DIGRAPHS WITH WALKS OF EQUAL LENGTH BETWEEN VERTICES

M.A. Fiol
Universidad Politécnica de Catalunya

I. Alegre
Universidad Politécnica de Catalunya

J.L.A. Yebra
Universidad Politécnica de Catalunya

J. Fábrega
Universidad Politécnica de Catalunya

ABSTRACT

This paper studies digraphs that have walks of equal length \(\ell \) between vertices. When such a digraph models a communication network, this means that any message can be sent from its origin to its destination with precisely \(\ell \) delay time units. It is shown that a digraph \(D \) has this property unless it is a generalized cycle.

When \(D \) has the maximum possible order there is just one such walk between vertices. Among such digraphs are the Good-de Bruijn's. Other families are constructed by adequately modifying these digraphs and using some well-known constructions: line digraphs and conjunction of digraphs.
1. Equi-reachable digraphs

Let $D = (V, A)$ be a strongly connected digraph, and for any vertex x call $\Gamma(x)$ the set of vertices adjacent from x. Analogously call $\Gamma(W)$ the set of vertices adjacent from the vertices of $W \subseteq V$, and $\Gamma^{n}(W) = \Gamma(\Gamma^{n-1}(W))$. The digraph D has walks of equal length m between vertices iff for all $x \in V$

$$\Gamma^{m}(x) = V$$

(1)

If l is the smallest such m we say that D is l-reachable. For convenience, we shall use the term equi-reachable for digraphs that are l-reachable for some l, that is for digraphs with walks of equal length between vertices.

In fact, for D to be equi-reachable it suffices that (1) holds for some $x \in V$, since then

$$\Gamma^{m+1}(x) = \Gamma(\Gamma^{m}(x)) = \Gamma(V) = V$$

because D is strongly connected. Thus $\Gamma^{n}(x) = V$ for all $n \geq m$ and then, if D has diameter k, there are walks through x of length $m + k$ between any two vertices of D. Therefore D is l-reachable for some $l \leq m + k$.

Trivially, (1) can not hold when D is a cycle or a bipartite digraph. More generally, if D is a generalized cycle in the sense that V is the disjoint union of $r > 1$ subsets,

$$V = \bigcup_{i=0}^{r-1} V_i, \quad V_i \cap V_j = \emptyset \text{ for } i \neq j$$

(2)

and, for i modulo r

$$\Gamma(V_i) = V_{i+1}^{i}, \quad 0 \leq i \leq r-1,$$

(3)
it can not be equi-reachable. The following result shows that this
is necessarily the structure of such digraphs.

Theorem 1. A strongly connected digraph D is equi-reachable un-
less it is a generalized cycle.

Proof. Suppose that D is not equi-reachable and consider for $x \in V$
the sequence

$$x, \Gamma(x), \Gamma^2(x), \ldots, \Gamma^n(x), \ldots$$

(4)

of nontrivial subsets of 2^V. Since necessarily repetitions will
occur, let $\Gamma^m(x) = \Gamma^m(x)$ be the first one. Then

$$\Gamma^{m+r+t}(x) = \Gamma^t(\Gamma^m(x)) = \Gamma^t(\Gamma^m(x)) = \Gamma^{m+t}(x)$$

so that for $n \geq m$ the sets

$$V_i = \Gamma^{m+i}(x) \quad 0 \leq i \leq r-1$$

(5)

recur periodically in the above sequence. As D is strongly con-
connected any $y \in V$ must appear in the periodic part of the sequence.

Therefore

$$V = \{ U V_i, \quad 0 \leq i \leq r-1 \}$$

and in particular $r > 1$, since $V_i = \Gamma^{m+i}(x) \neq V$.

From its construction and the periodicity the sets V_i satisfy
(3). Therefore to prove that D is a generalized cycle it suffices
to show that they are disjoint. Suppose on the contrary that there
exists $y \in V_i \cap V_j$, $i \neq j$, and let $h = d(y, x)$, so that $x \in \Gamma^h(y)$.

Then

$$x \in \Gamma^h(y) \Rightarrow \Gamma^m(x) \subseteq \Gamma^{m+h}(y)$$
\[y \in V_i \Rightarrow \Gamma^{m+h}(y) \subseteq \Gamma^{m+h+m+i}(x) = \Gamma^{m+t_1}(x) \]
\[y \in V_j \Rightarrow \Gamma^{m+h}(y) \subseteq \Gamma^{m+h+m+j}(x) = \Gamma^{m+t_2}(x) \]

where \(0 \leq t_1, t_2 \leq r-1 \) and \(t_1 \neq t_2 \) because \(i \neq j \). So \(\Gamma^m(x) \subseteq \Gamma^{m+t}(x) \) for some \(1 \leq t \leq r-1 \). But this implies \(\Gamma^{m+t}(x) \subseteq \Gamma^{m+2t}(x) \) and then
\[\Gamma^m(x) \subseteq \Gamma^{m+t}(x) \subseteq \ldots \subseteq \Gamma^{m+rt}(x) = \Gamma^m(x) \]

so that \(\Gamma^m(x) = \Gamma^{m+t}(x) \) with \(1 \leq t \leq r-1 \) against the choice for \(r \).

