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Abstract 

Direct-current insulator-based dielectrophoresis (DC-iDEP) is a well-known technique that benefits from the electric 

field gradients generated by an array of insulating posts to separate or trap biological particles. In this work, we 

propose a novel figure of merit to find an efficient design of the post-array distribution in a microfluidic channel. To 

maximize the particle trapping in the post-array, while minimizing the required voltage, with a similar footprint and 

channel thickness, a parametric numerical analysis has been done focusing on the geometric parameters of the post-

array. It is found that the particle trapping condition along the central line of the transversal distance between posts 

can be defined as a new figure of merit to obtain an efficient design of the microposts array. Different post-array 

models with the variation of transversal distance (10 to 60 µm), longitudinal distance (10 to 80 µm) and post radius 

(10 to 150 µm) have been analyzed using COMSOL Multiphysics finite element software. The obtained results 

indicate that the radius post optimization allows the enhancement of the trapping condition between 56% (for a 

transversal distance of 10µm) up to 341% (for a transversal distance of 60µm). Based on the DC-iDEP numerical 

analysis on the microposts geometrical parameters for particle trapping maximization, we find out a new 

relationship between the optimum post radius and the transversal distance between the posts. According to the 

derived merit, the optimum post radius should be 40 µm more than the transversal distance between posts. For the 

validation of the numerical results, several microchannels with embedded post-arrays are manufactured in 

Polydimetilsiloxane (PDMS) and the particle trapping patterns of 6-μm-diameter polystyrene particles are measured 

experimentally. The experiments confirm the same trends as pointed out by the numerical analysis. The main 

advantage of these results is that they depend only on the geometry of the micropost array and are valid for trapping 

different particles suspended in different media. The results show that this new figure of merit and geometrical 

characterization can be used to reduce the required electric field to achieve effective particle trapping and, therefore, 

avoid the negative effects of Joule heating in cells or viable particles. 
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Abbreviation 
 
DEP     Dielectrophoresis  
DC       Direct current 
EK       Electronkinetic 
eDEP   Electrode based DEP 
iDEP   Insulator based DEP 
RBC    red blood cell 
 
1. INTRODUCTION 
 

Lab-on-a-chip is a powerful tool in analytical chemistry and medical engineering. The lab-on-a-chip integrated 

with microfluidic systems enables miniaturization, integration, and automation of complex biochemical assays due 

to their advantages, including low requirements for samples and reagents, rapid operation, high convenience, and 

low cos [1].  

Separation of cells or particles from a fluid is a vital step in many biochemical tests. Different microfluidic methods 

have been developed to this end (see review) [2-3]. Among these, the dielectrophoresis method (DEP) is a well-

known technique to separate particles even in small sample volume [4].  

Dielectrophoresis is a movement of particles caused by a polarization effect when a non-uniform electric field is 

applied to a channel with particles that have different conductivity than the medium. Since the dielectrophoretic 

force is proportional to the electric field gradient, it can appear either when direct current (DC) or alternate current 

(AC) is applied. The non-uniform electric field can be generated using an array of electrodes (electrode based, 

eDEP) [5-7] or an array of insulating posts (insulator based, iDEP).  

The iDEP can overcome most of the well-known limitations of eDEP, taking advantage of the fact that in the case of 

iDEP the electric field gradient is achieved by changing the path track of the field using insulator obstacles rather 

than using complex shaped electrodes [8]. For instance, iDEP devices can provide a higher throughput since the 

technique is not limited to thin channels that confine the fluid on the electrode surface [9] and, moreover, most iDEP 

devices are able to produce an electroosmotic flow (EOF) eliminating the need of an external driving force [10-11]. 

In the other hand, the use of just two electrodes placed in the channel inlet and the channel outlet, offers other 

advantages such as a more straightforward fabrication process, less fouling than with embedded electrodes, 

minimum bubble generation inside the channel and less electrochemical reactions [12]. These devices are more 

appropriate for metal-sensitive organic samples. The iDEP microdevices including two separated electrodes in inlet 

and outlet have been successfully employed for different applications: separation and concentration of live and dead 

bacteria[13-14] separation of white blood cells [15], red blood cells (RBC) [16] or blood cell separation in a saw-

tooth microchannel [17] (see the review [18]).  

