
first iterations for the momentum and continuity equations, using the four meshes.
We observe that the momentum equations converge quite rapidly and similarly for the
four meshes. This is because the time step decreases with the mesh size, increasing in
this way the diagonal terms of the momentum equations, and leaving their condition
numbers almost unchanged. This is not the case of the DCG, which convergence
degrades with the mesh size. However, we observe that even with a very small number
of groups, the method still converges. In Figure 11 we plotted the rates of convergence

14 ALYA

Fig. 9. Kiln furnace. Scalability, efficiency and average-elements-per-core.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70

L2
 R

es
id

ua
l

Iteration

h=1
h=1/2
h=1/4
h=1/8

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500 3000

L2
 R

es
id

ua
l

Iteration

h=1
h=1/2
h=1/4
h=1/8

Fig. 10. Kiln furnace. Convergence of the GMRES solver for the momentum equation (Left)
and the DCG solver for the continuity equation.

MULTIPHYSICS ENGINEERING SIMULATION TOWARDS EXASCALE 15

 0.61

 0.62

 0.63

 0.64

 0.65

 0.66

 0.67

 0.68

 0.2 0.4 0.6 0.8 1

R
at

e
of

 c
on

ve
rg

en
ce

 ||
rk+

1 ||/
||r

k ||

Mesh size h

Momentum

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.2 0.4 0.6 0.8 1

R
at

e
of

 c
on

ve
rg

en
ce

 ||
rk+

1 ||/
||r

k ||

Mesh size h

Continuity
1.003-0.086 h

Fig. 11. Kiln furnace. Rate of convergence of the momentum (Left) and continuity (Right)
equations.

of the GMRES and DCG solvers. These figures can be useful to predict the number
of iterations required to achieve a given residual reduction according to the mesh size.
In addition, we plotted an approximate linear fit to the rate of convergence of the
DCG for this particular case. In the case of the momentum equation, convergence
rate degradation is not uniform. From experience, we can assume that this is due to
the subdivision mesh scheme we are using, in which after 3 or 4 subdivision cycles
can somewhat deteriorate mesh quality.

3.3. The electro-mechamical cardiac model - Explicit non-linear solid
mechanics and excitable media (Example 3). The Alya Cardiac Computational
Model is explained in papers such as [17, 34, 33]. Simulating a heart beat is a com-
plex, multiphysics and multiscale problem, where many scales are coupled together
covering different orders of magnitude: from descriptions of electrical propagation,
cells arrangement into a spatial description and up to the geometry of the cardiac
chambers [18].

Mathematical models of the heart have been developed during the last decades
[32] ranging from the molecular point of view to the anatomical level of the organ.
At the organ-level, the cardiac computational model requires the solution of the elec-
trical component as a non-linear reaction-diffusion system, i.e. an excitable media
model; and the mechanical component, which produces the deformation using a cou-
pling scheme to link both problems together. Physiologically, the electrical activation
of the heart triggers the mechanical contraction via the concentration of Calcium.
Mechanical models representing the active deformation of the tissue are based on
protein interaction like actin-myosin and events in cardiac myofilaments on single
cells, or phenomenological electrical propagation relationships that mimic the action
potential. The choice of detail of the mathematical models depend on the specific
application.

The electrical propagation is modelled as a reaction-diffusion equation. The diffu-
sion term is locally anisotropic due to the fiber-like complex structrure of the cardiac
muscle. The reaction term is the non-linear ion channel behaviour of the cardiac cells.
Fibers are defined as a nodal field, which arise from either mathematical modelling,
after histological sectioning and measurement of their orientations; or from Diffusion
Tensor Magnetic Resonance Imaging, assuming that muscular fiber orientation cor-
relates well with water diffusion direction. The reaction-diffusion system produces a
sharp depolarisation advancing front. In this example, a model published in 1969 by
FitzHugh and Nagumo is used. The second Physical problem is the muscular pump-
ing action. From the mechanical point of view, the myocardium is here considered

16 ALYA

as compressible. The material is non-linear hyper-elastic, with anisotropic behaviour
ruled by the fiber structure. In this work, we use a transversally isotropic material
based on [10] and presented in [17].

