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ABSTRACT
In a flat Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) geometry, we consider the expan-
sion of the universe powered by the gravitationally induced ‘adiabatic’ matter creation. To
demonstrate how matter creation works well with the expanding universe, we have considered
a general creation rate and analysed this rate in the framework of dynamical analysis. The
dynamical analysis hints the presence of a non-singular universe (without the big bang sin-
gularity) with two successive accelerated phases, one at the very early phase of the universe
(i.e. inflation), and the other one describes the current accelerating universe, where this early,
late accelerated phases are associated with an unstable fixed point (i.e. repeller) and a stable
fixed point (attractor), respectively. We have described this phenomena by analytic solutions
of the Hubble function and the scale factor of the FLRW universe. Using Jacobi last multiplier
method, we have found a Lagrangian for this matter creation rate describing this scenario of
the universe. To match with our early physics results, we introduce an equivalent dynamics
driven by a single scalar field, discuss the associated observable parameters and compare them
with the latest Planck data sets. Finally, introducing the teleparallel modified gravity, we have
established an equivalent gravitational theory in the framework of matter creation.

Key words: cosmological parameters – dark energy – early Universe – inflation.

1 IN T RO D U C T I O N

No doubt, cosmology is one of the biggest and fascinating top-
ics in science. However, at the late 1990s, a dramatic change ap-
peared in its history when it was discovered that the universe is
going through a phase of accelerated expansion (Riess et al. 1998;
Perlmutter et al. 1999). After that, several independent observations
(de Bernardis et al. 2000; Percival et al. 2001; Spergel et al. 2003,
2007; Tegmark et al. 2004; Eisenstein et al. 2005; Komatsu et al.
2011) confirmed this accelerating expansion. As a result, compre-
hending this late-accelerating phase has become an attracting re-
search field in modern cosmology since the end of 1990s. There are
mainly two distinct approaches we use in order to describe this ac-
celerating phase. First of all, if we consider that gravity is correctly
described by Einstein’s theory, then there must have some matter
component with large negative pressure entitled ‘dark energy’ with
equation of state (EoS) ‘w < −1/3’, in order to start this accel-
eration. As a result, cosmologists brought back the presence of a
non-zero cosmological constant � (EoS: w = −1) which fuels this
current acceleration. Subsequently, ‘� cold dark matter’ (�CDM)
was proposed to describe the current accelerating phase, and it was
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found that the model agrees with a large number of astronomical
data. However, �-cosmology has two fundamental problems. Ob-
servations demand that a very small energy density of � is enough
to power this accelerating universe, whereas the predictions from
quantum theory of fields claim that its energy density should be so
large, leading to a discrepancy between them of the order of 10121.
This is known as cosmological constant problem (Weinberg 1989).
On the other hand, it is not understandable ‘why did our Universe
begin to accelerate just now (z ∼ 1) where both the matter and the
cosmological constant evolve differently with the evolution of the
universe’ – known as the cosmic coincidence problem (Zlatev, Wang
& Steinhardt 1999). As a result, some alternatives to �CDM were
proposed, such as quintessence, K-essence, phantom, tachyons and
others (for a review of dark energy candidates, see Copeland, Sami
& Tsujikawa 2006; Amendola & Tsujikawa 2010). Also, it has been
argued that modifications in the Einstein gravity can describe the
current acceleration (the models are sometimes called as geometri-
cal dark energy; Nojiri & Odintsov 2007; De Felice & Tsujikawa
2010; Sotiriou & Faraoni 2010).

However, besides these two distinct approaches, very recently,
another alternative to describe the current accelerating universe
has attracted special attention. The approach is the gravitationally
induced ‘adiabatic’ matter creation, a non-equilibrium thermody-
namical process. Long time ago, during 1960–1980, Parker and his
collaborators (Parker 1968, 1969, 1970; Ford & Parker 1977; Birrell
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& Davies 1980, Birrell & Davies 1982), and in Russia Zeldovich
and others (Zeldovich & Starobinsky 1972, 1977; Grib, Levitskii &
Mostepanenko 1974; Grib, Mamaev & Mostepanenko 1976; Grib,
Mamaev & Mostepanenko 1994), were investigating on the material
content of the universe. Following Schrodinger’s ideas presented in
Schrodinger (1939), they proposed that, as the universe is expand-
ing, the gravitational field of this expanding universe is acting on
the quantum vacuum, which results in a continuous creation of ra-
diation and matter particles, and the produced particles have their
mass, momentum and the energy. The idea was really fascinating,
and even today it is, as we do not know how the universe came
into its present position after qualifying its previous stages. On the
other hand, while dealing with this matter creation process, there is
another point which we need to address. It is a real mystery that the
ratio of baryon to entropy in our Universe is approximately 9.2 ×
10−11 (Oikonomou 2016), and it still remains an unsolved problem
why this baryon-to-entropy ratio exists in our Universe. However,
we have an answer from the Sakharov criterion (Sakharov 1967),
which states that the baryon asymmetry in our Universe can occur if
the thermodynamical processes in our expanding universe are non-
equilibrium in nature, that means matter creation can take place. So,
it is fine that we have strong motivation behind the material content
of our Universe. Now, the main question is how the particle produc-
tions play an effective role in the evolution of the universe. It was
Prigogine and his group (Prigogine et al. 1989) who thought that,
since the Einstein’s field equations are the background equations to
understand the evolution of the universe, there must be some way
out to calculate the evolution equations. And hence the conservation
equation gets modified as

Nμ
;μ ≡ n,μuμ + �n = n� ⇐⇒ N,μuμ = �N, (1)

where � stands for the rate of change of the particle number in a
physical volume V containing N number of particles, Nμ = nuμ

represents particle flow vector, uμ is the usual particle four velocity,
n = N/V is the particle number density and � = uμ

;μ denotes the
fluid expansion. The new quantity � has a special meaning. It is
the rate of the produced particles, and the most interesting thing is
that it is completely unknown to us. But, we have one constraint
over �, which comes from the validity of the generalized second
law of thermodynamics leading to � ≥ 0. However, still we have an
open question about the nature of created particles by this gravita-
tional field. One may ask what kind of particles are created by the
gravitational field and what are their physical properties. We cannot
properly say, but there are some justifications over this puzzle. It
has been shown that the kind of particles created by this process
are much limited by the local gravity constraints (Ellis et al. 1989;
Hagiwara et al. 2002; Peebles & Ratra 2003), and practically radia-
tion has no effect or impact on the late-time accelerated expansion
of the universe, whereas dark matter is one of the dominant sources
after the unknown ‘dark energy’ component. In what follows, we
may assume that the produced particles by this gravitational field are
simply the cold dark matter particles. Following this motivation, it
has been argued that the models for different particle creation rates
can mimic �CDM cosmology (Steigman, Santos & Lima 2009;
Lima, Jesus & Oliveira 2010; Fabris, Pacheco & Piattella 2014;
Lima et al. 2014; Chakraborty, Pan & Saha 2015). In particular, the
constant matter creation rate can explain the big bang singularity,
as well as intermediate phases ending at the final de Sitter regime
(Haro & Pan 2015). Further, recently, Nunes and Pavón (2015)
showed that the matter creation models can explain the phantom
behaviour of our Universe (Xia, Li & Zhang 2013; Cheng & Huang
2014; Planck Collaboration XVI 2014b; Rest et al. 2014; Shafer

& Huterer 2014) without invoking any phantom fields (Caldwell
2002). Subsequently, the cosmological consequences of the mat-
ter creation models realizing this phantom behaviour have been
investigated (Nunes & Pan 2016). Moreover, particle productions
in modified gravity theories have attracted several authors at recent
time, for instance, through a non-minimal curvature-matter coupling
in modified theories of gravity theories, particle productions by the
gravitational field have been discussed (Harko et al. 2015). Also, in
the context of f(R) gravity, the aspects of particle productions have
been investigated (Capozziello, Luongo & Paolella 2016).