The geometry of the insulating post-array in the microchannel is one of the most important influencing factors in the 

performance of iDEP microfluidic devices. The first application of insulating post arrays to generate iDEP was 

presented by Cummings and Singh in 2003. In their studies, they investigated the effect of diamond and circular 

shape of insulating post-array on the generated iDEP [11]. Barbulovic-Nad et al. in 2006 used an oil droplet as an 

adjustable insulating structure to change the distance between the insulating structures and study how this affected to 

the dielectrophoresis [19]. Kwon et al. in 2007 presented a study focused on the improvement of the circular-post 
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geometry subject to electrokinetic (EK) and dielectrophoretic forces using a mathematical model. Their results 

indicated that when the longitudinal spacing between the posts was 0.6 times the post radius then the lateral-to-

longitudinal force ratio was larger [20]. Nakano et al. in 2011 demonstrated iDEP-based manipulation of proteins 

using ellipsoidal and triangular shaped posts. Also their study presented an approximated numerical analysis of the 

electric field and the gradient of the electric field at the tip of the insulating posts [21]. Kim et al. in 2014 presented a 

simulation model to study the effect on protein concentration of circular and square post-arrays, both in-plane and 

out-of-plane [22]. Lalonde et al. in 2014 reported the effect of geometry on the trapping performance of iDEP. In 

their study, two different insulating-posts geometries (circle and diamond) were employed with a fixed spacing 

between them of 50 µm. The results indicated that the highest electric field gradient was achieved when diamond-

posts were used [23].  

Mohammadi et al. in 2015 presented a design that combined hydrodynamics and DC-iDEP flow for blood plasma 

separation using corrugated shape channel, which comprised 20 transversal distance from 16 µm to 127µm to study 

RBC trapping [24]. 

The aforementioned studies provide valuable insight into the effect of geometry on the DC-iDEP phenomena but 

they are focused on a particular geometry or a type of particles. On this basis, finding an efficient post-array 

geometry on DC-iDEP regardless the particle type, to minimize the required voltage as well as the Joule effect for 

the highest trapping condition is valuable particularly in those applications that require viable cell trapping. In this 

work, we propose a novel figure of merit to find an efficient design of the post-array distribution in a microfluidic 

channel for increasing the trapping value based on DC-iDEP. Furthermore, we provide a new relationship between 

geometrical parameters of micropost array including transversal distance between posts and radius of posts, not only 

to maximize the trapping value but also to minimize the required electric field and its effects.  

The current study also investigates the optimum value of the post radius and the longitudinal distance between the 

posts for a given transversal distance between posts in a micropost array of microfluidic channel, to enhance the 

particle trapping using the direct current iDEP (DC-iDEP) method. To this aim, numerical modeling and 

experiments are performed to study the effect of these geometrical parameters. The electric field, the electric field 

gradient and the trapping condition are calculated in more than 300 models numerically. The results of the 

experiments confirm our predictions and numerical analysis. The result of this work can be a road map and new 

approach for the microfluidic designers (design, efficient insulator obstacles or post array) to achieve the maximum 

advantages of the DC-iDEP method.  

This paper is organized as follows: Introduction in Section I, theoretical background, fabrication procedure and 

experimental setup are explained in Section II. Numerical models of DC-iDEP and experimental validation of the 

proposed device are presented in Section III. Concluding remarks are presented in Section IV. 

