
A statistical learning based approach for parameter
fine-tuning of metaheuristics

Laura Calveta,∗, Angel A. Juana, Carles Serratb, Jana Riesc

aDepartment of Computer Science, Open University of Catalonia, IN3, 08018 Barcelona,
Spain

bDepartment of Mathematics, Technical University of Catalonia, 08028 Barcelona, Spain
cPortsmouth Business School, University of Portsmouth, PO1 3DE, UK

Abstract

Metaheuristics are approximation methods used to solve combinatorial opti-

mization problems. Their performance usually depends on a set of parameters

that need to be adjusted. The selection of appropriate parameter values causes

a loss of efficiency, as it requires time, and advanced analytical and problem-

specific skills. This paper provides an overview of the principal approaches to

tackle the Parameter Setting Problem, focusing on the statistical procedures

employed so far by the scientific community. In addition, a novel methodology

is proposed, which is tested using an already existing algorithm for solving the

Multi-Depot Vehicle Routing Problem.

Keywords: parameter fine-tuning, metaheuristics, statistical learning, biased

randomization

2000 MSC: 90-08, 62-07

1. Introduction

Mathematical optimization plays an important role both in research and

in our everyday lives. Management of portfolios, vehicle routing or DNA se-

quence assembly, are only some of the fields in which optimization techniques

are employed.

∗I am corresponding author
Email addresses: lcalvetl@uoc.edu (Laura Calvet ), ajuanp@uoc.edu (Angel A. Juan),

carles.serrat@upc.edu (Carles Serrat), jana.ries@port.ac.uk (Jana Ries)

Preprint submitted to Journal of Computers & Industrial Engineering May 27, 2016



Most of the existing proposals to solve optimization problems can be classi-

fied into exact methods or heuristic/metaheuristic approaches (Talbi, 2009).

The former guarantee the optimality of the solution found. Unfortunately,

a number of relevant problems are particularly complex, and tackling them

with state-of-the-art exact methods would require substantial computer mem-

ory and time. Problems of this kind are known to be NP-hard (Bovet &

Crescenzi, 1994). The Facility Location Problem, the Knapsack Problem and

the Multi-Depot Vehicle Routing Problem (MDVRP) are some examples of

NP-hard problems. In these cases, heuristics present some experience-based

techniques that implement strategies to obtain a sufficiently good solution in

a reasonable amount of time. Although they do not provide any theoretical

guarantee, they are a popular choice when solving NP-hard problems. Owing

to its nature, any heuristic is problem-dependent, which restricts its application

to one particular class of problems. Also, heuristics usually provide sub-optimal

solutions. These factors have led to the introduction of metaheuristics.

Birattari & Kacprzyk (2009) defines metaheuristics as “general algorithmic

templates that can be easily adapted to solve the most different optimization

problems”. A number of them are nature-inspired, include stochastic compo-

nents and have several parameters (Boussäıd et al., 2013). They are present

in a large number of research areas as telecommunications (Martins & Ribeiro,

2006), machine learning (Carvalho et al., 2011), and vehicle routing (Gendreau

et al., 2008), among others.

Although the performance of metaheuristics is known to depend on its pa-

rameter values, the scientific community has not formally addressed the so-called

Parameter Setting Problem (PSP) until the end of the last century. Accord-

ing to Eiben et al. (1999), during the first decades of metaheuristics research,

many scientists based their choices on tuning the parameters “by hand”, i.e.,

experimenting with different values and selecting the ones that provide the best

outputs, or “by analogy”, applying settings that have been proven successful

for similar problems. More recently, the need for a systematic approach to-

wards setting of metaheuristic parameters has been increasingly outlined in the

2



literature (Hooker, 1995; Johnson, 2002). Subsequently, researchers employ a

scientific approach to tackle the PSP more frequently. It is important to high-

light that the selection of a systematic methodology leads to a gain of efficiency,

as in general, less time is required to fine-tune the parameters while the perfor-

mance of the metaheuristic is the same if not improved. However, there is no

methodology commonly accepted by the scientific community and there is also

a lack of publications that compare, in an exhaustive and objective manner,

the main approaches and the techniques used so far. Moreover, some of the

proposed methodologies are not easily reproducible or are highly metaheuristic

and problem dependent. These are some of the reasons why, in spite of the

amount of parameter fine-tuning works, many practitioners go on tuning by

hand or designing algorithms without parameters (or with a very low number

of them), even in the case when more parameterized algorithms could lead to

better performances.

This article aims to contribute to the literature by proposing a general and

automated statistical learning based procedure to tackle the PSP. It is accom-

panied by some methodological guidelines to validate the results. In order to

test the methodology and illustrate its application, the approach is employed to

fine-tune a hybrid algorithm implemented to solve the MDVRP. The remainder

of this article is organized as follows. Section 2 presents a formal definition of the

PSP, the existing approaches, and their main contributions. Our methodology

is outlined in Section 3, followed by Section 4, which shows its application on a

hybrid algorithm. A discussion of the results is reported in Section 5. Finally,

Section 6 presents concluding remarks.

2. Related work on the Parameter Setting Problem

Ries et al. (2012) define the PSP as the search for a set of parameter values θ∗

in the parameter space Θ such that ∀θ ∈ Θ : θ∗ � θ (where � denotes a relation

of preference), for a given metaheuristic m in the metaheuristic space M , and

a given instance x or group of them X in the instance space I. In practice, the

3



amount of time available for experimenting T may be a restriction. In this case,

the solution is approximate (θ̂). With regards to the difficulty of this problem,

Montero et al. (2014) states that: (a) it is time consuming; (b) the best set of

parameter values depends on the problem at hand; and (c) the parameters can

be interrelated.