On the other hand, particle production scenario took a novel at-
tempt in order to explain the early accelerated expansion (known
as inflation). In the background of the particle creation process, us-
ing the energy-momentum tensor of the created particles and their
creation rate (Zeldovich & Starobinsky 1972, 1977), inflation as
a result of this phenomenon was first investigated in Gurovich &
Starobinsky (1979). However, it appeared that such a model with a
small number of non-conformal fields cannot produce a sufficiently
low curvature during inflation and a graceful exit from it. Soon af-
ter that, a viable inflationary model was proposed in Starobinsky
(1980), where dissipation and creation of particles occurred just
after the end of inflation. However, in the same context, it has been
discussed earlier that the particle creation of light non-minimally
coupled scalar fields due to the changing geometry of a space–
time could drive the early inflationary phase (Sahni & Habib 1998).
Also, quantum particle productions in Einstein–Cartan–Sciama–
Kibble theory of gravity could also result in an inflationary scenario
(Desai & Popłlawski 2016). Furthermore, very recently, a connec-
tion between early and late accelerated universes by the mechanism
of particle productions has been pointed out by Nunes (2016).

In the present work, we have considered a generalized matter
creation model in order to produce a clear image about the mat-
ter creation models as a third alternative for current accelerating
universe aiming to realize the early physics and its compatibil-
ity with the current astronomical data, as well as the stability of
the matter creation models. Hence, we explicitly wrote down the
Friedmann and Raychaudhuri equations in the framework of matter
creation. The field equations form an autonomous system of dif-
ferential equations, where the Friedmann equation constrains the
dynamics of the universe and the Raychaudhuri equation essen-
tially describes its evolution. Now, considering the Raychaudhuri
equation for the matter creation model, we have found the fixed
points of the model which are the functions of the model parame-
ters. As the model parameters are simply real numbers, so we have
divided the whole phase space into several sub-phase spaces, which
opens some new possibilities to understand the possible dynamics
of the universe with respect to the behaviour of the fixed points. The
fixed points analysis provides a non-singular model of our Universe
with two successive accelerating phases, one at very early evolution
of the universe which is unstable in nature, and the other one is
the present accelerating phase which is stable in nature. We have
presented an analytic description for this said evolution of the uni-
verse. Further, we apply the Jacobi last multiplier method in matter
creation which eventually provides an equivalent Lagrangian for
this creation mechanism. Moreover, as we are also interested to in-
vestigate the early physics scenario extracted from matter creation
models, so we introduced a scalar field dynamics, where we found
that it is possible to find an analytic scalar field solution mim-
icking the evolution of the universe. Then we have introduced a
modification to the Einstein’s gravitational theory, namely f(T), the
teleparallel equivalent of General Relativity (TEGR), where we have
established that a perfect fluid in addition to matter creation can lead
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us to an exact expression for f(T) which can be considered as an
equivalent gravitational theory for this dynamical description.

The above discussions can be seen in a flowchart as follows:
perfect fluid in f(T) gravity ⇐⇒ matter creation + perfect fluid
⇐⇒ scalar field dynamics. Next, we introduce the cosmology of
decaying vacuum energy and its equivalence with gravitationally
induced matter creation, which essentially tells us that there is a one-
to-one correspondence between these models. But, we observed that
the equivalence not always gives a one-to-one correspondence. The
paper is organized as follows.

In Section 2, we derived the field equations for matter creation
in the flat Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) space–
time. Then introducing a generalized model of matter creation in
Section 3, we have analysed its dynamical stability and analytic so-
lutions in the Section 3.1, and further, we have introduced Jacobi last
multiplier in Section 3.2 and discussed the cosmological features.
Section 4 contains an equivalent field theoretic description for the
present model and its corresponding early physics scenario is given
in Section 4.1. Furthermore, we have provided a short description
on f(T) gravity in the framework of matter creation in Section 5.
Finally, in Section 6, we have summarized our results.

We note that, throughout the text, we have used matter creation
and particle creation synonymously.

2 T H E F I E L D E QUAT I O N S IN M AT T E R
C R E AT I O N

At this stage, it has been verified that our Universe is perfectly
homogeneous and isotropic on the largest scale, and this information
gives us a space–time metric known as FLRW metric:

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2
+ r2

(
dθ2 + sin2 θ dφ2

)]
, (2)

where a(t) is the scale factor of the universe, and the curvature
scalar k = 0, +1, −1 stands for flat, closed and open universes,
respectively. Furthermore from the cosmological data (Planck Col-
laboration XXII 2014a) the value of the spatial curvature is very
close to zero; hence, we set k = 0.

For the comoving observer, uμ = δ
μ
t , in which uμuμ = −1, and

for the line element (equation 2), the fluid expansion becomes � =
3H, where H = ȧ/a is the Hubble parameter. Hence, the conserva-
tion equation (1) becomes

Nμ
;μ ≡ n,μuμ + 3Hn = n�, (3)

where now the comoving volume is V = a3. Clearly, � > 0 indicates
the creation of particles while � < 0 stands for particle annihilation.

From Gibb’s equation it follows (Prigogine et al. 1989; Zimdahl
1996, 2000)

T ds = d
(ρ

n

)
+ pd

(
1

n

)
, (4)

and with the use of equation (3), we have

nT ṡ = ρ̇ + 3H

(
1 − �

3H

)
(ρ + p), (5)

where T indicates the fluid temperature, and ‘s’ is the specific en-
tropy (i.e. entropy per particle). Now, by assuming that the creation
happens under ‘adiabatic’ conditions (see for instance Barrow 1990;
Calvão, Lima & Waga 1992), the specific entropy does not change,
i.e. ṡ = 0, and from equation (5) one obtains the conservation equa-
tion

ρ̇ + 3H (ρ + p) = �(ρ + p). (6)

Then from conservation equation (6) and taking the derivative of the
Friedmann equation, which is nothing else but the first Friedmann’s
equation (in the units 8πG = 1)

3H 2 = ρ, (7)

one gets the Raychaudhuri equation

Ḣ = −1

2

(
1 − �

3H

)
(ρ + p), (8)

where for a perfect fluid with a lineal EoS of the form p = (γ −
1)ρ, that is the case we will consider throughout the paper, the latter
becomes

Ḣ = −3γ

2
H 2

(
1 − �

3H

)
. (9)

Thus, the cosmological scenario can be described after we specify
the particle creation rate �, and the EoS γ . We see that under the
condition � � 3H, we have the standard Raychaudhuri equation
without any particle creation process. Further, if one specifies the
EoS γ to be constant, the standard evolution equation a ∝ t2/3γ is
retrieved. So, the mechanism of particle creation deviates from the
standard physical laws, but can be recovered under the condition
�

3H
� 1. However, the deceleration parameter, q, a measurement of

state of acceleration/deceleration of the universe, is defined as

q ≡ −
(

1 + Ḣ

H 2

)
= −1 + 3γ

2

(
1 − �

3H

)
. (10)

Further, the effective EoS parameter is given by

ωeff = −1 − 2Ḣ

3H 2
= −1 + γ

(
1 − �

3H

)
, (11)

which represents quintessence era for � < 3H, and phantom era for
� > 3H. Also, � = 3H indicates the cosmological constant, i.e.

