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Abstract   Wastewater management is a complex task involving a wide range of 

technical enviromental and social factors. Furthermore, it typically requires the 

coordination of a heterogeneous society of actors with different goals. Regulations 

and protocols can be effectively used to tackle this complexity. In this chapter we 

present a norm-aware multi-agent system for social simulations in a river basin. The 

norms we present are inspired in European policies for wastewater management and 

they can evolve through time. 

1 Introduction 

 In this chapter we will study the effect of regulations in the administration of 

wastewater fluxes in a river basin. Wastewater management is a difficult task, 

requiring the simultaneous consideration of a wide range of factors: technical, 

environmental, economical, social, legal, etc. When applied to a scenario such as a 

river basin, wastewater management requires to coordinate a wide range of 

activities performed by a society of actors with different goals (sometimes not 

aligned with the holistic goal of the society). The combination of these factors 

results in the fact that wastewater management in river basin is a complex process. 

One of such scenarios, for instance, involve the well-known dilemma of the 

Tragedy of the Commons (Hardin 1968), where rational agents use fresh water as 

part of their operations thus generating wastewater. Left alone, these agents would 

overpass wastewater treatment plants capacity until river gets too polluted and, 

hence, no longer usable by anybody. 

Regulations and protocols are one of the possible solutions we can apply to tame 

complexity. However, due to the implicit complexity of the scenario it is hard for 
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policy makers to tailor the exact set of regulations that will govern the system. On 

the one hand, several interacting factors have to be taken into account when 

designing the regulations. On the other hand, such regulations cannot be tested in 

real scenarios due to the cost of their application and its environmental implications. 

We present a norm-aware multi-agent system (MAS) for social simulations in a 

river basin. Our system allows studying the effect of regulations in the behaviour of 

the different actors involved in a scenario based on the Tragedy of the Commons, as 

well as analysing different agents’ behaviours under such scenario. The idea is 

using a norm-aware simulator where policies encourage the alignment of agents’ 

behaviour to the common objective of the system, effectively detecting and 

sanctioning free-raiders and misbehaving actors, thus trying to prevent the Tragedy. 

The policies we present are inspired in European policies for wastewater 

management practice. Furthermore, policies in our system can evolve through time 

as a result of agents’ behaviour and adapt to unexpected situations such as heavy 

rains or river pollution. Information technologies applied to environmental issues 

show potential in a wide range of fields, among others, decision support systems 

(Poch et al. 2004) and simulations (Hamilton 1969). However, the complexity of 

environmental problems introduces several challenges that information 

technologies should tackle. The first one is the fact that environmental issues must 

be considered in terms of complex systems, mainly due to the amount of variables 

to be considered and their dependencies. Also the high degree of uncertainty 

associated to the system and the potential impact (and therefore, risk) of the 

decisions taken w.r.t. these systems. The second issue is the fact that, in 

environmental systems, the scenario should often reflect conflicting goals, and we 

need to take into account a set of heterogeneous (sometimes conflicting) views and 

perspectives. These complex scenarios, where a wide variety of actors with 

different (sometimes conflicting) goals interact between them, can benefit from 

norm-aware electronic distributed systems based on agent technologies. Such 

systems can ensure compliance with the different actors to the expected behaviours 

and environmental policies, where environmental policies are designed to guide the 

overall system to a common higher goal, such as the preservation of the 

environment while keeping an active economy. 

Our proposal is a norm-aware agent-based model for integrated Wastewater 

Management Systems. We apply this to the Besòs River Basin. The idea of using 

Autonomous Agents to cope with the problem has been done in view of the various, 

sometimes conflicting, goals that the identified actors have to fulfil their private 

interests. In this scenario each actor requires its own system view with customized 

privileges and access to differing control tools, either managerial or operational.  

