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Abstract

In this paper we propose a causal analog to
the purely observational Dynamic Bayesian Net-
works, which we call Dynamic Causal Networks.
We provide a sound and complete algorithm
for identification of Dynamic Causal Networks,
namely, for computing the effect of an interven-
tion or experiment, based on passive observa-
tions only, whenever possible. We note the ex-
istence of two types of confounder variables that
affect in substantially different ways the identifi-
cation procedures, a distinction with no analog in
either Dynamic Bayesian Networks or standard
causal graphs. We further propose a procedure
for the transportability of causal effects in Dy-
namic Causal Network settings, where the result
of causal experiments in a source domain may be
used for the identification of causal effects in a
target domain.

1 INTRODUCTION

Bayesian Networks (BN) are a canonical formalism for
representing probability distributions over sets of variables
and reasoning about them. A useful extension for modeling
phenomena with recurrent temporal behavior are Dynamic
Bayesian Networks (DBN) . While regular BN are directed
acyclic graphs, DBN may contain cycles, with some edges
indicating dependence of a variable at time t+1 on another
variable at time t. The cyclic graph in fact compactly rep-
resents an infinite acyclic graph formed by infinitely many
replicas of the cyclic net, with some of the edges linking
nodes in the same replica, and others linking nodes in con-
secutive replicas.

BN and DBN model conditional (in)dependences, so they
are restricted to observational, non-interventional data or,
equivalently, model association, not causality. Pearl’s
causal graphical models and do-calculus (Pearl, 1994) are

a leading approach to modeling causal relations. They are
formally similar to BN, as they are directed acyclic graphs
with variables as nodes, but edges represent causality. A
new notion is that of a confounder, an unobserved variable
X that causally influences two variables Y and Z so that
the association between Y and Z may erroneously be taken
for causal influence. Confounders are unnecessary in BNs
since the association between Y and Z represents their cor-
relation, with no causality implied. Causal graphical mod-
els allow to consider the effect of interventions or experi-
ments, that is, externally forcing the values of some vari-
ables regardless of the variables that causally affect them,
and studying the results.

The do-calculus is an algebraic framework for reasoning
about such experiments: An expression Pr(Y |do(X)) in-
dicates the probability distribution of a set of variables Y
upon performing an experiment on another set X . In some
cases, the effect of such an experiment can be obtained
from observational data only; this is convenient as some
experiments may be impossible, expensive, or unethical to
perform. When, for a given causal network, the expression
Pr(Y |do(X)) can be rewritten as an expression contain-
ing only observational probabilities, without a do operator,
we say that it is identifiable. (Shpitser and Pearl, 2006;
Huang and Valtorta, 2006) showed that a do-expression is
identifiable if and only if it can be rewritten in this way
with a finite number of applications of the three rules of
do-calculus, and (Shpitser and Pearl, 2006) proposed the
ID algorithm which performs this transformation if at all
possible, or else returns fail indicating non-identifiability.

In this paper we use a causal analog of DBNs to model phe-
nomena where a finite set of variables evolves over time,
with some variables causally influencing others at the same
time t but also others at time t + 1. The infinite DAG rep-
resenting these causal relations can be folded, if regular
enough, into a directed graph, with some edges indicat-
ing intra-replica causal effects and other indicating effect
on variables in the next replica. Central to this representa-
tion is of course the intuitive fact that causal relations are
directed towards the future, and never towards the past.



Existing work on dynamic causal models focuses on the
discovery of causal models from data and on causal rea-
soning given a causal model. Regarding the discovery of
causal models in dynamic systems (Iwasaki and Simon,
1989) and (Dash and Druzdzel, 2008) propose an algo-
rithm to establish an ordering of the variables correspond-
ing to the temporal order of propagation of causal effects.
Methods for the discovery of cyclic causal graphs from data
have been proposed using independent component analysis
(Lacerda et al., 2012) and using local d-separation crite-
ria (Meek, 2014). Existing algorithms for causal discovery
from static data have been extended to the dynamic setting
by (Moneta and Spirtes, 2006) and (Chicharro and Panzeri,
2015). (Dahlhaus and Eichler, 2003; White and Lu, 2010;
White et al., 2011) discuss the discovery of causal graphs
from time series by including granger causality concepts
into their causal models. Our paper does not address causal
discovery from data. Given the formal description of a dy-
namic system under a set of assumptions, our paper pro-
poses algorithms that identify the modified trajectory of the
system over time, after an intervention.

Dynamic causal systems are often modeled with sets of dif-
ferential equations. However (Dash and Druzdzel, ) (Dash
and Druzdzel, 2001) (Dash, 2005) show the caveats of
causal discovery of dynamic models based on differential
equations which pass through equilibrium states, and how
causal reasoning based on such models may fail. (Voort-
man et al., 2012) propose an algorithm for discovery of
causal relations based on differential equations while en-
suring those caveats due to system equilibrium states are
taken into account. Time scale and sampling rate at which
we observe a dynamic system play a crucial role in how
well the obtained data may represent the causal relations
in the system. (Aalen et al., 2014) discuss the difficulties
of representing a dynamic system with a DAG built from
discrete observations and (Gong et al., 2015) argue that
under some conditions the discovery of temporal causal
relations is feasible from data sampled at lower rate than
the system dynamics. Our paper assumes that the observa-
tion time-scale is sufficiently small compared to the sys-
tem dynamics, and that causal models include the non-
equilibrium causal relations and not only those under equi-
librium states. We assume that a stable set of causal de-
pendencies exist which generate the system evolution along
time. Our proposed algorithms take such models (and un-
der these assumptions) as an input and predict the system
evolution upon intervention on the system.

Regarding causal reasoning given a dynamic causal model,
one line of research is based on time series and granger
causality concepts (Eichler and Didelez, 2010; Eichler and
Didelez, 2012; Eichler, 2012). (Queen and Albers, 2009)
use multivariate time series for identification of causal
effects in traffic flow models. (Lauritzen and Richard-
son, 2002) discuss intervention in dynamic systems in

equilibrium, for several types of time-discreet and time-
continuous generating processes with feedback. (Didelez,
2015) uses local independence graphs to represent time-
continuous dynamic systems and identify the effect of in-
terventions by re-weighting involved processes.

Existing work on causal models does not thoroughly ad-
dress causal reasoning in dynamic systems using do-
calculus. (Eichler and Didelez, 2010; Eichler and Didelez,
2012; Eichler, 2012) discuss back-door and front-door cri-
teria in time-series but do not extend to the full power of
do-calculus as a complete logic for causal identification.
One of the advantages of do-calculus is its non-parametric
approach so that it leaves the type of functional relation be-
tween variables undefined. Our paper extends the use of
do-calculus to time series while requiring less restrictions
than parametric causal analysis. Parametric approaches
may require to differentiate the intervention impacts de-
pending on the system state, non-equilibrium or equilib-
rium, while our non parametric approach is generic across
system states.

Required work is to precisely define the notion and seman-
tics of do-calculus and unobserved confounders in the dy-
namic setting and investigate whether and how existing do-
calculus algorithms for identifiability of causal effects can
be applied to the dynamic case.

As a running example (more for motivation than for its ac-
curate modeling of reality), let us consider two roads join-
ing the same two cities, where drivers choose every day
to use one or the other road. The average travel delay be-
tween the two cities any given day depends on the traffic
distribution among the two roads. Drivers choose between
a road or another depending on recent experience, in par-
ticular how congested a road was last time they used it.
Figure 1 indicates these relations: the weather(w) has an
effect on traffic conditions on a given day (tr1, tr2) which
affects the travel delay on that same day (d). Driver experi-
ence influences the road choice next day, impacting tr1 and
tr2. To simplify, we assume that drivers have short mem-
ory, being influenced by the conditions on the previous day
only. This infinite network can be folded into a finite repre-
sentation as shown in Figure 2, where +1 indicates an edge
linking two consecutive replicas of the DAG. Additionally,
if one assumes the weather to be an unobserved variable
then it becomes a confounder as it causally affects two ob-
served variables, as shown in Figure 3. We call the con-
founders with causal effect over variables in the same time
slice static confounders, and confounders with causal effect
over variables at different time slices dynamic confounders.
Our models allow for causal identification with both types
of confounders, as will be discussed in Section 4.