Remarks

1.- When the digraph \(D \) is the Cayley diagram of a (finite) group \(G \), the above decomposition of \(V \) corresponds to the partitioning of \(G \) into cosets given by the normal subgroup \(H \) of those elements that can be expressed in terms of the generators in such a way that the sum of exponents equals zero. Then \(r \) equals the greatest common divisor of the sums of exponents in the defining relators.

2.- We can characterize \(\ell \)-reachable digraphs as those whose adjacency matrix \(A \) is such that \(A^\ell \) is positive (that is, \((A^\ell)_{ij} > 0 \) for all \(i, j \)), and therefore by the fact that its spectral radius \(\rho(A) \) is a simple eigenvalue—greater in magnitude than any other eigenvalue, see, for instance, \(|1| \).

2. Some constructions

We examine in this section the behaviour of equi-reachable and non-equireachable digraphs under some well-known graph constructions. It is evident that a digraph \(D \) is \(\ell \)-reachable if and
only if its converse digraph (i.e., the digraph obtained by reversing the orientation of the arcs in D) is \(l \)-reachable. More important are the results on the line digraph of D and the conjunction of two digraphs \(D_1 \) and \(D_2 \).

2.1. The line digraph

In the line digraph \(L(D) \) of a digraph \(D = (V,A) \) each vertex represents an arc of \(D \), that is

\[
V(L(D)) = \{uv \mid [u,v] \in A(D)\},
\]

and two vertices are adjacent when the corresponding arcs are adjacent in \(D \). Its order is the size (i.e., number of arcs) of \(D \). Then if \(D \) is strongly regular of degree \(d \), the order of \(L(D) \) is \(d \) times the order of \(D \).

The main result in our context is

Theorem 2.- A digraph is \(l \)-reachable if and only if its line digraph is \((l+1)\)-reachable.

Proof.- If \(D \) is \(l \)-reachable there is a walk of length \(l+1 \) between any two vertices \(uv, wz \) of \(L(D) \) that uses the walk of length \(l \) from \(v \) to \(w \) in \(D \). And the argument can be reversed.

Using Theorem 1 it follows that \(D \) is a generalized cycle if and only if \(L(D) \) is a generalized cycle. In fact, in this case both decompose into the same number \(r \) of subsets.

2.2. Conjunction of digraphs

The conjunction \(D_1 \ast D_2 \) of two digraphs \(D_1 = (V_1,A_1) \) and \(D_2 = (V_2,A_2) \) is the digraph with set of vertices \(V = V_1 \times V_2 \) and adjacency rule

\[
[(x,y),(z,t)] \in A \iff [x,z] \in A_1 \text{ and } [y,t] \in A_2
\]

(7)
It follows that its order is the product of the orders of D_1 and D_2 and its maximum out-degree the corresponding product of out-degrees, and that $D_1 \ast D_2$ is strongly regular if and only if both D_1 and D_2 are strongly regular.

When D_1 is ℓ_1-reachable and D_2 is ℓ_2-reachable their conjunction is ℓ-reachable with $\ell = \max \{\ell_1, \ell_2\}$, (use ℓ length walks from x to z in D_1 and from y to t in D_2 to construct a length ℓ walk from (x, y) to (z, t) in $D_1 \ast D_2$). Analogously it is easily seen that if one or both digraphs are not equi-reachable nor is their conjunction.

3. Largest digraphs

If D is ℓ-reachable and has maximum out-degree d its order is at most $N = d^\ell$, since this is the maximum number of different walks of length ℓ. To attain this bound there should be just one walk of length ℓ between any two vertices. It follows that the adjacency matrix A of D must verify the matrix equation $A^\ell = J$, and therefore D ought to be strongly regular of degree d (i.e., with in- and out-degree of all vertices equal to d), see $|4|$. Note also that these digraphs must be geodetic (i.e., with just one shortest path between any two vertices).

The ℓ-reachable digraphs with d^ℓ vertices have been studied by N.S. Mendelsohn in $|6|$ as "UPP digraphs" (digraphs with the unique path property of order ℓ), and by Conway and Guy, unaware of the work of Mendelsohn, in $|2|$ as "tight precisely ℓ-steps digraphs", using them to construct large transitive digraphs of given diameter. We use here Mendelsohn's terminology.

Among the UPP digraphs are the well-known Good-de Bruijn digraphs, whose set of vertices consist of all length ℓ words from an alphabet of d letters, and with a vertex x adjacent to y if the last $\ell-1$ letters of x coincide with the first $\ell-1$ letters of y.
But they are not the only UPP digraphs. For instance, for \(d=3 \) and \(\ell=2 \) Mendelsohn presents in \(|6|\) five other non-isomorphic such digraphs that can be seen as models of groupoids. More generally, UPP digraphs can be seen as models of a universal algebra, see \(|7|\).