Perfect fluid + (� = 3H ) ≡ cosmological constant.

An equivalent way to see the derivation of the field equations (7)
and (8) is to consider the energy-momentum tensor in the Einstein
field equations as a total energy-momentum tensor T (eff)

μν = T (γ )
μν +

T (c)
μν , where T (γ )

μν is the energy-momentum tensor for the fluid with
EoS parameter, p = (γ − 1)ρ, i.e.

T (γ )
μν = (ρ + p) uμuν + pgμν, (12)

and T (c)
μν is the energy-momentum tensor which corresponds to the

matter creation term. Hence, T (c)
μν has the following form

T (c)
μν = Pc

(
gμν + uμuν

)
; (13)

the latter energy-momentum tensor provides us with the matter cre-
ation pressure (Graef, Costa & Lima 2014). Therefore, the Einstein
field equations are

Gμν = T (γ )
μν + T (c)

μν . (14)

Since the two fluids are interacting, the Bianchi identity gives

gνσ
(
T (γ )

μν + T (c)
μν

)
;σ

= 0, (15)

or equivalently1

ρ̇ + 3H (ρ + p + Pc) = 0, (16)

1 Recall that for a Killing vector field X, of the metric tensor gμν , i.e. LXgμν

= 0, holds LXGμν = 0; consequently we have that ρ, p and Pc are functions
of ‘t’ only.
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where with the use of Gibb’s equation (5), we find that

Pc = − �

3H
(ρ + p) , (17)

or

Pc = − γ

3H
�ρ. (18)

Since ρ > 0, and for H > 0, i.e. ȧ > 0, from the latter we have that
Pc < 0, when � > 0, and Pc > 0 when � < 0. Furthermore, from
equation (14), we find the following system

3H 2 = ρ, (19)

2Ḣ + 3H 2 = −p − Pc, (20)

where if we substitute equations (18) and (19) in equation (20), we
derive the Raychaudhuri equation (9).

In the present model, the cosmic history is characterized by the
fundamental physical quantities, namely the expansion rate H and
the energy density which can define in a natural way the gravita-
tional creation rate �. From a thermodynamic notion, � should be
greater than H in the very early universe to consider the created
radiation as a thermalized heat bath. So, the simplest choice of
� should be � ∝ H2 (Abramo & Lima 1996; Gunzig, Maartens &
Nesteruk 1998) (i.e. � ∝ ρ) at the very early epoch. The correspond-
ing cosmological solution (Lima & Germano 1992; Zimdahl 1996,
2000; Lima, Basilakos & Costa 2012) shows a smooth transition
from inflationary stage to radiation phase, and for this ‘adiabatic’
production of relativistic particles, the energy density scales as ρr

∼ T 4 (blackbody radiation; for details see Lima, Basilakos & Costa
2012). Further, � ∝ H (Pan & Chakraborty 2015) explains the de-
celerated matter-dominated era, and � ∝ 1/H has some accelerating
feature of the universe (Pan & Chakraborty 2015).

Motivated by the above studies, a more generalized particle cre-
ation rate, � = �0 + lH2 + mH + n/H was considered in order
to explain the whole cosmic evolution (Chakraborty, Pan & Saha
2014). Later on, it was established in Haro & Pan (2015) that �

= �0, a constant, can predict the initial big bang singularity, sub-
sequent intermediate phases and finally describes the late de Sitter
phase. Further, it has been noticed that the effective EoS of the cos-
mic substratum could go beyond ‘−1’ without introducing any kind
of phantom fields (Nunes & Pavón 2015; Nunes & Pan 2016). So, �
plays an important role in elucidating the cosmic evolution. Thus, it
is clear that we can produce any arbitrary � as a function of H from
which we can develop the dynamics of the universe analytically (if
possible) or numerically (if analytic solutions are not found). But,
the dynamics could be stable or unstable which may lead to some
discrepancies in the dynamical behaviour of the model.

Keeping all these in mind, the present paper aims to study a
generalized model for matter creation in order to study their viability
to describe the current accelerating phase of the universe, and also
to check their limit of extension to trace back the early physics
scenario as well.

3 C O S M O L O G I C A L S O L U T I O N S :

In this section, we will study the solutions of the Raychaudhuri
equation (9) for the following matter creation rate:

� (H ) = −�0 + mH + n/H, (21)

where we have chosen the negative sign in �0 for convenience. Note
that the choice (equation 21) is a generalized one which could cover
different matter creation rate, for instance, � ∝ H, � = constant,

� ∝ 1/H and some other combinations. However, in that case, the
dynamical equation becomes

Ḣ = −γ

2

(
(3 − m)H 2 + �0H − n

)
. (22)

Since the equation (9) or equivalently equation (22) is a one-
dimensional first-order differential equation, the dynamics is ob-
tained from the study of its critical points (or fixed points).

The fixed points of the equation (9) are obtained by Ḣ = 0. Thus,
if H = H∗ be the fixed point of equation (9), then

Ḣ = 0 =⇒ H∗ = 0, or, �(H∗) = 3H∗. (23)

Now, at the fixed points, in which H∗ �= 0, the FLRW metric (equa-
tion 2) describes a de Sitter universe.

Let Ḣ = F (H ) be the general form of equation (9). Now, if at
the fixed point, dF (H∗)

dH
< 0, then the fixed point is asymptotically

stable (attractor), and on the other hand, if we have dF (H∗)
dH

> 0, then
the fixed point is unstable in nature (repeller). The repeller point
is suitable for early universe, since it can describe the inflationary
epoch, whereas the attractor point is stable for late-time accelerating
phase.

For the simplest case in which the particle creation rate is � =
n/H with n > 0, solving equation (9) for the fixed points, we have
H∗ = ±√

n
3 . Now, for the above choice for �, one has F (H ) =

− 3γ

2

(
H 2 − n

3

)
and thus

dF (±
√

n
3 )

dH
= ∓γ

√
3n which means that

√
n
3

is an attractor and −√
n
3 is a repeller.

If �(H) is a polynomial function of H, then the fixed point condi-
tion (equation 23) for H∗ �= 0 is a polynomial equation which has as
many solutions (not necessary real solutions) as is the higher power
of the polynomial � (H∗) = 3H∗.

Hence, for equation (21), we have the following second-order
polynomial equation

F (H∗) ≡ (m − 3) H 2
∗ −�0H ∗+n = 0 (24)

where in order to find two critical points, as many as the inflationary
phases of the universe, we are interested in the case when m �= 3

and n �= �2
0

4(m−3) .

3.1 Dynamical study

For our model, the matter creation rate is �(H) = −�0 + mH +
n/H. Now, solving equation (24) for our model, the critical points
are found to be

H± = �0

2(m − 3)

(
1 ±

√
1 + 4(3 − m)n

�2
0

)
.

To perform the dynamical analysis, we start with the case �0 >

0, then we have to divide the plane (m, n) into six different regions:

(i) �1 = {(m, n): m − 3 < 0, n ≥ 0}, where H+ < 0 and H− >

0. H+ is a repeller and H− an attractor.
(ii) �2 = {(m, n) : m − 3 > 0, n ≥ 0, 4(3−m)n

�2
0

> −1}, where H+
> H− > 0. H+ is a repeller and H− an attractor.

