

MASTER THESIS

TITLE: Study of the protocol for home automation Thread.

MASTER DEGREE: Telecommunications Engineering
Master in Science in Telecommunication Engineering & Management.

AUTHOR: Humberto Gonzalez Gonzalez

DIRECTOR: Rafael Vidal Ferré
 Lluís Casals Ibáñez

DATE: February, 22nd 2017

Títol: Study of the protocol for home automation Thread.

Autor: Humberto Gonzalez Gonzalez

Director: Rafael Vidal Ferré
 Lluís Casals Ibáñez

Data: 22 de febrer del 2017

Resum

L'Internet de les coses (Internet of Things) és el major desafiament i oportunitat
actualment a internet. Una aplicació de l’IoT és un sistema d'automatització de la
llar. La idea consisteix en dispositius IP encastats connectats a Internet i
utilitzant IPv6. L'IETF defineix 6LoWPAN com una tècnica per aplicar IPv6 a
IEEE 802.15.4, estàndard de xarxes sense fils de baix consum. Les tecnologies
sense fils d'automatització de la llar i productes existents al mercat no
compleixen amb els requisits de baixa potència, resiliència, basats en IP,
seguretat i ús amigable. Amb l'objectiu d'avançar en aquesta direcció Thread és
un protocol de xarxa de malla simplificada basada en IPv6 i desenvolupada per a
la comunicació eficient entre dispositius a la llar. Es connecta a Internet i
proporciona una interfície senzilla i robusta al núvol. La pila de Thread és un
estàndard “royalty-free” però de pagament. Amb l'objectiu de fer-lo àmpliament
disponible als desenvolupadors i que comparteixin els seus coneixements
tècnics, Nest va alliberar una implementació lliure de Thread anomenada
OpenThread al maig de 2016. Així feia disponible la tecnologia utilitzada en els
seus productes, tot buscant accelerar el desenvolupament de nous dispositius
per a la llar connectada. L'objectiu del present estudi és analitzar aquesta nova
tecnologia, centrant-se en la seva implementació OpenThread i fer algunes
proves en una plataforma profunditzant en la mesura del possible en la part de
routing. L'objectiu de la fase d'implementació és tenir un entorn de treball llest
per provar i validar algunes de les funcionalitats de Thread, en especial els
paràmetres d'encaminament i els canvis de topologia.

En la fase d'implementació s'ha utilitzant un entorn de proves. Es tracta de la
configuració de l'escenari de proves tant a nivell de programari com de
maquinari. Això ens ha permès desenvolupar algunes proves com la
connectivitat bàsica entre dispositius, el control de la visibilitat dels nodes i la
revisió de les taules d’encaminament. Finalment, a través de diferents captures
hem analitzat el comportament després d'alguns canvis a l'escenari. La
realització d'aquestes proves ha estat molt complexa a causa de la falta
d'informació que ens han impedit fer proves més avançades, especialment les
relacionades amb l'encaminament, i la comparació amb altres protocols. En
canvi hem estat capaços de realitzar algunes proves bàsiques com la verificació
de connectivitat, revisar les taules d'encaminament, etc. Amb les funcionalitats
implementades actualment amb OpenThread el següent pas podria ser estudiar
més a fons l’encaminament així com capes superiors, com ara la posada en
funcionament el rol de commissioning utilitzant un router frontera, permetent
interactuar des de fora de la xarxa de Thread.

Title: Study of the protocol for home automation Thread.

Author: : Humberto Gonzalez Gonzalez

Director: Rafael Vidal Ferré
 Lluís Casals Ibáñez

Date: February, 22nd 2017

Overview

The Internet of Things is the biggest challenge and opportunity for the Internet
today. An application of the IoT is a home automation system. The idea
consists of IP-enabled embedded devices connected to the Internet using IPv6.
The IETF added to this idea by defining 6LoWPAN as a technique to apply
IPv6 to IEEE 802.15.4, a low-power wireless network standard. The existing
home automation wireless technologies and products in the market do not
meet the requirements of low power, resilience, IP-based, security and friendly
use. With the goal of advance in this direction Thread is a simplified, IPv6-
based mesh networking protocol developed for efficient communication
between devices around the home. It connects to the internet and provides
simple yet robust interface to the cloud. Thread stack is royalty-free but closed-
documentation (payment). With the aim to make broadly available this to
developers sharing their know-how, Nest released an open-source
implementation of Thread protocol named OpenThread on May 2016 to make
the technology used in its products available and accelerate the development
of new devices for the connected home.The objective of the present study is to
analyze this brand new coming technology, focusing on the released
implementation and make some tests in a real platform describing where
possible the routing details. The goal of the implementation phase is to have a
working bench ready to test and validate some of the Thread functionalities
specially the routing parameters and changes of topology.

The implementation phase has been done using a hardware testbed. We
address the configuration of the test scenario on both hardware and software
levels. This allow us to develop some tests such as the basic connectivity
between devices, checking the visibility of the nodes and the revision of the
routing tables. Finally, through different captures, we will analyze the behavior
after some changes of scenario. Performing these tests was very complex due
to the lack of information that prevent us of making more advanced tests,
especially those related to the routing and comparison with other protocols.
Instead, we were able to perform some basic tests such as check connectivity,
see routing tables, etc. With the current OpenThread implemented
functionalities the next step could be study more thoroughly the part of the
routing, as well as study upper layers such as commissioning roles in a Border
Router, allowing to interact from outside the Thread network.

INDEX

INTRODUCTION .. 1

CHAPTER 1. THREAD ... 3

1.1. Technical Overview ... 5

1.2. Thread Network Architecture ... 6

1.3. The Thread Advantage .. 8

1.4. Physical Layer and Data Link Layer- IEEE 802.15.4... 9
1.4.1. Physical Link Layer ... 10
1.4.2. Data Link Layer .. 11

1.5. Network Layer .. 11
1.5.1. IPv6 ... 11
1.5.2. 6LowPAN .. 12
1.5.3. Distance Vector Router (RIP & RIPng) .. 15
1.5.4. DTLS ... 17

1.6. Transport Layer (UDP & TCP) .. 19

1.7. Application Layer... 20

CHAPTER 2. OPENTHREAD ... 21

2.1. Network Implementation ... 23

2.2. Routing Implementation ... 23

2.3. DTLS Implementation .. 25

2.4. Thread Management Protocol Implementation (CoaP).. 26

2.5. CLI Commands .. 26

CHAPTER 3. HARDWARE TEST ENVIRONMENT 33

3.1. OpenMote Development System .. 33

3.1.1. TI CC2538 ... 33

3.1.2. OpenMote - CC2538 ... 34

3.1.3. OpenBase ... 35

3.1.4. OpenBattery ... 36

3.2. SEGGER J-Link Debug Probe .. 36

3.3. TI CC2531EMK Sniffer Tool .. 37

CHAPTER 4. SETUP & TESTS .. 39

4.1. Test Scenario installation & Configuration ... 39

4.2. Basic tests .. 41

4.3. CLI for standalone devices ... 42

4.4. Scan & Discover .. 42

4.5. Router Table ... 43

4.6. Diag mode .. 43

4.7. Captured frames .. 44

CHAPTER 5. CONCLUSIONS .. 47

REFERENCES ... 49

LIST OF ACRONYMS .. 51

LIST OF FIGURES

Fig. 0.1 Nest Products: Thermostat, Protect and Cam. 1
Fig. 1.1 Founders of the Thread Group alliance ... 3
Fig. 1.2 Thread Certified Product Logos ... 3
Fig. 1.3 Standards based Thread stack. ... 4
Fig. 1.4 Thread Stack Layer Levels ... 6
Fig. 1.5 Thread Network. .. 6
Fig. 1.6 PHY and MAC Frame details .. 10
Fig. 1.7 General Format 6LoWPAN Packet [12]. .. 14
Fig. 1.8 6LoWPAN Packet with compressed IPv6 header + payload 14
Fig. 1.9 6LoWPAN Packet with Mesh + Fragment + Compression headers . .. 14
Fig. 1.10 6LoWPAN Subsequent Fragment ... 15
Fig. 1.11 RIPng Message Format. .. 16
Fig. 1.12 IPv6 Rip internal table example from Cisco Router. 16
Fig. 1.13 DTLS Timer Basic Concept .. 19

Fig. 2.1 OpenThread supporters ... 21
Fig. 2.2 General Overview of OpenThread modules 22
Fig. 2.3 IPv6 module details .. 23
Fig. 2.4 MLE module details .. 23
Fig. 2.5 Routing Parameters .. 24
Fig. 2.6 MLE command types .. 24
Fig. 2.7 MLE scopes .. 25
Fig. 2.8 DTLS module details .. 25

Fig. 3.1 OpenMote development Kit .. 33
Fig. 3.2 OpenMote module with antena ... 34
Fig. 3.3 OpenBase Module .. 35
Fig. 3.4 OpenBattery Module ... 36
Fig. 3.5 Segger J-link edu Device .. 36
Fig. 3.6 CC2531 USB Dongle .. 37

Fig. 4.1 Node start capture. .. 44
Fig. 4.2 Ping capture. ... 45
Fig. 4.3 Join node capture. ... 45
Fig. 4.4 node disappeared capture. .. 46
Fig. 4.5 node discover capture. .. 46

Introduction 1

INTRODUCTION

The Internet of Things (IoT) is the biggest challenge and opportunity for the
Internet today. An interesting example of application of the IoT is a home
automation system. Using a home automation process in a household
environment, we can give additional functionality through the integration of
sensors and actuators to normally non-automated systems like lighting, heating,
air conditioning and appliances. Recently, home automation systems have been
challenged with the need for high interoperability between home devices and for
accessing the system from different end points.

The idea consists of IP-enabled embedded devices connected to the Internet
using IPv6. The IETF added to this idea by defining 6LoWPAN as a technique
to apply IPv6 to IEEE 802.15.4, a low-power wireless network standard, which
adds the potential for transparent end-to-end communication, control and
monitoring of home automation devices from anywhere on the globe. The use of
6LoWPAN technology also helps lowers expense and decreases complexity of
home automation architecture.

The existing home automation wireless technologies and products in the market
such as Z-Wave [1] or EnOcean [2] do not meet the requirements of low power,
resilience, IP-based, security and friendly use. In that context, Thread comes to
the market. Thread aims to build a technology that uses and combines the best
of the current systems and creates a networking protocol that can help to
develop new products that accomplishes this. Actually a version of Thread is
shipping in Nest [3] products (Fig 1.1).

