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ABSTRACT   

PT-symmetric structures in photonic crystals, combining refractive index and gain-loss modulations is becoming a 
research field with increasing interest due to the light directionality induced by these particular potentials. Here, we 
consider PT-symmetric potentials with axial symmetry to direct light to the crystal central point obtaining a localization 
effect. The axial and PT-symmetric potential intrinsically generates an exceptional central point in the photonic crystal 
by the merge of both symmetries. This particular point in the crystal lattice causes field amplitude gradients with 
exponential slopes around the crystal center. The field localization strongly depends on the phase of the central point and 
on the complex amplitude of the PT-potential.  

The presented work analyzes in a first stage 1D linear PT-axisymmetric crystals and the role of the central point phase 
that determines the defect character, i.e. refractive index defect, gain-loss defect or a combination of both. The interplay 
of the directional light effect induced by the PT-symmetry and the light localization around the central point through the 
axial symmetry enhances localization and allows higher field concentration for certain phases. The linearity of the 
studied crystals introduces an exponential growth of the field that mainly depends on the complex amplitude of the 
potential. The work is completed by the analysis of 2D PT-axisymmetric potentials showing different spatial slopes and 
growth rates caused by symmetry reasons.   
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1. INTRODUCTION  
Dispersion of light beams, including diffraction but also light diffusion, is a phenomenon limiting the performance of 
many linear and nonlinear optical devices1-6. Actually, in real materials diffusion is not independent to diffraction due to 
the non-instantaneous and causal response of the medium, as described by the Kramers-Kroning relations.  

Artificial structured materials presenting spatial modulations of the refraction index and the gain or losses on the 
wavelength scale have demonstrated the ability to tailor light dispersion. For instance, a weak index modulation can 
reduce or totally elude diffraction while in-phase gain-loss and index modulations allow to tailor both, diffraction and 
diffusion7. One of the interesting symmetries for these complex spatial modulated materials is the PT-symmetry, where 
the real (imaginary) part of the modulation shows even (odd) symmetry. First introduced as a curiosity in quantum 
mechanics5, optical PT-symmetric systems have recently found realizations in optics attracting interest for holding new 
intriguing properties and novel unusual effects, especially when the PT-symmetry is broken. In the case of optics, the 
PT-symmetry condition requires that the complex refractive index, representing the actual refractive index and the gain-
loss distribution, fulfils: n(r) = n*(-r). For instance, this is fulfilled by any periodic index and gain-loss modulations 
dephased a quarter of the spatial period. As a matter of fact, the well-known Photonic Crystals (PhCs), with purely real 
modulations of the refractive index satisfy PT-symmetry. On the other extreme, systems with a constant real refractive 
index, holding only Gain-Loss Modulation (GLM) are also PT-symmetric. However in both cases the systems is 
perfectly symmetric. The most interesting situation arises when the real and gain-loss modulations are balanced, and the 
symmetric coupling between internal modes is broken. The system becomes strongly unidirectional leading to new 
features on light waves such as asymmetric unidirectional reflectors, invisible materials or input-dependent chirality in 
2D systems8-14. 

In order to understand the asymmetric new properties induced by the PT-symmetry, we first consider a Photonic Crystal 
in one-dimension (1D) with the simplest harmonic modulation that may be described by: n(x) = nRe  cos(qx), being q the 
spatial period of the index modulation. In turn, the complex refractive index of the simplest GLM may be analogously 
expressed by: n(x) = nRe +i nIm cos (qx). The PT-symmetry and its new peculiar properties arise when they are combined 
in a simultaneous modulation of dephased index and gain-loss modulations : n(x) = nRe cos (qx) +i nIm sin(qx). The 



 
 

 
 

 
 

amplitudes of both modulations and particularly its ratio introduce the character of the complex modulated structure. At 
the PT-symmetry breaking point, when the amplitudes of both modulations are equal, nRe = nIm, the complex refractive 
index can be written as: n(x) = n exp (iqx) and the resonant propagation modes, exp (ikx) and exp (-ikx), with q=2k, 
become unidirectionally coupled, leading to the new asymmetric properties. 