This setting enables the resolution of causal effect identi-
fication problems where causal relations are recurrent over
time. These problems are not solvable in the context of



classic DBNs, as causal interventions are not defined in
such models. For this we use causal networks and do-
calculus. However, time dependencies can’t be modeled
with static causal networks. As we want to predict the tra-
jectory of the system over time after an intervention, we
must use a dynamic causal network. Using our example,
in order to reduce travel delay traffic controllers could con-
sider actions such as limiting the number of vehicles admit-
ted to one of the two roads. We would like to predict the
effect of such action on the travel delay a few days later,
e.g. Pr(dt+α|do(tr1t)).

Our contributions in this paper are:

• We introduce Dynamic Causal Networks (DCN) as
an analog of Dynamic Bayesian Networks for causal
reasoning in domains that evolve over time. We
show how to transfer the machinery of Pearl’s do-
calculus (Pearl, 1994) to DCN.

• We extend causal identification algorithms (Tian,
2002; Shpitser and Pearl, 2006; Shpitser et al., 2012)
to the identifiability of causal effects in DCN settings.
Given the expression P (Yt+α|do(Xt)), the algorithms
either compute an equivalent do-free formula or con-
clude that such a formula does not exist. In the first
case, the new formula provides the distribution of vari-
ables Y at time t + α given that a certain experiment
was performed on variables X at time t. For clar-
ity, we present first an algorithm that is sound but not
complete (Section 4), then give a complete one that is
more involved to describe and justify (Section 5).

• Unobserved confounder variables are central to the
formalism of do-calculus. We observe a subtle dif-
ference between two types of unobserved confounder
variables in DCN (which we call static and dy-
namic). This distinction is genuinely new to DCN,
as it appears neither in DBN nor in standard causal
graphs, yet the presence or absence of unobserved dy-
namic confounders has crucial impacts on the post-
intervention evolution of the system over time and on
the computational cost of the algorithms.

• Finally, we extend from standard Causal Graphs to
DCN the results by (Pearl and Bareinboim, 2011) on
transportability, namely on whether causal effects ob-
tained from experiments in one domain can be trans-
ferred to another domain with similar causal structure.
This opens the way to studying relational knowledge
transfer learning (Pan and Yang, 2010) of causal in-
formation in domains with a time component.

Figure 1: A dynamic causal network. The weather w has
an effect on traffic flows tr1, tr2, which in turn have an
impact on the average travel delay d. Based on the travel
delay car drivers may choose a different road next time,
having a causal effect on the traffic flows.

2 PREVIOUS DEFINITIONS AND
RESULTS

In this section we review the definitions and basic results
on the three existing notions that are the basis of our work:
DBN, causal networks, and do-calculus. New definitions
introduced in this paper are left for Section 3.

All formalisms in this paper model joint probability distri-
butions over a set of variables. For static models (regular
BN and Causal Networks) the set of variables is fixed. For
dynamic models (DBN and DCN), there is a finite set of
“metavariables”, meaning variables that evolve over time.
For a metavariable X and an integer t, Xt is the variable
denoting the value of X at time t.

Let V be the set of metavariables for a dynamic model.
We say that a probability distribution P is time-invariant if
P (Vt+1|Vt) is the same for every t. Note that this does not
mean that P (Vt) = P (Vt+1) for every t, but rather that the
laws governing the evolution of the variable do not change
over time. For example, planets do change their positions
around the Sun, but the Kepler-Newton laws that govern
their movement do not change over time. Even if we per-
formed an intervention (say, pushing the Earth away from
the Sun for a while), these laws would immediately kick
in again when we stopped pushing. The system would not
be time-invariant if e.g. the gravitational constant changed
over time.

2.1 DYNAMIC BAYESIAN NETWORKS

Dynamic Bayesian Networks (DBN) are graphical models
that generalize Bayesian Networks (BN) in order to model
time-evolving phenomena. We rephrase them as follows.

Definition 1 A DBN is a directed graph D over a set of
nodes that represent time-evolving metavariables. Some of
the arcs in the graph have no label, and others are labeled
“+1”. It is required that the sub-graph G formed by the



nodes and the unlabeled edges must be acyclic, therefore
forming a Directed Acyclic Graph (DAG). Unlabeled arcs
denote dependence relations between metavariables within
the same time step, and arcs labeled “+1” denote depen-
dence between a variable at one time and another variable
at the next time step.

Definition 2 A DBN with graph G represents an infinite
Bayesian Network Ĝ as follows. Timestamps t are the in-
teger numbers; Ĝ will thus be a biinfinite graph. For each
metavariable X in G and each time step t there is a vari-
able Xt in Ĝ. The set of variables indexed by the same t
is denoted Gt and called “the slice at time t”. There is an
edge from Xt to Yt iff there is an unlabeled edge from X
to Y in G, and there is an edge from Xt to Yt+1 iff there is
an edge labeled “+1” from X to Y in G. Note that Ĝ is
acyclic.

The set of metavariables in G is denoted V (G), or simply
V when G is clear from the context. Similarly Vt(G) or Vt
denote the variables in the t-th slice of G.

In this paper we will also use transition matrices to model
probability distributions. Rows and columns are indexed
by tuples assigning values to each variable, and the (v, w)
entry of the matrix represents the probability P (Vt+1 =
w|Vt = v). Let Tt denote this transition matrix. Then we
have, in matrix notation, P (Vt+1) = Tt P (Vt) and, more
in general, P (Vt+α) = (

∏t+α−1
i=t Ti)P (Vt). In the case

of time-invariant distributions, all Tt matrices are the same
matrix T , so P (Vt+α) = TαP (Vt).

2.2 CAUSALITY AND DO-CALCULUS

The notation used in our paper is based on causal models
and do-calculus (Pearl, 1994; Pearl, 2000).

Definition 3 (Causal Model) A causal model over a set of
variables V is a tuple M = 〈V,U, F, P (U)〉, where U is
a set of random variables that are determined outside the
model (”exogenous” or ”unobserved” variables) but that
can influence the rest of the model, V = {V1, V2, ...Vn}
is a set of n variables that are determined by the model
(”endogenous” or ”observed” variables), F is a set of n
functions such that Vk = fk(pa(Vk), Uk, θk), pa(Vk) are
the parents of Vk in M , θk are a set of constant parame-
ters and P (U) is a joint probability distribution over the
variables in U .

In a causal model the value of each variable Vk is assigned
by a function fk which is determined by constant parame-
ters θk, a subset of V called the ”parents” of Vk (pa(Vk))
and a subset of U (Uk).

A causal model has an associated graphical representation
(also called the ”induced graph of the causal model”) in
which each observed variable Vk corresponds to a vertex,

Figure 2: Compact representation of a dynamic causal net-
work where +1 indicates an edge linking a variable in Gt
with a variable in Gt+1.

there is one edge pointing to Vk from each of its parents, i.e.
from the set of vertex pa(Vk) and there is a doubly-pointed
edge between the vertex influenced by a common unob-
served variable in U (see Figure 3). In this paper we call
the unobserved variables in U ”unobserved confounders”
or ”confounders” for simplicity.

Causal graphs encode the causal relations between vari-
ables in a model. The primary purpose of causal graphs
is to help estimate the joint probability of some of the vari-
ables in the model upon controlling some other variables
by forcing them to specific values; this is called an ac-
tion, experiment or intervention. Graphically this is rep-
resented by removing all the incoming edges (which repre-
sent the causes) of the variables in the graph that we con-
trol in the experiment. Mathematically the do() operator
represents this experiment on the variables. Given a causal
graph where X and Y are sets of variables, the expression
P (Y |do(X)) is the joint probability of Y upon doing an
experiment on the controlled set X .

A causal relation represented by P (Y |do(X)) is said to
be identifiable if it can be uniquely computed from an ob-
served, non-interventional, distribution of the variables in
the model. In many real world scenarios it is impossible,
impractical, unethical or too expensive to perform an ex-
periment, thus the interest in evaluating its effects without
actually having to perform the experiment.

The three rules of do-calculus (Pearl, 1994) allow us to
transform expressions with do() operators into other equiv-
alent expressions, based on the causal relations present in
the causal graph.

For any disjoint sets of variables X , Y , Z and W :

1. P (Y |Z,W, do(X)) = P (Y |W,do(X)) if (Y ⊥
Z|X,W )GX

2. P (Y |W,do(X), do(Z)) = P (Y |Z,W, do(X)) if
(Y ⊥ Z|X,W )GXZ

3. P (Y |W,do(X), do(Z)) = P (Y |W,do(X)) if (Y ⊥
Z|X,W )G

XZ(W )



GX is the graph G where all edges incoming to X are re-
moved. GZ is the graph G where all edges outgoing from
Z are removed. Z(W) is the set of Z-nodes that are not
ancestors of any W-nodes in GX .