Let us briefly describe the mechanical problem, solved in the same discretisation
of the electical activation. The dynamical mechanical equations are written in a
total-Lagrangian formulation. The Cauchy stress σ = J−1PF T , related to the first

Piola-Kirchoff PiJ and the deformation gradient FiJ =
∂xi

∂XJ

and its Jacobian J ,

allows to define the material model. Stress is developed in two parts: active and
passive:

(3.2) σ = σpas + σact(λ, [Ca2+])f ⊗ f

The passive part is governed by a transverse isotropic exponential strain energy func-
tion W (b) that relates the Cauchy stress σ to the right Cauchy-Green deformation b.
The passive stress is then

Jσpas = (a eb(I1−3)
− a)b+ 2af (I4 − 1)ebf (I4−1)2f ⊗ f

+K(J − 1)I(3.3)

The strain invariant I1 represents the non-collagenous material while strain invariant
I4 represents the stiffness of the muscle fibers, and a, b, af , bf are parameters to be
determined experimentally. K sets the compressibility. Vector f defines the fiber
direction.

Now, we briefly describe electro-mechanical coupling, which depends on ionic con-
centration in the tissue, specially the calcium. Depending on the model, ion concen-
trations (Ca2+, Na+, K+...) in the cellular membrane can be computed as function of
the electrical activation (and, eventually, the mechanical contraction). In the simplest
model, which is used here, electro-mechanical coupling is modelled as follows. The
mechanical deformation is the result of the active tension generated by the myocytes
as accounted for in 3.2. The model assumes that the active stress is produced only
in the direction of the fiber and depends only on the calcium concentration of the
cardiac cell [22]:

(3.4) σact = α
[Ca2+]n

[Ca2+]n + Cn
50

σmax(1 + β(λf − 1)).

In this equation, Cn
50, σmax, λf and β are model parameters, which are fitted to ensure

the proper propagation speed, coupling force, etc.
We have also introduced a parameter 0 < α < 1 to calibrate the amount of active

stress and measure its sensitivity.
In order to capture all the required time scales, small time steps are needed.

Therefore, in cardiac mechanics simulations explicit schemes for time integration are
preferred. Figure 12 shows a snapshot on the electromechanical propagation, closing
up on the mesh. The original mesh is made of a bit more than 6M elements. As in
the other two examples, the original mesh goes through two and three subdivision
cycles following [13], reaching 427 millions and 3.4 billions tetrahedra respectively.

Figure 13 shows the strong scalability and efficiency for the cardiac electrome-
chanical model. Again, the plots show the total scalability, measured summing up
the CPU times for the Physical problems solved, namely electrophysiology and solid
mechanics. As in the kiln example, we show here the results for two meshes: 427M

MULTIPHYSICS ENGINEERING SIMULATION TOWARDS EXASCALE 17

Fig. 12. Cardiac electro-mechanical model. Initial mesh (left) and electrophysiology activation
potential snapshot.

Fig. 13. Cardiac electro-mechanical model. Scalability, efficiency and average-elements-per-core.

18 ALYA

Fig. 14. Cardiac electro-mechanical model. Data traffic in Blue Water’s Gemini interconnects.

(called DIV2) and 3.416B elements (called DIV3). Using the same approach as above,
for DIV2 (labelled “DIV2 Ref 1K”) the scalability is measured all the way from 1024
up to 100K cores. In this case, the sweet spot is lower than 4K elements per core. The
reason is that for the explicit schemes communication needs per time step are much
lower. As in the kiln example, for DIV3, i.e. the largest mesh, we run the last three
points of the plot, 32768, 65536 and 100000 cores, using as the scalability normalising
value the CPU time obtained for 32768 (labelled “DIV3 Ref 32K”). We have added
the scalability and efficiency plots for DIV2, but now normalising with 32768 instead
of 1024 (labelled “DIV2 Ref 32K”). Again and as expected, “DIV2 Ref 32K” is very
close to a translation upwards of “DIV2 Ref 1K”. On the other hand, “DIV3 Ref 32K”
presents a much better scalability and efficiency, with a sustained large efficiency up
to 100.000 cores. A communication measure is shown in Figure 14, which is the total
measured data traffic to and from Gemini interconnects on Blue Waters when solving
this problem. A sharp increase in the interconnect traffic by over 30 times is observed
going from 64 (1024 cores) to 4096 nodes (65,536 cores).