This work presents a new class of optical materials presenting and axis and PT-symmetric complex index modulations 
that enhance couplings between harmonics to the axis direction. This allows the concentration and enhancement of the 
optical field around axis.  

2. 1D AXISYMMETRIC PT-SYMMETRY 
We start with the simple unidimensional case with axis located at x=0 and a axi-symmetric potential represented in 
Fig.1. The complex refractive index modulation of Fig.1a presents a simple 1D harmonic modulation with the real and 
imaginary parts dephased by ±π/2 and yielding to a unidirectional coupling with opposite directions for x < 0 and x > 0.  

The 1D harmonic optical refractive index represented in Fig.1 can be expressed as: 

 ( ) ( )φφ +−+= xSinnixCosnxn ImRe)(  (1) 

where, for simplicity, we use normalized spatial coordinates; nRe denotes the normalized amplitude of real component of 
the complex refractive index, and nIm the normalized amplitude of the imaginary component. The ratio between both 
amplitudes is expected to confer the asymmetric character to the system. Besides, the phase φ, characterizes the potential 
at the symmetry centre, i.e. x = 0 and it is a crucial parameter for the field localization and enhancement, determining 
with the amplitudes signs the sense of the asymmetric mode coupling. 

 

 

Figure 1. Local unidirectional coupling for the1D complex optical potential, where nRe in blue is the real index modulation, 
and nIm in red is the gain-loss modulation. In (a) the gain-loss modulation is positively dephased, the unidirectional 
coupling is directed inwards and a field concentration may be expected at x=0. In (b) the gain-loss modulation is negatively 
dephased and the unidirectional coupling is directed outwards.  

 

In order to determine the propagation of a light beam in such structure, we consider the general paraxial electromagnetic 
field equation as a mathematical model, including diffraction and the potential, as:  

 ),()(),(),( 2 txAxnitxAitxA xt +∂=∂  (2) 

where A(x,t) is the slowly varying amplitude envelope of the complex electromagnetic field. The three important 
parameters determining the spatial and temporal dynamics of such systems described by eq. 2, are therefore nRe, nIm and 
φ. This system is analogous to the paraxial propagation of beams in a bidimensional structure with the same PT-
symmetric complex index in the transverse direction x and homogeneous along the longitudinal direction z that takes the 
role of time. 

Depending on the phase shift between gain-loss and index distributions the coupling is enhanced towards or from the 
central axis x=0. To intuitively deduce the light flow and field accumulation consider the field generation in positive gain 
areas and the light tendency to high refractive index zones. 

We numerically solve eq.(2) with the complex refractive index of (1) by integrating the paraxial wave equation using the 
split step method, for a Gaussian initial beam of the form: A(x) = exp(-(x/w)2)  where the width of the initial beam profile 
w should be large enough to obtain the modulation effect. Such a system may develop an extreme localization at x=0, 
exhibiting an exponential temporal growth due to the system linearity. We initially explore the parameter space (nRe, nIm) 
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for a fixed phase φ = 0. The envelope of the final field, after a sufficient propagation time, may be expressed as: A(x) �  
ei� t eikx where k = kRe+ ikIm and �  = � Re+ i� Im are both complex functions. Note that while kRe is the spatial dominant 
mode kIm denotes the spatial localization exponent. Analogously, � Im and � Re stand for the temporal growth exponent 
and temporal oscillation frequency, respectively. Therefore, we obtain the localization exponent kIm (which we shall refer 
as localization) after a sufficient long time evolution, t, and the temporal exponential growth at x=0,  � Im (referred as 
growth throughout the text) as: 

 
dx
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Im =ω  (3) 

Such two main quantities fully characterize the field dynamics in the complex system, and are therefore used to identify 
the field localization and enhancement regimes in the parameter space (nRe, nIm). Such results, for 0φ = , are presented on 
Fig. 2. 