 
2. Materials and methods 

 
2.1. Theoretical background 
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When the DC electric field is applied in a channel, the ions from the electrolyte form an electric double layer 

(EDL) over the wall surface. The ions from the double layer are attracted to the negative electrode, producing an 

electroosmotic liquid flow (EO), described by the Helmholtz-Smulochowski equation according to which, 

theelectroosmotic velocity [16] is: 

𝑉𝑉�⃗𝑒𝑒𝑒𝑒 =  𝜇𝜇𝑒𝑒𝑒𝑒𝐸𝐸�⃗ =
𝜀𝜀𝑚𝑚𝜁𝜁𝑤𝑤 
𝜂𝜂

𝐸𝐸�⃗     ( 1) 

where 𝐸𝐸�⃗  is the electric field, is the electroosmotic mobility of the ionic fluid, is the zeta potential of the wall 

of microchannel,  is the viscosity and is the permittivity of the fluid. The dielectrophoretic velocity plays an 

important role in the particle trapping. The DEP velocity is [25]: 

𝑉𝑉�⃗𝐷𝐷𝐷𝐷𝐷𝐷 = −𝜇𝜇𝐷𝐷𝐷𝐷𝐷𝐷∇𝐸𝐸�⃗ 2 
( 2) 

where 𝑉𝑉�⃗𝐷𝐷𝐷𝐷𝐷𝐷 is the dielectrophoretic velocity and  𝜇𝜇𝐷𝐷𝐷𝐷𝐷𝐷 is the dielectrophoretic mobility which, in turn, can be 

expressed as [25]: 

𝜇𝜇𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑟𝑟2 𝜀𝜀𝑚𝑚𝑓𝑓𝐶𝐶𝐶𝐶 

3𝜂𝜂
 ( 3) 

 

where r is particle radius and, 𝑓𝑓𝐶𝐶𝐶𝐶 is the Clausius-Mossotti factor. In DC-iDEP the frequency is zero, therefore the 

Clausius-Mossotti factor depends only on particle and medium conductivities [16] 

𝑓𝑓𝐶𝐶𝐶𝐶 =
𝜎𝜎𝑃𝑃 − 𝜎𝜎𝑚𝑚
𝜎𝜎𝑃𝑃 + 2𝜎𝜎𝑚𝑚

 ( 4) 

where 𝜎𝜎𝑃𝑃, 𝜎𝜎𝑚𝑚 are particle and medium conductivities. The  Helmholtz-Smoluchowski equation describes also the 

electrophoretic EP experienced particle velocity [16] 

𝑉𝑉�⃗𝑒𝑒𝑒𝑒 =  𝜇𝜇𝑒𝑒𝑒𝑒𝐸𝐸�⃗ =
𝜀𝜀𝑚𝑚𝜁𝜁𝑝𝑝 
𝜂𝜂

𝐸𝐸�⃗  ( 5) 

Where ζp is the zeta potential of the particle. 

The electrosmotic flow (from positive to negative electrode) is diminished by the electrophoretic flow (from 

negative to positive electrode), so three flows should be considered: electroosmotic (EO), electrophoretic (EP) and 

dielectrophoretic (DEP). Since the EO mobility is significant compared with EP mobility therefore, the EK flow is 

mainly dominated by Electroosmotic flow. The total velocity of the particles due to the combined effects of 

electroosmosis (EO), electrophoresis (EP) and dielectrophoresis (DEP) can be expressed as the superposition of a 

linear electrokinetic velocity 𝑉𝑉�⃗𝐸𝐸𝐸𝐸  (EOF + EP flow) and a nonlinear DEP flow: 

 

𝑉𝑉�⃗ 𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑉𝑉�⃗𝐸𝐸𝐸𝐸 + 𝑉𝑉�⃗𝐸𝐸𝐸𝐸 + 𝑉𝑉�⃗𝐷𝐷𝐷𝐷𝐷𝐷 = �𝜇𝜇𝑒𝑒𝑒𝑒 − 𝜇𝜇𝑒𝑒𝑒𝑒�𝐸𝐸�⃗ − 𝜇𝜇𝐷𝐷𝐷𝐷𝐷𝐷∇𝐸𝐸�⃗ 2 

 
( 6) 

where V��⃗ tot is the total velocity and,  µep is electrophoretic mobility. 