4. Conclusions and Future Lines. This article aims to show that engineer-
ing codes, if properly coded, optimised and ported, can take a full advantage of a
peta-scale architecture, such as Blue Waters, and opening the way towards exas-
cale computing. This demonstrates the feasibility of efficiently solving extreme size
multiphysics simulations for the engineering realm by enabling the creation of large,
high-fidelity models. These models will yield accurate and detailed insights into the
complex behavior of engineering and biological processes. The paper prepares the
ground pointing at what to expect when this kind of coupled multi-physics simula-
tions achieves exa-scale. Some of the issues will be similar, but as a larger scale, such
as meshing, solver convergence or data analysis, aspects on which we can advance
with confidence thanks to the results shown. However, we are aware of the new realm
we are facing to and the difficulties ahead.

In this paper, we have presented the simulation strategy of Alya, a multiphysics
solver designed to run efficiently on tens of thousands of processors, and especially
well-suited for engineering simulations. The NCSA’s sustained peta-scale system of
Blue Waters has shown its potential with large-scale Alya runs maintaining a high
parallel efficiency on 100,000 cores in multiphysics cases. The chosen examples cover
the largest possible range of features such a code should have. We solved coupled
multi-physics incompressible fluid mechanics, combustion and thermal flow, non-linear
solid mechanics and excitable media. We simulated meshes up to billions of elements.
We used both explicit and implicit schemes, showing scalability plots for both cases

MULTIPHYSICS ENGINEERING SIMULATION TOWARDS EXASCALE 19

and analysing solver convergence for the implicit ones. We used non-structured hybrid
meshes combined with a mesh sub-division strategy. Finally, we have assessed the
examples in terms of scalability and parallel efficiency, with special care on the solvers.

Such large-scale problems represent a completely unexplored territory, revealing
new issues. Solution strategies must be adapted to take advantage of supercomputers.
In the case of the Navier-Stokes equations, an algebraic split strategy has allowed the
use of relatively classical iterative solvers with very good convergence and parallel
performances for very large unstructured and hybrid meshes. But sufficient load is
necessary to keep parallel efficiencly as high as possible. The efficiency obtained on
some numerical examples gives us some lower bound estimation, depending on the
physics and numerical schemes.

Scalability is the first step. Next, solver convergence must be further and deeper
analysed. We show in this study to what extent Alya strategy is appropriate, but
there are plenty of issues still to be treated. One key problem is postprocessing. For
problems of this size, tools such as HDF5 are very important, but their behaviour
on these grounds must be assessed. In the case of multi-physics coupling with non-
overlapping subdomains (contact problems, fluid-structure interactions, heat transfer,
etc.) parallel implementation presents an added difficulty: point-to-point communi-
cation. Preliminary results are very encouraging.

Considering accelerators, let us remark that in recent years, substantial efforts
were undertaken to adapt computational sparse methods for evolving GPU systems.
We are testing GPU-based solver and mathematical libraries with Alya such as CuBLAS
[4] and Paralution [6] on XK7 nodes of Blue Waters. We also plan to test a massively
parallel direct solver library WSMP [8] as a preconditioner for the iterative solvers in
Alaya. WSMP has shown enough scalability and robustness to perform with multi-
million equation problem size on many thousands of cores [9]. Besides, Alya has been
tested in Intel Xeon Phi systems with sustained scalability specially using the MPI
parallelisation paradigm and virtually no effort in porting [35]. Further research in
these two lines will be carried out and reported.

Acknowledgment. The authors would like to thank the following fellow re-
searchers and institutions:

• The Private Sector Program at NCSA and the BlueWaters sustained-petascale
computing project-supported by the National Science Foundation (award
number OCI 07-25070) and the state of Illinois.

• Denis Doorly and Alister Bates (Imperial College London, UK), collaborators
of the airways study. Part of this work was financed by European PRACE
Type B/C projects.

• The heart geometry was provided by Dr. A. Berruezo (Hospital Clnic de
Barcelona) in collaboration with R. Sebastian (UVEG) and O. Camara (UPF),
partially financed through project TIN2011-28067 from MINECO, Spain.

• Part of the cardiac model development was financed by the grant SEV-2011-
00067 of Severo Ochoa Program, awarded by the Spanish Government.

• Part of the kiln model development was financed by the European Commis-
sion in the framework of the FP7 Collaborative project “Advanced Technolo-
gies for the Production of Cement and Clean Aggregates from Construction
and Demolition Waste (C2CA)”, Grant Agreement No 265189.