(iii) �3 = {(m, n) : m − 3 > 0, n > 0, 4(3−m)n
�2

0
< −1}, where

H± are complex numbers. Ḣ is always positive.
(iv) �4 = {(m, n) : m − 3 < 0, n < 0, 4(3−m)n

�2
0

< −1}, where

H± are complex numbers. Ḣ is always negative.
(v) �5 = {(m, n) : m − 3 < 0, n < 0, 4(3−m)n

�2
0

> −1}, where H+
< H− < 0. H+ is a repeller and H− an attractor.

(vi) �6 = {(m, n): m − 3 > 0, n < 0}, where H+ > 0 and H− <

0. H+ is a repeller and H− an attractor.
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On the other hand, for �0 < 0, we have

(i) �7 = {(m, n): m − 3 < 0, n ≥ 0}, where H+ > 0 and H− <

0. H+ is an attractor and H− a repeller.
(ii) �8 = {(m, n) : m − 3 > 0, n ≥ 0, 4(3−m)n

�2
0

> −1}, where H+
< H− < 0. H+ is an attractor and H− a repeller.

(iii) �9 = {(m, n) : m − 3 > 0, n > 0, 4(3−m)n
�2

0
< −1}, where

H± are complex numbers. Ḣ is always positive.
(iv) �10 = {(m, n) : m − 3 < 0, n < 0, 4(3−m)n

�2
0

< −1}, where

H± are complex numbers. Ḣ is always negative.
(v) �11 = {(m, n) : m − 3 < 0, n < 0, 4(3−m)n

�2
0

> −1}, where

H+ > H− > 0. H+ is an attractor and H− a repeller.
(vi) �12 = {(m, n): m − 3 > 0, n < 0}, where H+ < 0 and H−

> 0. H+ is an attractor and H− a repeller.

The case m = 3 is special, in the sense that there is only one
critical point given2 by H− = n

�0
which is always an attractor for

�0 > 0 and a repeller for �0 < 0.
To have a non-singular universe (without the big bang singu-

larity) with an accelerated phase both at early and late times, one
possibility is to have two critical points H+ > H− > 0, where H+
was a repeller and H− must be an attractor. If so, in principle, when
the universe leaves H+, realizing the inflationary phase, and when
it comes asymptotically to H−, it enters into the current acceler-
ated phase. Of course, the viability of the background has to be
checked dealing with cosmological perturbations and comparing
the theoretical predictions with the observational ones.

For our model, this only happens in the region �2, and when m
= 3 with �0 > 0, that is in the region of the space parameters given
by

W = {(�0, m, n) : �0 > 0, m ≥ 3, n ≥ 0,
4(3 − m)n

�2
0

> −1}.
(25)

Note that, in the case m = 3, we have H+ = +∞, but the universe
is not singular, because in that case the Raychaudhuri equation
becomes Ḣ = − γ

2 (�0H − n). For large values of H, this equation
is approximately Ḣ = − γ

2 �0H , the solution of which is given by

H (t) = H0e− γ
2 �0(t−t0). Therefore, H only diverges when t = −∞,

that is, there are no singularities at finite time.
For the parameters that belong to W, the solution of the Ray-

chaudhuri equation is given by

H (t) = �0

2 (m − 3)
− ω

2 (m − 3)
tanh

( γ

4
ω (t − t0)

)
, (26)

for m > 3, where ω =
√

�2
0 + 4 (3 − m) n.

For the completeness of our analysis, for m = 3, we have that

H (t) = �0e− γ�0
2 (t−t0) + n

�0
. (27)

Last but not least, when m �= 3 and n = �2
0

4(m−3) , where H+ = H−,
that is, equation (22) admits one fixed point, we find the following
analytical solution for the Hubble function

H (t) = �0

2 (m − 3)
− 1

γ (m − 3)

1

(t − t0)
, (28)

in which for m > 3, in order to have H(t) > 0, we have t ∈ (−∞,
t0).

2 When m = 3, equation (24) is a linear equation which admits only one real
solution.

Note that this last solution, when the values of the parameters
belong to W, depicts a phantom universe that starts at the critical
point and ends in a big rip singularity at t = t0.

From equations (26)–(28), we can find the solution of the scale
factor. Hence, from equation (26) we have

a (t) = a0 exp

[
�0

2 (m − 3)
(t − t0)

− 2

(m − 3) γ
ln

(
cosh

(γ

4
ω (t − t0)

))]
. (29)

Furthermore, from equation (27) we have

a (t) = a0 exp

[
− 2

γ
(e−γ

�0
2 (t−t0) − 1) + n

�0
(t − t0)

]
. (30)

Finally, from the case m �= 3, and n = �2
0

4(m−3) , the scale factor
becomes

a (t) = a0 exp

[
�0

2 (m − 3)
(t − t0)

] (
t

t0

)− 2
γ (m−3)

, (31)

in which for − 2
γ (m−3) = 1

3 , the last solution describes also the two-
scalar field cosmological model in which the scalar fields are in-
teracting in their kinetic parts (Paliathanasis & Tsamparlis 2014),
where it has been shown that the model fits the cosmological data
in a similar way as the �-cosmology.

Now, with the use of equation (11), it is possible to determine the
effective EoS parameter. Therefore, we have

ωeff = −1 + (m − 3)

3
ω2γ

(
�0 cosh

(γ

4
ω (t − t0)

)

− ω sinh

(
γ

4
ω (t − t0)

))−2

, (32)

or,

ωeff = −1 + γ

3

e− γ
2 �0(t−t0)(

e− γ
2 �0(t−t0) + n

�2
0

)2 , (33)

and

ωeff = −1 − 4(m − 3)γ

3(�0γ (t − t0) − 2)2
, (34)

for the solutions (26), (27) and (28), respectively.
Consider now the initial condition that at t = t1, ωeff(t0) = γ −

1. From the latter, we can define a constraint equation between the
free parameters of the model, i.e. {�0, m, n}. Without any loss of
generality, let us say that t1 = t0, which is possible since the model
is autonomous and invariant under time translations.

Hence, from equation (32), we find the condition

�2
0 = m − 3

3
ω2. (35)

Fig. 1 shows the evolution of the effective EoS parameter (equa-
tion 32) for a set of parameters (�0, m, n) ∈ W, describing the early
and late de Sitter phases of the universe, where we have shown its
evolution for three different values of γ , namely γ = 4/3, 1 and
1.03.