Do-calculus was proven to be complete (Shpitser and Pearl,
2006; Huang and Valtorta, 2006) in the sense that if an ex-
pression cannot be converted into a do-free one by itera-
tive application of the three do-calculus rules, then it is not
identifiable.

2.3 THE ID ALGORITHM

The ID algorithm (Shpitser and Pearl, 2006), and earlier
versions by (Tian and Pearl, 2002; Tian, 2004) implement
an iterative application of do-calculus rules to transform
a causal expression P (Y |do(X)) into an equivalent ex-
pression without any do() terms in semi-Markovian causal
graphs (with confounders). This enables the identification
of interventional distributions from non-interventional data
in such graphs.

The ID algorithm is sound and complete (Shpitser and
Pearl, 2006) in the sense that if a do-free equivalent ex-
pression exists it will be found by the algorithm, and if it
does not exist the algorithm will exit and provide an error.

The algorithm specifications are as follows. Inputs: causal
graph G, variable sets X and Y , and a probability distri-
bution P over the observed variables in G; Output: an ex-
pression for P (Y |do(X)) without any do() terms, or fail.

Remark: In our algorithms of Sections 4 and 5, we may in-
voke the ID algorithm with a slightly more complex input:
P (Y |Z, do(X)) (note the “extra” Z to the right of the con-
ditioning bar). In this case, we can solve the identification
problem for the more complex expression with two calls to
the ID algorithm using the following identity (definition of
conditional probability):

P (Y |Z, do(X)) =
P (Y, Z|do(X))

P (Z|do(X))

The expression P (Y |Z, do(X)) is thus identifiable if and
only if both P (Y, Z|do(X)) and P (Z|do(X)) are (Shpitser
and Pearl, 2006).

Another algorithm for the identification of causal effects is
given in (Shpitser et al., 2012).

The algorithms we propose in this paper show how to ap-
ply existing causal identification algorithms to the dynamic
setting. In this paper we will refer as ”ID algorithm” any
existing causal identification algorithm.

3 DYNAMIC CAUSAL NETWORKS AND
DO-CALCULUS

In this section we introduce the main definitions of this pa-
per and state several lemmas based on the application of
do-calculus rules to DCNs.

In the Definition 3 of causal model the functions fk are
left unspecified and can take any suitable form that best
describes the causal dependencies between variables in the
model. In natural phenomenon some variables may be time
independent while others may evolve over time. However
rarely does Pearl specifically treat the case of dynamic vari-
ables.

The definition of Dynamic Causal Network is an extension
of Pearl’s causal model in Definition 3, by specifying that
the variables are sampled over time, as in (Valdes-Sosa et
al., 2011).

Definition 4 (Dynamic Causal Network) A dynamic
causal network D is a causal model in which the set F
of functions is such that Vk,t = fk(pa(Vk,t), Uk,t−α, θk);
where Vk,t is the variable associated with the time sam-
pling t of the observed process Vk; Uk,t−α is the variable
associated with the time sampling t− α of the unobserved
process Uk; t and α are discreet values of time.

Note that pa(Vk,t) may include variables in any time sam-
pling previous to t up to and including t, depending on the
delays of the direct causal dependencies between processes
in comparison with the sampling rate. Uk,t−α may be gen-
erated by a noise process or by an unobserved confounder.
In the case of noise, we assume that all noise processes Uk
are independent of each other, and that their influence to the
observed variables happens without delay, so that α = 0.
In the case of unobserved confounders, we assume α ≥ 0
as causes precede their effects.

To represent unobserved confounders in DCN, we extend
to the dynamic context the framework developed in (Pearl
et al., 1991) on causal model equivalence and latent struc-
ture projections. Let’s consider the projection algorithm
(Verma, 1993), which takes a causal model with unob-
served variables and finds an equivalent model (with the
same set of causal dependencies), called a ”dependency-
equivalent projection”, but with no links between unob-
served variables and where every unobserved variable is a
parent of exactly two observed variables.

The projection algorithm in DCN works as follows. For
each pair (Vm, Vn) of of observed processes, if there is a
directed path from Vm,t to Vn,t+α through unobserved pro-
cesses then we assign a directed edge from Vm,t to Vn,t+α;
however if there is a divergent path between them through
unobserved processes then we assign a bidirected edge,
representing an unobserved confounder.



In this paper we represent all DCN by their dependency-
equivalent projection. Also we assume the sampling rate
to be adjusted to the dynamics of the observed processes.
However, both the directed edges and the unobserved con-
founder paths may be crossing several time steps depending
on the delay of the direct causal dependencies in compari-
son with the sampling rate. We now introduce the concept
of static and dynamic confounder.

Definition 5 (Static Confounder) Let D be a DCN. Let β
be the maximal number of time steps crossed by any of the
directed edges in D. Let α be the maximal number of time
steps crossed by an unobserved confounder path. If α ≤ β
then the unobserved confounder is called Static.

Definition 6 (Dynamic Confounder) Let D, β and α be
as in Definition 5. If α > β then the unobserved con-
founder is called Dynamic. More specifically, if β < α ≤
2β we call it ”first order” Dynamic Confounder; if α > 2β
we call it ”higher order” Dynamic Confounder.

In this paper, we consider three case scenarios in regards
to DCN and their time-invariance properties. If a DCN D
contains only static confounders we can construct a first or-
der Markov process in discrete time, by taking β (per Def-
inition 5) consecutive time samples of the observed pro-
cesses Vk in D. This does not mean the DCN generating
functions fk in Definition 4 are time-invariant, but that a
first order Markov chain can be built over the observed
variables when marginalizing the static confounders over
β time samples.

In a second scenario, we consider DCN with first order
dynamic confounders. We can still construct a first order
Markov process in discrete time, by taking β consecutive
time samples. However we will see in later sections how
the effect of interventions on this type of DCN has a differ-
ent impact than on DCN with static confounders.

Finally, we consider DCN with higher order dynamic con-
founders, in which case we may construct a first order
Markov process in discrete time by taking a multiple of β
consecutive time samples.

As we will see in later sections, the difference between
these three types of DCN is crucial in the context of iden-
tifiability. Dynamic confounders cause a time invariant
transition matrix to become dynamic after an intervention,
e.g. the post-intervention transition matrix will change over
time. However, if we perform an intervention on a DCN
with static confounders, the network will return to its previ-
ous time-invariant behavior after a transient period. These
differences have a great impact on the complexity of the
causal identification algorithms that we present.

Considering that causes precede their effects, the asso-
ciated graphical representation of a DCN is a DAG. All
DCN can be represented as a biinfinite DAG with vertices

Vk,t; edges from pa(Vk,t) to Vk,t; and confounders (bi-
directed edges). DCN with static confounders and DCN
with first order dynamic confounders can be compactly rep-
resented as β time samples (a multiple of β time samples
for higher order dynamic confounders) of the observed pro-
cesses Vk,t; their corresponding edges and confounders;
and some of the directed and bi-directed edges marked with
a ”+1” label representing the dependencies with the next
time slice of the DCN.

Definition 7 (Dynamic Causal Network identification)
Let D be a DCN, and t, t+ α be two time slices of D. Let
X be a subset of Vt and Y be a subset of Vt+α. The DCN
identification problem consists of computing the probabil-
ity distribution P (Y |do(X)) from the observed probability
distributions in D, i.e. computing an expression for the
distribution containing no do() operators.

In the definition above we always assume that X and Y are
disjoint. In this version we only consider the case in which
all intervened variables X are in the same time sample. It
is not difficult to extend our algorithm to the general case.

The following lemma is based on the application of do-
calculus to DCN. Intuitively, future actions have no impact
on the past.

Lemma 8 (Future actions) Let D be a DCN. Take any
sets X ⊆ Vt and Y ⊆ Vt−α, with α > 0. Then for any
set Z the following equalities hold:

1. P (Y |do(X), do(Z)) = P (Y |do(Z))

2. P (Y |do(X)) = P (Y )

3. P (Y |Z, do(X)) = P (Y |Z) wheneverZ ⊆ Vt−β with
β > 0.

Proof: The first equality derives from rule 3 and the proof
in (Shpitser and Pearl, 2006) that interventions on vari-
ables which are not ancestors of Y in D have no effect
on Y . The second is the special case Z = ∅. We
can transform the third expression using the equivalence
P (Y |Z, do(X)) = P (Y,Z|do(X))/P (Z|do(X)); since
Y and Z precede X in D, by rule 3 P (Y, Z|do(X)) =
P (Y,Z) and P (Z|do(X)) = P (Z), and then the above
equals P (Y,Z)/P (Z) = P (Y |Z). �

In words, traffic control mechanisms applied next week
have no causal effect on the traffic flow this week.