Fig. 0.1 Nest Products: Thermostat, Protect and Cam. [3]

2 Study of the protocol for home automation Thread.

Thread [4] is a simplified, IPv6-based mesh networking protocol developed for
efficient communication between devices around the home. It connects to the
Internet and provides simple yet robust interface to the cloud. Thread stack is a
standard for reliable, cost-effective, low-power, wireless D2D (device-to-device)
mesh communication. It is designed specifically for Connected Home
applications where IP-based networking is desired and a variety of application
layers can be used on the stack. The main advantage is that it can run on
existing 802.15.4 wireless SoCs using the 2.4 GHz ISM unlicensed band.
Thread is simple to install, highly secure, and scalable to hundreds of devices.

Thread, like most other new IoT standards is centered around a written
specification. With the aim to make broadly available this to developers sharing
their know-how, Nest released OpenThread [5] on May 2016 to make the
technology used in Nest products available and accelerate the development of
new devices for the connected home.

The objective of the present study is to analyze this brand new coming
technology, focusing on the released implementation and make some tests in a
real platform describing where possible the routing details. The first chapter
describes the Thread stack architecture explaining the protocols and existing
technologies that are based on continuing with the Thread stack itself.
Moreover, it approaches the different detail levels that provide a general
overview of the Thread Architecture. The second chapter describes the
OpenThread implementation released by Nest focusing on how some of the
layers have been implemented. Is in the third chapter where we describe the
hardware test environment deployed to test the main parts of the OpenThread.
The fourth chapter is properly the implementation and test in the chosen
scenario focusing on the network and routing parts, using captured frames as
examples of implementation. The fifth and last chapter show the general
conclusions and improvement proposals to the work done in this study.

Thread 3

CHAPTER 1. THREAD

In this chapter we introduce the Thread networking protocol, the beginnings of
Thread, the implementation and the technical details needed to understand the
following chapters.

Thread is an IPv6-based, closed-documentation (paid membership required for
access to specifications) royalty-free networking protocol for Internet of Things
(IoT). In July 2014, the "Thread Group" alliance (Fig.1.1) was announced by the
working group with the companies Nest Labs (a subsidiary of Alphabet/Google),
Samsung, ARM Holdings, BigAss Fans, NXP Semiconductors/Freescale,
Silicon Labs and Yale in an attempt to have Thread become the industry
standard by providing Thread certification for products. Thread is designed to
connect products in and around the home into low-power, wireless mesh
networks.

Fig. 1.1 Founders of the Thread Group alliance [4].

Thread is an IPv6 networking protocol built on open standards, millions of
existing 802.15.4 wireless devices on the market can be easily updated to run
Thread. Existing popular application protocols and IoT platforms like Nest
Weave and ZigBee can run over Thread networks to deliver interoperable, end-
to-end connectivity

Thread uses 6LoWPAN, which in turn uses the IEEE 802.15.4 wireless protocol
with mesh communication, as does ZigBee and other systems. Thread however
is IP-addressable, with cloud access and AES encryption. It currently supports
up to 250 devices in one local network mesh.

Since opening membership in October 2014, the Thread Group has grown to
more than 230 members.

At this time there are only 4 products certified (Fig. 1.2).

Fig. 1.2 Thread Certified Product Logos [4].

4 Study of the protocol for home automation Thread.

• ARM mbed OS (NXP FRDM-K64F + Atmel ATZB-RF-233): ARM mbed
OS is an open source embedded operating system designed specifically
to facilitate the creation and deployment of commercial, standards-based
IoT solutions at scale. mbed OS features full support for Thread to
simplify development of secure IoT applications in the home and to ease
Thread product certification.

• NXP Kinetis Thread Stack (KW2xD): NXP’s Kinetis Thread Stack is a
complete, robust and scalable certified stack, architected and tested to
meet the most demanding product requirements including very low
power end nodes, large Thread networks and gateway solutions. The
stack is available across multiple NXP microcontrollers and easily
connects to host processors to create Thread Border Router solutions.

• OpenThread (TI CC2538): OpenThread, released by Nest and

supported by Google, is an open-source implementation of the Thread
networking protocol. It is a highly portable library that is OS and platform
agnostic with a radio abstraction layer that is supported on multiple
platforms.

• Silicon Labs Thread stack (EM35x): The Silicon Labs Thread stack is a

robust implementation of the Thread 1.1 protocols suitable for field
deployment and certified on the EM35x platform.

There are over 30 products submitted and awaiting Thread certification. In
addition to Nest products, a number of devices – including the OnHub, a router
from Google are shipping with Thread-ready radios.

Thread is built upon a foundation of existing standards (Fig. 1.3) and in next
sections we are going to describe all the main characteristics from a layer level
perspective.

Fig. 1.3 Standards based Thread stack [4].

Thread 5

1.1. Technical Overview

These are the general characteristics of the Thread stack and network:

• Supports IPv6 addresses and simple IP bridging: Simple network
installation, start up and operation: The simple protocols for forming,
joining, and maintaining Thread Networks allow systems to self-configure
and fix routing problems as they occur.

• Secure: Devices do not join the Thread Network unless authorized and
all communications are encrypted and secure. Offers simplified security
and commissioning.

• Small and large networks: Can support networks of 250 nodes or
greater. The network layer is designed to optimize the network operation
based on the expected use.

• Range: Typical devices in conjunction with mesh networking provide

sufficient range to cover a normal home. Spread spectrum technology is
used at the physical layer to provide good immunity to interference.

• No single point of failure: The stack is designed to provide secure and
reliable operations even with the failure or loss of individual devices.
Allow the use of multiple gateways.

• Intended for control and automation: Supports low latency (less than
100 milliseconds) applications.

• Low power: Is optimized for low-power/battery-backed operation. Host

devices can typically operate for several years on AA type batteries using
suitable duty cycles.

Table 1.1. Overview of Thread Technical specifications.

Specification Thread Data
Design Focus Home connectivity to IoT
Network Type Mesh
Network Thread
Distance Normally 20-30 meters
Max Nodes Connected 250
Operating Band 2.4GHz (The ISM unlicensed band)
Spread Spectrum Radio uses direct sequence spread spectrum (DSSS)
Throughput Radio operates at 250 kbps
Data Monitoring and control data
Voice Capable No
Security Banking-class, public-key cryptography
Modulation Radio specification is O-QPSK modulation

6 Study of the protocol for home automation Thread.

Thread stack (Fig.1.4) only defines the Network and Transport layer but relies
on 802.15.4 for the Physical and MAC layer. Applications (like Zigbee, etc) can
run above Thread.

Fig. 1.4 Thread Stack Layer Levels [4].

1.2. Thread Network Architecture

Users communicate with a Thread network (Fig. 1.5) from their own device
(smartphone, tablet, or computer) via Wi-Fi on their Home Area Network (HAN)
or using a cloud-based application.

Fig. 1.5 Thread Network.

Thread 7

The following device types are included in a Thread network, starting from the
Wi-Fi network:

• Border Router: Border Routers (can be more than one) provide
connectivity from the IEEE 802.15.4 network to adjacent networks on
other physical layers. Provide services for devices within this network,
including routing services for off network operations. Border routers
function as simplified gateways, handling connections between a Thread
network and a non-Thread network and they handle IEEE 802.15.4 and a
Wi-Fi (IEEE 802.11) or an Ethernet (IEEE 802.3) connection. This can be
separate communication equipment like an access point or a host within
the Thread network that incorporates both a Thread and Wi-Fi interface.

• Leader: A Leader manages a registry of assigned router IDs and

accepts requests from router-eligible end devices (REEDs) to become
routers. The Leader decides which should be routers, and the Leader,
like all routers in a Thread network, can also have device-end children.
The Leader also assigns and manages router addresses using
Constrained Application Protocol (CoAP). However, all information
contained in the Leader is present in the other Thread Routers. So, if the
Leader fails or loses connectivity with the Thread network, another
Thread Router is elected, and takes over as Leader without user
intervention.

• Thread Router: Thread Routers provide routing services to network
devices. They are also responsible for handling devices joining the
network and providing security; they can function in the leader role and
start a Thread network. Always active, they maintain neighbor, child and
routing tables and connect with each other so the mesh remains intact. If
a router goes down, the remaining Thread routers update their routing
information so messages can still be forwarded using existing nodes.
Thread Routers are not designed to sleep and can downgrade their
functionality and become REEDs. Thread's mesh topology provides a
self-healing communication framework

• Router Eligible End Device: Routers can be also be downgraded to

router-eligible end devices (REEDs) which do not forward messages if
conditions require; REEDs and routing algorithms are managed by the
Thread network without user intervention. REEDs can become a Thread
Router or a Leader, but not necessarily a Border Router that has special
properties, such as multiple interfaces. REEDs do not relay messages or
provide joining or security services for other devices in the network. The
network manages and promotes router-eligible devices to routers if
necessary without user interaction.

• End Devices: End devices that are not router-eligible can be either full

end devices (FEDs) or minimal end devices (MEDs). MEDs do not need
to explicitly synchronize with their parent to communicate. Sleepy end
devices communicate only through their Thread Router parent and
cannot relay messages for other devices.

8 Study of the protocol for home automation Thread.

Host devices are the individual IP-enabled functional equipment, like a light
bulb, fan or thermostat, and are endpoints in the network. A device may also be
referred to as a sleepy node or sleepy child. The sleepy terminology indicates
that the devices spends most of the time in sleep mode, with low duty cycles as
required for low power operation. Devices communicate only through the parent
router and do not forward messages for other devices. Since devices cannot
receive data while in a sleep mode, the parent holds their messages until the
device wakes to either poll for data or to send data. A typical send cycle for a
device might be:

• Wake from sleep mode.
• Perform any required startup and radio initialization.
• Go into receive mode and check if clear to transmit.
• Go into transmit mode.
• Transmit data.
• Get acknowledgment as applicable.
• Sleep.

1.3. The Thread Advantage

The Thread mesh networks will be built on top of IEEE 802.15.4 hardware,
which is already on the market in some Nest devices and is what ZigBee, a
previously competing wireless protocol for home automation, used as well.
However, ZigBee will also be built on top of Thread at the application layer, so
in the future it should become more of a complementary product than a
competitor.