The system proposed aims at managing the treatment capabilities of Wastewater 

Treatment Plants (WWTPs), allowing coordination among them and with the 

different actors in the scenario. Plants treat wastewater coming from various 

sources before discharging it to the river, treated and with the appropriate ecologic 

conditions. To ensure river’s ecological quality, water sensors measuring different 

parameters (e.g., temperature, acidity, suspended solids on water, river oxygen 

demand, etc.) are located along the river in interesting points, such as water 



discharge points for WWTPs. Plants are connected to various elements providing 

wastewater with different characteristics, including: towns providing household 

wastewater with a steady flow of quantity and variable pollutant concentrations; 

rain retaining tanks providing lightly polluted meteo wastewater, which comes in 

very high quantities during short periods of time; industries providing industrial 

wastewater with high variability both in quantity and pollutant concentrations. 

Some of the elements (e.g., towns) are connected directly to the plant, effectively 

providing a steady flow of wastewater. Some elements have a retainer tank between 

the wastewater source and the plant ( e.g., meteorological wastewater). Finally, 

some elements present both options, they can discharge wastewater directly to the 

plant or store it on a retention tank (e.g., industries). The different elements are 

connected using pipes that form a sewage network. Some points in the network 

(e.g., where industrial wastewater is mixed with household wastewater) might be 

observed by sewage inspectors. Finally, a competent authority oversees the whole 

system taking decisions to ensure both the ecological quality of the water and the 

economic sustainability of the society. 

Our agent-based model is built on top of the ALIVE (Aldewereld et al. 2010) 

framework. This Chapter focuses on the specification of ALIVE’s organisational 

model, putting special emphasis on the norms and how they evolve due to 

organisational, technological, social and contextual changes. 

The rest of this chapter is organized as follows. Section 2 describes the process 

followed, and the case study. It is an urban wastewater system inspired on the actual 

Besós river basin which is fully described in Section 2.1. In Section 3 we introduce 

the Tragedy of the Commons. Section 4 explores the objectives, roles and social 

structure of the system with the communication links. In Section 5 we introduce the 

basis and elements for the decision making from a wastewater management 

perspective. Later, Section 6 introduces the norms governing the system and 

provides examples of how they can evolve dynamically. Finally, Section 7, presents 

a discussion and the main conclusions of this chapter. 

2 Methodology 

In the ALIVE organizational model roles are the central concept. Roles identify the 

activities necessary to achieve organizational objectives and enable abstraction 

from the specific actors that perform them (Dignum and Dignum 2009). Based on 

these conceptualizations, the modelling process follows an iterative application of 

the following steps:  

 identify the stakeholders in the system  

 formally define the roles, identifying their goals and their dependencies  

 model the interaction scenes between roles. Scenes are used to manage role 

dependencies via interaction protocols  

 organize the scenes into a coherent interaction structure  



 identify the way agents will enact roles at run-time.  

All this process is supported by the OperettA Tool (Aldewereld and Dignum 2010), 

this is one of the results of the ALIVE FP7 funded project (Vázquez-Salceda et al. 

2010). 

2.1 Schema of wastewater flows in the case study 

The case study is a River Basin composed by elements generating both wastewater 

(a set of households K],[ 1 k   and a set of industries I],[ 1 iII  ) and 

polluted water (meteorological events that generate runoff). For simplicity we will 

consider both wastewater and polluted water to be wastewater. There are also 

elements storing wastewater (a set of retention tanks T],[ 1 lTT  ), treating 

wastewater (a set of Urban Wastewater Treatment Plants W],[ 1 jWW  ), and 

receiving waters (e.g. a River). 

Also, there is a graph Sis  that represents the sewerage infrastructure in a 

urban sector or city. It encompasses components such as receiving drains, 

manholes, pumping stations, storm overflows, and screening chambers of the 

combined sewer or sanitary sewer. is  ends at the entry to a jW . In turn every jW  

is connected with the receiving waters. In our model as in many European countries 

all elements in K  and I  are obliged to connect their sanitation and/or wastewater 

discharge to is  where possible. 

The wastewater is characterized by the flow (or volume) and the pollutant 

concentrations of: Total Suspended Solids ( TSS ), Biochemical Oxygen Demand (

BOD ), Chemical Oxygen Demand ( COD ), Total Nitrogen ( TN ) and Total 

Phosphorus ( TP ), which are defined as the set of pollutants rx  with (

TPTNCODDBOTSS ,,,, ) = ( 1x , 2x , 3x , 4x , 5x ) (Verdaguer et al. 2012). All 

concentrations related to these pollutants are indicated with a supra-index r , with 

r =1, , 5. For subsequent paragraphs, this specification is not repeated in the 

text in order to avoid many repetitions. 