3.2 Particle creation rate from Jacobi last multiplier

Equation (9) is a first-order differential equation for the Hub-
ble function H(t) or a second-order differential equation for the
scale factor a(t). Applying in equation (9) the transformation
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Figure 1. Qualitative behaviour of the effective EoS for a set of parameters
(�0, m, n) ∈ W. The solid, doted and dashed curves have been plotted for γ

= 4/3, 1 and 1.03.

a (t) = exp (N (t)) , i.e. H = Ṅ , we have the second-order dif-
ferential equation

N̈ = −3γ

2
Ṅ 2

(
1 − �

(Ṅ )
3Ṅ

)
(36)

which is of the form ẍ = F (t, x, ẋ). One would like to have a ge-
ometric method to construct the unknown function �

(Ṅ )
, such

as the application of group-invariant transformations in scalar field
cosmology or in modified theories of gravity.3 In this approach,
we would like to solve the inverse problem, i.e. to construct a
Lagrangian function for equation (36) by using the method of Ja-
cobi last multiplier. For one-dimensional second-order differential
equations, if there exists a function M (t, x, ẋ), which satisfy the
following condition

d

dt
(ln M) + ∂F

∂ẋ
= 0, (37)

then for the second-order differential equation ẍ = F (t, x, ẋ), a
Lagrangian can be constructed (Nucci & Tamizhmani 2010). For
equation (36), we have that F = F (ẋ) = F

(Ṅ )
; therefore, condi-

tion (37) gives that

∂

∂t
(ln M) + ẋ

∂

∂x
(ln M) + F

∂

∂ẋ
(ln M) = −∂F

∂ẋ
. (38)

Then, since for our model we have F (ẋ) =
− γ

2

(
(3 − m) ẋ2 + �0ẋ − n

)
, we can deduce that ∂

∂t
(ln M) = γ�0

2 ,
∂
∂x

ln (M) = γ (3 − m) and ∂
∂ẋ

(ln M) = 0, that is,

M(t, x) = eγ (3−m)x+ γ�0
2 t . (39)

Finally, using that the Lagrangian is determined by the relation

∂2L

∂ẋ2
= M, (40)

3 For instance, see Paliathanasis et al. (2015), Vakili (2014) and Dimakis,
Christodoulakis & Terzis (2014) and references therein.

after comparing with equation (36) one gets the following La-
grangian for our model

L(N , Ṅ , t) = eγ (3−m)N+ γ
2 �0t

(
1

2
Ṅ 2 + n

2(3 − m)

)
. (41)

On the other hand, someone can start with special forms of the
Lagrange multiplier and from condition (37) to determine the cre-
ation rate. For instance, consider that M = M (x) = M (N ); hence,
equation (37) becomes

d

dx
ln (M) = − 1

ẋ

∂F

∂ẋ
; (42)

therefore, the l.h.s. of the latter equation is constant, i.e. ∂
∂x

ln (M) =
γ (3 − m), and

� (H ) = mH + n

H
. (43)

This is a particular case the one we considered above, i.e. it
is expression (21) for �0 = 0. Hence, the analytical solution of
equation (36) is

a = a0

[
sinh

(γ

2

√
n(3 − m)(t − t0)

)] 2
γ (3−m)

(44)

for n �= 0, or

a (t) = a0 ((t − t0))
2

γ (3−m) , (45)

for n = 0. Finally, the Lagrangian function for equation (36) which
follows from the Lagrange multiplier M (equation 38) is

L
(N , Ṅ ) = exp (γ (m − 3)N )

2

(
Ṅ 2 − n

(m − 3)

)
. (46)

The latter is an autonomous Lagrangian and the Hamiltonian func-
tion is a conservation law, that is

I0 = eγ (m−3)N (Ṅ 2 + n
)

(47)

hence

H 2

H 2
0

= �m0a
(3−m)γ + ��, (48)

where �m0 = I0H
2
0 , and ��0 = −nH 2

0 , which describes a universe
with cosmological constant and a perfect fluid p̄ = (γ̄ − 1) ρ̄, in
which γ̄ = (m−3)

3 γ . We can see that when m = 6, γ = 1 or (3
− m)γ = −3, �-cosmology is recovered; furthermore, |n| = ρ�.
Recall that such an analytical solution has been found recently for
a Brans–Dicke cosmological model, in which the term (m − 3)γ is
related with the Brans–Dicke parameter (Paliathanasis et al. 2016).
In particular, we found that

m (γ ) = 3 + 1

γ

3ωBD + 4

3ωBD + 1
. (49)

As far as the Hubble function (48) is concerned, we can see
that the power of the scale factor a can be written as (3 − m) γ =
−m̄ (m, γ ), that is, the independent parameters that we have to
determine are H 2

0 , �m0 and m̄. In order to constrain the cosmological
parameters, joint likelihood analysis using the Type Ia supernova
(SNIa) data set of Union 2.1 (Suzuki et al. 2012), the 6dF, SDSS
and WiggleZ baryon acoustic oscillation (BAO) data (Percival et al.
2010; Blake et al. 2011, and the 21 one Hubble data of (Farooq,
Mania & Ratra 2013) has been performed. Further, in order to reduce
the number of the free variables to two, we select to use the present
value of the Hubble function, i.e. H0 = 69.6 km s−1 Mpc−1 (Bennet

MNRAS 460, 1445–1456 (2016)

 by guest on June 4, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Evolution and dynamics 1451

Table 1. The overall statistical results (using SNIa+BAO) for the �CDM
and Brans–Dicke models, respectively. Notice that in our analysis we use
equation (48). In the last three columns, we present the number of free
parameters and the goodness-of-fit statistics.

Data �m0 w� m̄ χ2
min

SNIa 0.28 −1 3.0 561.73

SNIa & BAO 0.29+0.04
−0.035 −1 2.93+0.24

−0.244 564.29

SNIa & BAO & H(z) 0.29+0.03
−0.03 −1 2.99+0.22

−0.21 577.81

Figure 2. Confidence levels of 1σ, 2σ and 3σ for the best-fitting parameters
for the cosmological tests by using the (A) SNIa, (B) SNIa & BAO data.
With ‘×’ are denoted the best-fitting parameters for the test A and with a
box the best-fitting parameters for the test B.

Figure 3. Confidence levels of 1σ, 2σ and 3σ for the best-fitting parameters
for the cosmological tests by using the (B) SNIa & BAO and (C) SNIa &
BAO & H(z) data. With ‘×’ are denoted the best parameters for the test C
while with box the best-fitting parameters for the test B.

et al. 2014). Hence, the likelihood function depends on the values
of the parameter {�m0, m̄ (m, γ )}, and it is given as follows:

L (�m0, m̄ (m, γ )) = LSNIa×LBAO×LH (z), (50)

where LA ∝ e−χ2
A/2 , that is χ2 = χ2

SNIa + χ2
BAO + χ2

H (z). The results
are given in Table 1. In Figs 2 and 3, we give the confidence levels
1σ , 2σ , 3σ for the best-fitting values. Specifically, Fig. 2 compares
the constraints SNIa versus SNIa+BAO data while Fig. 3 compares
the SNIa+BAO versus SNIa+BAO+H(z).

Furthermore, we note that for the relation m = 1
γ

(3 + m̄), for
a specific value of γ , we can determine m from Table 1, and the
constants n, I0 and m.

We conclude that the application of the Jacobi last multiplier
gives a function �(H), which includes the terms which explain the
decelerated matter-dominated era, and the acceleration features of
the universe. However, one may study the group-invariant transfor-
mations of equation (36), and from the requirement that the equa-
tion (36) is invariant under a specific algebra, the particle creation
rate, �, might be determined. This would be geometric selection
rule; however, this analysis is not in the scope of this work. In the
following sections, we study the relation of the particle creation rate
with some other cosmological theories.