Thread uses the 6LoWPAN protocol, on top of which it builds the mesh network.
That means the Thread networks are IP-based, and the devices can also
connect directly to the Internet, not just to each other. This is an advantage the
protocol has over other wireless protocols such as Bluetooth and ZigBee. It's
also likely the main reason why ZigBee will be built on top of Thread in the
future.

Compared to competitors, a Thread mesh network is also more resilient and
can extend the range of a home network of smart devices. If one node fails to
connect to the network, other devices in the network will still be able to connect
to each other. This is the advantage of a mesh network over more centralized
approaches. Bluetooth, for instance, has a typical effective range of 50 meters,
and the devices can only connect in pairs of two. This limits the usefulness of
Bluetooth in smart homes because it makes managing multiple smart devices
much more difficult. On the other hand, a Thread mesh network requires no
maintenance after the initial setup for the new devices that join it.

Over 250 devices can be connected to each other in a Thread mesh network as
long as any two of those devices have a reasonable range between them.
Therefore, a Thread network could easily cover a large house or property
without any signal loss.

Thread 9

Where two Thread nodes are too far away from each other, the range can be
extended with "Thread routers."
The Thread networks will have a bandwidth of about 250 Kbps, which isn't
enough to transfer large files between the devices, but it can still enable the
type of communications sensors can have with each other. The low bandwidth
is a compromise that had to be made to keep the Thread-enabled devices low-
power and last not days, but years, on small batteries. The latency is less than
100ms for typical interactions.

A risk of IoT is to make hacking exponentially more common, once many people
begin buying insecure smart devices for their homes. That's why Thread comes
with built-in security that's enabled by default and mandatory for all devices.
Users will have to authorize any Thread-enabled devices before they are
allowed on their home networks. To communicate with each other, the devices
will also have to recognize each other’s' MAC addresses, which should make it
harder for other unauthorized devices to access the network. The
communications between authorized devices will be encrypted with DTLS
(Datagram Transport Layer Security), an encryption protocol designed to
prevent tampering and message forgery.

1.4. Physical Layer and Data Link Layer- IEEE 802.15.4

Thread stack PHY and MAC layer use the IEEE 802.15.4-2006 version of the
specification. The IEEE 802.15.4 standard was developed by the 802.15.4 Task
Group within the IEEE and defines the physical layer (PHY) and medium
access control (MAC) layer specifications for low data rate wireless personal
area networks (LRWPANS). Such networks are typically limited to a personal
operating space of up to 10 meters and involve little or no infrastructure. The
standard provides for low complexity, low power consumption, low data rate
wireless connectivity among a wide range of inexpensive devices. Among
others, wireless sensor networks seem to be a suitable application scenario for
802.15.4 networks.

Designed with low power in mind, this wireless communication protocol is
suitable for applications usually involving a large number of nodes, most of
which can function on battery power for many years. The main identifying
feature of IEEE 802.15.4 among WPANs is the importance of achieving
extremely low manufacturing and operation costs and technological simplicity,
without sacrificing flexibility or generality.

One of the characteristics derived from the need for low power and limiting the
BER (Bit Error Rate) is enforcing smaller sized packets to be sent over-the-air.
These can be up to a maximum of 127 bytes at the PHY layer.

The MAC layer payload can be as low as 88 bytes, depending on the security
options and addressing type as illustrated in next Figure (Fig. 1.6)

10 Study of the protocol for home automation Thread.

Fig. 1.6 PHY and MAC Frame details [12].

1.4.1. Physical Link Layer

IEEE 802.15.4 PHY provides the interface between the MAC and the physical
radio channel. The transceiver hardware and its firmware are accessed over the
PHY interfaces. Management functions are consolidated in the PHY
Management Entity (PLME), an entity that provides the necessary layer
management functions. The PLME is also responsible for the management of
important parameters, objects and other manageable information of the PHY.
These information are concentrated in the PAN Information Base (PIB).
Important PIB attributes for the Frequency Band used by Thread (2400 -
2483.5MHz) are:

• Chip Rate 1600 kchip/s.
• Modulation O-QPSK. DSSS (Direct Sequence Spread Spectrum)
• Bit Rate 250 kbit/s.
• Symbol Rate 62.5 ksymbol/s.
• Channels: 16

The PHY also supports important functions like Energy Detection, Link Quality
Indicator or Clear Channel Assessment. Each packet, or PHY protocol data unit
(PPDU), contains a preamble, a start of packet delimiter, a packet length, and a
payload field, or PHY service data unit. The 32-bit preamble is designed for
acquisition of symbol and chip timing.

The IEEE 802.15.4 payload length can vary from 2 to 127 bytes and PHY
Header is composed by 4 Bytes Preamble + 1 Byte Start Packet Delimiter + 1
Byte for Length Field.

There are also parameters that provides the receiver of a physical frame:

• RSSI (Radio Signal Strength Indication): Indicate the level of the frame
received signal.

• LQI (Link Quality Indication): Indicates the corresponding signal quality
the frame received. Value is calculated from the intensity of received
signal and the number of errors of the received frame. According IEEE
802.15.4 specification, the minimum and maximum values of LQI are
0x00 to 0xFF. The LQI provides information useful to the upper layers,
for example to route.

Thread 11

1.4.2. Data Link Layer

The IEEE 802.15.4 MAC layer is used for basic message handling and
congestion control. This MAC layer includes a CSMA (Carrier Sense Multiple
Access) mechanism for devices to listen for a clear channel, as well as a link
layer to handle retries and acknowledgement of messages for reliable
communications between adjacent devices. MAC layer encryption and integrity
protection is used on messages based on keys established and configured by
the higher layers of the software stack. The network layer builds on these
underlying mechanisms to provide reliable end-to-end communications in the
network.

IEEE 802.15.4 MAC layer supports two modes:

• Non Beacon Mode: In this mode, the data is transmitted using unslotted
CSMA/CA algorithm. This mode does not use the superframe structure.
The merits are scalability and self-organization. However it cannot
guarantee the timely delivery of data.

• Beacon Mode: In this mode the PAN coordinator generates beacons
periodically to synchronize the nodes associated with it. The superframe
structure is confined within two beacons

1.5. Network Layer

1.5.1. IPv6

Internet Protocol version 6 (IPv6) is the most recent version of the Internet
Protocol (IP). Provides an identification and location system for computers on
networks and routes traffic across the Internet. All devices have IPv6 address
plus short address on HAN, DHCPv6 used for router address assignment. The
main advantage of IPv6 is Home Network can directly address devices through
Border Routers and Cloud Services can address devices of local devices on
HAN or off network using normal IP addressing.

In IPv6 addressing architecture the devices support one or more ULA (Unique
Local Address) or GUA (Global Unicast Address) addresses based on their
available resources.
The high-order bits of an IPv6 address specify the network and the rest specify
particular addresses in that network. Thus, all the addresses in one network
have the same first N bits. Those first N bits are called the "prefix". The "/64"
indicates that this is an address with a 64-bit prefix. The device starting the
network picks a /64 prefix that is then used throughout the network.

12 Study of the protocol for home automation Thread.

Devices in the Thread stack support IPv6 addressing architecture. Devices
configure one or more ULAs (Unique Local Address) or GUA (Global Unicast
Address) addresses.

The device starting the network picks a /64 prefix that is then used throughout
the Thread Network. The prefix is a Locally Assigned Global ID, often known as
a ULA prefix and can be referred to as the mesh local ULA prefix. The Thread
Network may also have one or more Border Routers that each may or may not
have a prefix that can then be used to generate additional GUAs. The device in
the Thread Network uses its Extended MAC address to derive its interface
identifier and from this configures a link local IPv6 address with the well-known
local prefix FE80::0/64.

The devices also support appropriate multicast addresses. This includes link-
local all node multicast, link-local all-router multicast, and realm-local multicast.

Each device joining the Thread Network is assigned a 16-bit short address. For
Routers, this address is assigned using the high bits in the address field with
the lower bits set to 0, indicating a Router address. Children are then allocated
a 16-bit short address using their Parent’s high bits and the appropriate lower
bits for their address. This allows any other device in the Thread Network to
understand the Child’s routing location simply by using the high bits of its
address field.

1.5.2. 6LowPAN

The 6LoWPAN group has defined encapsulation and header compression
mechanisms that allow IPv6 packets to be sent and received over IEEE
802.15.4 based networks.

6LoWPAN stands for “IPv6 Over Low Power Wireless Personal Networks”. It is
designed specifically to handle the limitations when sending and receiving IPv6
packets over IEEE 802.15.4 links. In doing so, it has to accommodate for the
IEEE 802.15.4 maximum frame size that can be sent over-the-air. In Ethernet
links, a packet with the size of the IPv6 MTU (1280 bytes) can be easily sent as
one frame over the link. In the case of IEEE 802.15.4, 6LoWPAN acts as an
adaptation layer between the IPv6 networking layer and the IEEE 802.15.4 link
layer. It solves the issue of transmitting an IPv6 MTU by fragmenting the IPv6
packet at the sender and reassembling it at the receiver. 6LoWPAN also
provides a compression mechanism that reduces the IPv6 headers sizes sent
over-the-air and thus reduces transmission overhead. The fewer bits are sent
over-the-air, the less energy is consumed by the device. Thread makes full use
of these mechanisms to efficiently transmit packets over the IEEE 802.15.4
network.

Another important feature of the 6LoWPAN layer is the ability to provide link
layer packet forwarding. It provides a very efficient and low overhead
mechanism for forwarding multi hop packets in a mesh network.

Thread 13

Thread uses IP layer routing with link layer packet forwarding. It makes use of
the 6LoWPAN link layer forwarding capabilities to forward the packet by not
having to send it up to the network layer. Thread makes full use of the ability of
the MAC layer to provide addressing based on short addresses (16-bit length)
to further reduce the information bits needed to be sent over-the-air to provide
efficient packet forwarding. This saves processing cycles and improves power
consumption at the same time while still using an IP based routing protocol.

Looking at the OSI (Open Systems Interconnection) model one can notice that
the MAC is considered to be Layer 2 and the IPv6 Network is considered to be
Layer 3. Being an adaptation layer, 6LoWPAN sits between these two and
provides the necessary mechanisms and interfaces for them to interconnect. To
sum up, the 6LoWPAN adaptation layer provides the following:

• IPv6 packet encapsulation: To accomplish the functionalities described
above, the 6LoWPAN layer takes the IPv6 packets, wraps them using
encapsulation headers, and then subsequently sends them over-the-air
using the IEEE 802.15.4 MAC and PHY layers.