eoµ wζ

η mε
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To achieve trapping of particles, DEP velocity must overcome EK velocity, since the direction of the EK flow, as 

observed experimentally, is from the positive electrode to the negative electrode in the microchannel (electroosmotic 

direction). Consequently, the net particle velocity along the electric field line is zero in the zone of trapping. Thus, 

the trapping DEP flow condition becomes as other authors reported [25-28]: 

𝑐𝑐 𝜇𝜇𝐷𝐷𝐷𝐷𝐷𝐷∇�𝐸𝐸.���⃗ 𝐸𝐸�⃗ �. 𝐸𝐸�⃗

𝜇𝜇𝐸𝐸𝐸𝐸 𝐸𝐸.���⃗ 𝐸𝐸�⃗
> 1 ( 7) 

The 𝐶𝐶 is a correction factor that used to match the experiment with models. 

Since we are not interested in the actual extension of the trapping zone, we do not include the DEP and EK mobility 

terms so the result is independent of the particle and medium properties. Therefore, the scalar field, defined by  

𝑇𝑇 ≡ ∇𝐸𝐸�⃗ 2

 𝐸𝐸�⃗ 2
. 𝐸𝐸 ���⃗ (𝑉𝑉 𝑚𝑚2� ), is called trapping value and calculated to observe the effect of trapping for different geometries. 

 

2.2. Chip fabrication and experimental setup 

 

Soft-lithography technique is used to fabricate a 1-cm long and 1-mm wide PDMS microchannels with an 

embedded insulating post-array of 1-mm wide and 2-mm-long in the middle of the channel. Then the fabricated 

PDMS channel is bonded to a glass cover via an oxygen plasma treatment. A schematic top view of the 

microchannel used in this work is shown in Figure 1 (a). Several microchannels with different post radius (20, 70 

and 150 µm) are fabricated. The transversal and longitudinal distances of the fabricated channels are then measured 

by confocal microscopy (Sensofar Plu neox, Sensofar -Tech, Terrassa, Spain). 

Figure 1 (b) shows a contour plot of the 70-µm-radius post array. The average longitudinal distance is 50±3 µm and 

transversal distance is 30±3 µm are shown in Figure 1 (d-e). The post-diameter is 140±6 µm and the post height is 

50±5 µm, as expected. 

Each channel has been washed four times with DI water and filled with DI water 5 hours before the experiments. 

Afterwards, a 4-µl suspension (2.5% aqueous suspension) of polystyrene red dyed beads with a diameter of 6 μm 

and a concentration of 2.10 × 10^8 particles/ml (Warrington, Pennsylvania USA) are diluted in 16-µl of de-ionized 

water (εr=80.1; ρ=~20 kΩcm) [29] with a resulting PH of 6.5 and the sample is introduced in the channel inlet.  

The zeta potential of the polystyrene beads suspension was measured by laser Doppler interferometry using a 

Malvern Zetamaster zeta potential analyzer, according to the results the zeta potential had to be < 0.05 mV. These 

results agree with values obtained by other authors such as Weiss et al. [30] who reported a DEP mobility of 1 um 

polystyrene beads of −2±0.4 × 10−8 cm4/(V2 s) or Ermolina and Morgan [31] who measured the zeta potential of 1-

µm-radius latex particles in almost 0.04 mV and therefore the electrophoretic mobility of 2.84 × 10−7cm2V−1s−1.  

Eventhough, for the used particles a combined zeta potential (ζw- ζp) mobility was measured experimentally by 

MicroPIV(Microscope Olympus IX71, Laser model NANO L135-15 PIV from Litron Lasers, Software INSIGHT 

3G from TSI) and its value turns out to be 1.12 × 10−4cm2V−1s−1 ± 0.1 × 10−4, in the order of magnitude of 

electroosmotic mobility in agreement with the previous studies. 

To ensure about the negative charge of the surface of the PDMS microchannel, new PDMS microchannel are used in 

each experiment. In order to record the images and videos of the particle response, a digital camera (Tucsen ISH500, 

6 
 



5.0 M pixel,) is connected to a micro inspection lens system Optem zoom 125C (with a broad 12.5:1 zoom range) 

and a 20X objective.  