During the last decades, a large number of methodologies have been put

forward to solve the PSP. These proposals can be classified in two groups (Bi-

rattari & Kacprzyk, 2009): Parameter Control Strategies (PCS), and Parameter

Tuning Strategies (PTS). This classification is extended by Instance-specific Pa-

rameter Tuning Strategies (IPTS), which includes features of the aforementioned

groups.

This section provides a brief description of each approach and some of the

most cited works. We refer the interested reader to more specific publications

such as Eiben et al. (1999), De Jong (2007) and Battiti & Brunato (2010) for

an expanded review of PCS, Birattari & Kacprzyk (2009) in the case of PTS,

and Ries (2009) for IPTS.

2.1. Parameter Control Strategies (PCS)

These methodologies aim for a dynamic fine-tuning of the parameters by con-

trolling and adapting their values while solving a problem instance. They follow

two basic steps: firstly, an initial set of parameter values is chosen; secondly, an

adaptation mechanism is integrated which changes relevant parameter values.

Most of these strategies apply Adaptive Parameter Control, which means that

their adaptation mechanism is based on the assessment of particular information

that is stored during the iterative process of a metaheuristic. This information

is usually related to the goodness of intermediate solutions. Figure 1 outlines

the main instructions of a PCS based on Adaptive Parameter Control. The

main drawbacks of this approach are the potentially high computational effort

required and the lack of acquired understanding about good parameter values

each time an instance is solved.

4



Figure 1: Scheme of PCS applying an Adaptive Parameter Control.

Eiben et al. (1999) addressed the PSP in Evolutionary Algorithms (EAs).

Three categories were defined to classify the PCS. The first one, Deterministic

Parameter Control, alters the value of a parameter by some deterministic rule,

which is usually time based. The second category, Adaptive Parameter Control,

does employ feedback to determine the direction and/or magnitude of a param-

eter change. This is the most used kind of control. Consequently, we will focus

on it. The third, Self-Adaptive Parameter Control (Smith, 2008), encodes the

parameters to be adapted into the chromosomes of an EA. De Jong (2007)

described the main motivations to use dynamic parameter setting strategies in

EAs: first, as the running proceeds, information about the fitness landscape

is generated, which may be used to improve the performance; also, changing

the parameters is needed as an EA “evolves from a more diffuse global search

process to a more focused converging local search process”. Table 1 gathers a

few representative works following this approach. Nowadays, it constitutes a

popular choice, mostly in EAs. From the literature, it can be concluded that

the parameter fine-tuning is a difficult task, partly due to the potential inter-

actions between parameters (Eiben et al., 1999; De Jong, 2007; Smith, 2008).

The worth of applying PCS is sometimes doubted (Beasley et al., 1993) or not

recommended for static optimization problems (De Jong, 2007). However, most

5



authors agree that this approach has a long way to go.

Table 1: Representative works employing PCS.

Work Main techniques Metaheuristic Optimization

problem

Battiti & Tecchi-

olli (1994); Bat-

titi & Brunato

(2005)

Reactive Scheme Tabu Search

(TS)

Quadratic As-

signment Prob-

lem (QAP), and

Maximum Clique

Problem

Zennaki & Ech-

Cherif (2010)

Support Vector

Machines

TS TSP

Lessmann et al.

(2011)

Regression Mod-

els

Particle Swarm

Optimization

(PSO)

Water Supply

Network Plan-

ning Problem

2.2. Parameter Tuning Strategies (PTS)

This approach relies on the concept of robustness (Viana et al., 2005). A

robust algorithm provides good results for a given set of instances of a problem

using a fixed set of parameter values. The basic procedure (Figure 2) involves

finding a set of parameter values providing satisfactory results for a set of in-

stances, usually using statistical and/or optimization techniques. Some authors

analyse only a representative subset of instances and apply the set of parameter

values found to solve all the instances. This approach also includes the case of

solving one instance.

6



Figure 2: Scheme of PTS.

The work of Czarn et al. (2004) is an outstanding contribution from a

statistical point of view. It addresses the issues of blocking when using Design

of Experiments (DOE) for variation or noise due to seed, testing individual

parameters and interactions, and performing power analyses, among others.

Table 2 shows some works relying on this approach. Many authors focus on

minimizing the number of runs, presenting simple models without interactions

(e.g., Coy et al., 2001; Pongcharoen et al., 2007; Xu et al., 1998). DOE and

regression analysis are the most employed techniques. The main criticism these

works may receive is that most need an initialization of methodology-specific

parameters that in some cases is not fully reported. Fortunately, the number of

papers that report applications of their methodology in more than one problem

or in real-world problems is increasing.

2.3. Instance-specific Parameter Tuning Strategies (IPTS)

As in the case of PCS, IPTS aim for an instance-specific tailoring of the pa-

rameters. At the same time, these strategies use a fixed set of parameter values,

as the PTS, avoiding the need of modifying the metaheuristic algorithm and

reducing the potential computational effort required to adapt parameter values

during the algorithmic run. In order to implement these strategies the relation

between the parameter values and the performance of the metaheuristic has to

be analysed, taking into account instance features. The next step consists in

developing a mechanism able to use the features of a new instance to recom-

mend a set of parameter values. The key element is the selection of instance

7



Table 2: Representative works implementing PTS.

Work Main techniques Metaheuristic Optimization problem

Park & Kim

(1998)

Simplex method SA Graph Partitioning Prob-

lem, Permutation Flow

Shop Scheduling Problem,

and Short-term Produc-

tion Scheduling Problem

Xu et al.

(1998)

Tree growing and pruning

method based on statisti-

cal tests

TS Steiner Tree-Star Problem

Coy et al.

(2001)

DOE and Linear Regres-

sion

Routing heuristics Vehicle Routing Problem

Bartz-

Beielstein

et al. (2004)

DOE, Classification and

Regression Trees, and De-

sign and Analysis of Com-

puter Experiments

PSO and Nelder-

Mead Simplex Algo-

rithm

Elevator Group Controller

Problem

Ramos et al.