The following lemma limits the size of the graph to be used
for the identification of DCNs.

Lemma 9 Let D be a DCN. Let G be the sub-graph of D̂
consisting of all time slices in between (and including) tx
and ty . LetG′ be the sub-graphG augmented with the time
slice preceding it. If P (Y |do(X)) is identifiable in D then



it is identifiable in G′ and the identification provides the
same result on both graphs.

Proof: (sketch) By C-component factorization (Tian,
2002), we decompose the problem as that of identification
of each C-component in D and (if all C-components are
identifiable) multiplying all identified quantities to obtain
P (Y |do(X)). C-components are sets of variables linked
by confounder edges in the graphD\X . An identifiable C-
component is computed as the product of P (vi|V i−1π ) for
each variable vi in the C-component, where V i−1π is the set
of all variables preceding vi in some topological ordering π
(Shpitser and Pearl, 2006; Tian, 2002). The C-component
factorization involving all the variables preceding the set
G leads to the joint distribution of these variables, and can
be computed using the joint distribution of the time slice
preceding G alone. Also, non-ancestors of Y can be ig-
nored from the graph, by application of do-calculus rule 3,
so time slices succeeding G can be discarded. Therefore
the identification problem can be computed in the limited
graph G′.

This result is crucial to reduce the complexity of identifi-
cation algorithms in dynamic settings. In order to describe
the evolution of a dynamic system over time, after an inter-
vention, we can run a causal identification algorithm over
a limited number of time slices of the DCN, instead of the
entire DCN.

�

4 IDENTIFIABILITY IN DYNAMIC
CAUSAL NETWORKS

In this section we analyze the identifiability of causal ef-
fects in the DCN setting. We first study DCNs with
static confounders and propose a method for identifica-
tion of causal effects in DCNs using transition matrices.
Then we extend the analysis and identification method to
DCNs with dynamic confounders. As discussed in Sec-
tion 3, both the DCNs with static confounders and with dy-
namic confounders can be represented as a Markov chain.
For graphical and notational simplicity, we represent these
DCN graphically as recurrent time slices as opposed to the
shorter time samples, on the basis that one time slice con-
tains as many time samples as the maximal delay of direct
causal influence among the processes. Also for notational
simplicity we assume the transition matrix from one time
slice to the next to be time-invariant; however removing
this restriction would not make any of the lemmas, theo-
rems or algorithms invalid, as they are the result of graphi-
cal non-parametric reasoning.

Consider a DCN under the above assumptions, and let T be
its time invariant transition matrix from any time slice Vt to
Vt+1. We assume that there is some time t0 such that the
distribution P (Vt0) is known. Fix now tx > t0 and a set

X ⊆ Vtx . We will now see how performing an intervention
on X affects the distributions in D.

We begin by stating a series of lemmas that apply to DCNs
in general.

Lemma 10 Let t be such that t0 ≤ t < tx, with X ⊆ Vtx .
Then P (Vt|do(X)) = T t−t0P (Vt0). Namely, transition
probabilities are not affected by an intervention in the fu-
ture.

Proof: By Lemma 8, (2), P (Vt|do(X)) = P (Vt) for all
such t. By definition of T , this equals T P (Vt−1). Then
induct on t with P (Vt0) = T 0P (Vt0) as base. �

Lemma 11 Assume that an expression
P (Vt+α|Vt, do(X)) is identifiable for some α > 0.
Let A be the matrix whose entries Aij correspond to
the probabilities P (Vt+α = vj |Vt = vi, do(X)). Then
P (Vt+α|do(X)) = AP (Vt|do(X)).

Proof: Case by case evaluation of A’s entries. �

4.1 DCNs WITH STATIC CONFOUNDERS

Static confounders impact sets of variables within one time
slice only, and there are no confounders between variables
at different time slices (see Figure 3).

The following three lemmas are based on the application of
do-calculus to DCNs with static confounders. Intuitively,
conditioning on the variables that cause time dependent ef-
fects d-separates entire parts (future from past) of the DCN
(Lemmas 12, 13, 14).

Lemma 12 (Past observations and actions) Let D be a
DCN with static confounders. Take any set X . Let C ⊆ Vt
be the set of variables in Gt that are direct causes of vari-
ables in Gt+1. Let Y ⊆ Vt+α and Z ⊆ Vt−β , with α > 0
and β > 0 (positive natural numbers). The following dis-
tributions are identical:

1. P (Y |do(X), Z, C)

2. P (Y |do(X), do(Z), C)

3. P (Y |do(X), C)

Proof: By the graphical structure of a DCN with static con-
founders, conditioning on C d-separates Y from Z. The
three rules of do-calculus apply, and (1) equals (3) by rule
1, (1) equals (2) by rule 2, and also (2) equals (3) by rule 3.
�

In our example, we want to predict the traffic flow Y in
two days caused by traffic control mechanisms applied to-
morrow X , and conditioned on the traffic delay today C.
Any traffic controls Z applied before today are irrelevant,
because their impact is already accounted for in C.



Lemma 13 (Future observations) Let D, X and C be as
in Lemma 12. Let Y ⊆ Vt−α and Z ⊆ Vt+β , with α > 0
and β > 0, then:

P (Y |do(X), Z, C) = P (Y |do(X), C)

Proof: By the graphical structure of a DCN with static con-
founders, conditioning on C d-separates Y from Z and the
expression is valid by rule 1 of do-calculus. �

In our example, observing the travel delay today makes ob-
serving the future traffic flow irrelevant to evaluate yester-
day’s traffic flow.

Lemma 14 Let t > tx. Then P (Vt+1|do(X)) =
T P (Vt|do(X)). Namely, transition probabilities are not
affected by intervention more than one time unit in the past.

Proof: P (Vt+1|do(X)) = T ′ P (Vt|do(X)) where the
elements of T ′ are P (Vt+1|Vt, do(X)). As Vt in-
cludes all variables in Gt that are direct causes of vari-
ables in Gt+1, conditioning on Vt d-separates X from
Vt+1. By Lemma 12 we exchange the action do(X)
by the observation X and so P (Vt+1|Vt, do(X)) =
P (Vt+1|Vt, X). Moreover, Vt d-separates X from Vt+1,
so they are statistically independent given Vt. There-
fore, P (Vt+1|Vt, do(X)) = P (Vt+1|Vt, X) = P (Vt+1|Vt)
which are the elements of matrix T as required. �

Theorem 15 Let D be a DCN with static confounders,
and transition matrix T . Let X ⊆ Vtx and Y ⊆
Vty for two time points tx < ty . If the expression
P (Vtx+1|Vtx−1, do(X)) is identifiable with corresponding
transition matrix A, then P (Y |do(X)) is identifiable and
P (Y |do(X)) =

∑
Vty\Y

T ty−(tx+1)AT tx−1−t0P (Vt0).

Proof: Applying Lemma 10, we obtain that
P (Vtx−1|do(X)) = T tx−1−t0P (Vt0). Then, since
we have assumed that P (Vtx+1|Vtx−1, do(X)) is iden-
tifiable, Lemma 11 guarantees that P (Vtx+1|do(X)) =
AP (Vtx−1|do(X)) = AT tx−1−t0P (Vt0). Finally,
P (Vty |do(X)) = T (ty−(tx+1))P (Vtx+1|do(X)) by re-
peatedly applying Lemma 14. P (Y |do(X)) is obtained
by marginalizing variables in Vty \ Y in the resulting
expression T ty−(tx+1)AT tx−1−t0P (Vt0). �

As a consequence of Theorem 15, the causal identi-
fication of D reduces to the problem of identifying
P (Vtx+1|Vtx−1, do(X)). The ID algorithm can be used to
check whether this expression is identifiable and, if it is,
compute its joint probability from observed data.

Note that Theorem 15 holds without the assumption of tran-
sition matrix time-invariance by replacing powers of T with
products of matrices Tt.

Figure 3: Dynamic Causal Network where tr1 and tr2
have a common unobserved cause, a confounder. Since
both variables are in the same time slice, we call it a static
confounder.