 

Fig. 1 Schematics of the microchannels under test (b) Confocal image of a topography of the 70-µm-radius post-

array (c)Variables of the design (d) Longitudinal distance and post height (e) Transversal distance cross-section  

A DC voltage power supply (SF-9585 PASCO- California-USA) is utilized to generate the electric field. Two 

Platinum electrodes (Roland Consult-Germany) are placed in the inlet and outlet of the main channel to create the 

electric field. The microchannel and experimental setup is shown in Figure 2 (a, b). 

 

3. Results and discussion  

 

The geometry of the insulating post-array in the microchannel has a main role in the proficiency of the iDEP micro 

device for the particle or cell trapping in many biochemical and biological applications. In fact, the presence of 

insulators in the microchannel distorts the electric field, producing gradients. From equation (6) it can be deduced 

that the dielectrophoretic force exerted on particles in a medium is proportional to the gradient of squared electric 

field; therefore, it is concluded that the geometry of insulators directly influences on the electric field distributions 

and consequently the performance of iDEP micro devices.  
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In order to analyze the geometrical parameters of microarray on the distribution of the electric field and the gradient 

of the squared electric field, the numerical code from Electric current module of COMSOL Multiphysics 

commercial software is used.  

 

 
Fig. 2 (a) Experimental set-up and (b) DC iDEP microdevice schematic picture 

 

The parameters that define the geometry of the post array are shown in Figure 1 (a and c), where R is the radius of 

the post, K is the transversal distance between posts and L is the longitudinal distance between two adjacent posts. 

A 2D numerical model of a 1-cm long and 1-mm wide microchannel, with a 2-mm long and 1-mm wide array of 

circular posts located in the middle of the microchannel is defined. The electric potential difference of 100 V is 

applied between channel inlet and outlet as a boundary condition in COMSOL. The values of R and K are varied, 

and 300 different models are created and simulated. 

In order to obtain results independent from the particle and medium properties, the quantity of trapping value, 

T ≡ ∇E��⃗ 2

E��⃗ 2
E��⃗  , has been calculated in all simulations. T is a particle- and medium-independent scalar field that accounts 

for the trapping capability of each point. Since we are interested to study the dependency of individual geometrical 

parameters on the distribution of electric field, when one of the parameters is varied, the other parameters remain 
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unchanged. The following analysis elucidate more the influence of micro post-array geometry on the electric field 

distribution and consequently particle trapping.  

Grid independency for the trapping value simulation was checked to ensure that the solutions were independent of 

the number of elements, see supplementary information for more details. (Online Resource 1). 

3.1. Effect of post geometry on the distribution of electric field  

Saucedo-Espinosa et al [26] in their study about the effect of particle size and shape on the particle trapping post 

arrays pointed out that the analysis of the maximum trapping value on the line between two posts could help to 

establish a geometry of post array that unambiguously creates trapping. To deepen in this assumption, three circular 

posts with the radius of 20 µm, 70 µm, and 150 µm have been selected to make a preliminary study of the iDEP 

trapping with the purpose of finding a figure of merit that can be optimized. The transversal distance (K) is fixed to 

30 µm and L is fixed to 20 µm. The average trapping value (T) over the surface between the posts, and the 

maximum trapping value (T) on the line between the posts are shown for each geometry in Table 1, in order to 

determine if it is possible to optimize any of these parameters. 

In case (a), R =20 µm, the higher values of T, as it can be seen in Table 1, are mainly concentrated near the posts but 

are lower on the line between the two posts. 

 

Table 1. Different numerical modeling of trapping value by different R and constant K, L and voltage 

 
K=30 µm 
L=20 µm 

Voltage=100V 

(a) 

R=20µm 

(b) 

R=70 µm 

(c) 

R=150 µm 

Maximum value of 
T over the line 

7.49 ×108 1.11 ×109 9.43 ×108 

Average value of T 
over the surface 

7.39 ×108 6.63 ×108 3.60 ×108 
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While case (b), R = 70 µm, presents a more evenly distributed electric field gradient in comparison with R=20 µm. 