• IPv6 packet fragmentation and reassembly: To meet the IPv6-
required MTU of at least 1280 bytes with the IEEE 802.15.4 layer offering
at most 102 bytes of payload per frame, a fragmentation mechanism
below the IP layer is specified using an optional Fragmentation Header
before the actual IPv6 header. A fragmented packet is carried in frames
containing the fragmentation header. A typical application payload size in
an IEEE 802.15.4 packet using UDP (User Datagram Protocol) and
DTLS (Datagram Transport Layer Security) is 63 bytes. 6LoWPAN
provides a fragmentation and reassembly mechanisms to adapt IPv6
datagrams to these smaller IEEE 802.15.4 payloads. IPv6 packets that
do not fit are split into fragments and sent over the air via 802.15.4. Not
all fragments may be received in the correct order. However, 6LoWPAN
only requires that all fragments are received and will reorder fragments
during reassembly if needed.

• IPv6 header compression: To minimize the overhead of sending IPv6
messages in IEEE 802.15.4 frames, 6LoWPAN provides stateless
compression mechanisms for both IPv6 and transport headers that take
advantage of cross-layer redundancies between protocols such as
source and destination addressing, payload length, traffic class and flow
labels. . Thread utilizes IPHC (Improved Header Compression) and NHC
(Next Header Compression). IPHC is used to compress the IPv6 header.
NHC is used to compress the UDP header. Even though 81 octets are
left in an IEEE 802.15.4 frame for IPv6, the IPv6 header alone is 40
octets long, leaving 41 octets for upper layers. In case UDP is used,
which has a header of 8 octets, only 33 octets can be used for
application data. Furthermore, mechanisms for compressing the IPv6
header from 40 down to 2 bytes and the UDP header from 8 down to 4
bytes, in the ideal case, are specified. To distinguish between a
compressed and uncompressed header, a 1-byte dispatch value is
prepended before the header.

14 Study of the protocol for home automation Thread.

• Link layer packet forwarding: Layer Two Forwarding: Thread uses IP
routing to forward packets. The IP routing table is maintained with each
destination and the next hop to it. The 6LoWPAN mesh header is used to
do link level next hop forwarding based on the IP routing table
information. Thread uses 6 LoWPAN mesh headers for next hop
forwarding

Support for mesh networking is provided by the optional Mesh
Addressing and Broadcast Headers. The former carries the Originator
and Final Destination link-layer addresses while the latter contains a
sequence number used to detect duplicated frames. Both are carried at
the beginning of the IEEE 802.15.4 payload.

6LoWPAN packets are constructed on the same principle as IPv6 packets and
contain stacked headers for each added functionality. Each 6LoWPAN header
is preceded by a dispatch value that identifies the type of header (Fig. 1.7).

Fig. 1.7 General Format 6LoWPAN Packet [12].

Thread uses the following types of 6LoWPAN headers:

• Mesh Header (used for link layer forwarding).
• Fragmentation Header (used for fragmenting the IPv6 packet into several

6LoWPAN packets).
• Header Compression Header (used for IPv6 headers compression).

The 6LoWPAN specification mandates that if more than one header is present
they must appear in the order mentioned above.

The following are examples of 6LoWPAN packets sent over the air:

In the following figure (Fig. 1.8), the 6LoWPAN payload is composed of the
compressed IPv6 header and the rest of the IPv6 payload

Fig. 1.8 6LoWPAN Packet with compressed IPv6 header + payload[12].

In the following figure (Fig. 1.9), the 6LoWPAN payload contains the IPv6
header and part of the IPv6 payload

Fig. 1.9 6LoWPAN Packet with Mesh + Fragment + Compression headers [12].

Thread 15

The rest of the payload will be transmitted in subsequent packets per the format
in the following figure (Fig. 1.10).

Fig. 1.10 6LoWPAN Subsequent Fragment[12].

1.5.3. Distance Vector Router (RIP & RIPng)

Routing information protocol (RIP) began life as one of the earliest efforts in the
field of dynamic routing protocols back in the 1970. Later in the 1990 the RIP
version 2 enhance RIP with the original version becoming known as RIP version
1. Also in the mid-1990, the process of defining IPv6 was drawing toward
completion at least for the original IPv6 standards the RIPv3 or RIPng.

The Routing Information Protocol (RIP), which is a distance vector based
algorithm, is one of the first routing protocols implemented on TCP/IP.
Information is sent through the network using UDP. Each router that uses this
protocol has limited knowledge of the network around it. This simple protocol
uses a hop count mechanism to find an optimal path for packet routing. A
maximum number of 16 hops a reemployed to avoid routing loops. However,
this parameter limits the size of the networks that this protocol can support. The
popularity of this protocol is largely due to its simplicity and its easy
configurability. However, its disadvantages include slow convergence times,
and its scalability limitations. Therefore, this protocol works best for small scaled
networks. Simple distance vector algorithm:

• Provides next-hop information about all router nodes.
• Highly compressed protocol format: one byte per destination.
• No reactive route discovery by devices.
• Child ID encodes parent router ID. Route is known when address is

known.
• Point to point routes always available to every router.

RIPng uses hop count as a routing metric. RIPng is intended to allow
routers to exchange information for computing routes through an IPv6-
based network. Figure (Fig. 1.11) shows the message format. Adding IPv6
prefix and prefix length headers. RIPng is based on RIPv2 and has a maximum
hop count of 15; uses split horizon, poison reverse, and other loop avoidance
mechanisms, but is intended for IPv6. Route tag and prefix length for Next Hop
is all 0. Metric will have 0xFF and Next Hop address must be local.

16 Study of the protocol for home automation Thread.

Fig. 1.11 RIPng Message Format.

It is of distance vector protocol and uses the Bellman Ford algorithm to
calculate the best path in a network. It still uses multicast to send its updates
but uses FF02::9 for the transport address. It´s counterpart IPv4 multicast
address is 244.0.0.9. RIPng is a UDP-based protocol and communicates
through UDP port 521 known as the RIPng port.

Next Figure (Fig.1.12) shows an IPv6 Rip internal table example from Cisco
Router.

R1#show ipv6 rip RIPng database
RIP process "RIPng", local RIB
 1011:11:11:11::/64, metric 2
 Serial2/0/FE80::A8BB:CCFF:FE00:200, expires in 176 secs
 2001:150:2:2::2/128, metric 2, installed
 Serial2/0/FE80::A8BB:CCFF:FE00:200, expires in 176 secs
 2011::1/128, metric 2, installed
 Serial2/0/FE80::A8BB:CCFF:FE00:200, expires in 176 secs
 2020::1/128, metric 2, installed
 Serial2/0/FE80::A8BB:CCFF:FE00:200, expires in 176 secs

Fig. 1.12 IPv6 Rip internal table example from Cisco Router.

Mesh link establishment (MLE) is a protocol for establishing and configuring
secure radio links in IEEE 802.15.4 radio mesh networks. MLE extends IEEE
802.15.4 for use in multihop mesh networks by adding three capabilities:

• Dynamically configuring and securing radio connections between
neighboring devices.

• Enabling network-wide changes to shared radio parameters.
• Allowing the determination of radio link quality prior to configuration.

Thread 17

MLE operates below the routing layer, insulating it from the details of
configuring, securing, and maintaining individual radio links within a larger mesh
network.

As described before Thread Routing implementation is based on RIPng. RIP
calculates the best route to a destination based solely on how many hops it is to
the destination network, RIP tends to be inefficient in network using more than
one LAN protocol. This is because RIP prefers paths with the shortest hop
count. The path with the shortest hop count might be over the slowest link in the
network. This protocol sends using multicast its routing table every 30 seconds.

A packet can contain up to 25 destinations, and the unit measure uses hop
count (number of jumps), maximum is 15 routers.

Router Selection:

• Limit of 32 active routers to reduce bandwidth and RAM consumption.
• 64 router addresses to allow timing out and reassignment.
• No neighbor selection required.
• Routers select automatically from router eligible end devices (REED).
• REED behave as end devices, but listen to routing messages.
• As number of routers increases, routers can elect to become REED.
• If REED notes need to become a router it will petition leader.

Leader decision maker in network, chosen autonomously:

• Assigns router ID‟s
• Assigns 6LoWPAN contexts
• Collates border router information
• Assembled network data is distributed using MLE advertisements
• All routers store the network data, only the leader can make changes to it

No single point of failure. Recovery from leader failure or disconnected topology
by self-election of new leader and network fragments automatically elect a new
leader, and if reconnected the leader returns to being a router

1.5.4. DTLS

The Datagram Transport Layer Security (DTLS) communications protocol
provides communications security for datagram protocols. DTLS allows
datagram-based applications to communicate in a way that is designed to
prevent eavesdropping, tampering, or message forgery. The DTLS protocol is
based on the stream-oriented Transport Layer Security (TLS) protocol and is
intended to provide similar security guarantees. The DTLS protocol datagram
preserves the semantics of the underlying transport and the application does
not suffer from the delays associated with stream protocols, but has to deal with

18 Study of the protocol for home automation Thread.

packet reordering, loss of datagram and data larger than the size of a datagram
network packet.

There are two main areas that unreliability creates problems for TLS:

• The traffic encryption layer does not allow individual packets to be
decrypted, there are two inter-record dependencies:

o Cryptographic context is chained between records.
o A Message Authentication Code (MAC) that includes a sequence

number provides anti-replay and message reordering protection,
but the sequence numbers are implicit in the records.

• The handshake layer breaks if messages are lost because it depends on
them being transmitted reliably for these two reasons:

o The handshake is a lockstep cryptographic handshake requiring
messages to be transmitted and received in a defined order,
causing a problem with potential reordering and message loss.

o Fragmentation can be a problem because the handshake
messages are potentially larger than any given datagram.

The first problem caused by the inter-packet dependencies can be solved by
using a method employed in the Secure Internet Protocol (IPsec) by adding
explicit state to each individual record.

To solve the issue of packet loss DTLS employs a simple retransmission timer.
Figure (Fig. 1.12) below illustrates the basic concept. The client is expecting to
see the HelloVerifyRequest message from the server. If the timer expires then
the client knows that either the ClientHello or the HelloVerifyRequest was lost
and retransmits.