The household generates a wastewater mass MDM  with a particular volume 

DD VMvolume =)( , and a concentration for each pollutant OjO  

j

DjD COMionconcentrat =),( , which is discharged in a plant WkW . 

Analogously, the runoffs retention tank has a wastewater mass stored MMM  

with volume MM LMvolume =)(  and pollutant concentration 

j

MjM COMionconcentrat =),( . The tanks has a volumetric discharge to kW  and 

feasible volumetric bypass to receiving waters when the retention tank has an 



overflow. It means the tank can bypass a water mass MDMM  with a volume 

DMDM VMvolume =)( . These two discharge possibilities allow adapting the sewer 

performance of separative or combined run-off collection. Each industrial activity 

has its own retention tank, with a water mass MiM  with volume 

ii LMvolume =)(  and pollutant concentration 
j

iji COMionconcentrat =),( . Its 

volumetric discharge to the treatment is ii VMvolume =)( . The plant kW  is 

capable of accepting a water mass as influent MTM  with volume 

TT VMvolume =)(  and pollutant concentration 
j

TjT COMionconcentrat =),( . It 

provides a water mass as effluent MeM  with volume ee VMvolume =)(  and 

pollutant concentration 
j

eje COMionconcentrat =),(  to receiving waters. 

Additionally, the treatment has the possibility to bypass wastewater. The bypass 

consists in a water mass MbM  with volume bb VMvolume =)(  and pollutant 

concentration 
j

bjb COMionconcentrat =),( . The upstream provides a water mass 

MUM  with volume )=( UU VMvolume  and pollutant concentration 

j

UjU COMionconcentrat =),(  to receiving waters. The receiving waters correspond 

to a section of river basin, which has a water mass MRWM  with volume 

RWRW VMvolume =)(  and pollutant concentration 
j

RWjRW COMionconcentrat =),(  

3 Tragedy of the Commons  

The Tragedy of the Commons was described by Hardin (Hardin 1968), inspired by 

the lectures of Lloyd (Lloyd 1833) about population growth. The Tragedy is a 

situation where a set of appropriators consume a common good - or common-pool 

resource (CPR). These appropriators have incentives towards an over development 

or excessive exploitation of the common good, thus leading to depleting it. The 

basis of these incentives lays on the fact that increasing their consumption capacity 

brings them a direct benefit, while the cost of that increment is divided among all 

appropriators, thus the option of augmenting consumption capacity always 

beneficial. Assuming all agents are rational, everybody will. Hardin noticed that 

this problem cannot be solved by means of technical solutions, since it requires a 

change in the values and morality of people. That is why Hardin coined this as a 

Tragedy, not as in its common meaning of drama work, but as how the own 

rationality of agents lead to an inexorable fatal destiny. However, this is not 

necessarily what occur in this kind of scenarios. 

Ostrom (Ostrom et al. 1994) presents a list of cases were the tragedy is avoided 

and highlights the case of how a South California basin area was heading to an 



overexploited scenario and how an institutional arrangement - by means of an 

equity court system and establishing special districts - to use basins allowed to not 

only prevent the tragedy, but ensured water availability even in significant drought 

periods. Hardin, then reviewed his position and clarified that the Tragedy occurs 

mainly in unmanaged commons (Hardin 2007). Ostrom also showed criticism 

towards solutions to manage CPR by means of central government institutions, that 

are far away from the local people who has to deal with the common good. 

According to her, the results are always suboptimal and temporary, since they are 

usually based on coercive measures and, if they are not accompanied of monitoring 

and sanction capabilities, instead of avoiding the tragedy, it is even fostered. 

Ostrom prefers self-organised institutions who devise its own rules, since it seems 

to be a common factor on long-live surviving CPR (Ostrom 1990) (Ostrom 1999). 