The maximum trapping value (T) on the plotted line is 1.11x109, while in case (a) this value is 7.49x108. This means 

that microparticle trapping occurs at a lower applied voltage for a radius of 70 µm. Note that the average trapping 

value (T) over the surface in case (a) is greater than in case (b). This is due to the fact that when the post radius is 

smaller, a greater electric field gradient is obtained. Therefore, the average value of trapping (T) over the surface 

will not be a correct criterion for the comparison of microparticle trapping because it is not optimizable. Moreover, 

it is observed in trapping experiments that effective filtering occurs when trapping takes place near (or at) the center 

of the channel. The average of the trapping value may have little sense as a figure of merit if trapping takes place 

mainly at zones far from the center of the channel. Aside from being optimizable, the maximum value of T in the 

central line of the channel has the advantage that reflects the existence of a trapping zone that, even if it is not 

extensive, can achieve effective filtering. We claim that optimization using this figure of merit should lead to 

behavior qualitatively similar to the one observed experimentally and can be useful as a guide to improve 

microfiltering designs because of its simplicity and ease of calculation even if it is not proved that it is the best 

possible figure of merit. 

As shown in case (c), where the radius of the posts is 150 µm, T is smaller in comparison with case (b). The 

maximum trapping value (T) along the middle line is 9.43 x108 which is smaller than in case (b). This shows that 

there will be an optimum value for the radius of the posts., The average of trapping value (T) over the surface in this 

case is about 3.60 x108 which is smaller than the two previous cases. It can be seen that as the radius of the posts 

decreases, keeping transversal and longitudinal distances constant, the T gets more intense and is mainly 

concentrated near the posts (see maximum of scale bar of figures 2.28×109 (V/m2)) also, the trapping zone shifts to 

the center of the posts by increasing post radius  

 

3.2 Experimental validation 
 

To experimentally observe the effect of insulating post-radius on trapping performance, a run of three different 

PDMS micro channels for each of the different radius post-arrays (R=20, 70, 150 µm) with the transversal distance 

equal to 30 µm and the longitudinal distance of 50 µm were tested. The aqueous suspension of 6-µm-diameter 

polystyrene microsphere particles diluted (1:4) in deionized water with a resulting PH of 6.5. Later this is introduced 

into the channels to carry out the trapping experiment. Then, DC voltages of 200, 350 and 500 V are applied to 

observe particle trapping for each post-array geometry. 

The DEP mobility, as presented in equation (1) for current polystyrene particles, is−1.06 × 10−18m4/(V2s). The 

negative sign of this value is due to the negative Clausius-Mossotti factor which is assumed as −0.5 for these 

particles under DC electric fields [23]. Figure 3 shows one example of the performance of trapping for each 

geometry 30 s after the electric field has been applied. 

Changing the geometry of the insulator post-array results in a change of the electric field distribution. This has an 

immediate effect on EK velocity, but also, through the gradient of the squared electric field, affects DEP velocity. 

Particle trapping can be achieved when the DEP contribution to particle velocity is larger than the EK contribution.  
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The performance of microparticle trapping of an insulating post-array with R=20 µm is shown in Figures 3 (a-c). 

The experimental pictures present particle trapping confined on the surface of the post and mainly concentrated near 

the posts. There is no particle trapping present in the separation zone between the posts. Thus, in order to achieve 

efficient particle separation a high DC voltage is required, see Supplementary movie (Online Resource 2). (R=20 

µm at 200, 350, 500V). Figures 3 (d-f) demonstrate efficient particle trapping of an insulating post-array with R=70 

µm starting at 200 V, see Supplementary movie (Online Resource 3). (R=70 µm at 200, 350, 500V). The observed 

performance implies that the maximum of the trapping value (T) along the line between the posts is a better figure of 

merit than the average of T over the surface. 

Fig. 3 Polystyrene beads' trapping pictures 30 s after applying the DC voltage of 200 V, 350 V and 500 V to a post-

array of radius (a-c) 20 µm (d-f) 70 µm, (g-i) 150 µm. 