(2005)

Logistic Regression EA TSP

Birattari

& Kacprzyk

(2009); Bi-

rattari et al.

(2010)

Racing Algorithm (Maron

& Moore, 1993) and the

Friedmans two-way anal-

ysis of variance by ranks

(Conover, 1999)

Iterated Local

Search (ILS) and

Ant Colony Opti-

mization (ACO)

QAP and TSP

Adenso-Diaz

& Laguna

(2006)

DOE and Local Search Neighbourhood

structure, TS, SA,

TS, Heuristic based

on the SA and the

TS, and TS

Steiner Problem, Part-

Machine Grouping Prob-

lem, Part-Machine Group-

ing Problem, Single-

Machine Scheduling,

Proportionate Flowshops,

and Bandwidth Packing

Pongcharoen

et al. (2007)

DOE GA TSP

Ridge & Ku-

denko (2007)

DOE and Desirability

Functions

ACO TSP

Gunawan

et al. (2013)

DOE, Response Sur-

face Methodology and

ParamILS (Hutter et al.,

2009)

SA Industry Spares Inventory

Optimization Problem

8



features easy and fast to compute, and good at discriminating instances on the

shape of their fitness landscapes, which analyse the relationship between the

objective function values and the parameters. This learning may take a non-

negligible amount of time, but it is assumed that this approach requires less

computational time than the PCS approach does. The procedure is shown in

Figure 3.

Figure 3: Scheme of IPTS.

Some contributions are included in Table 3. The number of works is low

since it is relatively new. As in the previous cases, they employ a variety of

techniques and analyse several problems.

Table 3: Representative works implementing PTS.

Work Main techniques Metaheuristic Optimization prob-

lem

Ries (2009) DOE and Fuzzy

Logic

Guided Local

Search and GA

TSP

Pavón et al.

(2009)

Case-Based Reason-

ing and Bayesian

Networks

GA Root Identification

Problem

Dobslaw

(2010)

DOE and Artificial

Neural Networks

PSO TSP

9



It has been seen that the literature on the PSP is relatively diverse. How-

ever, more research is needed to fully explore and compare the performance of

different techniques from statistics and operations research (OR), and to achieve

that researchers and practitioners become aware of the relevant effect that an

adequate parameter-fine tuning may have. In this paper we mainly focus on the

parameter fine-tuning of metaheuristic algorithms from an OR perspective. No-

tice, however, that the literature on parameter fine-tuning of general algorithms

is much more extensive, and it has been mainly developed by the computer

science community. This community addresses a larger variety of problems (not

only of optimization nature), tends to employ algorithms with a larger number

of parameters, and uses to consider more complex and/or time-consuming ap-

proaches for setting the parameters of different types of algorithms -including

searching and classification algorithms, etc. Thus, for example, Ansótegui et al.

(2015) or Hutter et al. (2011) describe general but complex methods that can

be used in the fine-tuning process of several types of algorithms. These general

approaches are rarely considered by the OR community. Accordingly, one of

the main contributions of this paper is to provide the OR community with an

alternative methodology, which is easier to use and faster, and that can be em-

ployed to simplify and make more agile the fine-tuning process of metaheuristic

algorithms.

2.4. Approaches comparison

All approaches have different advantages. The dynamic adaptation of the

parameter values that characterizes PCS usually provides better results. How-

ever, the computational effort tends to be higher. On the other hand, the PTS

approach is the easiest and fastest to use, once a set of parameter values is se-

lected. Although the code of the algorithm is not changed, finding an adequate

set may be also time-consuming. The last group of strategies represents a com-

promise solution: it takes less computational time than the PCS approach, but

requires implementing a learning mechanism, for which statistical learning skills

are needed. Therefore, there is no approach that stands out from the others.

10



Probably, the most adequate depends on the specific problem to tackle, the in-

stances to solve, the available time and the skills of the researcher. Despite this

fact, some general guidelines can be formulated. PTS can be considered as the

best option when working with robust algorithms. Regarding IPTS, they are

more complex than PTS but provide better results when the algorithm is not ro-

bust. In case of prioritizing the algorithm performance, PCS usually constitute

the most recommendable approach.

3. Our approach

We propose a methodology that follows the PTS approach. There are sev-

eral reasons for choosing it. Firstly, it is not computationally intensive, since it

may focus on a subset of instances. The inference from a representative sample

of benchmark instances to the whole set usually provides good results, specifi-

cally if the analysed algorithm is robust. There are two conditions that imply

robustness. First, the algorithm has to be little sensitive to small changes in

the parameter values, and second, the fitness landscapes for different instances

have to be similar. These conditions guarantee that the best set of parameter

values for one instance will probably provide good results for the others. The

high number of works following this approach, which cover several metaheuris-

tics and optimization problems, shows that many metaheuristic algorithms can

be considered robust. Another reason for focusing on PTS is that there is no

methodology based on this approach and widely employed, but at the same

time, there are plenty of techniques that can be used. Some of them have been

intensively tested as DOE and Regression Analysis. However, others remain to

be investigated.

Our methodology is based on clustering (Hastie et al., 2009) and DOE

(Montgomery, 2008). These are two well-established techniques that can be eas-

ily implemented using free statistical software. The clustering groups instances

that have a similar fitness landscape. It facilitates the selection of representa-

tive instances and also provides information that can be used to perform a more

11



flexible fine-tuning if each group is treated independently, i.e., exploring the

fitness landscape of an instance to find a good set of parameter values and ap-

plying it to solve the instances assigned to the same group. Regarding DOE, it

enables experimenters to identify and quantify the effects of several parameters

and their interactions on the objective function value.

The remainder of this section presents a statistical learning based method-

ology to obtain a list of sets of parameter values, and a more global procedure

to validate and assess its goodness.