Ostrom defines a CPR facility as an element which provides the conditions to 

sustain a stock of resource units. This stock produces a flow of resource units over 

time that can be appropriated (and diminished) as it is consumed (Ostrom et al. 

1994). For instance, a fishing grounds and tons of fish, a windmill field and 

electricity. If the common good is renewable, it is possible to define a regeneration 

rate. While the amount of appropriated units does not exceed this regeneration rate, 

the CPR will be sustainable. If the common good is an exhaustible resource - no 

regeneration rate - or the appropriation exceeds the regeneration rate, the common 

goods will be eventually depleted. 

With this representation of CPR, Ostrom also proposes to distinguish the 

problems of a CPR situation into two types (Ostrom et al. 1994): appropriation and 

provision problems. Each of them also poses additional sub-problems. 

Appropriation problems refer to the development of rules to manage common 

good consumption: excluding potential beneficiaries and resource allocation from 

the resource flow produced by the CPR stocks - the main concern of this kind of 

problems is the flow of common good. In this kind of problems it is assumed that 

the relation between the yield provided by the CPR and the required inputs to obtain 

that yield, is given (see Fig. 1). 



 

Fig. 1. A framework for provision problems (Ostrom et al. 1994) 

  

Fig. 2. A framework for appropriation problems (Ostrom et al. 1994) 

Provision problems refer to the development of rules to manage contributions to: 

creating a resource, maintaining or improving its production capabilities and/or 

avoiding its destruction - the main concern of provision problems is the CPR stocks 

(see Fig. 2). 



3.1 Designing institutions for CPR 

Institutions, understood as a set of agreed conventions on a community of agents, is 

relevant in the way common goods are managed. The rules that agents create or are 

imposed by external agencies, drive how appropriators interact with the common 

good which is a key factor on ensuring its sustainability. 

Humans relate and interact with other people according to conventions or rules 

that have emerged from communities and society. All human societies devise 

constraints to structure and regulate the relationship between its members 

(Vázquez-Salceda 2003). Institutions are distinguishable by the set of constraints 

that govern these relations. 

North studied the effect of institutions (which he considers a set of constraints) 

on the behaviour of human organizations. He points out that these institutional 

constraints ease the interaction among humans, shaping choices and making 

outcomes predictable (North 1990). The devising of these constraints allows for a 

growth on the complexity of the organizations while keeping interaction costs 

reduced, and similarly, allows the participants of the institution to act, and expect 

other participant to act according to a list of rights, duties, and protocols of 

interaction. 

For this reason, the creation of Institutions provides trust among parties even 

when they do not have much information about each other. In environments with 

incomplete information, cooperative interactions can perform ineffectively unless 

there are institutions which provide sufficient information for all the individuals to 

create trust and to control deviations. 

Institutions can be classified according to how they are created and maintained, 

or on the formality of its rules. On the former case, Institutions can be created from 

scratch and remain static or be continuously evolving. On the latter, institutions can 

be informal, that is, defined by informal constraints such as social conventions and 

codes of behaviour, or formal, defined by formal rules. Those can be political and 

legal rules, economic laws, or contracts. 

In formal institutions the purpose of formal rules is to promote certain kinds of 

exchange while raising the cost of undesired kinds of exchange. Ostrom (Ostrom 

1999) classifies formal rules in 7 types: 

1. boundary rules affect the characteristics of the participants,  

2. position rules differentially affect the capabilities and responsibilities of those in 

positions,  

3. authority rules affect the actions that participants in positions may, must or must 

not do,  

4. scope rules affect the outcomes that are allowed, mandated or forbidden,  

5. aggregation rules affect how individual actions are transformed into final 

outcomes,  

6. information rules affect the kind of information present or absent in a situation,  

7. pay-off rules affect assigned costs and benefits to actions and outcomes.  



As norms are the elements that characterize institutions, they do not only serve as 

norms to be followed, but also serve as indication for people to recognize an 

organization as being an instance of a particular kind of institution, and then use this 

knowledge to predict other norms that could be applicable. 