 

Figure 2. (a) Localization map, calculated after a sufficient long time (t�300 units) in the parameter space (nRe, nIm) for 
φ=0. (b) Growth map at the canter (x=0),   in the parameter space (nRe, nIm). Two representative points marked as (c),(d) 
correspond to the parameter sets (0.4,0.3), and  (-0.4,0.3), respectively. In both cases, the spatial field profiles in real and 
logarithmic scale are shown on the first and second columns of (c) and (d)  while the third and forth columns represent the 
temporal evolution of the field at the centre and the corresponding spatial field spectrum 

 

The localization and growth maps built in parameter space are shown in Fig. 2a and Fig. 2b, respectively. We clearly 
observe in Fig. 2b a large growth for points fulfilling |nIm|>|nRe| that denote an amplitude of the gain-loss modulation 
larger than the index one. The crossed lines given by |nIm|=|nRe| correspond to the PT-symmetry breaking points. The 
growth profile seems to be not affected by the PT-symmetry breaking in quadrant nIm>0,nRe >0 denoting another effect 
associated to the phase φ that characterizes the potential at the symmetry centre. Thus, the largest growth occurs at the 
top right corner, coinciding with the simultaneous field enhancement on the same area of the parameter space, i.e. on the 
top right corner of both maps. To illustrate the effect of the PT-potential on the spatio-temporal field dynamics, we 
consider two representative points, within and outside the field localization regime, (c) and (d), having the same gain/loss 



 
 

 
 

 
 

modulation amplitude but opposite sign in the index amplitude modulation. While for the potential leads to an inward 
coupling of the wavevectors in point (c), the situation is reversed in point (d) where the coupling is outwards. The spatial 
field profile at (c) evidences a sharp localization of the field with an enhancement factor of 1022 at the canter while at (d) 
the field is spread. The field representation in logarithmic scale shows the expected exponential field localization in (c) 
and a flat field distribution in (d). Also the temporal evolution of field is exponentially growing in (c), but becomes flat 
after a short transient in (d). Both spatial field spectra are also provided, being its interpretation in (c) not obvious due to 
the strong exponential decay. 

Following, we study the localization dependence on phase φ that characterizes the complex index in the central point 
x=0. It is found that the highest localization regime is strongly phase dependent, being shifted in parameter space as it is 
summarized on Fig. 3. The localization maps for four representative phases: π/4, π /2, π and 23π /16 are presented in Figs 
3a, 3b, 3c and 3d, where we observe how the localization rotates counterclockwise in parameter space. We find the 
amplitude values nRe,nIm corresponding to the maximal localization exponent for each phase φ value. On Fig. 3e the 
maximum localization exponent is depicted as a function of φ. Comparing these figures with Fig. 2a we see that the 
strongest field concentration is however achieved for φ = 0 and φ = π precisely when the coupling is inwards. The spatial 
potential profiles corresponding to the four phases are illustrated in Fig. 3e; note, for example, that while localization 
occurs for nRe>0 nIm>0 for φ = 0, it shifts to nRe<0 nIm<0 for φ = π. Finally, we find that for very small gain still a minor 
localization is found, for high index contrast, see Fig. 3b and 3d, in cases where the coupling is not inwards but 
outwards. 

 

 

Figure 3. (a,b,c,d) Localization maps calculated after sufficient long time (t�300 units) in parameter space (nRe, nIm) for 
φ=π/4, π /2, π and 23π /16,  respectively. (e) Maximum localization depending on the phase showing the strongest 
localization regime in different quadrants of the map:   (i) nRe>0 nIm>0, (ii) nRe<0 nIm>0,   (iii) nRe<0 nIm<0 and   (iv) nRe>0 
nIm<0. The index and gain/ loss potential profiles, corresponding to the phases in for the maximum localization area in 
(a),(b),(c), and (d) are shown in (i), (ii), (iii) and (iv), respectively, as marked on the  maximum localization graph. 

 

A direct interpretation of the different localization regimes may be based on the competition of spatial modes in the field spectra. The 
interaction of different growing modes gives rise to different localization regimes, depending upon the modulation amplitudes and 
phase.  