4.1.1 DCN-ID Algorithm for DCNs with Static
Confounders

The DCN-ID algorithm for DCNs with static confounders
is given in Figure 4. Its soundness is immediate from The-
orem 15, the soundness of the ID algorithm (Shpitser and
Pearl, 2006), and Lemma 9.

Theorem 16 (Soundness) Whenever DCN-ID returns a
distribution for P (Y |do(X)), it is correct. �

Observe that line 2 of the algorithm calls ID with a graph
of size 4|G|. By the remark of Section 2.3, this means two
calls but notice that in this case we can spare the call for the
“denominator” P (Vtx−1|do(X)) because Lemma 8 guar-
antees P (Vtx−1|do(X)) = P (Vtx−1). Computing tran-
sition matrix A on line 3 has complexity O((4k)(b+2)),
where k is the number of variables in one time slice and b
the number of bits encoding each variable. The formula on
line 4 is the multiplication of P (Vt0) by n = (ty − t0) ma-
trices, which has complexity O(n.b2). To solve the same
problem with the ID algorithm would require running it on
the entire graph of size n|G| and evaluating the resulting
joint probability with complexity O((n.k)(b+2)) compared
to O((4k)(b+2) + n.b2) with DCN-ID.

If the problem we want to solve is evalu-
ating the trajectory of the system over time
(P (Vtx+1), P (Vtx+2), P (Vtx+3), ...P (Vtx+n)) after an in-
tervention at time slice tx, with ID we would need to run ID
n times and evaluate the n outputs with overall complexity
O((k)(b+2) + (2k)(b+2) + (3k)(b+2) + ... + (n.k)(b+2)).
Doing the same with DCN-ID requires running ID one
time to identify P (Vtx+1), evaluating the output and
applying successive transition matrix multiplications to
obtain the joint probability of the time slices thereafter,
with resulting complexity O((4k)(b+2) + n.b2).

4.2 DCNs WITH DYNAMIC CONFOUNDERS

We now discuss the case of DCNs with dynamic con-
founders, that is, with confounders that influence variables
in consecutive time slices.



Function DCN-ID(Y ,ty , X ,tx, G,C,T ,P (Vt0))
INPUT:

• DCN defined by a causal graphG on a set of variables
V and a set C ⊆ V × V describing causal relations
from Vt to Vt+1 for every t

• transition matrix T for G derived from observational
data

• a set Y included in Vty

• a set X included in Vtx

• distribution P (Vt0) at the initial state,

OUTPUT: The distribution P (Y |do(X)), or else FAIL

1. let G′ be the acyclic graph formed by joining Gtx−2,
Gtx−1, Gtx , and Gtx+1 by the causal relations given
by C;

2. run the standard ID algorithm for expression
P (Vtx+1|Vtx−1, do(X)) on G′; if it returns FAIL, re-
turn FAIL;

3. else, use the resulting distribution to compute the tran-
sition matrix A, where Aij = P (Vtx+1 = vi|Vtx−1 =
vj , do(X));

4. return
∑
Vty\Y

T ty−(tx+1)AT tx−1−t0 P (Vt0);

Figure 4: The DCN-ID algorithm for DCNs with static con-
founders

The presence of dynamic confounders d-connects time
slices, and we will see in the following lemmas how this
may be an obstacle for the identifiability of the DCN.

In the presence of dynamic confounders, Lemma 14 does
no longer hold since d-separation is no longer guaranteed.
As a consequence, we cannot guarantee the DCN will re-
cover its “natural” (non-interventional) transition probabil-
ities from one cycle to the next after the intervention is per-
formed.

Our statement of the identifiability theorem for DCNs with
dynamic confounders is weaker and includes in its assump-
tions those conditions that can no longer be guaranteed.

Theorem 17 Let D be a DCN with dynamic confounders.
Let T be its transition matrix under no interventions. We
further assume that:

1. P (Vtx+1|Vtx−1, do(X)) is identifiable by matrix A

2. For all t > tx + 1, P (Vt|Vt−1, do(X)) is identifiable
by matrix Mt

Then P (Y |do(X) is identifiable and computed by

P (Y |do(X)) =
∑
Vty\Y

[
ty∏

t=tx+2

Mt

]
AT tx−1−t0P (Vt0).

Proof: Similarly to the proof of Theorem 15. By
Lemma 10, we can compute the distribution up to time tx−
1 as P (Vtx−1|do(X)) = T tx−1−t0P (Vt0). Using the first
assumption in the statement of the theorem, by Lemma 11
we obtain P (Vtx+1|do(X)) = AT tx−1−t0P (Vt0). Then,
we compute the final P (Vty |do(X)) using the matri-
ces Mt from the statement of the theorem that allows
us to compute probabilities for subsequent time-slices.
Namely, P (Vtx+2|do(X)) = Mtx+2AT

tx−1−t0P (Vt0),
P (Vtx+3|do(X)) = Mtx+3Mtx+2AT

tx−1−t0P (Vt0),
and so on until we find

P (Vty |do(X)) =

[
ty∏

t=tx+2

Mt

]
AT tx−1−t0P (Vt0).

Finally, the do-free expression of P (Y |do(X)) is obtained
by marginalization over variables of Vty not in Y . �

Again, note that Theorem 17 holds without the assumption
of transition matrix time-invariance by replacing powers of
T with products of matrices Tt.



4.2.1 DCN-ID Algorithm for DCNs with Dynamic
Confounders

Function DCN-ID(Y ,ty , X ,tx, G,C,C ′,T ,P (Vt0))
INPUT:

• DCN defined by a causal graphG on a set of variables
V and a set C ⊆ V × V describing causal relations
from Vt to Vt+1 for every t, and a set C ′ ⊆ V × V
describing confounder relations from Vt to Vt+1 for
every t

• transition matrix T for G derived from observational
data

• a set Y included in Vty

• a set X included in Vtx

• distribution P (Vt0) at the initial state,

OUTPUT: The distribution P (Y |do(X)), or else FAIL

1. let G′ be the acyclic graph formed by joining Gtx−2,
Gtx−1, Gtx , and Gtx+1 by the causal relations given
by C and confounders given by C ′;

2. run the standard ID algorithm for expression
P (Vtx+1|Vtx−1, do(X)) on G′; if it returns FAIL, re-
turn FAIL;

3. else, use the resulting distribution to compute the tran-
sition matrix A, where Aij = P (Vtx+1 = vi|Vtx−1 =
vj , do(X));

4. for each t from tx + 2 up to ty:

(a) let G′′ be the causal graph composed of time
slices Gtx−1, Gtx , . . . , Gt

(b) run the standard ID algorithm on G′′ for the ex-
pression P (Vt|Vt−1, do(X)); if it returns FAIL,
return FAIL;

(c) else, use the resulting distribution to compute the
transition matrix Mt, where (Mt)ij = P (Vt =
vi|Vt−1 = vj , do(X));

5. return
∑
Vty\Y

[
ty∏

t=tx+2
Mt

]
AT tx−1−t0P (Vt0);

Figure 5: The DCN-ID algorithm for DCNs with dynamic
confounders

The DCN-ID algorithm for DCNs with dynamic con-
founders is given in Figure 5.

Its soundness is immediate from Theorem 17, the sound-
ness of the ID algorithm (Shpitser and Pearl, 2006), and

Lemma 9.

Theorem 18 (Soundness) Whenever DCN-ID returns a
distribution for P (Y |do(X)), it is correct. �

Notice that this algorithm is more expensive than the DCN-
ID algorithm for DCNs with static confounders. In partic-
ular, it requires (ty − tx) calls to the ID algorithm with
increasingly larger chunks of the DCN. To identify a sin-
gle future effect P (Y |do(X) it may be simpler to invoke
Lemma 9 and do a unique call to the ID algorithm for
the expression P (Y |do(X) restricted to the causal graph
formed by time-slices Gtx−1, ..., Gty . However, to pre-
dict the trajectory of the system over time after an interven-
tion, the DCN-ID algorithm for dynamic confounders di-
rectly identifies the post-intervention transition matrix and
its evolution. A system characterized by a time-invariant
transition matrix before the intervention will be character-
ized by a time dependent transition matrix, given by the
DCN-ID algorithm, after the intervention. This dynamic
view offers opportunities for the analysis of the time evo-
lution of the system, and conditions for convergence to a
steady state.

5 COMPLETE DCN IDENTIFIABILITY

In this section we show that the identification algorithms as
formulated in previous sections are not complete, and we
develop complete algorithms for complete identification of
DCNs. To prove completeness we use previous results (Sh-
pitser and Pearl, 2006). It is shown there that the absence
of a structure called ’hedge’ in the graph is a sufficient and
necessary condition for identifiability. We first define some
graphical structures that lead to the definition of hedge, in
the context of DCNs.