4 Wastewater Systems’ Organizational Model 

Agent based systems (Wooldridge and Jennings 1995) are an alternative for 

designing and implementing open and dynamic systems. As defined by Wooldridge 

& Jennings: An agent is an encapsulated computer system that is situated in some 

environment and that is capable of flexible, autonomous action in that environment 

in order to meet its design objectives. Agents are capable of social behaviour, they 

can communicate, compete and cooperate among them. 

The main idea behind a society is to allow its members to coexist in a shared 

environment and pursue their respective goals in cooperation or competition with 

others. Therefore, artificial social systems (Moses and Tennenholtz 1995) define an 

abstract social level over computational systems. The social level models the MAS 

as an organization of entities, defining structured patterns of behaviour that 

facilitate and enhance the coordination of agent activities (Vázquez-Salceda 2003), 

effectively providing an Organizational Model agent’s can understand and use. We 

will use a Institution as the ones described in Section 3 to model agent’s interaction 

in the Besòs River Basin. 

This section briefly introduces the Organizational Model of our scenario, 

including the Social Structure (with roles and their relationships) the Interaction 

Structure (with the Landmarks, patterns of interaction by which agents coordinate 

their behaviour) and the Social model (mapping abstract roles to particular agents). 

For a in-depth discussion see (Gómez-Sebastià 2016). 

4.1 Social Structure 

ALIVE Social Structure allows the description of the roles and their relationships, 

connecting them with both the individual goals and the societal aims. In our 

proposal the global aim of the wastewater systems’ organizational structure is to 

achieve an effluent with characteristics adequate to the quality requirements of 

receiving waters. The roles model the distribution of responsibilities among 

stakeholders and their dependencies. Fig. 3 shows the set of roles and their 

associated objectives and sub-objectives. For the sake of brevity we will not explain 

all of them but the most relevant. Role dependencies come in three wastewater, 

hierarchically dependencies (where the parent role has some form of authority over 

the child role, and therefore when the parent role requests the child role to perform a 

task, the child role is expected to abide), which are indicated with H  in Fig. 3, 



network dependencies (where roles coordinate themselves as peers by mutual 

interest and support each other to fulfil a common goal) and market dependencies 

(where there is a set of producer roles offering information and/or services to 

consumer roles for a given price), which are indicated with a M  in Fig. 3. 

Also in Fig. 3 External Ex  and Internal In  roles are shown. Internal roles are 

controlled by the organization. Typically, if they are software components it means 

the organization has access to the software source code and is able to control and 

verify it. External roles are those participating in the organization, but not 

controlled by it. Following the same example, in the case of software components it 

means they have not been necessarily developed by the organization, and therefore 

there it might be no way to access the component’s code and formally verify its 

behaviour. 

The following list describes the most relevant roles in the system. Roles are 

depicted in bold while their objectives are in italics. Dependencies with other roles 

are also presented and, when relevant, the dependency relation is also introduced.   

 IndustrialOperator: This role is aimed on industrial processes that generate 

economic revenue and, therefore, allow fulfilling the objective of making profit 

(MakeProfit). These industrial processes produce polluted water masses as a 

trade-off of their activity (Produce). Dealing with this wastewater requires the 

collaboration of a IndustrialWWRetainer which stores the wastewater to be 

discharged into the sewer system later on (StoreIndustrialWW). 

 



Fig. 3. Social structure 



 IndustrialWWRetainer: Stores wastewater produced by an 

IndustrialOperator (StoreIndustrialWW) and takes care of it 

(ManageStoredWW) until it is possible to discharge it to the sewer system 

(DischargeIndustrialWW). To perform such discharge it is required the support 

of a IndustrialWWBroker to negotiate the discharge price and assess the 

feasibility of discharging some or all the wastewater, or keep storing it. Besides 

this, it keeps up a registry of all its industrial wastewater discharges performed 

(LogIndustrialWWDischargeCharacteristics), which requires the support of a 

WSensor to analyse the characteristics of discharged wastewater. This 

information can be used by a SewageInspector to verify I  are properly 

managing discharges (VerifyDischarge). 