Reordering is solved by giving each handshake message a specific sequence
number used to determine if it has received the next message in the sequence.
If the message is the next one then the peer processes it, if it is not the next one
then it queues it up for future handling when message’s individual sequence
number is reached.

Thread 19

Fig. 1.13 DTLS Timer Basic Concept [6].

Handshake messages can be quite large (224 – 1 bytes) and UDP datagrams
are usually limited to less than 1500 bytes. DTLS compensates for this by
allowing each handshake message to be fragmented over several UDP
datagrams. Each handshake message contains a fragment offset and a
fragment length allowing the recipient to reassemble the bytes into the complete
message when all packets are received.

Optionally DTLS supports replay detection by maintaining a bitmap window of
received records. Records that are too old to fit in the window and those that
have been previously received are discarded. This is the same technique used
by IPsec AH/ESP.

1.6. Transport Layer (UDP & TCP)

User Datagram Protocol (UDP) is defined to make available a datagram mode
of packet-switched computer communication in the environment of an
interconnected set of computer networks. This protocol assumes that the
Internet Protocol (IP) is used as the underlying protocol.

This protocol provides a procedure for application programs to send messages
to other programs with a minimum of protocol mechanism. The protocol is
transaction oriented, and delivery and duplicate protection are not guaranteed.
Applications requiring ordered reliable delivery of streams of data should use
the Transmission Control Protocol (TCP)

The Thread stack supports UDP (User Datagram Protocol) as defined in RFC
768 for messaging between devices. TCP is an optional implementation and is
impractical with unreliable networks and can be fails on sleepy platforms.

20 Study of the protocol for home automation Thread.

1.7. Application Layer

A standard definition of an application layer is an “abstraction layer that
specifies the shared protocols and interface methods used by hosts in a
communications network”. Put more simply, an application layer is the
“language of devices,” for example, how a switch talks to a light bulb. The
Thread specification defines standard methods for forming and joining a
network (called commissioning) and custom applications are responsible for
interoperability. Thread does, however, provide these basic application
services:

• UDP messaging: UDP offers a way to send messages using a 16-bit
port number and an IPv6 address. UDP is a simpler protocol than TCP
and has less connection overhead (for example, UDP does not
implement keep-alive messages). As a result, UDP enables a faster,
higher throughput of messages and reduces the overall power budget of
an application. UDP also has a smaller code space than TCP, which
leaves more available flash on the chip for custom applications.

• Multicast messaging: Thread provides the ability to broadcast
messages, that is, sending the same message to multiple nodes on a
Thread network. Multicast allows a built-in way to talk to neighbor nodes,
routers, and an entire Thread network with standard IPv6 addresses.

• Application layers using IP services: Thread allows the use of
application layers such as UDP and CoAP (Constrained Application
Protocol) to allow devices to communicate interactively over the Internet.
Non-IP application layers will require some adaptation to work on
Thread.

Silicon Labs has developed two sample applications–client and server–that
demonstrate basic interoperability features of the Thread network and how to
build a simple client and server example, including a sleepy end device.

OpenThread 21

CHAPTER 2. OPENTHREAD

Nest Labs, Inc. (acquired by Google in the beginning of 2014) released
OpenThread in May 2016, OpenThread is an open source implementation
based on the draft Thread 1.0 specification of the Thread networking protocol.
With OpenThread, Nest wants to make the technology used in Nest products
more broadly available to accelerate the development of products for the
connected home. The idea is as more silicon providers adopt Thread,
manufacturers will have the option of using a proven networking technology
rather than creating their own, and consumers will have a growing selection of
secure and reliable connected products to choose from.

Along with Nest, ARM, Atmel, Dialog Semiconductor, Qualcomm Technologies,
Inc. and Texas Instruments Incorporated are contributing to the ongoing
development of OpenThread (Fig.2.1). In addition, OpenThread can run on
Thread-capable radios and corresponding development kits from silicon
providers like NXP Semiconductors and Silicon Labs.

Fig. 2.1 OpenThread supporters [5].

OpenThread implements all Thread networking layers including:

• IEEE 802.15.4 with MAC security.
• IPv6 and 6LoWPAN.
• Mesh Link Establishment and Mesh Routing.
• Key management.
• Definitions in code of specific roles in Thread including:

o Leader.
o Router.
o End Device.
o The Border router.

• UDP packet compression.
• A CoAP implementation.

OpenThread is highly portable: OS and platform agnostic with a radio
abstraction layer. Is written mostly in C++. The implementation depends on a
platform layer, basically a Hardware Abstraction Layer (HAL), and if that layer is
implemented, it can potentially run on most microcontroller or 802.15.4 SoCs
(essentially microcontrollers with an integrated 802.15.4 radio) with the
advantage of small memory footprint.

https://en.wikipedia.org/wiki/Hardware_abstraction
https://en.wikipedia.org/wiki/System_on_a_chip

22 Study of the protocol for home automation Thread.

All code are available at Github repository and can be run in a variety of
Software platforms and SoCs development boards including:

• Dialog DA15000
• Nordic Semiconductor nRF52840
• Texas Instruments CC2538 & CC2650
• Zolertia RE-Mote
• Windows 10
• RIOT
• POSIX Emulation

Next sections explain some of the code snippets about implemented functions
(Fig. 2.2).

Fig. 2.2 General Overview of OpenThread modules [5].
.

OpenThread 23

2.1. Network Implementation

IPv6 includes definitions for the IPv6 network layer. IPV6 module (Fig. 2.3)
defines the ICMPv6 implementation the network interfaces, the multicast
protocol and the IPv6 implementation itself.

Fig. 2.3 IPv6 module details [5].

2.2. Routing Implementation

OpenThread implement MLE to propagate the Routing table information and
RIPng to process information and maintain routing tables.

The implemented MLE module (Fig. 2.4) depends on Core and implements
MLE functionality required for the Thread Router and Leader roles. The Type
Length Value (TLV) module includes definitions for generating and processing
MLE TLVs.

Fig. 2.4 MLE module details [5].

24 Study of the protocol for home automation Thread.

MLE main file is src/core/thread/mle.cpp and contains all the functions and
references to implement MLE functionalities. The Routing parameters are
defined in file src/core/thread/mle_constants.hpp (Fig. 2.5).

Fig. 2.5 Routing Parameters [5].

The command types are defined in src/core/thread/mle.hpp(Fig. 2.6).

Fig. 2.6 MLE command types [5].

OpenThread 25

IPV6 routing tables are implemented in the file src/core/net/ip6_routes.cpp &
src/core/net/ip6_routes.hpp (Fig. 2.7). and defines the next address scopes.

Fig. 2.7 MLE scopes [5].

2.3. DTLS Implementation

DTLS class (Fig. 2.X) is part of the MeshCoP class and defines all the related
messages to implement the DTLS functionalities in OpenThread stack

Fig. 2.8 DTLS module details [5].

https://github.com/openthread/openthread/tree/master/src
https://github.com/openthread/openthread/tree/master/src/core
https://github.com/openthread/openthread/tree/master/src/core/net
https://github.com/openthread/openthread/tree/master/src
https://github.com/openthread/openthread/tree/master/src/core
https://github.com/openthread/openthread/tree/master/src/core/net

26 Study of the protocol for home automation Thread.

2.4. Thread Management Protocol Implementation (CoaP)

While the Thread protocol uses CoAP for its control messaging, the CoAP
server instances within a Thread network are dedicated to Thread's control
messaging (i.e. Thread's CoAP server uses a different port than the default
CoAP port).

At the same time, OpenThread does expose a CoAP API that allows application
to use the same CoAP implementation to send/receive CoAP messages. If you
want to test that out, you will need to set up a CoAP server, add a resource, and
implement the appropriate higher-layer logic to send and process CoAP
messages. The UDP port for Thread-specific is 61631.

Currently the CoAP server object in OpenThread only implements the subset of
the protocol that is necessary for Thread Commissioning. OpenThread CoAP
API is disabled by default. To enable that feature, you will need to add `--
enable-application-coap` to the `./configure` options.

A border router can be created with a cc2538 running the ncp example and a
linux machine running wpantund [15]. Wpantund (Userspace WPAN Network
Daemon) is a user-space network interface driver/daemon that provides a
native IPv6 network interface to a low-power wireless Network Co-Processor (or
NCP). It was written and developed by Nest Labs to make supporting Thread
connectivity on Unix-like operating systems more straightforward.

The OpenThread API supports sending and receiving UDP messages. You can
use those APIs to send/receive CoAP messages. You could also look into
RIOT-OS, which supports CoAP and has a recent PR to integrate OpenThread.

Joiner Entrust CoAP message and it shall be secured on MAC with Key ID
Mode 0, using single-use KEK. But it still is a confirmable message, and CoAP
may need to retransmit it. CoAP messages are transmitted over secured DTLS
connection.

The CoAP Message Types can be either confirmable (CON), non-confirmable
(NON). Confirmable messages require an ACK, while non-confirmable
messages don’t. If we don’t need reliability, we use NON, for example, a sensor
broadcasting data and if we need reliability, we use CON, for example, issuing
a GET to a server.

2.5. CLI Commands

The OpenThread CLI exposes configuration and management APIs via a
command line interface. Use the CLI to play with OpenThread, which can also
be used with additional application code.

OpenThread 27

Some of the CLI available commands are:

• autostart
o autostart  Show the status of automatically starting Thread.
o autostart true  Automatically start Thread on initialization.
o autostart false  Don't automatically start Thread on initialization.

• blacklist

o blacklist  List the blacklist entries.
o blacklist enable  Enable MAC blacklist filtering.
o blacklist disable  Disable MAC blacklist filtering.
o blacklist add <extaddr>  Add an address to the blacklist.
o blacklist remove <extaddr>  Remove address from the blacklist.
o blacklist clear  Clear all entries from the blacklist.

• channel

o channel  Get the IEEE 802.15.4 Channel value.
o channel <channel>  Set the IEEE 802.15.4 Channel value.

• child

o child list  List attached Child IDs.
o child table  Print table of attached children.

o child <id>  Print diagnostic information for an attached
Thread

 Child. The <id> may be a Child ID or an RLOC16.

• childmax
o childmax  Get the Thread maximum number of allowed

 children.
o childmax <count> Set the Thread maximum number of allowed

 children.

28 Study of the protocol for home automation Thread.

• childtimeout
o childtimeout  Get the Thread Child Timeout value.
o childtimeout <timeout>  Set the Thread Child Timeout value.