Definition 19 (C-component) Let D be a DCN. Any max-
imal subset of variables ofD connected by bidirected edges
(confounders) is called a C-component.

Definition 20 (C-forest) Let D be a DCN and C a C-
component of D. If all variables in C have at most one
child, then C is called a C-forest. The set R of variables in
C that have no descendants is called the C-forest root, and
the C-forest is called R-rooted.

Definition 21 (Hedge) Let X and Y be sets of variables
in D. Let F and F ′ be two R-rooted C-forests such that
F ′ ⊆ F , F ∩X 6= ∅, F ′ ∩X = ∅, R ⊂ An(Y )DX̄

. Then
F and F ′ form a Hedge for P (Y |do(X)) in D.

Notice that An(Y )DX̄
refers to those variables that are an-

cestors of Y in the causal networkD where incoming edges
to X have been removed. We may drop the subscript as in
An(Y ) in which case we are referring to the ancestors of Y
in the unmodified network D (in which case, the network



we refer to should be clear from the context). Moreover,
we overload the definition of the ancestor function and we
use An(Z, V ) to refer to the ancestors of the union of sets
Z and V , that is, An(Z, V ) = An(Z ∪ V ).

The presence of a hedge prevents the identifiability of
causal graphs (Shpitser and Pearl, 2006). Also any non
identifiable graph necessarily contains a hedge. These re-
sults applied to DCNs lead to the following lemma.

Lemma 22 (DCN complete identification) Let D be a
DCN with confounders. Let X and Y be sets of variables
in D. P (Y |do(X)) is identifiable iif there is no hedge in D
for P (Y |do(X)).

We can show that the algorithms presented in the previ-
ous section, in some cases introduce hedges in the sub-
networks they analyze, even if no hedges existed in the
original expanded network.

Lemma 23 The DCN-ID algorithms for DCNs with static
confounders (Section 4.1) and dynamic confounders (Sec-
tion 4.2) are not complete.

Proof: Let D be an DCN. Let X be such that D contains
two R-rooted C-forests F and F ′, F ′ ⊆ F , F ∩ X 6= 0,
F ′ ∩ X = 0. Let Y be such that R 6⊂ An(Y )DX̄

. The
condition for Y implies that D does not contain a hedge,
and is therefore identifiable by Lemma 22. Let the set
of variables at time slice tx + 1 of D, Vtx+1, be such
that R ⊂ An(Vtx+1)DX̄

. By Definition 21, D contains
a hedge for P (Vtx+1|Vtx−1, do(X)). The identification of
P (Y |do(X)) requires the DCN-ID algorithms to identify
P (Vtx+1|Vtx−1, do(X)) which fails. �

Figure 6: Identifiable Dynamic Causal Network which the
DCN-ID algorithm fails to identify. F and F ′ are R-
rooted C-forests, but since R is not an ancestor of Y there
is no hedge for P (Y |do(X)). However R is an ancestor
of Vtx+1 and DCN-ID fails when finding the hedge for
P (Vtx+1|Vtx−1, do(X)).

Figure 6 shows an identifiable DCN that DCN-ID fails to
identify.

The proof of Lemma 23 provides the framework to build a
complete algorithm for identification of DCNs.

5.1 Complete DCN identification algorithm with
Static Confounders

The DCN-ID algorithm can be modified so that no hedges
are introduced if none existed in the original network. This
is done at the cost of more complicated notation, because
the fragments of network to be analyzed do no longer cor-
respond to natural time slices. More delicate surgery is
needed.

Lemma 24 Let D be a DCN with static confounders. Let
X ⊆ Vtx and Y ⊆ Vty for two time slices tx < ty . If there
is a hedge H for P (Y |do(X)) in D then H ⊆ Vtx .

Proof: By definition of hedge, F and F ′ are connected by
confounders to X . As D has only static confounders F , F ′

and X must be within tx. �

Lemma 25 Let D be a DCN with static confounders. Let
X ⊆ Vtx and Y ⊆ Vty for two time slices tx <
ty . P (Y |do(X)) is identifiable if and only if P (Vtx+1 ∩
An(Y )|Vtx−1, do(X)) is identifiable.

Proof: (if) By Lemma 22, if P (Vtx+1 ∩
An(Y )|Vtx−1, do(X)) =

P (Vtx+1∩An(Y ),Vtx−1|do(X))
P (Vtx−1)

is identifiable then there is no hedge for this expression
in D. By Lemma 24 if D has static confounders, a
hedge must be within time slice tx. If time slice tx does
not contain two R-rooted C-forests F and F ′ such that
F ′ ⊆ F , F ∩ X 6= 0, F ′ ∩ X = 0, then there is no
hedge for any set Y so there is no hedge for the expression
P (Y |do(X)) which makes it identifiable. Now let’s
assume time slice tx contains two R-rooted C-forests F
and F ′ such that F ′ ⊆ F , F ∩ X 6= 0, F ′ ∩ X = 0,
then R 6⊂ An(Vtx+1 ∩ An(Y ), Vtx−1)DX̄

. As R is in
time slice tx, this implies R 6⊂ An(Y )DX̄

and so there is
no hedge for the expression P (Y |do(X)) which makes it
identifiable.

(only if) By Lemma 22, if P (Y |do(X)) is identifiable then
there is no hedge for P (Y |do(X)) in D. By Lemma 24 if
D has static confounders, a hedge must be within time slice
tx. If time slice tx does not contain two R-rooted C-forests
F and F ′ such that F ′ ⊆ F , F ∩ X 6= 0, F ′ ∩ X = 0,
then there is no hedge for any set Y so there is no hedge
for the expression P (Vtx+1 ∩ An(Y )|Vtx−1, do(X)) =
P (Vtx+1∩An(Y ),Vtx−1|do(X))

P (Vtx−1)
which makes it identifiable.

Now let’s assume time slice tx contains two R-rooted C-
forests F and F ′ such that F ′ ⊆ F , F∩X 6= 0, F ′∩X = 0,
then R 6⊂ An(Y )DX̄

(if R ⊂ An(Y )DX̄
D would con-

tain a hedge by definition). As R is in time slice tx,
R 6⊂ An(Y )DX̄

implies R 6⊂ An(Vtx+1 ∩An(Y ))DX̄
and

R 6⊂ An(Vtx+1 ∩ An(Y ), Vtx−1)DX̄
so there is no hedge



for the expression P (Vtx+1∩An(Y )|Vtx−1, do(X)) which
makes this expression identifiable. �

Lemma 26 Assume that an expression
P (V ′t+α|Vt, do(X)) is identifiable for some α > 0 and
V ′t+α ⊆ Vt+α. LetA be the matrix whose entriesAij corre-
spond to the probabilities P (V ′t+α = vj |Vt = vi, do(X)).
Then P (V ′t+α|do(X)) = AP (Vt|do(X)).

Proof: Case by case evaluation of A’s entries. �

Function cDCN-ID(Y ,ty , X ,tx, G,C,T ,P (Vt0))
INPUT:

• DCN defined by a causal graphG on a set of variables
V and a set C ⊆ V × V describing causal relations
from Vt to Vt+1 for every t

• transition matrix T representing the probabilities
P (Vt+1|Vt) derived from observational data

• a set Y included in Vty

• a set X included in Vtx

• distribution P (Vt0) at the initial state,

OUTPUT: The distribution P (Y |do(X)) if it is identifi-
able, or else FAIL

1. let G′ be the acyclic graph formed by joining Gtx−2,
Gtx−1, Gtx , and Gtx+1 by the causal relations given
by C;

2. run the standard ID algorithm for expression
P (Vtx+1 ∩ An(Y )|Vtx−1, do(X)) on G′; if it returns
FAIL, return FAIL;

3. else, use the resulting distribution to compute the tran-
sition matrix A, where Aij = P (Vtx+1 ∩ An(Y ) =
vi|Vtx−1 = vj , do(X));

4. let Mt be the matrix T marginalized as P (Vt ∩
An(Y ) = vj |Vt−1 ∩An(Y ) = vi)

5. return

[
ty∏

t=tx+2
Mt

]
AT tx−1−t0 P (Vt0);

Figure 7: The cDCN algorithm for DCNs with static con-
founders

Lemma 27 Let D be a DCN with static confounders. Let
X ⊆ Vtx and Y ⊆ Vty for two time slices tx < ty . Then

P (Y |do(X)) =

[
ty∏

t=tx+2
Mt

]
P (Vtx+1 ∩ An(Y )|do(X))

where Mt is the matrix whose entries correspond to the
probabilities P (Vt ∩An(Y ) = vj |Vt−1 ∩An(Y ) = vi).