 IndustrialWWBroker: Negotiates industrial wastewater discharges with a 

WWReceiver to assess how much wastewater is feasible to be discharged 

(AssessAmountOfIndustrialWWDischarge). From the IndustrialWWBroker 

perspective this assessment requires knowing its reserved cost 

(ObtainDischargeReservedCost) (i.e., how much iI  is willing to pay according 

to the discharge price given by the WWReceiver). IndustrialWWBroker is 

consuming treatment capacity to discharge wastewater and comply with the 

policies and norms that regulate wastewater discharges and ensure water quality. 

WWReceiver is offering such service thus the relation is a consumer-provider 

one thus the dependency between both roles in the role dependency diagram is a 

market dependency. 

 WWReceiver: Takes care of negotiating the reception of wastewater masses 

(NegotiateDischarge). This includes providing discharge prices for I  

(CalculateIndustrialWWDischargePrices) and the treatment capacity available 

for industrial wastewater (CalculateIndustrialWWAvailability). To calculate 

discharge prices the WWReceiver uses discharge reference prices provided by 

the CompetentAuthority, the current treatment efficiency in jW  

(ObtainTreatmentEfficiency) as well as the characteristics of the industrial 

wastewater that iI  wants to discharge, which are provided by the 

IndustrialWWRetainer as part of the wastewater discharge negotiation 

process. Concerning treatment capacity availability, it depends on three main 

elements: Wastewater being received from households 

(ObtainHouseholdDemandForecast), meteorological retainers status 

(ObtainMeteoDemandForecast) and current jW  effluent limits imposed by the 

CompetentAuthority. Once influent is received, the WWReceiver determines 

its destination, either to be sent for treatment or bypass it directly to the river. 

This decision depends on (EvaluateInfluentDestination) wastewater 

characteristics (ObtainInfluentCharacteristics), jW  current treatment 

efficiency (ObtainTreatmentEfficiency) and available capacity 

(CalculateAvailableCapacity). Finally, it also keeps a record of the influent 

characteristics received (LogInfluentCharacteristics) for the SewageInspector 



(as part of the VerifyDischarge task) and WWTreater (in order to calculate 

treatment efficiency). 

 WWTreater: Processes the wastewater to reduce its pollutants concentration 

(WWTreatment). Once the treatments ends, treated water is discharged as an 

effluent to the river. This effluent is analyzed (ObtainEffluentCharacteristics) 

and information is logged so the CompetentAuthority can audit it 

(VerifyWWTPEffluent). Given the effluent and influent characteristics 

(ObtainInfluentCharacteristics / ObtainEffluentCharacteristics), WWTreater 

can calculate treatment efficiency (CalculateTreatmentEfficiency). This 

calculation is used to keep W  as efficient as possible 

(AchieveAdequatePerformance). It is also used to support WWReciever during 

discharge price negotiation described before. 

4.2 Interaction Structure 

ALIVE Interaction Structure allows the description of abstract patterns of 

interaction which are the way the roles coordinate their behaviour, managing their 

dependencies while they pursue their individual and collective objectives. The 

interaction structure defines interaction patterns known as scenes (Dignum and 

Dignum 2009) that allow actors to coordinate. The structure defines a set of scenes 

and transitions among them. On every scene one or more role dependencies 

(identified in the previous phase) are managed. 

The structure’s entry point is represented by a circle ( init  label), while the exit 

points are represented by triangles ( end  label). Scenes are represented by 

rectangles and connected by lines (scene transition arcs) that allow the system to 

navigate from scene to scene. Inside every scene, the landmark patterns describe the 

protocol that must be used to achieve the scene result (Dignum and Dignum 2009). 

This diagram will focus on scene transition, allowing the following diagrams to 

focus on the different particular scenes by showing the landmark patterns inside 

them. The entry point leads to the different wastewater generation scenes 

(Household, MeteoWWGenerate and IndustryWWGenerate) and the scenes related 

to water quality protection by the competent authority 

(EnforceWaterQualityPolicies, ComputeWWTPEffluentLimits, 

ComputeIndustryPermissionLimits and ComputeDischargeReferencePrices). 