Fourier transform does not allow a precise localization of the real components of the spectrum, as growing modes suffer from an 
exponential decay. The Laplace transform is an optimal method to identify the field harmonics of exponentially decaying fields. We 
obtain the Laplace transform numerically to analyze the most important cases. We essentially identify three distinct regimes on the 



 
 

 
 

 
 

basis of symmetric spatial modes participating in the field spectrum. The simplest case corresponds to the PhC-like limit, where a set 
of dominant integer modes kx =0, 1, 2,.. prevail in the spatial spectrum. This is the case of points with maximal localization in Fig. 
3b with nRe>nIm and φ = π/2. The other two localization regimes correspond to a GLM-like regime. In a pure GLM system, the 
spectrum shows frequency peaks centered at 0.5, 1.5, 2.5,... and this is what we find in points with maximal localizations of Fig.3a 
with nIm>nRe and φ = π/4. However, large gain modulation amplitudes lead to a strong coupling between different harmonics,  
eventually shifting the central frequency peaks towards lower and higher values, as observed in maximal localization point of Fig.3c 
and φ = π (analogous to point (c) in Fig.2b). 
 

3. 2D AXISYMMETRIC PT-SYMMETRY  
The same combination of axial symmetry and PT-symmetry applies to the 2D-case (Fig.4). The number of possible 
spatial configurations of the complex index structures enlarges with dimensionality, allowing different geometries. Here, 
we just consider the PT-symmetric radial geometry where the coupling between incoming and outgoing waves becomes 
asymmetric (Fig.4a). We analyze spatial effects on beam propagation in such complex radial structures.  

 

Figure 4. (a) 2D analogous axisymmetric configuration, where arrows indicate the direction of the asymmetric mode 
coupling. (b,c) two possible realizations in broad aperture microlasers (modified VCSELS) (b) with a modulated active 
layer in index and gain, (c) with a gain modulated active layer and a modulated mirror. (d) 3D coaxial index and gain/loss 
modulations, analogous to the discussed structures for fields propagating along z. 

 

Different physical realizations of these arrangements 2D can be considered due to the nowadays high developed special 
microfabrication techniques of microchip- and VCSEL lasers. Two of the possible schemes are proposed in Fig.4b and 
Fig.4c for broad aperture microlasers (modified VCSELS). Moreover, the same study can be applied to the propagation 
of an incident beam along a 3D structure with coaxial index and gain/loss modulations just changing time by the 
longitudinal coordinate z corresponding to the beam propagating direction (Fig.4d).  

Now, the harmonic optical refractive index represented in Fig.4 may be expressed as: 

 ( ) ( )φφ +−+= rSinnrCosnrn ImRe)(  (4) 

and the light beam propagation in such structure, in analogy to the 1D case, is determined by the paraxial propagation of 
the electromagnetic field including diffraction and the complex potential as:  

 ),()(),(),( 2 trArnitrAitrAt +∇=∂ ⊥  (5) 

where A(r,t) is the envelope of the field amplitude. As in the 1D case we use normalized spatial coordinates and the pair 
of parameters (nRe,nIm) refers to the normalized amplitude of real and imaginary components of the complex refractive 
index, i.e. refractive index and gain-loss modulation amplitudes respectively. The PT-symmetry breaking points are also 
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determined by |nRe|=|nIm| and the constant phase φ characterizes the potential at the circular symmetry centre (r = 0) and 
is crucial for the field localization and enhancement. 

Following, we analyze the 2D PT-axisymmetric optical system characterized by eq. (2) with n(r) defined as in eq.(4). For 
this 2D case, we restrict the analysis to φ=0, as it is predicted to be the optimum phase for field localization and 
enhancement from the 1D results; the results are summarized on Fig.5. We observe a strong field enhancement at r=0, 
which may be clearly attributed to the asymmetric radial coupling between inward and outward propagation waves. The 
axial cross-sectional profile of the field, in logarithmic scale is not linear, due to a factor 1/r of the axial symmetry. The 
parameter space is explored and the map of the linearized localization exponent of the axial cross section profile, 
obtained from rrA )(  is shown in Fig. 5a. A high growth and extreme localization regime is found simultaneously on 
the top right quadrant of Fig. 5a and 5b, for nRe>0 nIm>0 , approximately corresponding to the 1D results. These maps 
indicate that the overall scenario remains analogous to 1D. The 2D field profiles in real and logarithmic scales are 
determined for the parameter set of point (c) in Fig. 5a, within the localization regime, and depicted in Fig. 5b(i,ii) as an 
example of strong field confinement around r=0. The general conclusion is that the situation in this 2D case is analogous 
to 1D with the minor advantage of larger growth exponents but with slightly smaller localization. 