3.1. General methodology

A 4-step procedure is exposed herein. It is assumed that the experimenter

has described and modelled a problem, and has chosen the metaheuristic to

tackle it and a set of benchmark instances.

• The first step involves choosing a subset of the instances. Their fitness

landscapes will be analysed in order to obtain sets of parameter values

that provide good results for them. The subset has to be representative

as these sets of parameter values will be used to solve the whole set of

instances. An approach to select a representative subset is, firstly, to de-

termine the instance features that have a major influence on which set

of parameter values is the most adequate, and then, choose the instances

in such a way that the feature values of the subset are representative of

those of the entire set of instances. For example, if we have a parameter

for which its optimum value is known to depend on the instance size, a

representative subset of the instances will present the same proportion of

instances of a given size that the whole set does. This approach can be

particularly difficult when there are several non-independent parameters.

A possible simplification for feature selection consists of choosing those

that are commonly used to discriminate instances of a specific problem.

Several examples can be found in the literature. Coy et al. (2001) consid-

ered, when addressing the Capacitated Vehicle Routing Problem (CVRP),

the distribution of customers, the distribution of demand and the location

12



of the depot. Ries et al. (2012) studied the size, the distance metric, a ratio

to describe the shape of the area within which a set of cities is distributed

and a measure of clustering for the TSP.

In contrast, a problem-independent approach is proposed here. Initially,

for a given number of randomly generated sets of parameter values, each

instance is solved several times using different seeds for the random num-

ber generator of the algorithm (or only once if the algorithm is determin-

istic). Alternatively, the sets could also be generated using more advanced

statistical techniques such as DOE. We consider the median of the objec-

tive function values found with the same parameter values but different

seeds. The median is a robust measure to aggregate data, but many others

could be employed. It is essential to remark the importance that a seed

may have in the performance of an algorithm (Juan et al., 2015; Czarn

et al., 2004). Afterwards, feature scaling is applied to the values obtained

for each instance. Then, this data is used to cluster instances and select a

representative one from each cluster. These instances form the subset to

analyse.

Although it is a computationally intensive approach, we think it is effective

to assess which instances show a similar relation between parameter values

and the performance of an algorithm.

For each instance of the subset, the steps ranging from the second to the fourth

are implemented as follows.

• The second step requires selecting the range over which each parameter

can be set. Some experience or knowledge about the problem and the

metaheuristic may be highly valuable. The ranges should be large enough

to cover at least one set of parameter values that can provide a sufficiently

good solution with a high probability. On the other hand, a smaller range

would allow the experimenter to describe more accurately, with the same

resources, the relationship between the parameter values and the objective

function value. If there is no a priori information about which are the best

13



regions of the parameter space, a suitable procedure is to perform a rough

and fast landscape analysis. Specifically, some possible combinations of

parameter values can be selected and utilised to run the algorithm. The

best results will identify promising regions. There are several ways of

choosing the combinations, as equally-spaced or randomly generated sets.

This analysis holds a trade-off between the computational time required

and the reliability of the conclusions.

• The third step consists of designing an experiment. A Central Composite

Design is studied. Each metaheuristic parameter is considered a factor

and the extreme values of its range define the levels. According to this

design, the algorithm is executed also several times for each combination

of factor values, each one with a different seed.

• In the fourth step, a procedure is developed to search the neighbourhood

of the best set of parameter values found. Specifically, another Central

Composite Design centred on this set is applied.

Finally, the upshot is a list of recommended sets of parameter values, one per

cluster; in particular, those that reported the best results on the last step. The

procedure is shown in Figure 4.

Figure 4: Outline of the procedure for parameter fine-tuning.

An extended proceeding (Figure 5) is described below in order to validate

the list of sets of parameter values obtained and analyse the results provided by

14



it.

Figure 5: Flowchart representing the proposed methodology.

Before all else, a list of sets of parameter values, θ̂ = (θ̂1, θ̂2, . . . , θ̂K) where

K is the number of clusters, is chosen as has been explained in the precedent

15



section. Later on, each instance of the subset used to select θ̂ is solved with

the corresponding set of θ̂ and with different sets, θ̄j (j = 1, 2, . . . , J) (equally

spaced, randomly selected or relatively close to the set of θ̂ according to some

distance measure). To assess the performance of a set of θ̂ in a specific instance

regarding the other sets, the associated solutions are compared. Given a decision

level parameter r (1 ≤ r ≤ J + 1), if the rank of the objective function value

provided by the proposed set is equal or lower than r, then it is considered a

good set for that instance. Once all the instances of the subset are examined, it

can be reckoned the proportion of them in which the corresponding set has been

classified as good. θ̂ is validated by comparing this proportion with a predefined

parameter p (0 < p < 1); if the proportion is higher, then the experimenter has

enough evidence of the quality of θ̂ to go on to test it with other instances in

the next step.

If θ̂ is not validated, the process has to be readjusted and restarted. This

readjustment may be done in several ways, some options are: checking the

robustness and the adequacy of the clustering, adapting the ranges, dedicating

more resources to the search, etc. The best strategy is problem-dependent. As

a consequence, the choice should rely on the opinion of the experimenter, who

will have acquired valuable information from the outputs observed.

Once the list of sets of parameter values has been labelled as valid, it is

applied for solving the other instances (each one with the set proposed for the

representative instance of the cluster where it has been assigned). To examine

the effectiveness of the procedure, it is desirable to compare the solutions with

others reported in the literature for the same instances, by performing the t-test

for paired samples if data is normal, or the Wilcoxon signed rank test otherwise.

If the means (or the mean ranks if data is not normal) do not differ significantly,

it may be classified as a satisfactory outcome as it will mean that the proposed

methodology, automated and general, has been proven to be competitive. If the

results are unsatisfactory, the procedure should be modified and reinitiated.