• Commissioner

o commissioner start <provisioningUrl>  Start the Commissioner role.
o commissioner stop  Stop the Commissioner role.
o commissioner joiner add <hashmacaddr> <psdk>

 Add a Joiner entry.
o commissioner joiner remove <hashmacaddr>

 Remove a Joiner entry.
o commissioner provisioningurl <provisioningUrl>

 Set the Provisioning URL.
o commissioner energy <mask> <count> <period> <scanDuration> <destination>

 Send a MGMT_ED_SCAN message.
o commissioner panid <panid> <mask> <destination>

 Send a MGMT_PANID_QUERY message.
o commissioner sessionid

Get current commissioner session id.

• contextreusedelay
o contextreusedelay  Get the CONTEXT_ID_REUSE_DELAY.
o contextreusedelay <delay>  Set the CONTEXT_ID_REUSE_DELAY.

• counter

o counter  Get the supported counter names.
o counter <countername>  Get the counter value.

• delaytimermin

o delaytimermin  Get the minimal delay timer.
o delaytimermin <delaytimermin> Set the minimal delay.

• discover

o discover [channel]  Perform an MLE Discovery operation.

• eui64

o eui64  Get the factory-assigned IEEE EUI-64.

• extaddr
o extaddr  Get the IEEE 802.15.4 Extended Address.
o extaddr <extaddr>  Set the IEEE 802.15.4 Extended Address.

• extpanid

o extpanid  Get the Thread Extended PAN ID value.
o extpanid <extpanid>  Set the Thread Extended PAN ID value.

OpenThread 29

• factoryreset
o factoryreset  Delete all stored settings, and signal a platform

reset.

• hashmacaddr
o hashmacaddr  Get the HashMac address.

• ifconfig

o ifconfig Show the status of the IPv6 interface.
o ifconfig up Bring up the IPv6 interface.
o ifconfig down  Bring down the IPv6 interface.

• ipaddr

o ipaddr  List all IPv6 addresses assigned to the Thread interface.

o ipaddr add <ipaddr>  Add address to the Thread interface.
o ipaddr del <ipaddr>  Delete address from the Thread interface.

• ipmaddr

o ipmaddr  List all IPv6 multicast addresses.

o ipmaddr add <ipaddr>  Subscribe the Thread interface to the IPv6

 multicast address.
o ipmaddr del <ipaddr>  Unsubscribe the Thread interface to the IPv6

 multicast address.

• joiner
o joiner start <pskd> <provisioningUrl>  Start the Joiner role.
o joiner stop  Stop the Joiner role.

• leaderpartitionid

o leaderpartitionid  Get the Thread Leader Partition ID.
o leaderpartitionid <partitionid>  Set the Thread Leader Partition ID.

• linkquality

o linkquality <extaddr>
 Get the link quality on the link to a given extended address.

o linkquality <extaddr> <linkquality>
  Set the link quality on the link to a given extended address.

30 Study of the protocol for home automation Thread.

• masterkey
o masterkey Get the Thread Master Key value.
o masterkey <key> Set the Thread Master Key value.

• mode

o mode  Get the Thread Device Mode value.
o mode [rsdn]  Set the Thread Device Mode value.

• r: rx-on-when-idle
• s: Secure IEEE 802.15.4 data requests
• d: Full Function Device
• n: Full Network Data

• netdataregister
o netdataregister Register local network data with Thread Leader.

• networkidtimeout

o networkidtimeout
  Get the NETWORK_ID_TIMEOUT used in the Router
role.

o networkidtimeout <timeout>
 Set the NETWORK_ID_TIMEOUT used in the Router

role.

• networkname
o networkname Get the Thread Network Name.
o networkname <name>  Set the Thread Network Name.

• panid

o panid  Get the IEEE 802.15.4 PAN ID value.
o panid <panid> Set the IEEE 802.15.4 PAN ID value.

• parent

o parent  Get the information for a Thread Router as parent.

• ping
o ping <ipaddr> [size] [count] [interval]  Send an ICMPv6 Echo Request.

• releaserouterid

o releaserouterid <routerid>
 Release a Router ID that has been allocated by the device in
the Leader role.

• reset

o reset  Signal a platform reset.

• rloc16
o rloc16  Get the Thread RLOC16 value.

OpenThread 31

• route
o route remove <prefix>  Invalidate a prefix in the Network Data.
o route add <prefix> [s] [prf]  Add a valid prefix to the Network Data.

• s: Stable flag.
• prf: Default Router Preference, which may be: 'high', 'med', or 'low'.

• router
o router list List allocated Router IDs.
o router <id> Print diagnostic information for a Thread Router.
o router table  Print table of routers.

• routerrole
o routerrole  Indicates whether the router role is enabled or

disabled.
o routerrole enable Enable the router role.
o routerrole disable Disable the router role.

• routerupgradethreshold

o routerupgradethreshold
  Get the ROUTER_UPGRADE_THRESHOLD value.

o routerupgradethreshold <threshold>
  Set the ROUTER_UPGRADE_THRESHOLD value.

• scan

o scan [channel]  Perform an IEEE 802.15.4 Active Scan.

• singleton
o singleton  Return true when there are no other nodes in the

 network, otherwise return false.

• state
o state  Return state of current state.
o state <mode>  Try to switch to State:

 detached
 child
 router
 leader.

32 Study of the protocol for home automation Thread.

• thread
o thread start  Enable Thread protocol operation and attach to a

 Thread network.
o thread stop  Disable Thread protocol operation and detach from a

 Thread network.

• version
o version Print the build version information.

• whitelist

o whitelist  List the whitelist entries.
o withelist enable  Enable MAC withelist filtering.
o withelist disable  Disable MAC withelist filtering.
o withelist add <extaddr>  Add an address to the withelist.
o withelist remove <extaddr>  Remove address from the withelist.
o withelist clear  Clear all entries from the withelist.

Hardware Test Environment 33

CHAPTER 3. HARDWARE TEST ENVIRONMENT

The goal of the implementation phase is to have a working bench ready to test
and validate some of the Thread functionalities specially the routing parameters
and changes when propagation or node presence varies. The implementation
phase has been done using the hardware testbed described below.

3.1. OpenMote Development System

OpenMote development Kit (Fig 3.1) is based on the TI CC2538 System on
Chip (SoC), which combines an ARM Cortex-M3 with an IEEE 802.15.4
transceiver in one chip. The board follows the XBee form factor for easier
extensibility, which is used to connect the core board to either the OpenBattery
or Open-Base extension boards. It can run both as a battery-powered sensor
board and as a border router, depending on what extension board it is attached
to, e.g OpenBattery or OpenBase.

Fig. 3.1 OpenMote development Kit [6].

Furthermore, the board has limited support but ongoing development for RIOT
and also full support for freeRTOS.

3.1.1. TI CC2538

TI CC2538 is a power wireless MCU System-On-Chip (SoC) for high
performance IoT applications. The chip combine an ARM Cortex-M3 based
MCU, providing up to 32KB on-chip RAM, and up to 512KB on-chip flash
together with an IEEE 802.15.4 radio. The tiny shaped chip is able to run the
most up-to-date network stacks with high-level security and robustness
applications. The 32 GPIO ports and serial peripherals enables the connection
between the chip and test board. There is also a micro-USB port on the board,
which could be connected to external power source.

34 Study of the protocol for home automation Thread.

The SoC allows efficient authentication and encryption process, while
minimizing the workload for the MCU. Furthermore, three sets of low-power
modes with retention enables the quick sleep and recharge for periodic tasks,
leveraging the performance and power consumption. TI has provided a
comprehensive driver library and a series of debugging tools, which guarantees
the smooth development of CC2538. The chip is also equipped with state of the
art IoT technologies and solutions such as ZigBee and 6LoWPAN.

3.1.2. OpenMote - CC2538
The OpenMote-CC2538 (Fig. 3.2) is the core of the OpenMote hardware
Ecosystem. It is the brain of the platform, and the element a developer
programs.

Fig. 3.2 OpenMote module with antena [6].

The OpenMote-CC2538 includes the following hardware:

• CC2538: It is a SoC (System on Chip) from Texas Instruments with a 32-
bit Cortex-M3 microcontroller and a CC2520-like radio transceiver. The
radio operates at the 2.4 GHz band and is fully compatible with the IEEE
802.15.4-2006 standard.

• TPS62730: It is a step-down DC/DC converter from Texas Instruments
with two operation modes, regulated and bypass. In bypass mode the
TPS62730 directly connects the input voltage from the battery (typically 3
V) to the whole system. In regulated mode the TPS62730 regulates the
input voltage (typically 3 V) down to 2.1 V. The benefit of such approach
is that the whole efficiency of the system can be improved under both low
and high load conditions, that is, either when the system is sleeping or
when the radio is transmitting or receiving.

• ABM8G: It is a 32 MHz crystal from Abracon Corporation used to clock
the microcontroller and the radio transceiver. The part is rated at 30ppm
(parts per million) from -20 ºC to +70 ºC.

• ABS07: It is a 32.768 kHz crystal from Abracon Corporation used to
clock the microcontroller RTC (Real Time Clock). The part is rated at
10ppm (parts per millon) from -40 ºC to +85 ºC.

Hardware Test Environment 35

• LEDs: It includes 4 LEDs (colors: red, green, yellow and orange) from
Rohm Semiconductor for debugging purposes.

• Buttons: It includes 2 buttons from Omron, one is used to reset the

board and the other is connected to a GPIO line, thus enabling to wake
up the microcontroller from sleep modes through an interrupt.

• Antenna connector: The antenna connector enables to connect an

external antenna to the board.

• XBee layout: The OpenMote is fully compliant with the XBee form factor,
meaning that it can be easily interfaced with a computer or board using
the XBee connector.

3.1.3. OpenBase

The OpenBase (Fig. 3.3) is a skin for the OpenMote-CC2538 which offers all
the interfaces needed for efficient firmware development. It features a socket for
the OpenMote-CC2538, a 10-pin JTAG connector for in-circuit debugging of the
OpenMote-CC2538, a circuit to monitor the current draw of the OpenMote-
CC2538, pins to interface the OpenMote-CC2538 to external devices, a USB
connector to re-program and debug the OpenMote-CC2538, and a 10/100
Mbps Ethernet connector to connect the OpenMote-CC2538 directly to a LAN.

Fig. 3.3 OpenBase Module [6].