REFERENCES

20 ALYA

[1] T. Aoki and T. Shimokawabe, Large-scale numerical weather prediction on gpu supercom-
puter, in GPU Solutions to Multi-scale Problems in Science and Engineering, D. A. Yuen,
L. Wang, X. Chi, L. Johnsson, W. Ge, and Y. Shi, eds., Lecture Notes in Earth System
Sciences, Springer Berlin Heidelberg, 2013, pp. 261–270.

[2] P. Brucker, Scheduling Algorithms, Springer, fourth ed., 2003.
[3] C. Burstedde, G. Stadler, L. Alisic, L. Wilcox, E. Tan, M. Gurnis, and O. Ghattas,

Large-scale adaptive mantle convection simulation, Geophysical Journal International, 192
(2013), pp. 889–906.

[4] C. G. B. L. by NVIDIA. November 2013, http://docs.nvidia.com/cuda/cublas/index.html.
[5] B. Eguzkitza, G. Houzeaux, R. Aubry, H. Owen, and M. Vázquez, A parallel coupling

strategy for the chimera and domain decomposition methods in computational mechanics,
Computers & Fluids, (2013).

[6] P. L. for Iterative Sparse Methods on CPU and G. N. 2013, http://www.paralution.com.
[7] W. Gropp and J. Magerlein, Multiphysics simulations: challenges and opportunities, Tech-

nical Report ANL/MCS-TM-321, Argonne National Laboratory, 2011.
[8] A. Gupta, Wsmp : Watson sparse matrix package (part-i: Direct solution of symmetric

sparse systems), Technical Report RC 21866, IBM T. J. Watson Research Center. Yorkton
Heights, NY, 2013.

[9] A. Gupta, S. Koric, and T. George, Sparse linear solvers on massively parallel machines,
in ACM/IEEE Conference on High Performance Computing SC 2009, Portland, Oregon,
USA November 14-20, 2009.

[10] G. A. Holzapfel and R. W. Ogden, Constitutive modelling of passive myocardium: a struc-
turally based framework for material characterization, Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, (2009).

[11] G. Houzeaux, R. Aubry, and M. Vázquez, Extension of fractional step techniques for in-
compressible flows: The preconditioned orthomin(1) for the pressure schur complement,
Computers & Fluids, 44 (2011), pp. 297–313.

[12] G. Houzeaux, R. de la Cruz, H. Owen, and M. Vázquez, Parallel uniform mesh multipli-
cation applied to a navier-stokes solver, Computers & Fluids, In Press (2013).

[13] G. Houzeaux, R. de la Cruz, H. Owen, and M. Vázquez, Parallel uniform mesh multipli-
cation applied to a navier-stokes solver, Computers and Fluids, 80 (2013), pp. 142–151.

[14] G. Houzeaux and J. Principe, A variational subgrid scale model for transient incompressible
flows, Int. J. Comp. Fluid Dyn., 22 (2008), pp. 135–152.

[15] G. Houzeaux, M. Vázquez, R. Aubry, and J. Cela, A massively parallel fractional step
solver for incompressible flows, J. Comput. Phys., 228 (2009), pp. 6316–6332.

[16] J.Hoffman, J.Jansson, R. de Abreu, C.Degirmenci, N.Jansson, K.Mller, M.Nazarov,

and J. Sphler, Unicorn: parallel adaptive finite element simulation of turbulent flow and
fluid-structure interaction for deforming domains and complex geometry, Computers and
Fluids, 80 (2013), pp. 310–319.

[17] P. Lafortune, R. Aŕıs, M. Vázquez, and G. Houzeaux, Coupled electromechanical model of
the heart: Parallel finite element formulation, International Journal for Numerical Methods
in Biomedical Engineering, 28 (2012), pp. 72–86.

[18] I. LeGrice, P. Hunter, A. Young, and B. Smaill, The architecture of the heart: a data
based model, Phil. Tans. R. Soc. Lond., 359 (2001), pp. 1217–1232.

[19] R. Löhner, F. Mut, J. Cebral, R. Aubry, and G. Houzeaux, Deflated preconditioned con-
jugate gradient solvers for the pressure-poisson equation: Extensions and improvements,
Int. J. Numer. Meth. Engn., 87 (2011), pp. 2–14.

[20] S. Marras, M. Moragues, M. Vázquez, O. Jorba, and G. Houzeaux, A variational multi-
scale stabilized finite element method for the solution of the euler equations of nonhydro-
static stratified flows, Journal of Computational Physics, 236 (2013), pp. 380 – 407.