It is useful to consider that, since the available resources are usually limited,

the possible readjustments should be also limited (T represents this limit). Con-

16



sequently, the process may end without a satisfactory list of sets of parameter

values. In this case, the list which provides on average the best solutions will

be accepted.

4. Experimental results

4.1. Case study: Biased Randomization and ILS for solving the Multi-Depot

Vehicle Routing Problem (MDVRP)

In order to test our methodology, it was implemented to fine-tune the param-

eters of the hybrid algorithm described in Juan et al. (2015), which combines

Biased Randomization and the ILS metaheuristic to address the MDVRP. A

brief introduction to both the problem and the algorithm are presented in this

subsection.

The MDVRP is a variant of the well-known CVRP that consists in planning

routes to service a number of customers with a homogeneous fleet of vehicles

that have a maximum capacity. All routes begin and end at one depot, where all

resources are initially located. The objective is to find a solution (Figure 6) that

minimizes the total cost while satisfying the associated constraints. Typically,

these constraints imply that a single vehicle supplies each customer and it cannot

stop twice at the same customer. The MDVRP integrates an allocation problem,

in which the customers are assigned to one depot, with several CVRPs, one

per depot. In the test case, there is also a maximum number of vehicles per

depot and a maximum route length. It is considered a challenging problem as

allocation and routing issues are interrelated.

17



Figure 6: Solution for a medium-size MDVRP with 4 depots (cylinders).

The algorithm follows several steps. Initially, a priority list of potentially

eligible customers is computed for each depot. The lists are sorted according

to a distance-based criterion. Then, they are randomized based on a geometric

distribution and used to allocate customers to depots. Afterwards, an initial

solution is built by solving each routing problem independently with a version

of the Clarke Wrights Savings (CWS) heuristic (Clarke & Wright, 1964). In

short, CWS starts building an initial solution in which each route includes just

one customer. Following that, the heuristic considers the possibility of merging

two routes if the total cost is reduced. This operation is repeated until no

more merges are possible. For this project, the authors developed a biased-

randomized version (Juan et al., 2011); while the original seeks always the best

possible merging, this version applies biased randomization to select one merging

(i.e., multiple solutions can be obtained). In the next phase, an ILS procedure is

implemented. A new solution is computed by perturbing the current solution,

which implies the reallocation of a given percentage of customers. The new

solution replaces the current solution if the former is better. If it is also better

than the best solution found so far, the latter is updated. On the other hand, if

the new solution is worse than the current one, an acceptance criterion is applied

and, consequently, the current base solution can still be modified. This phase

18



ends after a fixed number of iterations. Finally, a post-optimization process is

applied to the five best solutions.

This algorithm has three main parameters:

• bM : the parameter of the distribution assigning nodes to depots.

• bR: the parameter of the distribution selecting edges in the CWS heuristic.

• p∗: the percentage of nodes that are reallocated in the ILS phase.

Note that these parameters take values between 0 and 1.

5. Implementation details

The first step is the selection of a representative subset of instances. Initially,

10 randomly generated sets of parameter values, 7 seeds and the 33 benchmark

instances solved in Juan et al. (2015) were selected. Therefore, information

from 2310 runs was stored. Data from different seeds was aggregated by com-

puting the median; then feature scaling was applied. The instances that were

considered easy-to-solve, those that presented no variation in the results, were

separated. This was done to focus the analysis on the instances for which results

could be improved by fine-tuning the parameters. Afterwards, a clustering using

the k-medoids algorithm (Theodoridis & Koutroumbas, 2009) was performed.

The range of values considered for setting the value of k was 2-12. The final

value was selected employing the average silhouette criteria (Rousseeuw, 1987).

The composition of the clusters and the representative instances (or medoids)

can be observed in Table 4.

Once the subset of instances was formed, the second step, setting the ranges

of the parameters, was carried out. After a statistical analysis, it was concluded

that just two parameters, bM and bR, did significantly affect the performance of

the algorithm. Therefore, only those two parameters were studied. Five equally

spaced values ranging from 0 to 1 were analysed for each parameter. Each

instance was solved seven times (considering different seeds) for each possible

combination of parameter values. The objective function values were aggregated

19



Table 4: Clustering of the benchmark instances.

Medoids Clusters

p01 p01

p07 p04, p07, p11, p18, pr02, pr05, pr09

p09 p03, p09, pr04, pr10

p17 p17

p19 p19

p22 p22

p23 p20, p23

pr06 p05, p06, p08, p10, p15, pr01, pr03, pr06, pr07, pr08

as before. Then, the values for other possible combinations were estimated by

linear interpolation.

The ranges were set to cover the smallest rectangular area of the parameter

space that included the lowest objective function values. In particular, the

values labelled as the lowest were those meeting the following condition:

Objective solution ≤ minimum value + β · (maximum value −minimum value)

The value of β was set at a different value for each instance. More precisely,

it was the minimum value that encompassed, at least, 5% of the search space.

Figure 7 shows the contour plot and the area in which the search was intensified

for each instance.

20



Figure 7: Contour plots of the medoids sorted from left to right, and top to bottom.

21



The next step was applying a design for each instance of the subset. It was

performed to better analyse the relation between the metaheuristic performance

and the parameter values. A Face-Centred Central Composite (FCC) Design

was selected, as in most of the cases the space parameter could not be expanded

(since all parameters could only take values between 0 and 1). Figure 8 displays

the scheme for instance p01. The objective function values for the same instance

are represented in Figure 9.

Figure 8: Scheme of the FCC Design applied to the instance p01.

22



Figure 9: Solutions of the instance p01.

Then, the neighbourhood of each set that provided the best solution for

an instance was explored applying another FCC Design, centred on that set

and covering half of the area analysed with the previous design. The sets that

finally presented the best performance were stored. They are outlined in Table

5. Random values were assigned to the instances that did not present variations

in the results when changing the parameter values.