4 E QU I VA L E N C E W I T H T H E DY NA M I C S
DRI VEN BY A SI NGLE SCALAR FI ELD

To check the viability of the models, one has to verify if they sup-
port the observational data, relative to inflation, provided by the
Planck team. However, it is not clear at all how hydrodynamical
perturbations (Mukahanov, Feldman & Brandenberger 1992) could
provide viable theoretical data, i.e. that fit well with current obser-
vational ones, because during the inflationary period one has p ∼=
− ρ, and thus, the square of the velocity of sound, which appears
in the Mukhanov–Sasaki equation (Mukhanov 1985; Sasaki 1986),
could be approximately c2

s ≡ ṗ

ρ̇
∼= −1, which is negative, leading

to a Jeans instability for modes well inside the Hubble radius. How-
ever, for a universe filled by a scalar field, this problem does not
exist because in that case one always has c2

s = 1. This is an essential
reason why we try to mimic the dynamics of an open system, where
matter creation is allowed, obtained in the previous section by a
scalar field ϕ with potential V(ϕ). To do that, we use the energy
density, namely ρϕ , and pressure, namely pϕ , of the scalar field
given by

ρϕ = 1

2
ϕ̇2 + V (ϕ), (51)

pϕ = 1

2
ϕ̇2 − V (ϕ). (52)

To show the equivalence with our system as described in equation (8)
with EoS p = (γ − 1)ρ, we perform the replacement

ρ −→ ρϕ, p − γ�

3H
ρ −→ pϕ, (53)

and the Friedmann and Raychaudhuri equations will become

3H 2 = ρϕ, 2Ḣ = −ϕ̇2. (54)

Note that equation (54) uses the equations of General Relativity
(GR) for a single scalar field; this means that we are dealing with
the equivalence with an open system and the one driven by a single
scalar field in the context of GR.

Using the above two equations, we see that the effective EoS
parameter is

ωeff = −1 + γ

(
1 − �

3H

)
= ωϕ = ϕ̇2 − 2 V (ϕ)

ϕ̇2 + 2 V (ϕ)
. (55)

Note that the Raychaudhuri equation (54) tells us that Ḣ < 0,
which means from equation (11) that ωeff > −1, and thus, one has
� < 3H.
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On the other hand, from the Friedmann and Raychaudhuri equa-
tions, one easily obtains

ϕ̇ =
√

−2Ḣ =
√

3γH 2

(
1 − �

3H

)
, (56)

and

V (ϕ) = 3H 2

2

(
(2 − γ ) + γ�

3H

)
. (57)

The first step is to integrate equation (56). Performing the change
of variable dt = dH

Ḣ
, we will obtain

ϕ = −
∫ √

−
(

2

Ḣ

)
dH = − 2√

γ

∫
dH√

3H 2 − �H
. (58)

In the particular case � = −�0 + mH + n/H, one has

ϕ = − 2√
γ

∫
dH√

(3 − m)H 2 + �0H − n
. (59)

This integral could be solved analytically in the region W, giving

ϕ = 2√
(m − 3)γ

arcsin

(
m − 3

ω

(
�0

m − 3
− 2H

))
, (60)

when m > 3, and

ϕ = − 4√
γ�0

√
�0H − n, (61)

for m = 3.
Conversely,

H = 1

2(m − 3)

[
�0 − ω sin

(√
(m − 3)γ

2
ϕ

)]
, when m > 3,

(62)

and

H = n

�0
+ γ�0

16
ϕ2, when m = 3. (63)

On the other hand, for our model, the potential (57) is given by

V (ϕ) = 1

2

(
(6 + (m − 3)γ )H 2 − γ�0H + γ n

)
, (64)

then, inserting in it the values of H given by equations (62) and
(63), one obtains the corresponding potentials. In fact, in the case
equation (62), one gets

V (ϕ) = 3

4(m − 3)2

[
�0 − ω sin

(√
(m − 3)γ

2
ϕ

)]2

− γω2

8(m − 3)
cos2

(√
(m − 3)γ

2
ϕ

)
, (65)

and for equation (63)

V (ϕ) = γ 2�2
0

256
ϕ4 + γ

8

(
3n − γ�2

0

4

)
ϕ2 + 3n2

�2
0

. (66)

The following remark is in order: in the context of GR driven by
a scalar field, the backgrounds (26) and (27), which now have to be
understood as mere solutions of the Raychaudhuri equation when
the universe is filled by a scalar field and not as solutions of an open
system, are not viable because they do not contain a mechanism to
reheat the universe, because the potential has a minimum when the
universe reaches the de Sitter solution H−, which depicts the current
cosmic acceleration, but it is clear that, in order to match with the
hot Friedmann universe, it has to reheat at higher scales. Then,

the simplest solution is to introduce a sudden phase transition that
breaks the adiabaticity, and thus, particles could be produced in an
enough amount to thermalize the universe (Peebles & Vilekin 1999).

4.1 A viable model

What we choose is a continuous transition at some scale HE, of the
rate of particle production �, of the form

� =
{

−�0 + 3H + �2
0

12H
for H > HE

�1 for HE > H > H̄−
(67)

where 0 < �1 � �0 and H̄− = �1
3 . The continuity requires

HE = �0 + �1

6

⎛
⎝1 +

√
1 − �2

0

(�0 + �1)2

⎞
⎠ ∼= �0

6
. (68)

Moreover, we will assume that universe has a deflationary phase,
which can be mimicked by a stiff fluid, at the transition phase, since
at that moment one has

ωeff = −1 + γ

(
1 − �1

HE

)
∼= −1 + γ (69)

and one has to choose γ = 2, i.e. the EoS must be p = ρ.
Now, to check the viability, we have to study the model at early

times. We start with the slow roll parameters (Bassett, Tsujikawa &
Wands 2006)

ε = − Ḣ

H 2
, η = 2ε − ε̇

2Hε
, (70)

which allow us to calculate the spectral index (ns), its running (αs)
and the ratio of tensor to scalar perturbations (r) given by

ns − 1 = −6ε + 2η, αs = Hṅs

H 2 + Ḣ
, r = 16ε. (71)

At early times, i.e. when H > HE, introducing the notation x ≡
�0
H

, since for our model the Raychaudhuri equation is

Ḣ = −�0H + �2
0

12
, (72)

one will have

ε = x
(

1 − x

12

)
, η = ε + x

2
, (73)

and as a consequence,

ns − 1 = −3x + x2

3
. (74)

From recent Planck+WP 2013 data (see table 5 of Planck Col-
laboration XXII 2014a), the spectral index at 1σ confidence level
(C.L.) is ns = 0.9583 ± 0.0081, which means that 1 − ns

∼= 5 ×
10−2. Therefore, we can apply the results obtained in Haro & Pan
(2015).

Since

x = 9

2

(
1 −

√
1 − 4(1 − ns)

27

)
(75)

at 2σ C.L., one has 0.0085 ≤ x ≤ 0.0193, and thus, 0.1344 ≤ r =
16ε ≤ 0.3072. Since Planck+WP 2013 data provide the constraint
r ≤ 0.25, at 95.5 per cent C.L., then when 0.0085 ≤ x ≤ 0.0156,
the spectral index belongs to the one-dimensional marginalized
95.5 per cent C.L., and also r ≤ 0.25, at 95.5 per cent C.L.

For the running at 1σ C.L., Planck+WP 2013 data give αs =
−0.021 ± 0.012, and our background leads to the theoretical value
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αs
∼= − 3xε

1−ε
∼= −3x2. Consequently, at the scales we are dealing

with, −7 × 10−4 ≤ αs ≤ −2 × 10−4, and thus, the running also
belongs to the one-dimensional marginalized 95.5 per cent C.L.

Note also that we have the relation weff (H ) = −1 + 2
3 ε. There-

fore, if we assume that the slow roll ends when ε = 1, and let Hend

be the value of the Hubble parameter when the slow roll ends, then
the slow roll will end when weff (Hend) = − 1

3 , i.e. when the universe
will start to decelerate.