We describe below two direct methods of constructing digraphs of this kind for any \(d \geq 3 \) and \(\ell \geq 2 \) by adequately modifying the Good-de Bruijn digraphs, that when \(d=3 \) and \(\ell=2 \) produce the five above-mentioned digraphs.

Since, from Theorem 2, the line digraph of an \(\ell \)-reachable digraph of order \(N = d^\ell \) is a \((\ell+1)\)-reachable digraph of order \(dN = d^{\ell+1} \), it suffices to construct \(2 \)-reachable digraphs with order \(N = d^2 \) and then their iterated line-digraphs.

Consider then the Good-de Bruijn digraph of all length 2 sequences of \(d \) digits, \(d \geq 3 \), that is

\[V = \{x_0x_1, \ x_1 \in X\}, \quad X = \{0,1,\ldots,d-1\} \]

and \(x_0x_1 \) is adjacent to \(x_1x_2 \) for all choices of \(x_2 \in X \).

For the first method, let \(a_0, a_1, \ldots, a_{d-1} \) be \(d \) (not necessarily different) permutations of \(X \) such that \(a_j(0) = 0 \), and modify the Good-de Bruijn digraph by replacing each arc \([0i,ij]\) with the arc \([0i,a_j(i)j]\) for \(i,j = 0,1,\ldots,d-1 \) (in fact for \(i=0 \) there is no alteration). To see that the resulting digraph is still \(2 \)-reachable (hence strongly regular) it suffices to consider the following walks from \(x_0x_1 \) to \(y_0y_1 \):

1. If \(x_0 \neq 0, x_1 \neq 0 \)
 \[x_0x_1 \to x_1y_0 \to y_0y_1. \]
2. If \(x_0 = 0, x_1 \neq 0 \), setting \(j = y_0 \)
 \[0x_1 \to a_j(x_1)j \to jy_1 = y_0y_1 \]
 since \(x_1 \neq 0 \) implies \(a_j(x_1) \neq 0 \).
(3) If \(x_1 = 0 \), setting \(j = y_1, i = a_{j}^{-1}(y_0) \)
\[
x_00 \to 0i \to a_{j}(i) j = y_0y_1.
\]

Alternatively, consider 2 permutations of \(X, \alpha \) and \(\beta \), such that \(\alpha(1)=1 \) and \(\beta(0)=0 \), and modify the Good-de Bruijn digraph by replacing each arc \([0i,11]\) with the arc \([0i,\alpha(i)1]\) for all \(i \), and also each arc \([1i,00]\) with the arc \([1i,\beta(i)0]\) for all \(i \). The new digraph is still 2-reachable as it can be seen by adequately adapting the previous reasoning. For example the length 2 walk from \(x_00 \) to \(y_01 \), \(x_0 \neq 0 \), go through \(0y_0 \) if \(y_1 \neq 1 \) and through \(0\alpha^{-1}(y_0) \) if \(y_1 = 1 \).

When \(d=3 \) the choices of \(\alpha_0, \alpha_1 \) and \(\alpha_2 \) as

\[
\begin{align*}
\alpha_0 &= (1,2) & \alpha_1 &= 1 & \alpha_2 &= 1 & (D_1) \\
\alpha_0 &= 1 & \alpha_1 &= (1,2) & \alpha_2 &= 1 & (D_2)
\end{align*}
\]

for the first method, and the choices of \(\alpha \) and \(\beta \) as

\[
\begin{align*}
\alpha &= (0,2) & \beta &= (1,2) & (D_3)
\end{align*}
\]

for the second, yield three non-isomorphic 2-reachable digraphs.

The other two, besides Good-de Bruijn's, are the converse digraphs of \(D_2 \) and \(D_3 \).

The digraphs \(D_2 \) and \(D_3 \) are non-planar, so they are counterexamples to the conjecture of Mendelsohn in \(|5| \) and \(|6| \).

The above constructions require \(d \geq 3 \). For \(d=2 \) and \(k \geq 3 \) analogous techniques yield non-isomorphic UPP digraphs. For instance if \(\ell=3 \), besides the Good-de Bruijn digraph, there are two other 3-reachable digraphs. One is shown in Figure 1 and the other one is its converse digraph.
This digraph is useful to verify a question raised by Mendelsohn in [6]. For given values of l and d, he calculates the number of elementary circuits of length $n \leq l+1$ in the Good-de Bruijn digraphs. He shows that all UPP digraphs have the same number of elementary circuits of length $n \leq l$ and wonders if this result still holds for $n > l(n \leq d^l)$. However, already for $d=2$, $l=3$ and $n=5$ the Good-de Bruijn digraph has 2 elementary circuits while the digraph of Figure 1 has 3. Moreover, their line digraphs may be used to verify that even for $n=l+1$ the result does not hold.

REFERENCES