5.1. Results

The following parameters were chosen to validate the list of sets: J = 10,

T = 3, α = 0.05, r = 6, p = 0.7. The number of sets randomly generated was

fixed considering the trade-off between the reliability of our comparisons and

the computational time required. The number of iterations was set considering

only the time available. The significance level is the one most commonly used

in the literature. The value of the fourth parameter is the mean rank that

could be expected due to randomness with 11 solutions (1 set proposed and 10

randomly generated). The last parameter was calibrated to force the algorithm

to provide good results at most of the instances. The algorithm was run 7 times

with different seeds for each combination of parameter values, the medians and

23



Table 5: Proposed list of sets of parameter values.

Medoids Clusters bM bR

p01 p01 0.513 0.501

p07 p04, p07, p11, p18, pr02, pr05, pr09 0.001 0.372

p09 p03, p09, pr04, pr10 0.283 0.283

p17 random random

p19 p19 0.443 0.378

p22 p22 0.001 0.231

p23 p20, p23 0.449 0.250

pr06 p05, p06, p08, p10, p15, pr01, pr03,

pr06, pr07, pr08

0.500 0.231

p02, p12, p13, p14, p16, p21 random random

the minimum values were stored. The ranks of the results obtained are detailed

in Table 6. Ties receive a rank equal to the average of the ranks they span,

shown inside the parentheses.

According to our methodology, the list of sets can be considered valid as

it presents a rank equal to or below 6 in 75% of the analysed instances, both

considering medians and minimum values. In order to test our results, the

algorithm was executed with the parameter values suggested in Juan et al.

(2015). Both series of results are comparable as were obtained using the same

computer and stopping criteria based on the number of iterations. Table 7

presents the parameter values used in the aforementioned paper. Instead of

setting fixed values, the authors introduced randomness by employing uniform

distributions. The lower and upper bounds were selected after some tests.

Table 8 shows the results obtained solving all instances with the proposed

list of sets (our results, OR), and with the set proposed in Juan et al. (2015)

(JR).

24



Table 6: Ranks of the results provided by our list and by 10 random sets.

Medoids Rank (medians) Rank (minimum values)

p01 1 3.5 (1-6)

p07 5 3.5 (1-6)

p09 2 2

p17 2 (1-3) 1

p19 6.5 (2-11) 10.5 (10-11)

p22 11 11

p23 1.5 (1-2) 1

pr06 5 1.5 (1-2)

Valid instances 0.75 0.75

Table 7: Sets of parameter values for comparison.

bM bR p*

Uniform (0.5, 0.8) Uniform (0.1, 0.2) Uniform (0.1, 0.5)

6. Discussion of the results

The comparison of the solutions shows that our procedure achieves better

results in most of the instances. Table 9 presents the average and the standard

deviation of the differences, and the p-values of the test to compare the mean

ranks of the results. It is a non-parametric test as the null hypothesis of the

Shapiro-Wilk test, a test of normality, was rejected in all cases. The means

are negatives, indicating that our methodology provides better solutions. The

p-values reveal that the differences of the mean ranks are not statistically sig-

nificant. Even though, the magnitude of the mean difference can be considered

relevant in the context of the MDVRP.

Results on all instances except the subset of representative instances selected

initially and those not analysed because of the null variation of their results al-

low us to demonstrate the good performance of our methodology, which is not

directly attributed to the instances deeply studied but to their representative-

25



Table 8: Instances experimental results.

Inst. OR medi-

ans (1)

OR, minimum

values (2)

JR, medians

(3)

JR, minimum

values (4)

% Gap

(1) - (3)

% Gap

(2) - (4)

p01 585.000 576.866 593.829 576.866 -1.509 0.000

p02 480.261 476.660 480.261 476.660 0.000 0.000

p03 644.464 641.186 649.229 641.186 -0.739 0.000

p04 1022.085 1019.570 1024.473 1024.062 -0.234 -0.441

p05 760.341 756.281 764.325 754.882 -0.524 0.185

p06 882.827 879.072 880.418 879.763 0.273 -0.079

p07 899.709 897.974 906.395 897.974 -0.743 0.000

p08 4440.534 4434.552 4438.407 4426.747 0.048 0.176

p09 3920.743 3906.561 3923.248 3900.274 -0.064 0.161

p10 3706.763 3667.344 3705.012 3687.054 0.047 -0.537

p11 3598.972 3584.691 3592.891 3585.690 0.169 -0.028

p12 1318.955 1318.955 1318.955 1318.955 0.000 0.000

p13 1318.955 1318.955 1318.955 1318.955 0.000 0.000

p14 1360.115 1360.115 1360.115 1360.115 0.000 0.000

p15 2573.393 2556.846 2573.393 2557.528 0.000 -0.027

p16 2605.565 2585.373 2605.565 2600.099 0.000 -0.570

p17 2720.231 2714.663 2725.799 2725.799 -0.205 -0.410

p18 3831.996 3806.783 3835.388 3806.783 -0.089 0.000

p19 3883.686 3883.686 3883.686 3881.427 0.000 0.058

p20 4080.348 4074.779 4091.482 4091.482 -0.273 -0.410

p21 5706.530 5692.789 5701.902 5692.789 0.081 0.000

p22 5808.738 5806.370 5806.480 5786.288 0.039 0.346

p23 6134.441 6128.873 6145.576 6123.306 -0.182 0.091

pr01 861.319 861.318 861.319 861.318 0.000 0.000

pr02 1330.495 1310.679 1331.543 1314.364 -0.079 -0.281

pr03 1813.634 1813.634 1814.452 1813.634 -0.045 0.000

pr04 2084.843 2077.582 2089.785 2079.832 -0.237 -0.108

pr05 2379.075 2359.947 2379.797 2368.525 -0.030 -0.363

pr06 2709.792 2693.680 2713.593 2696.504 -0.140 -0.105

pr07 1109.235 1109.235 1109.235 1109.235 0.000 0.000

pr08 1680.896 1674.930 1678.872 1674.594 0.120 0.020

pr09 2148.216 2147.192 2153.317 2142.650 -0.237 0.212

pr10 3016.255 3008.129 3028.606 3014.874 -0.409 -0.224

26



Table 9: Means and standard deviations of the differences and statistical tests.
Mean of

the dif-

ferences

Standard de-

viation of the

differences

P-value of the

comparison of

mean ranks

All instances
Medians -0.149 0.330 0.954

Minimum values -0.070 0.219 0.980

All instances except the studied sub-

set and those not analysed

Medians -0.117 0.247 0.942

Minimum values -0.100 0.217 0.942

ness, without considering the changes in the instances that where discarded,

which are due to randomness.