This wealth of interfaces means that the OpenBase can serve several
purposes. Through the JTAG interface, it can be used during code development
to place breakpoints and inspect variables. Through the USB interface, it can be
used to reprogram the OpenMote-CC2538 with pre-compiled binary images,
and receive status information from that firmware over a serial interface.
Through the 10/100 Mbps Ethernet interface, the OpenMote-CC2538 can be
connected to the Internet without requiring a computer.

36 Study of the protocol for home automation Thread.

3.1.4. OpenBattery

The OpenBattery (Fig. 3.4) is a skin for the OpenMote-CC2538 which provides
power and basic sensing capabilities. It is composed of a battery holder for 2
AAA batteries, a socket for the OpenMote-CC2538, an on/offswitch, and three
sensors: a temperature/humidity sensor (SHT21), a 3-axis accelerometer
(ADXL346) and a light sensor (MAX44009). All sensors are interfaced with the
OpenMote-CC2538 using an I2C bus. The temperature sensor can be used in a
wide set of applications, including network synchronization. The 3-axis
accelerometer can be used for dynamic or static motion detection. The light
sensor can be used for a wide range of applications, from presence detection to
touch-less switching.

Fig. 3.4 OpenBattery Module [6].

3.2. SEGGER J-Link Debug Probe

SEGGER J-Link edu is a JTAG (Fig. 3.5) Debug probe emulator designed for
ARM cores. It connects via USB to a PC running Linux or Microsoft Windows
2000 or later. Has a built-in 20-pin JTAG connector, which is compatible with
the standard 20-pin connector defined by ARM.

Fig. 3.5 Segger J-link edu Device [7].

Hardware Test Environment 37

Features:

• Direct download into flash memory of most popular microcontrollers
supported.

• Full-speed USB 2.0 interface.
• Serial Wire Debug supported.
• Serial Wire Viewer supported.
• Download speed up to 1 MBytes/second.
• Debug interface (JTAG/SWD/...) speed up to 15 MHz.
• RDI interface available, which allows using J-Link with RDI compliant

software.

3.3. TI CC2531EMK Sniffer Tool

The CC2531EMK kit provides one CC2531 USB Dongle and documentation to
support a PC interface to 802.15.4 / ZigBee applications. The dongle can be
plugged directly into your PC and can be used as an IEEE 802.15.4 packet
sniffer or for other purposes.

The CC2531 USB Dongle (Fig. 3.6) is a fully operational USB device that can
be plugged into a PC.

Fig. 3.6 CC2531 USB Dongle [8].

The dongle has 2 LEDs, two small push-buttons and connector holes that allow
connection of external sensors or devices. The dongle also has a connector for
programming and debugging of the CC2531 USB controller.

The dongle comes preprogrammed with firmware such that it can be used as a
packet sniffer device.

38 Study of the protocol for home automation Thread.

Setup & Tests 39

CHAPTER 4. SETUP & TESTS

This chapter begins addressing the configuration of the test scenario both
hardware and software levels. This will allow us to develop some tests in the
following phases, such as the basic connectivity between devices. Some
devices were configured in standalone mode in order to be able to perform
different tests using 4 nodes, among which only 2 are directly accessible. In
addition, we will check the visibility of the nodes connected to the same network
and also the ones that are not joined. The next step will be the revision of the
routing tables. Finally, through different captures, we will analyze the behavior
after some changes of scenario.

4.1. Test Scenario installation & Configuration

The test scenario is composed by an openmote kit composed by 4 nodes, 2
operated by OpenBattery and the other 2 with OpenBase allowing to access
console to interact with the scenario.

To flash code in OpenMote there are 2 methods:

• Using UART port and the bootloader backdoor mechanism present in TI
CC2538 SoC. Although I followed the manufacturer's instructions I was
not able to load code so I use the second option.

• Using a J-Link ARM debug probe (SEGGER j-link edu in my case) and
an ARM-JTAG-20-10 adapter to connect the OpenBase JTAG port.

At software level we are going to use an Ubuntu Linux as OS to compile and
flash devices and Github repository for OpenThread code.

First of all, we need to install the tools to cross-compile C/C++ code for ARM
microcontrollers in Linux host.

apt-get install gcc-arm-none-eabi gdb-arm-none-eabi git make

To load code and debug we also need to download and install the latest version
of the Segger J-Link drivers for GNU/Linux.

wget https://www.segger.com/downloads/jlink/jlink_6.0.7_x86_64.deb
dpkg --install jlink_6.0.7_x86_64.deb

Next step is to install git tools and download the OpenThread code from Github
repository.

apt-get install git
git clone https://github.com/openthread/openthread.git ~/OpenThread

40 Study of the protocol for home automation Thread.

At this point we have all the tools and code to compile code and flash to
OpenMote devices.

cd ~/OpenThread/openthread
./bootstrap
make -f examples/Makefile-cc2538

Once compiled binary file are ready to flash and are available at:

~/OpenThread/openthread/output/bin/arm-none-eabi-ot-cli-ftd

To flash OpenMote using the J-link method we are going to use the Segger
tools provided and previously installed.

Now that the code is compiled, we need to upload it to the OpenMote.
OpenBase is connected to the computer via the USB_FTDI USB port (on/off
switch is in the USB_FTDI position) Then, OpenBase is connected using the j-
link port to the Segger j-link and this is connected by USB to linux host.

Now is time to start the Segger GDB Server

/opt/SEGGER/JLink/JLinkGDBServer -device CC2538SF53

To load code we provide a script to connect the server and flash the code.
Create a file containing all the parameters and save it as flash.gdb

arm-none-eabi-gdb
target remote localhost:2331
monitor interface jtag
monitor speed 5000
monitor endian little
monitor flash download = 1
monitor flash breakpoints = 1
monitor reset
load ~/OpenThread/openthread/output/bin/arm-none-eabi-ot-cli-ftd

Execute the GDB command using the file previously created.

arm-none-eabi-gdb –x flash.gdb

Once the code has been successfully loaded into the OpenMote-CC2538
board, it can be connected using serial port. Pressing the reset button
OpenMote device are ready to be used as standalone connected to an
OpenBattery or in an OpenBase to allow the cli interaction.

Setup & Tests 41

4.2. Basic tests

The first test is to check if there are communication with two devices.

Using two nodes connected to OpenBase we can check the connectivity using
cli commands.

NODE 1

Configure panid
 > panid 0x1234

Configure channel
> channel 11
Done

Bring up interface
> ifconfig up
Done

Start Thread Operation
> thread start
Done

Check Thread state
> state
leader
Done

View ip
> ipaddr
fdde:ad00:beef:0:0:ff:fe00:fc00
fe80:0:0:0:dcba:44f7:10d6:6aad
fdde:ad00:beef:0:ed55:920e:5392:3efc
Done

NODE 2

Configure panid
 > panid 0x1234

Configure channel
> channel 11
Done

 Bring up interface
> ifconfig up
Done

Start Thread Operation
> thread start
Done

42 Study of the protocol for home automation Thread.

Check Thread state
> state
router
Done

View ip
> ipaddr
fe80:0:0:0:58b1:774b:b4e7:36df
fdde:ad00:beef:0:0:ff:fe00:0
fdde:ad00:beef:0:12b5:5701:a0f2:932d
Done

As we can see both devices are up and running and the node1 become leader
and the node 2 router. We also can see using scan commands the nodes
available in the network.

>scan
| J | Network Name | Extended PAN | PAN | MAC Address | Ch | dBm | LQI |
+---+------------------+------------------+------+------------------+----+-----+-----+
> | 0 | OpenThread | dead00beef00cafe | 1234 | deba44f710d66aad | 11 | -50 | 108 |

Because both nodes are in the same network we can ping from node 1 to node
2.

> ping fdde:ad00:beef:0:ed55:920e:5392:3efc
> 16 bytes from fdde:ad00:beef:0:ed55:920e:5392:3efc: icmp_seq=1
hlim=64 time=2ms

4.3. CLI for standalone devices

One of the requisites to allow the standalone operation is the OpenBattery
nodes are able to start services and join network autonomously. This can be
configured adding some code snippet in openthread/examples/apps/cli/main.c
file before the while(1).

otSetPanId(sInstance,0x1234);
otSetChannel(sInstance, 11);
otInterfaceUp(sInstance);
otThreadStart(sInstance);

This configure channel, panid, raise up interface and start Thread protocol.

4.4. Scan & Discover

This test allows to discover all devices in the range of this device (in any
channel).

> scan
| J | Network Name | Extended PAN | PAN | MAC Address | Ch | dBm | LQI |
+---+------------------+------------------+------+------------------+----+-----+-----+
| 0 | OpenThread | dead00beef00cafe | 1234 | 262a9a8dc82cda79 | 11 | -34 | 108 |
| 0 | OpenThread | dead00beef00cafe | 1122 | 3a4f64ce2c1ad519 | 12 | -37 | 108 |
| 0 | OpenThread | dead00beef00cafe | 1144 | deba44f710d66aad | 14 | -39 | 108 |
Done

Setup & Tests 43

But if we want to check all the devices in the same network we can use next
commands.

> discover
| J | Network Name | Extended PAN | PAN | MAC Address | Ch | dBm | LQI |
+---+------------------+------------------+------+------------------+----+-----+-----+
| 0 | OpenThread | dead00beef00cafe | 1234 | 262a9a8dc82cda79 | 11 | -33 | 108 |
| 0 | OpenThread | dead00beef00cafe | 1122 | 3a4f64ce2c1ad519 | 12 | -34 | 108 |

4.5. Router Table

In this test we have 4 nodes all configured in the same panid and channel and
we can see that from one node (id=0) we can reach directly all the other 3
nodes.

> router table
| ID | RLOC16 | Next Hop | Path Cost | LQI In | LQI Out | Age | Extended MAC |
+----+--------+----------+-----------+--------+---------+-----+------------------+
| 0 | 0x0000 | 0 | 0 | 3 | 3 | 9 | 5ab1774bb4e736df |
| 5 | 0x1400 | 63 | 0 | 0 | 0 | 63 | 262a9a8dc82cda79 |
|32 | 0x8000 | 32 | 0 | 3 | 3 | 12 | 3a4f64ce2c1ad519 |
|33 | 0x8400 | 33 | 0 | 0 | 9 | 159 | deba44f710d66aad |

Done

4.6. Diag mode

The OpenThread diagnostics module is a tool for debugging platform hardware
manually.