 

An example of particle trapping for R=150 µm is depicted in Figures 3 (g-i). Streaming flow appears for 200 V and 

350 V and particle trapping is observed only for 500 V, see Supplementary movie (Online Resource 4). (R=150 µm 

at 200, 350, 500V). The experimental results indicate that the DEP velocity is greater than the EK velocity in an 

insulating post-array with R=70 µm, in which a significant number of particles have been separated with a lower 

voltage in comparison with R=20 and 150 µm. In addition, experimental results confirm the predicted numerical 

results that as the radius of the posts decreases, keeping transversal and longitudinal distances constant, trapping of 

particles gets more intense and is mainly concentrated near the posts. 
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3.3 Optimum radius of the post 

 

In order to find the optimum radius of the post, the maximum value of trapping (T) on the line between two 

adjacent posts has been calculated in 300 models of micropost arrays. In these models, the value of R varies between 

10 µm to 150 µm while the values of the transversal distance (K) changes between 10 µm to 60 µm. The value of L 

has been fixed to 20 µm and a voltage of 100 V is applied on a 1-cm long channel for all models.  

Figure 4 shows the result of the numerical simulation for the variation of the trapping value (T) on the line between 

the posts according to the posts radius for different transversal distance (K), to find the optimum R. The predicted 

results indicate that there is a specific radius of posts for each K, which presents the maximum value of the trapping 

value (T). This post radius is considered as the optimum post radius for the particle trapping. Furthermore, it can be 

highlighted that for all the post radius, the trapping value (T) increases significantly with decreasing the transversal 

distance from 60 µm to 10 µm.  

 
Fig. 4 Trapping versus radius of the posts for different K 

 

According to the predicted results (Figure 4), the relationship between the optimum radius R and the transversal 

distance K can be achieved as follows. 
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( 8) 

This equation is a global equation, which is independent of particle and medium properties.  

All optimum values of post radius (R) and the maximum trapping value (T) for each K (transversal distance varies 

between 10 and 60 µm) are presented in Table 2. In addition, this table shows the evolution of the trapping value T 

including both minimum and maximum value for a given K. Last row shows that the increase in the trapping value T 

from the non-optimized geometry to the optimum post radius can vary between 56% and 341% when the transversal 

distance varies from 10 to 60 µm. 

 

Table 2.Trapping value and optimum R for each K 

K (µm) 10 15 20 25 30 35 40 45 50 55 60 

Optimum R (µm) 50 56 60 66 70 76 80 86 90 95 100 

The maximum 

of  ∆E
��⃗ 2

E��⃗ 2
E��⃗ × 109 

4.39 2.63 1.83 1.39 1.11 0.914 0.774 0.668 0.586` 0.520 0.467 

The minimum 

of  ∆E
��⃗ 2

E��⃗ 2
E��⃗ × 109 

2.81 1.52 0.91 0.618 0.437 0.319 0.246 0.193 0.155 0.127 0.106 

Percentage of increase 
(%) 56.4 72.8 101 125 154 187 215 246 278 309 341 

 
3.4 Effect of longitudinal distance (L) 

  
In this section, the effect of the longitudinal distance between posts (L) has been studied for different K and R. The 

modeling result shows the effect of L on the trapping value (T), which is rather weak with monotonic behavior when 

R is smaller than 70 µm, however, when L is increased T value can be enhanced up to 0.05 %, when R is bigger than 

70 µm. The effect of L on the trapping value (T) for optimum R and different K is plotted in Figure 5.  

40 1optR K mµ= + ±
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Fig. 5 L effect on value of trapping for different K 

These results can be explained due to overlapping effect of the negative DEP zone from the previous post column on 

the positive DEP zone of the next post column. This overlapping effect disappears when L is increased and therefore 

the trapping value is enhanced, see Figure 5 (b).  

In summary, the obtained results are independent of particle and medium properties and can be applied to all 

particles and mediums. The numerical results show that the modification of geometrical parameters of the post-array 

can significantly reduce the required electric potential to achieve effective enrichment and particle trapping. 