Proof: For the identification of P (Y |do(X)) we can re-
strict our attention to the subset of variables in D that are
ancestors of Y. Then we repeatedly apply Lemma 14 on
this subset from t = tx + 2 to t = ty until we find
P (Vty ∩An(Y )|do(X)) = P (Y |do(X)). �

Theorem 28 Let D be a DCN with static confounders
and transition matrix T . Let X ⊆ Vtx and Y ⊆ Vty
for two time slices tx < ty . If P (Y |do(X)) is identifi-

able then P (Y |do(X)) =

[
ty∏

t=tx+2
Mt

]
AT tx−1−t0P (Vt0)

where A is the matrix whose entries Aij correspond to the
probabilities P (Vtx+1 ∩ An(Y )|Vtx−1, do(X)) and Mt is
the matrix whose entries correspond to the probabilities
P (Vt ∩An(Y ) = vj |Vt−1 ∩An(Y ) = vi).

Proof: Applying Lemma 10, we obtain that
P (Vtx−1|do(X)) = T tx−1−t0P (Vt0). By Lemma 25
P (Vtx+1 ∩ An(Y )|Vtx−1, do(X)) is identifiable so
Lemma 26 guarantees that P (Vtx+1 ∩ An(Y )|do(X)) =
AP (Vtx−1|do(X)) = AT tx−1−t0P (Vt0). Then we
apply Lemma 27 and obtain the resulting expression

P (Y |do(X)) =

[
ty∏

t=tx+2
Mt

]
AT tx−1−t0P (Vt0). �

The cDCN-ID algorithm for identification of DCNs with
static confounders is given in Figure 7.

Theorem 29 (Soundness and completeness) The cDCN-
ID algorithm for DCNs with static confounders is sound
and complete.

Proof: The completeness derives from Lemma 25 and the
soundness from Theorem 28. �

5.2 Complete DCN identification algorithm with
Dynamic Confounders

We now discuss the complete identification of DCNs with
dynamic confounders. First we introduce the concept of
dynamic time span from which we derive two lemmas.

Definition 30 (Dynamic time span) LetD be a DCN with
dynamic confounders andX ⊆ Vtx . Let tm be the maximal
time slice d-connected by confounders to X; tm − tx is
called the dynamic time span of X in D.

Note that the dynamic time span of X in D can be in some
cases infinite, the simplest case being whenX is connected
by a confounder to itself at Vtx+1. In this paper we consider
finite dynamic time spans only. We will label the dynamic
time span of X as tdx.

Lemma 31 Let D be a DCN with dynamic confounders
and X , Y sets of variables in D. Let tdx be the dynamic



time span ofX inD. If there is a hedge for P (Y |do(X)) in
D then the hedge does not include variables at t > tx+tdx.

Proof: By definition of hedge, F and F ′ are connected by
confounders to X . The maximal time point connected by
confounders to X is tx + tdx. �

Function cDCN-ID(Y ,ty , X ,tx, G,C,C ′,T ,P (Vt0))
INPUT:

• DCN defined by a causal graphG on a set of variables
V and a set C ⊆ V × V describing causal relations
from Vt to Vt+1 for every t, and a set C ′ ⊆ V × V
describing confounder relations from Vt to Vt+1 for
every t

• transition matrix T for G derived from observational
data

• a set Y included in Vty

• a set X included in Vtx

• distribution P (Vt0) at the initial state,

OUTPUT: The distribution P (Y |do(X)) if it is identifiable
or else FAIL

1. let G′ be the acyclic graph formed by joining Gtx−2,
Gtx−1, Gtx , and Gtx+1 by the causal relations given
by C and confounders given by C ′;

2. run the standard ID algorithm for expression
P (Vtx+tdx+1 ∩ An(Y )|Vtx−1, do(X)) on G′; if it re-
turns FAIL, return FAIL;

3. else, use the resulting distribution to compute the
transition matrix A, where Aij = P (Vtx+tdx+1 ∩
An(Y ) = vi|Vtx−1 = vj , do(X));

4. for each t from tx + tdx + 2 up to ty:

(a) let G′′ be the causal graph composed of time
slices Gtx−1, Gtx , . . . , Gt

(b) run the standard ID algorithm on G′′ for the ex-
pression P (Vt∩An(Y )|Vt−1∩An(Y ), do(X));
if it returns FAIL, return FAIL;

(c) else, use the resulting distribution to compute the
transition matrix Mt, where (Mt)ij = P (Vt ∩
An(Y ) = vi|Vt−1 ∩An(Y ) = vj , do(X));

5. return

[
ty∏

t=tx+tdx+2
Mt

]
AT tx−1−t0P (Vt0);

Figure 8: The cDCN algorithm for DCNs with dynamic
confounders

Lemma 32 Let D be a DCN with dynamic confounders.

Let X ⊆ Vtx and Y ⊆ Vty for two time slices tx, ty . Let
tdx be the dynamic time span of X in D and tx+ tdx < ty .
P (Y |do(X)) is identifiable if and only if P (Vtx+tdx+1 ∩
An(Y )|Vtx−1, do(X)) is identifiable.

Proof: Similarly to the proof of Lemma 25, but replacing
”static” by ”dynamic”, Vtx+1 by Vtx+tdx+1, Lemma 24 by
Lemma 31, and ”time slice tx” by ”time slices tx to tx +
tdx”. �

Theorem 33 Let D be a DCN with dynamic confounders
and T be its transition matrix under no interventions. Let
X ⊆ Vtx and Y ⊆ Vty for two time slices tx, ty . Let tdx
be the dynamic time span of X in D and tx + tdx < ty . If
P (Y |do(X)) is identifiable then:

1. P (Vtx+tdx+1 ∩ An(Y )|Vtx−1, do(X)) is identifiable
by matrix A

2. For all t > tx + tdx + 1, P (Vt ∩ An(Y )|Vt−1 ∩
An(Y ), do(X)) is identifiable by matrix Mt

3. P (Y |do(X)) =

[
ty∏

t=tx+tdx+2
Mt

]
AT tx−1−t0P (Vt0)

Proof: We obtain the first statement from Lemma 32 and
Lemma 26. Then if t > tx + tdx + 1 the set (Vt ∩
An(Y ), Vt−1 ∩ An(Y )) has the same ancestors than Y
within time slices tx to tx + tdx + 1, so if P (Y |do(X))
is identifiable then P (Vt ∩An(Y )|Vt−1 ∩An(Y ), do(X))
is identifiable, which proves the second statement. Finally
we obtain the third statement similarly to the proof of The-
orem 17 but using statements 1 and 2 as proved instead of
assumed. �

The cDCN-ID algorithm for DCNs with dynamic con-
founders is given in Figure 8.

Theorem 34 (Soundness and completeness) The cDCN-
ID algorithm for DCNs with dynamic confounders is sound
and complete.

Proof: The completeness derives from the first and second
statements of Theorem 33. The soundness derives from the
third statement of Theorem 33. �

6 TRANSPORTABILITY IN DCN

(Pearl and Bareinboim, 2011) introduced the sID algo-
rithm, based on do-calculus, to identify a transport formula
between two domains, where the effect in a target domain
can be estimated from experimental results in a source do-
main and some observations on the target domain, thus
avoiding the need to perform an experiment on the target
domain.



Let us consider a country with a number of alternative
roads linking city pairs in different provinces. Suppose
that the alternative roads are all consistent with the same
causal model (such as the one in Figure 3, for example) but
have different traffic patterns (proportion of cars/trucks, toll
prices, traffic light durations...). Traffic authorities in one
of the provinces may have experimented with policies and
observed the impact on, say, traffic delay. This information
may be usable to predict the average travel delay in an-
other province for a given traffic policy. The source domain
(province where the impact of traffic policy has already
been monitored) and target domain (new province) share
the same causal relations among variables, represented by
a single DCN (see Figure 9).

The target domain may have specific distributions of the
toll price and traffic signs, which are accounted for in the
model by adding a set of selection variables to the DCN,
pointing at variables whose distribution differs among the
two domains. If the DCN with the selection variables is
identifiable for the traffic delay upon increasing the toll
price, then the DCN identification algorithm provides a
transport formula which combines experimental probabil-
ities from the source domain and observed distributions
from the target domain. Thus the traffic authorities in the
new province can evaluate the impacts before effectively
changing traffic policies. This amounts to relational knowl-
edge transfer learning between the two domains (Pan and
Yang, 2010).