On the other hand, the number of e-folds from observable scales
exiting the Hubble radius to the end of inflation, namely N(H), could
be calculated using the formula N (H ) = − ∫ H

Hend

H

Ḣ
dH , leading to

N (x) = 1

x
− 1

xend
+ 1

12
ln

(
12 − x

12 − xend

xend

x

)
, (76)

where xend = 6(1 − √
2/3) ∼= 1.1010 is the value of the parameter

x when inflation ends. For our values of x that allow to fit well
with the theoretical value of the spectral index, its running and the
tensor/scalar ratio with their observable values, we will obtain 64
≤ N ≤ 117.

The value of �0 could be established taking into account the
theoretical (Bassett et al. 2006) and the observational (Bunn, Liddle
& White 1996) value of the power spectrum

P ∼= H 2

8π2ε
= �2

0

18π2εx2
= 4�2

0

9πm2
plεx

2
∼= 2 × 10−9, (77)

where we have explicitly introduced the Planck mass, which in our
units is mpl = √

8π. Using the values of x in the range [0.0085,
0.0156], we can conclude that

9 × 10−7mpl ≤ �0 ≤ 2 × 10−7mpl. (78)

4.1.1 Particle production and reheating

We will study the production of massless particles nearly con-
formally coupled with gravity due to the phase transition in our
model. To simplify our reasoning, we will choose �1 = 0, and then
H (tE) = �0

6 ; thus, after the transition, the universe is exactly in a
deflationary phase if we choose γ = 2.

The energy density of the produced particles will be given by
(Birrell & Davies 1982)

ρχ = 1

(2πa)3a

∫ ∞

0
k|βk|2d3k, (79)

where the β-Bogoliubov coefficient is given by (Zeldovich &
Starobinsky 1977; Birrell & Davies 1982)

βk
∼= i(ξ − 1

6 )

2k

∫ ∞

−∞
e−2ikτ a2(τ )R(τ )dτ, (80)

where R = 6(Ḣ + 2H 2) is the scalar curvature, τ the conformal
time and ξ the coupling constant. This integral is convergent because
at early and late time a2(τ )R(τ ) converges to zero fast enough.
It is not difficult to show, integrating twice by parts, that βk ∼
O(k−3) (this is due to the fact that Ḣ is continuous during the
phase transition) and, as we will see, this means that the energy
density of produced particles is not ultraviolet divergent. Moreover,
βk = (1 − 6ξ )f ( k

aE�0
), where f is some function.

Then, taking for instance 1 − 6ξ ∼ 10−1, the energy density of
the produced particles is of the order of

ρχ ∼ 10−2�4
0

(aE

a

)4 1

2π2

∫ ∞

0
s3f 2(s)ds ∼ 10−2M�4

0

(aE

a

)4
,

(81)

where we have introduced the notation M ≡ 1
2π2

∫ ∞
0 s3f 2(s)ds.

Since the sudden transition occurs at HE
∼= �0

6 ∼ 10−7mpl ∼
1012 GeV (the same result was obtained in formula 15 of Pee-
bles & Vilenkin 1999), one can deduce that the universe preheats,
due to the gravitational particle production, at scales

ρ = 3H 2
Em2

pl

8π
∼ 10−17ρpl, (82)

where ρpl = m4
pl is the Planck energy density. On the other hand, at

the transition time, the energy density of the produced particles is
of the order of

ρχ ∼ 10−30M ρpl, (83)

which is smaller than the energy density of the background.
After the phase transition, first of all, these particles will inter-

act exchanging gauge bosons and constituting a relativistic plasma
that thermalizes the universe (Spokoiny 1993; Peebles & Vilekin
1999) before the universe was radiation dominated. Moreover, in
our model, the background is in a deflationary stage, meaning that
its energy density decays as a−6, and the energy density of the
produced particles decreases as a−4. Then, eventually the energy
density of the produced particles will dominate and the universe
will become radiation dominated and matches with the standard
hot Friedmann universe. The universe will expand and cool becom-
ing the particles no-relativistic, and thus, the universe enters into a
matter-dominated regime, essential for the growth of cosmological
perturbations, and only at very late time, when the Hubble param-
eter is of the same order as �1, the field takes back its role to start
the cosmic acceleration.

The reheating temperature, namely TR, is defined as the tempera-
ture of the universe when the energy density of the background and
the one of the produced particles are of the same order (ρ ∼ ρχ ).

Since ρχ ∼ 10−2M�4
0

(
aE

a

)4
and ρ = 3H 2

Em2
pl

8π
∼ 10−3�2

0m
2
pl

(
aE

a

)6
,

one obtains aE

a(tR) ∼ √M �0
mpl

, and therefore,

TR ∼ ρ1/4
χ (tR) ∼ M 3

4
�2

0

mpl
∼ 105M 3

4 GeV . (84)

This reheating temperature is below the GUT scale 1016 GeV,
which means that the GUT symmetries are not restored preventing
a second monopole production stage. Moreover, this guarantees
the standard successes with nucleosynthesis, because it requires a
reheating temperature below 109 GeV (Allahverdi et al. 2010).

Finally, to obtain the temperature when the equilibrium is
reached, we will follow the thermalization process depicted in
Spokoiny (1993, see also Peebles & Vilekin 1999), where it is
assumed that the interactions between the produced particles are
due to gauge bosons, and one might estimate the interaction
rate as � ∼ α2Teq. Then, since thermal equilibrium is achieved

when � ∼ H (teq) ∼ HE

(
aE

aeq

)3
(recall that, in our model, this pro-

cess is produced in the deflationary phase where ρ ∼ a−6), and
Teq ∼ 10− 1

2 M 1
4 HE

aE

aeq
, when the equilibrium is reached one has

aE

aeq
∼ 10− 1

4 αM 1
8 , and thus, Teq ∼ 10− 3

4 M 3
8 αHE . Therefore, one

obtains

Teq ∼ 10−8M 3
8 αmpl ∼ 1011M 3

8 α GeV. (85)

And choosing as usual α ∼ (10−2–10−1) (Spokoiny 1993; Peebles
& Vilekin 1999), one obtains the following equilibrium tempera-
ture:

Teq ∼ (109−1010)M 3
8 GeV . (86)
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5 f(T) G R AV I T Y A N D PA RT I C L E C R E AT I O N
R AT E

f(T) gravity has recently gained a lot of attention. The essential
properties of this modified theory of gravity are based on the rather
old formulation of the TEGR (Einstein 1928; Hayashi & Shirafuji
1979; Maluf 1994; Arcos & Pereira 2004; Unzicker & Case 2005).
In particular, one utilizes the curvature-less Weitzenböck connec-
tion in which the corresponding dynamical fields are the four lin-
early independent vierbeins rather than the torsion-less Levi-Civita
connection of the classical GR. A natural generalization of TEGR
gravity is f(T) gravity which is based on the fact that we allow the
gravitational action integral to be a function of T (Ferraro & Fiorini
2007; Bengochea & Ferraro 2009; Linder 2010), in a similar way as
f(R) Einstein–Hilbert action. However, f(T) gravity does not coin-
cide with f(R) extension, but it rather consists of a different class of
modified gravity. It is interesting to mention that the torsion tensor
includes only products of first derivatives of the vierbeins, giving
rise to second-order field differential equations in contrast with the
f(R) gravity that provides fourth-order equations.

Consider the unholonomic frame ei, in which g(ei, ej) = ei.ej

= ηij, where ηij is the Lorentz metric in canonical form; we have
gμν(x) = ηijh

i
μ(x)hj

ν (x), where ei(x) = hi
μ(x)dxi is the dual basis.