7. Conclusions

This paper has addressed the Parameter Setting Problem which, due to the

relevance of metaheuristics in a number of fields, is increasingly getting more

attention.

We have presented an overview of the main approaches: Parameter Control

Strategies (PCS), Parameter Tuning Strategies (PTS), and Instance-specific Pa-

rameter Tuning Strategies (IPTS). While PCS dynamically adapt the parameter

values during the resolution of an instance, PTS let the parameter values fixed

and employ them to solve several instances. IPTS represent a compromise solu-

tion, the parameter values are not modified during the search but they can be

different for each instance, depending on its features. The benefits and pitfalls

of each approach have been discussed. In addition, a new methodology which

stands out for being automated and, problem- and metaheuristic-independent,

has been presented. It incorporates techniques of clustering, which allows split-

ting the set of instances and, as a consequence, gives more flexibility to the fine-

tuning by analysing each subset independently, and Design of Experiments. As

a result, we have developed a methodology that avoids the strictness of common

PTS, which present only a set of parameter values, and the need of modifying

the main algorithm and spending more time on the resolution of instances that

characterizes PCS. At the same time, our methodology is simpler than IPTS as

it does not require a learning procedure able to recommend an instance-specific

27



set of parameter values. In order to illustrate and test our methodology, it has

been applied to a hybrid algorithm. The case study provides promising results.

8. Acknowledgments

This work has been partially supported by the Spanish Ministry of Economy

and Competitiveness (TRA2013-48180-C3-P, MTM2012-38067-C02-01, TRA2015-

71883-REDT), and FEDER. Likewise, we want to acknowledge the support re-

ceived by the Department of Universities, Research and Information Society of

the Catalan Government (2014-CTP-00001).

References

Adenso-Diaz, B., & Laguna, M. (2006). Fine-tuning of algorithms using frac-

tional experimental designs and local search. Operations Research, 54 , 99–

114.

Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., & Tierney, K.

(2015). Model-based genetic algorithms for algorithm configuration. In Pro-

ceedings of the 24th International Conference on Artificial Intelligence IJ-

CAI’15 (pp. 733–739). AAAI Press. URL: http://dl.acm.org/citation.

cfm?id=2832249.2832351.

Bartz-Beielstein, T., Parsopoulos, K. E., & Vrahatis, M. N. (2004). Design and

analysis of optimization algorithms using computational statistics. Applied

Numerical Analysis & Computational Mathematics, 1 , 413–433.

Battiti, R., & Brunato, M. (2005). Reactive search: machine learning for

memory-based heuristics. Technical Report Teofilo F. Gonzalez (Ed.), Ap-

proximation Algorithms and Metaheuristics, Taylor Francis Books (CRC

Press.

Battiti, R., & Brunato, M. (2010). Reactive search optimization: learning while

optimizing. In Handbook of Metaheuristics (pp. 543–571). Springer.

28

http://dl.acm.org/citation.cfm?id=2832249.2832351
http://dl.acm.org/citation.cfm?id=2832249.2832351


Battiti, R., & Tecchiolli, G. (1994). The reactive tabu search. ORSA journal

on computing , 6 , 126–140.

Beasley, D., Bull, D. R., Martin, R. R. et al. (1993). An overview of genetic

algorithms: Part 2, research topics. University computing , 15 , 170–181.

Birattari, M., & Kacprzyk, J. (2009). Tuning metaheuristics: a machine learn-

ing perspective volume 197. Springer.

Birattari, M., Yuan, Z., Balaprakash, P., & Stützle, T. (2010). F-race and

iterated f-race: An overview. In Experimental methods for the analysis of

optimization algorithms (pp. 311–336). Springer.

Boussäıd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization meta-

heuristics. Information Sciences, 237 , 82–117.

Bovet, D. P., & Crescenzi, P. (1994). Introduction to the Theory of Complexity .

Hertfordshire, UK, UK: Prentice Hall International (UK) Ltd.

Carvalho, A. R., Ramos, F. M., & Chaves, A. A. (2011). Metaheuristics for

the feedforward artificial neural network architecture optimization problem.

Neural Computing and Applications, 20 , 1273–1284.

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot

to a number of delivery points. Operations research, 12 , 568–581.

Conover, W. J. (1999). Practical Nonparametric Statistics. (3rd ed.). John

Wiley & Sons.

Coy, S. P., Golden, B. L., Runger, G. C., & Wasil, E. A. (2001). Using exper-

imental design to find effective parameter settings for heuristics. Journal of

Heuristics, 7 , 77–97.

Czarn, A., MacNish, C., Vijayan, K., Turlach, B., & Gupta, R. (2004). Statis-

tical exploratory analysis of genetic algorithms. Evolutionary Computation,

IEEE Transactions on, 8 , 405–421.

29



De Jong, K. (2007). Parameter setting in eas: a 30 year perspective. In Param-

eter setting in evolutionary algorithms (pp. 1–18). Springer.

Dobslaw, F. (2010). A parameter tuning framework for metaheuristics based

on design of experiments and artificial neural networks. In International

Conference on Computer Mathematics and Natural Computing . WASET.