Using the diagnostics module we can modify some parameters like RX power.

> diag power -10
set tx power to -10 dBm
status 0x00

Check network statistics.

> diag stats
received packets: 19
sent packets: 19
first received packet: rssi=-95, lqi=108

Or print statistics during diagnostics mode.

> diag stats
received packets: 10
sent packets: 10
first received packet: rssi=-65, lqi=101

44 Study of the protocol for home automation Thread.

4.7. Captured frames

• NODE START:
Captured frames from node 0x3a4f64ce2c1ad519 start (Fig 4.1) with no other
devices in range.

Fig. 4.1 Node start capture.

We observe the node 0x3a4f64ce2c1ad519 broadcast 5 times the Data packet,
latter they ask to node 0x5ab1774bb4e736df same packet 4 times (this node it’s
not present at scenario and although I reset the node still appearing references
to that). They broadcast again 5 packets like the beginning. Packets from 16 to
21 are periodic packets sent every 40 sec.

Setup & Tests 45

• PING:
Captured packages ping (Fig 4.2) from 0xdeba44f710d66aad to
0x262a9a8dc82cda79.

Fig. 4.2 Ping capture.

Node 0xdeba44f710d66aad sends a packet to address 0x4C00 and frame 2 is the
ack. In the next packet pinged node 0x262a9a8dc82cda79 replies to
0xdeba44f710d66aad and got the ack confirming the package. Last frame is sent
from node 0xdeba44f710d66aad to broadcast.

• Join Node:
Captured packages when node 0x5ab1774bb4e736df join the network (Fig 4.3)
composed by devices 0xdeba44f710d66aad and 0x262a9a8dc82cda79.

Fig. 4.3 Join node capture.

When start node 0x5ab1774bb4e736df sends a packet to broadcast and node
0xdeba44f710d66aad reply to already joined node 0x5ab1774bb4e736df with a DATA
packet receiving the ack. Node 0x262a9a8dc82cda79 do the same and node
0x5ab1774bb4e736df sends a data packet to 0xdeba44f710d66aad receive ack and last
0xdeba44f710d66aad sends a packet to 0x5ab1774bb4e736df.

When finish router table are updated.

> router table
| ID | RLOC16 | Next Hop | Path Cost | LQI In | LQI Out | Age | Extended MAC |
+----+--------+----------+-----------+--------+---------+-----+------------------+
| 0 | 0x0000 | 0 | 0 | 3 | 3 | 9 | 5ab1774bb4e736df |
| 19 | 0x4c00 | 19 | 0 | 0 | 0 | 106 | 262a9a8dc82cda79 |
| 52 | 0xd000 | 52 | 0 | 3 | 3 | 19 | deba44f710d66aad |

46 Study of the protocol for home automation Thread.

• Node Disappeared:
Captured packages when node 0x5ab1774bb4e736df disappear from the network
(Fig 4.4) composed by devices 0xdeba44f710d66aad and 0x262a9a8dc82cda79.

Fig. 4.4 Node disappeared capture.

First of all note frame 2 do not belongs to this scenario… seems a “real” ZigBee
packet with security enabled. About the scenario, we can identify the periodic
packets sent from leader node 0x262a9a8dc82cda7 every 40 seconds and when
have elapsed 240 seconds (6 packets x 40 seconds) node start to send 4
consecutive packets (provably a routing table upgrade) to broadcast informing
about the node lost. Note this 240 seconds coincide with the timer explained in
figure 2.5.

• Discover (with 2 nodes more in range):
Captured packages when node 0x262a9a8dc82cda79 send the discover (Fig 4.5).

Fig. 4.5 node discover capture.

Leader node 0x262a9a8dc82cda79 send a broadcast packet and both present
nodes replies to leader and receive ack.
> discover
| J | Network Name | Extended PAN | PAN | MAC Address | Ch | dBm | LQI |
+---+------------------+------------------+------+------------------+----+-----+-----+
| 0 | OpenThread | dead00beef00cafe | 1234 | deba44f710d66aad | 11 | -39 | 107 |
| 0 | OpenThread | dead00beef00cafe | 1122 | 5ab1774bb4e736df | 12 | -44 | 108 |

Conclusions 47

CHAPTER 5. CONCLUSIONS

In this study we aimed to analyze Thread technology focusing on the
OpenThread implementation. Moreover, we have performed some tests in a
real platform that allowed us the possibilities and shortcomings of the system.
Thread uses 6LoWPAN, which in turn uses the IEEE 802.15.4 wireless protocol
with IPv6-based mesh communication allowing the connection to the internet
and provides simple yet robust interface to the cloud. Thread is built upon a
foundation of existing standards and can fulfill the requirements of low power,
resilience, ip-based, security and friendly use. OpenThread is an open source
implementation based on the draft Thread 1.0 specification of the Thread
networking protocol and was released less than one year ago. Being so new, it
has been a great challenge to explore this brand new technology but with the
disadvantage of the lack of information and support, what makes the
development of the work very complicated. For instance, some of the validated
features were released in the last week.

Focusing on the tests, which were the most arduous and complex, we found
strange behaviors. Although in some cases they could be caused by the lack of
knowledge, in others we found that actually they had a malfunction. That
prevents us of making more advanced tests, especially those related to the
routing and comparison with other protocols. Instead, we were able to perform
some basic tests such as check connectivity, see routing tables, etc.

In the near future the technology may be more mature and more people may be
working on it, so there would be more applications and functionalities
implemented. On the other hand, with the current functionalities we could study
more thoroughly the part of the routing as well as study upper layers such as
commissioning roles using wpantund as border router gateway between a
common IPv6 network and a LR-WPAN Thread network.

Thread could be the future of mesh networking. It delivers on the promise of an
IP-based mesh networking solution that is secure, reliable, scalable and
optimized for low power operation. Nevertheless, it needs an industry-wide,
standardized tunneling solution until ISPs provide native IPv6 to the home.

48 Study of the protocol for home automation Thread.

References 49

REFERENCES

[1] Z-Wave products commercial website http://www.z-wave.com

[2] EnOcean commercial website https://www.enocean.com

[3] Nest commercial website https://nest.com

[4] Thread website: https://threadgroup.org

• White papers:
o Thread Overview.
o Thread Stack Fundamentals.
o 6LoWPAN.

[5] OpenThread Github website: https://github.com/openthread/openthread

[6] OpenMote website http://www.openmote.com/

[7] Segger j-lin edu https://www.segger.com/j-link-edu.html

[8] TI CC2531 USB Evaluation Module Kit http://www.ti.com/tool/CC2531emk

[9] Texas Instruments. CC2538 Powerful Wireless Microcontroller SoC website
 http://www.ti.com/product/CC2538

[10] IEEE 802.15.4-2006. “Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (LR- WPANs)”.

[11] C. Gomez, J. Paradells, J.E. Caballero, "Sensors everywhere: wireless
network technologies and solutions", Fundación Vodafone España.

[12] “UG103.11: Application Development Fundamentals: Thread”, SIlicon Labs.

[13] X. Vilajosana, P. Tuset, T. Watteyne, K. Pister: “OpenMote: Open-Source
Prototyping Platform for the Industrial IoT”

[14] R. Romero “Demostrador d’un sistema de calefacció de la llar basat en
OpenMote, OpenWSN (IEEE 802.15.4e) i thethings.iO”, Master Thesis UOC

[15] OpenThread wpantund Github https://github.com/openthread/wpantund

[16] “Ushering in a New Era of Internet Connectivity with Thread Networking
Protocol”, SIlicon Labs.

[17] “RFC 2080, RFC 4862, RFC 4944, RFC 6282, RFC 6347, RFC 6775”,
IETF

[18] D. Pollack “Understanding Thread Protocol Cheat Sheet”, Cheatography.

http://www.z-wave.com/
https://www.enocean.com/
https://nest.com/
https://threadgroup.org/
http://threadgroup.org/Portals/0/documents/whitepapers/Thread%20Stack%20Fundamentals_v2_public.pdf
http://threadgroup.org/Portals/0/documents/whitepapers/Thread%20Usage%20of%206LoWPAN%20white%20paper_v2_public.pdf
https://github.com/openthread/openthread
http://www.openmote.com/
https://www.segger.com/j-link-edu.html
http://www.ti.com/tool/CC2531emk
http://www.ti.com/product/CC2538
https://github.com/openthread/wpantund

50 Study of the protocol for home automation Thread.

List of Acronyms 51

LIST OF ACRONYMS

6LoWPAN IPv6 over Low power Wireless Personal Area Networks
CoAP Constrained Application Protocol
DTLS Datagram Transport Layer Security
HAN Home Area Network
HAL Hardware Abstraction Layer
IoT Internet of Things
LR-WPAN Low Rate Wireless Personal Area Network
MLE Mesh Link Establishment
REED Router Eligible End Device
SoC System on Chip

	INTRODUCTION
	CHAPTER 1. THREAD
	1.1. Technical Overview
	1.2. Thread Network Architecture
	1.3. The Thread Advantage
	1.4. Physical Layer and Data Link Layer- IEEE 802.15.4
	1.4.1. Physical Link Layer
	1.4.2. Data Link Layer

	1.5. Network Layer
	1.5.1. IPv6
	1.5.2. 6LowPAN
	1.5.3. Distance Vector Router (RIP & RIPng)
	1.5.4. DTLS

	1.6. Transport Layer (UDP & TCP)
	1.7. Application Layer

	CHAPTER 2. OPENTHREAD
	2.1. Network Implementation
	2.2. Routing Implementation
	2.3. DTLS Implementation
	2.4. Thread Management Protocol Implementation (CoaP)
	2.5. CLI Commands

	CHAPTER 3. HARDWARE TEST ENVIRONMENT
	3.1. OpenMote Development System
	3.1.1. TI CC2538
	3.1.2. OpenMote - CC2538
	3.1.3. OpenBase
	3.1.4. OpenBattery
	3.2. SEGGER J-Link Debug Probe
	3.3. TI CC2531EMK Sniffer Tool

	CHAPTER 4. SETUP & TESTS
	4.1. Test Scenario installation & Configuration
	4.2. Basic tests
	4.3. CLI for standalone devices
	4.4. Scan & Discover
	4.5. Router Table
	4.6. Diag mode
	4.7. Captured frames

	CHAPTER 5. CONCLUSIONS
	REFERENCES
	LIST OF ACRONYMS