The non-null torsion tensor which flows from the Weitzenböck
connection is defined as

T β
μν = �̂β

νμ − �̂β
μν = h

β
i (∂μhi

ν − ∂νh
i
μ) , (87)

and the action integral of the gravitation field equations in f(T)
gravity is assumed to be

AT =
∫

d4x |e| f (T )+
∫

d4x |e| Lm, (88)

where e = det(ei
μ · ei

ν) = √−g.
The scalar T is given from the following expression,

T = Sβ
μνT β

μν, (89)

where

Sβ
μν = 1

2
(Kμν

β + δ
μ
β T θν

θ − δν
βT θμ

θ ), (90)

and Kμν
β is the contorsion tensor

Kμν
β = −1

2
(T μν

β − T νμ
β − Tβ

μν), (91)

which equals the difference of the Levi-Civita connection in the
holonomic and the unholonomic frame. We note that, in the special
case where f (T ) = T

2 , the gravitational field equations are that of
GR (Li, Miao & Miao 2011; Haro & Amorós 2013).

For the spatially flat FLRW space–time (equation 2) with a per-
fect fluid p̄ = (γ − 1) ρ̄ minimally coupled to gravity, and for the
vierbeins given by the diagonal tensor,

hi
μ(t) = diag(1, a(t), a(t), a(t)), (92)

the modified Friedmann’s equation is (Basilakos et al. 2013;
Nesseris et al. 2013)

12H 2f ′ + f = ρ̄ , (93)

while the modified Raychaudhuri equation is as follows:

48H 2Ḣf ′′ − 4(Ḣ + 3H 2)f ′ − f = p̄, (94)

where f ′ (T ) = df (T )
dT

and T = −6H2. Finally, for the perfect fluid
from the Bianchi identity, it follows that ˙̄ρ + 3H (ρ̄ + p̄) = 0. Ob-
viously, the extra terms which arise from the function f(T) can be

seen as an extra fluid. In this work, we are interested in the evolution
of the total fluid.

Now, with the use of equation (93), equation (94) becomes

Ḣ = −3γ

2

(
4H 2f ′ + f

3

2f ′ − 24H 2f ′′

)
, (95)

which is a first-order differential equation on H, since f (T ) =
f

(√
1
6 |T |

)
= f (H ). It is easy to see that equation (95) is the same

in comparison with equation (9) and provides the same solution if
and only if

4H 2f ′ + f

3

2f ′ − 24H 2f ′′ = H 2

(
1 − �

3H

)
, (96)

or equivalently,

H 2

(
1 − �

3H

) (
d2f

dH 2

)
− 2

(
H

(
df

dH

)
− f

)
= 0. (97)

The latter is a linear non-autonomous second-order differential
equation. For example, when the particle creation rate is �(H) =
mH, then from equation (97) we have the solution

f (T ) = f0

√
|T | + f1T

3
3−m (98)

while for �(H), given by equation (21), f(T) function is given in
terms of the Legendre polynomials. On the other hand, starting
from a known f(T) model, the solution of the algebraic equation (97)
provides us with the function �(H).

Here, we would like to remark that the evolution of the perfect
fluid, with energy density ρ̄, will be different from that of the
matter creation model with energy density ρ. However, the total
fluid, i.e. the fluid ρ̄, and the fluid components which correspond
to f(T) gravity provide us with an effective fluid which has the
same evolution with the fluid ρ, of the previous sections when
equation (97) holds.

However, as far as equation (98) is concerned, since equation (95)
provides us with the same scalar factor with equation (9) for �(H)
= mH, or because only the r.h.s. of equation (96) depends only on
m, then we can say that the constants f0, f1 are not essential, while
m is related with the power of the power-law solution of the scale
factor and specifically for m �= 3, it holds that a(t) = a0tp, p = 2

3−m

(Basilakos et al. 2013). Of course, the equivalence between these
two theories is only on the level that they can provide the same
scale factor, which is possible since the two theories have exactly
the same degree of freedom, in contrast to f(R)-gravity which has
more degrees of freedom.

6 SUMMARY AND DI SCUSSI ONS

In the present work, we have addressed several issues concerning
the expanding universe powered by adiabatic matter creations. In
general, for any cosmological model, the dynamical analysis plays a
very important role related to its stability issues. As matter creation
models are phenomenological and the literature contains a variety
of models, so a generalized model could be a better choice to start
with for any study in any context. Hence, in the present work, we
have taken a generalized matter creation model as � = −�0 + mH
+ n/H (where �0, m, n are real numbers). Then solving the evolu-
tion equation described by the Raychaudhuri equation, the model
gives ‘two’ fixed points, one of which is unstable or repeller in
nature (represented by H+) describing the early inflationary phase
of the universe, and the other one is a stable or attractor fixed point
(represented by H−) leading to the present accelerated expansion of
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the universe asymptotically which is of de Sitter type. In addition to
this, the model depicts a non-singular universe. That means it had
no big bang singularity in the past. Further, we have shown that it is
possible to find the analytic solutions for such a scenario. Hence, we
found a model of a non-singular universe describing two successive
accelerated expansions of the universe at early and present times.
We then applied the Jacobi last multiplier method in our framework,
and found a Lagrangian which can be taken as an equivalent de-
scription to realize such a scenario as we found from the dynamical
analysis of the present matter creation model. Also, we have shown
that, under a simple condition, Jacobi last multiplier can give rise
to a Lagrangian (see equation 46) which predicts a model of our
Universe constituting a cosmological constant and a perfect fluid,
which can be realized as a �CDM model under certain choice of the
parameters involved (see Section 3.2). Moreover, we found that the
analytic solution for this Lagrangian (equation 46) is an equivalent
character with the Brans–Dicke cosmology. Now, performing a joint
analysis of SNIa and baryon BAO sets, we constrained the density
parameters of the model and hence, the Brans–Dicke parameter.

Now, in order to survey the predicted early accelerated expan-
sion without big bang singularity as produced by our matter creation
model, we introduced an equivalent field theoretic description gov-
erned by a single scalar field, for the dynamics of the universe
supervised by the matter creation mechanism. The prescription es-
tablished a relation between these two approaches where we were
able to produce a complete analytic structure of the field theory, that
means it is possible to get explicit analytic expressions for ϕ and
V(ϕ). Further, introducing the slow roll parameters for this scalar
field model, we have calculated the spectral index, its running and
the ratio of tensor to the scalar perturbations, and finally compared
with the latest Planck data sets (Planck Collaboration XXII 2014a,
see table 5) which stay in 95.9 per cent C.L. Also, we have shown
that it is possible to give a bound on the constant �0 of the matter
creation rate that allows us to calculate approximately the reheating
and thermalization temperature of the universe.

After that, we have introduced the effects of the teleparallel grav-
ity f(T) in the matter creation model, and shown that it is possible to
establish an exact functional form of f(T) for matter creation models.

Finally, one thing is clear that the present work keeps itself in
the domain of cosmology, more specifically in the accelerating cos-
mology which is a certain plight to understand the evolution of the
universe. It seems reasonable that the matter creation mechanism
can be studied in several contexts, such as one can construct an
equivalent cosmological theory, for instance, using its equivalence
with decaying vacuum models as �(H) = � H, established in Graef
et al. (2014), one may find the corresponding cosmological evo-
lutions driven by decaying vacuum models, and further one may
analyse its effect on astrophysical objects, namely stellar evolution
(specifically, in wormhole configuration), gravitational collapse and
structure formation of the universe, which can be considered for fu-
ture works.
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