While the results are analogous to the simple 1D case, this 2D geometry is more realistic as it allows thinking in possible 
implementations in actual systems. In fact, as a first direct application, we expect the proposed effect to be useful to 
improve the emitted beam quality in broad aperture lasers. 

 

 

Figure 5. (a) Localization map of the axial cross-section profile of the field rrA )(  for 2D, calculated after sufficient long 
time (t�300 units) in parameter space (nRe, nIm). (b) Growth map of at the center (r=0) in parameter space. (c) 2D spatial 
field profiles in real and logarithmic scales are depicted in (i), (ii) while (iii) represents the far field in logarithmic scale. 
The axial cross-sectional profiles of the field in real and logarithmic scales are illustrated in (iv), and (v). The localization 
exponents of the axial cross sectional profile, linearized as: rrA )(   and rrA )( , due to the axial symmetry are shown in 
(vi) and (vii), respectively. 

 



 
 

 
 

 
 

4. VCSELS WITH AXISYMMETRIC PT-SYMMETRY  
 

Broad aperture lasers, and VCSELs among them, are relevant laser sources however suffering from a major drawback a poor beam 
quality due to the lack of an intrinsic transverse mode selection mechanism. In simplest form, the field dynamics of VCSELS with the 
proposed complex potential profile satisfying the particular proposed conditions in either 1D and 2D axisymmetric conditions, may be 
analyzed from the nonlinear equation: 

 ),()(),()(),( 22 trArnitrAiAAptrAt


+∇+−=∂ ⊥  (6) 

where A(r,t) is the envelop of complex field distributed in space, p is pump parameter that defines the saturation and the 
complex potential profile corresponds to the one of eq.(4). Such nonlinear systems generally show the saturation phenomena 
with uniform field distribution for p > 0. However, the field localization and enhancement in such situation is possible at the center 
for p < 0 by applying the discussed complex refractive index. The results for a particular parameter set are provided in Fig. 6. The 
spatial field profile showing the concentration at the center, r = 0, in Figs. 6a, reveals that this 2D axisymmetric system efficiently 
localizes the field. 

 

 

Figure 6. Spatial field distributions for a VCSEL with an axisymmetric PT-symmetry complex index, calculated after the steady state 
(t�150 units) for p = -0.1 and modulation amplitudes nRe=nIm= 0.4. (a) 3D visualization of the VCSEL output field profile, concentrated and 
enhanced at  r  = 0 in linear scale. (b) Axial cross-sectional profile.  and logarithmic (b) scales. (c) 3D visualization in logarithmic scale. 

 

5. CONCLUSIONS  
We propose a novel class of axisymmetric PT-symmetric systems that provide a unique platform for strong field 
localization and enhancement around the central point. Such systems have the capability to simultaneously localize and 
enhance the field around a point due to the asymmetric coupling of inward and outward waves. We studied the parameter 
dependence of the localization and growth coefficients with the modulation amplitudes of refractive index and gain-loss 
and a phase denoting the central defect character. This light-matter interaction phenomenon may find remarkable 
applications in many linear and nonlinear devices where a high degree of localization is essentially desirable. One of 
most promising applications of the idea is to use the PT-localization property to regularize the fields in broad aperture 
lasers, in particular in VCSELS. Broad aperture lasers, especially the semiconductor lasers, are known to result in spatial 
pattern formation15,16, which usually is undesirable effect from the technological viewpoint. Different techniques to 
regularize the spatial structure of the emitted field are proposed, in particular the spatial modulation of the amplifying 
media 17. The PT-like modulation proposed here could serve as advanced technique to regularize the spatial structure of 
output radiation. 
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