Moreover, the set of experimental results validates the numerical simulation results which show that for constant 

transversal distance between posts (i.e 30 µm) there is an optimum radius of the post (i.e. for k= 30 µm isR=70 µm) 

to achieve the maximum trapping value. 

Recently, the performance of two different insulating post-array geometries including circle and diamond post shape 

have been studied [23]. Further more, circular and square post-arrays have been used in-plane and out-of-plane for 

protein concentration [22] and ellipse and triangle-shaped posts have been used for manipulation of proteins [21] 

None of these previous studies were based on an independent geometrically optimized design.  

The use of the most efficient post-array arrangement derived from obtained relationship (equation 8), opens the 

possibility to improve the previous investigations or implement of future study not only to minimize the required 

voltage to achieve trapping, but also minimizing the Joule effect. 

 

3 Concluding remarks 
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To ensure an efficient trapping design, the geometry of the insulating post-array in the microchannel is one of the 

most important factors in the performance of iDEP microfluidic devices. Cummings and Singh already meantioned 

the importance of the post array distribution on the efficiency of iDEP trapping in 2003 [11], later Barbulovic-Nad et 

al. in 2006 proposed an active method using oil droplets to adjust the insulating structure to be able to modify the 

trapping efficiency [19]. The idea of proving the microfluidics designers with simple equations or relationships 

between post array parameters started to be explored by Kwon et al. in 2007 who proposed that when the 

longitudinal spacing between the posts was 0.6 times the post radius then the lateral-to-longitudinal force ratio was 

larger [20], this study ensure a maximum in area between posts, but it could be that the maximum trapping value 

occurred near the post walls without a guarantee that the trapping path was completely blocked. Saucedo et al.  in 

their recent study [26] already introduce the idea that to achieve filtration/trapping, trapping has to be guarantee in 

the line between the two posts.  

This paper presents a strategy to find the efficient geometry of the post-array distribution in DC-iDEP microdevices 

that maximizes the trapping condition, while minimizing the required voltage, similar footprint and the channel 

thickness. COMSOL Multiphysics software has been used to perform a parametric characterization of the geometric 

parameters of the post-array based on a new proposed figure of merit (the maximum of trapping condition along the 

central line of the transversal distance between posts, T). A high value of this figure of merit will denote the 

existence of trapping zones close to the center of the channel and therefore will be an indicator of effective filtering. 

It is reasonable to expect that optimization of this figure of merit will reproduce, at least qualitatively, real behavior. 

More than 300 different post-array geometric models with transversal distance between posts varying from 10 to 60 

µm have been investigated. The results of the geometrical characterization show that the efficient micropost array 

can reduce the required electric field to achieve an effective trapping and, therefore, avoid the negative effects of 

Joule heating. The results indicate that there is a specific radius of posts (R) for each transversal distance (K) which 

can enhance the trapping condition between (56.1% to 341%) compared to the initial non-optimized design. This 

behavior has been captured through a proposed relationship between the transversal distance between posts (K) and 

the optimum posts radius (R). Moreover, the obtained results show that the effect of increasing of the longitudinal 

distance (L) on trapping value is insignificant when K is smaller than 30 µm but trapping value is enhanced (0.05%) 

when K is more than 30 µm. The numerical results are validated using microchannels with embedded post-arrays, 

manufactured in Polydimetilsiloxane (PDMS) to trap polystyrene beads. Experiments confirm a higher trapping for 

those micropost geometries closer to the optimal value determined by numerical simulation, reinforcing the idea that 

our figure of merit is useful at least to predict qualitatively the performance of a microfiltering device. The proposed 

figure of merit depends only on the geometry of the micropost array and show that the geometrical characterization 

results can be used not only to reduce the required electric field to achieve effective trapping of any kind of particle, 

but also avoid the negative effects of Joule heating specially when dealing with biological cells. It also has the 

advantage that is easy to calculate and has a clear physical interpretation. Therefore, the use of the derived equation 

can be an important milestone for a wider use of DC-iDEP devices for trapping viable cells. 
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