Figure 9: A DCN with selection variables s and s′, repre-
senting the differences in the distribution of variables tr1
and tr1 in two domains M1 and M2 (two provinces in the
same country). This model can be used to evaluate the
causal impacts of traffic policy in the target domain M2

based on the impacts observed in the source domain M1.

Consider a DCN with static confounders only. We have
demonstrated already that for identification of the effects
of an intervention at time tx we can restrict our attention to
four time slices of the DCN, tx − 2, tx − 1, tx, and tx + 1.
Let M1 and M2 be two domains based on this same DCN,
though the distributions of some variables in M1 and M2

may differ. Then we have

PM2(Y |do(X)) = T
ty−(tx+1)
M2

AM2T
tx−1−t0
M2

P (Vt0),

where the entry ij of matrix AM2
corresponds to the tran-

sition probability PM2(Vtx+1 = vi|Vtx−1 = vj , do(X)).

By applying the identification algorithm sID, with selec-
tion variables, to the elements of matrix A we then obtain
a transport formula, which combines experimental distri-
butions in M1 with observational distributions in M2. The
algorithm for transportability of causal effects with static
confounders is given in Figure 10.

Function DCN-sID(Y ,ty , X ,tx, G,C,TM2
,PM2

(Vt0),IM1
)

INPUT:

• DCN defined by a causal graph G (common to both
source and target domains M1 and M2) over a set of
variables V and a set C ⊆ V × V describing causal
relations from Vt to Vt+1 for every t

• transition matrix TM2
for G derived from observa-

tional data in M2

• a set Y included in Vty

• a set X included in Vtx

• distribution PM2
(Vt0) at the initial state in M2

• set of interventional distributions IM1 in M1

• set S of selection variables

OUTPUT: The distribution PM2
(Y |do(X)) in M2 in terms

of TM2 , PM2(Vt0) and IM1 , or else FAIL

1. let G′ be the acyclic graph formed by joining Gtx−2,
Gtx−1, Gtx , and Gtx+1 by the causal relations given
by C;

2. run the standard sID algorithm for expression
P (Vtx+1|Vtx−1, do(X)) on G′; if it returns FAIL, re-
turn FAIL;

3. else, use the resulting transport formula to compute
the transition matrix A, where Aij = P (Vtx+1 =
vi|Vtx−1 = vj , do(X));

4. return
∑
Vty\Y

T ty−(tx+1)AT tx−1−t0 P (Vt0);

Figure 10: The DCN-sID algorithm for the transportability
in DCNs with static confounders

For brevity we omit the algorithm extension to dynamic
confounders, and the completeness results, which follow
the same confounder caveats already explained in the pre-
vious sections.



7 EXPERIMENTS

In this section we provide some numerical examples of
causal effect identifiability in DCN, using the algorithms
proposed in this paper.

In our first example, the DCN in Figure 3 represents how
the traffic between two cities evolves. There are two roads
and drivers choose every day to use one or the other road.
Traffic conditions on either road on a given day (tr1, tr2)
affect the travel delay between the cities on that same day
(d). Driver experience influences the road choice next day,
impacting tr1 and tr2. For simplicity we assume variables
tr1, tr2 and d to be binary. Let’s assume that from Monday
to Friday the joint distribution of the variables follow tran-
sition matrix T1 while on Saturday and Sunday they follow
transition matrix T2. These transition matrices indicate the
traffic distribution change from the previous day to the cur-
rent day. This system is a DCN with static confounders,
and has a markov chain representation as in Figure 3.

T1 =



0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3



T2 =



0.1 0.0 0.3 0.1 0.2 0.2 0.0 0.1
0.1 0.0 0.3 0.1 0.2 0.2 0.0 0.1
0.1 0.0 0.3 0.1 0.2 0.2 0.0 0.1
0.1 0.0 0.3 0.1 0.2 0.2 0.0 0.1
0.0 0.2 0.1 0.0 0.1 0.3 0.3 0.0
0.0 0.2 0.1 0.0 0.1 0.3 0.3 0.0
0.0 0.2 0.1 0.0 0.1 0.3 0.3 0.0
0.0 0.2 0.1 0.0 0.1 0.3 0.3 0.0


The average travel delay d during a two week period is
shown in Figure 11.

Figure 11: Average travel delay of the DCN without inter-
vention.

Now let’s perform an intervention by altering the traffic on
the first road tr1 and evaluate the subsequent evolution of
the average travel delay d. We use the algorithm for DCNs
with static confounders. We trigger line 1 of the DCN-ID
algorithm in Figure 7 and build a graph consisting of four
time slices G′ = (Gtx−2, Gtx−1, Gtx , Gtx+1) as shown in
Figure 12.

Figure 12: Causal graph G′ consisting of four time slices
of the DCN, from tx − 2 to tx + 1

The ancestors of any future delay at t = ty are all the vari-
ables in the DCN up to ty , so in line 2 we run the standard
ID algorithm for α = P (v10, v11, v12|v4, v5, v6, do(v7)) on
G′, which returns the expression:

α =
∑

v1,v2,v3,v8,v9

P (v1, v2, ...v12)
∑
v7,v9

P (v7, v8, v9|v4, v5, v6)
P (v4, v5, v6)

∑
v9
P (v7, v8, v9|v4, v5, v6)

Using this expression, line 3 of the algorithm computes the
elements of matrix A. If we perform the intervention on
a Thursday the matrices A for v7 = 0 and v7 = 1 can be
evaluated from T1.

Av7=0 =



0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1



Av7=1 =



0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3


In line 4 we find that transition matrices Mt are the same
than for the DCN without intervention. Figure 13 shows



the average travel delay without intervention, and with in-
tervention on the traffic conditions of the first road.

Figure 13: Average travel delay of the DCN without inter-
vention, and with interventions tr1 = 0 and tr1 = 1 on the
first Thursday

In a second numerical example, we consider that the sys-
tem is characterized by a unique transition matrix T and
the delay d tends to a steady state. We measure d without
intervention and with intervention on tr1 at t = 15. The
system’s transition matrix T is shown below:

T =



0.02 0 0.03 0 0.26 0.13 0.34 0.22
0.02 0 0.03 0 0.26 0.13 0.34 0.22
0.02 0 0.03 0 0.26 0.13 0.34 0.22
0.02 0 0.03 0 0.26 0.13 0.34 0.22
0.34 0.1 0.24 0.21 0 0.02 0.09 0
0.34 0.1 0.24 0.21 0 0.02 0.09 0
0.34 0.1 0.24 0.21 0 0.02 0.09 0
0.34 0.1 0.24 0.21 0 0.02 0.09 0



Figure 14 shows the evolution of dwith no intervention and
with intervention.

Figure 14: Average d of the DCN without intervention and
with intervention on tr1 at t = 15.

As shown in the examples, the DCN-ID algorithm calls ID
only once with a graph of size 4|G| and evaluates the el-
ements of matrix A with complexity O((4k)(b+2), where
k = 3 is the number of variables per slice and b = 1 is the
number of bits used to encode the variables. The rest is the
computation of transition matrix multiplications, which can
be done with complexity O(n.b2), with n = 40− 15 in ex-
ample 2. To obtain the same result with the ID algorithm by
brute force, we would require processing n times the iden-
tifiability of a graph of size 40|G|, with overall complexity
O((k)(b+2) + (2k)(b+2) + (3k)(b+2) + ...+ (n.k)(b+2)).

8 CONCLUSIONS AND FUTURE WORK

This paper introduces dynamic causal networks and their
analysis with do-calculus, so far studied thoroughly only
in static causal graphs. We extend the ID algorithm to the
identification of DCNs, and remark the difference between
static vs. dynamic confounders. We also provide an algo-
rithm for the transportability of causal effects from one do-
main to another with the same dynamic causal structure.

For future work, note that in the present paper we have
assumed all intervened variables to be in the same time
slice; removing this restriction may have some moderate
interest. We also want to extend the introduction of causal
analysis to a number of dynamic settings, including Hidden
Markov Models, and study properties of DCNs in terms of
Markov chains (conditions for ergodicity, for example). Fi-
nally, evaluating the distribution returned by ID is in gen-
eral unfeasible (exponential in the number of variables and



domain size); identifying tractable sub-cases or feasible
heuristics is a general question in the area.
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