Eiben, A. E., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in

evolutionary algorithms. Evolutionary Computation, IEEE Transactions on,

3 , 124–141.

Gendreau, M., Potvin, J.-Y., Bräumlaysy, O., Hasle, G., & Løkketangen, A.

(2008). Metaheuristics for the vehicle routing problem and its extensions: A

categorized bibliography . Springer.

Gunawan, A., Lau, H. C., & Wong, E. (2013). Real-world parameter tuning

using factorial design with parameter decomposition. In Advances in Meta-

heuristics (pp. 37–59). Springer.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical

learning . (2nd ed.). Springer.

Hooker, J. N. (1995). Testing heuristics: We have it all wrong. Journal of

Heuristics, 1 , 33–42.

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential model-based

optimization for general algorithm configuration. In Learning and Intelligent

Optimization (pp. 507–523). Springer.

Hutter, F., Hoos, H. H., Leyton-Brown, K., & Stützle, T. (2009). Paramils: an

automatic algorithm configuration framework. Journal of Artificial Intelli-

gence Research, 36 , 267–306.

Johnson, D. S. (2002). A theoreticians guide to the experimental analysis of

algorithms. Data structures, near neighbor searches, and methodology: fifth

and sixth DIMACS implementation challenges, 59 , 215–250.

30



Juan, A. A., Faulin, J., Jorba, J., Riera, D., Masip, D., & Barrios, B. (2011). On

the use of monte carlo simulation, cache and splitting techniques to improve

the clarke and wright savings heuristics. Journal of the Operational Research

Society , 62 , 1085–1097.

Juan, A. A., Pascual, I., Guimarans, D., & Barrios, B. (2015). Combining

biased randomization with iterated local search for solving the multidepot

vehicle routing problem. International Transactions in Operational Research,

22 , 647–667.

Lessmann, S., Caserta, M., & Arango, I. M. (2011). Tuning metaheuristics: A

data mining based approach for particle swarm optimization. Expert Systems

with Applications, 38 , 12826–12838.

Maron, O., & Moore, A. W. (1993). Hoeffding races: Accelerating model selec-

tion search for classification and function approximation. Robotics Institute,

(p. 263).

Martins, S. L., & Ribeiro, C. C. (2006). Metaheuristics and applications to

optimization problems in telecommunications. In Handbook of optimization

in telecommunications (pp. 103–128). Springer.

Montero, E., Riff, M.-C., & Neveu, B. (2014). A beginner’s guide to tuning

methods. Applied Soft Computing , 17 , 39–51.

Montgomery, D. C. (2008). Design and analysis of experiments. (8th ed.). John

Wiley & Sons.

Park, M.-W., & Kim, Y.-D. (1998). A systematic procedure for setting param-

eters in simulated annealing algorithms. Computers & Operations Research,

25 , 207–217.

Pavón, R., Dı́az, F., Laza, R., & Luzón, V. (2009). Automatic parameter tuning

with a bayesian case-based reasoning system. a case of study. Expert Systems

With Applications, 36 , 3407–3420.

31



Pongcharoen, P., Chainate, W., & Thapatsuwan, P. (2007). Exploration of ge-

netic parameters and operators through travelling salesman problem. Science

Asia, 33 , 215–222.

Ramos, I. C., Goldbarg, M. C., Goldbarg, E. G., & Neto, A. D. D. (2005).

Logistic regression for parameter tuning on an evolutionary algorithm. In

Evolutionary Computation, 2005. The 2005 IEEE Congress on (pp. 1061–

1068). IEEE volume 2.

Ridge, E., & Kudenko, D. (2007). Analyzing heuristic performance with re-

sponse surface models: prediction, optimization and robustness. In Proceed-

ings of the 9th annual conference on Genetic and evolutionary computation

(pp. 150–157). ACM.

Ries, J. (2009). Instance-based flexible parameter tuning for meta-heuristics

using fuzzy-logic. Ph.D. thesis University of Portsmouth.

Ries, J., Beullens, P., & Salt, D. (2012). Instance-specific multi-objective param-

eter tuning based on fuzzy logic. European Journal of Operational Research,

218 , 305–315.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and

validation of cluster analysis. Journal of computational and applied mathe-

matics, 20 , 53–65.

Smith, J. E. (2008). Self-adaptation in evolutionary algorithms for combina-

torial optimisation. In Adaptive and Multilevel Metaheuristics (pp. 31–57).

Springer.

Talbi, E.-G. (2009). Metaheuristics: from design to implementation volume 74.

John Wiley & Sons.

Theodoridis, S., & Koutroumbas, K. (2009). Pattern Recognition volume 74.

John Wiley & Sons.

32



Viana, A., Sousa, J. P., & Matos, M. A. (2005). Constraint oriented neighbour-

hoodsa new search strategy in metaheuristics. In Metaheuristics: progress as

real problem solvers (pp. 389–414). Springer.

Xu, J., Chiu, S. Y., & Glover, F. (1998). Fine-tuning a tabu search algorithm

with statistical tests. International Transactions in Operational Research, 5 ,

233–244.

Zennaki, M., & Ech-Cherif, A. (2010). A new machine learning based approach

for tuning metaheuristics for the solution of hard combinatorial optimization

problems. Journal of Applied Sciences, 10 , 1991–2000.

33


	Introduction
	Related work on the Parameter Setting Problem
	Parameter Control Strategies (PCS)
	Parameter Tuning Strategies (PTS)
	Instance-specific Parameter Tuning Strategies (IPTS)
	Approaches comparison

	Our approach
	General methodology

	Experimental results
	Case study: Biased Randomization and ILS for solving the Multi-Depot Vehicle Routing Problem (MDVRP)

	Implementation details
	Results

	Discussion of the results
	Conclusions
	Acknowledgments