[21] K. S. Mujumdar and V. V. Ranade, Simulation of rotary cement kilns using a one-
dimensional model, Chem. Eng. Res. Des., 84 (2006), pp. 165–177.

[22] S. A. Niederer, P. J. Hunter, and N. P. Smith, A quantitative analysis of cardiac myocyte
relaxation: A simulation study, Biophysical Journal, 90 (2006), pp. 1697–1722.

[23] N.Jansson, J.Jansson, and J.Hoffman, Framework for massively parallel adaptive finite el-
ement computational fluid dynamics on tetrahedral meshes, SIAM J. Sci. Comput., 34
(2012), pp. C24–C41.

[24] M. F. of Multilevel Partitioning Algorithms,
http://glaros.dtc.umn.edu/gkhome/views/metis.

[25] T. Okamoto, H. Takenaka, T. Nakamura, and T. Aoki, Accelerating large-scale simulation
of seismic wave propagation by multi-gpus and three-dimensional domain decomposition, in
GPU Solutions to Multi-scale Problems in Science and Engineering, D. A. Yuen, L. Wang,

MULTIPHYSICS ENGINEERING SIMULATION TOWARDS EXASCALE 21

X. Chi, L. Johnsson, W. Ge, and Y. Shi, eds., Lecture Notes in Earth System Sciences,
Springer Berlin Heidelberg, 2013, pp. 375–389.

[26] S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. Shirts,

J. Smith, P. Kasson, D. van der Spoel, B. Hess, and E. Lindahl, Gromacs 4.5: a
high-throughput and highly parallel open source molecular simulation toolkit, Bioinformat-
ics, (2013).

[27] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.
[28] Y. Saad, J. Yeung, J. Erhel, and F. Guyomarc’h, A deflated version of the conjugate

gradient algorithm, SIAM J. Sci. Comput., 21 (2000), pp. 1909–1926.
[29] O. Soto, R. Löhner, and F. Camelli, A linelet preconditioner for incompressible flow solvers,

Int. J. Num. Meth. Heat Fluid Flow, 13 (2003), pp. 133–147.
[30] A. System, http://www.bsc.es/alya.
[31] B. W. S. P. C. System, https://bluewaters.ncsa.illinois.edu.
[32] N. A. Trayanova and J. J. Rice, Cardiac electromechanical models: from cell to organ,

Frontiers in Computational Physiology and Medicine, (2011).
[33] M. Vázquez, R. Aris, J. Aguado-Sierra, G. Houzeaux, A. Santiago, M. Lpez, P. Cr-

doba, M. Rivero, and J. Cajas, Alya red ccm: Hpc-based cardiac computational mod-
elling, in Selected Topics of Computational and Experimental Fluid Mechanics, J. Klapp,
G. Ruiz Chavarria, A. Medina Ovando, A. López Villa, and L. D. G. Sigalotti, eds., Envi-
ronmental Science and Engineering, Springer International Publishing, 2015, pp. 189–207.

[34] M. Vázquez, R. Aŕıs, G. Houzeaux, R. Aubry, P. Villar, J. Garcia-Barnós, D. Gil, and

F. Carreras, A massively parallel computational electrophysiology model of the heart, In-
ternational Journal for Numerical Methods in Biomedical Engineering, 27 (2011), pp. 1911–
1929.

[35] M. Vázquez, G. Houzeaux, F. Rubio, and C. Simarro, Alya multiphysics simulations on
intels xeon phi accelerators, in High Performance Computing, G. Hernández, C. J. Bar-
rios Hernández, G. Diaz, C. Garcia Garino, S. Nesmachnow, T. Pérez-Acle, M. Storti,
and M. Vázquez, eds., vol. 485 of Communications in Computer and Information Science,
Springer Berlin Heidelberg, 2014, pp. 248–254.

[36] M. Winkel, R. Speck, H. Hbner, L. Arnold, R. Krause, and P. Gibbon, A massively paral-
lel, multi-disciplinary barneshut tree code for extreme-scale n-body simulations, Computer
Physics Communications, 183 (2012), pp. 880 – 889.

[37] R. Yokota, L. Barba, T. Narumi, and K. Yasuoka, Petascale turbulence simulation using
a highly parallel fast multipole method on {GPUs}, Computer Physics Communications,
184 (2013), pp. 445 – 455.