HouseholdWWGenerate leads directly to wastewater treatment scenes. 

MeteoWWGenerateScene contain particular scenes for discharging the water to W  

(MeteoWWDischarge) or bypassing it (MeteoWWBypass). Industrial production is 

divided in two parts: first wastewater is generated and stored IndustryWWGenerate 

and, later on, a negotiation to discharge wastewater in tank is done 

(IndustryManageWWTank) where a price to discharge is formed 

(WWTPAssessDischargePrice); depending on the negotiation result 



(IndustryAssessWWDischarge) wastewater is discharged (IndustryWWDischarge) 

or it is kept. 

Some discharges will have a discharge verification performed asynchronously 

by the competent authority (VerifyDischarge). Wastewater treatment scenes 

include receiving influent (WWTPReceiveInfluent) and either treating 

(WWTPTreatInfluent) or bypassing it (WWTPBypassfluent)). 

Fig. 4 depicts the internal landmark patterns of the scenes WWTPTreatInfluent 

and WWTPBypassfluent.  

 

  

Fig. 4. Landmark patterns for WWTP influent treatment 

4.3 Social Model 

Up to this point the overall system has been defined in terms of roles, their aims and 

dependencies, without taking into account who will actually enact those roles at 

run-time. The  Social Model defines the way concrete agents enact the organization 

roles, guiding their behaviour and achieving coordinated action by following the 

organizational patterns established for the roles they enact. An agent can enact one 

or several roles, depending on their objectives, and one role can be enacted by more 

than one agent. In the case study, the objectives of UWS infrastructures act as the 

main driving force for allocating roles into agents. 

Fig. 5 shows the model of agents. The central axis is composed by the types of 

agents with a Household, Meteorological, Industrial, WWTP and River Council 

agents (square-shaped). The surrounding nodes represent the roles (round-shaped). 

The arrows connect each role with the agents type that performs it. 



 

  

Fig. 5. The model of agents describes the roles that each kind of agent can enact during its lifetime. 

5 Agents: Behavior and decision-making 

The most important roles in our system, from an integrated management 

perspective, are two. First, the Competent Authority is responsible for all matters 

relating to the collection, treatment and disposal of wastewater. Second the kW  

which is responsible for treating wastewater in that sector or city. In this section we 

focus on the latter to describe the decisions it has to make to carry out the 

negotiation with industries that would like to discharge the wastewater resulting 

from their activities. The discharge of a wastewater mass requires an agreement 

between a particular and a particular that can accept it for treatment. This process 

requires knowing whether a jW  is capable to properly handle the proposed 

wastewater discharge. 

We define the water characteristics of a water mass kM  as the pair ),( CV , 

where: V  is the volume of water mass given in cubic meters 3m  and, C  is the 

pollutant concentration in the water mass. We also define  rCCC ,,= 1   as the 

set of pollutants concentrations 1  where each iC  corresponds to a specific 

pollutant concentration  ri 1 . In our system, as already explained in Section 

2.1, we consider five different pollutants:  TPTNCODBODTSS ,,,, . Thus 

   TPTNCODBODTSSCCCCCC ,,,,=,,,,= 54321
 (Verdaguer et al. 2012). 

                                                           

1 Pollutant concentration is given in (
3m

kg
). 



Given these premises, the negotiation process between iI  and a jW  can be 

described as follows: The jW  checks if it can manage the wastewater that the 

industry wants to discharge (a iW  characterized as  ii CV , ). This means ensuring 

there is enough physical space to receive it (volume availability) and that the plant 

can effectively treat the pollutants contained in the wastewater mass (pollutant 

concentration admissibility); if wastewater contains a high pollutant concentration 

it can harm the treatment process since it depends on bacteria colonies that may 

perish. 

Volume availability ( availableV ) depends on the design volume of the jW  (

capacityV ), the amount of domestic wastewater sent by households ( dV ) and 

meteorological phenomena ( mV )(e.g., rain), whose treatment is mandatory. Finally, 

previously agreed industrial discharges ( scheduledV ) have to be taken into account to 

know what volume capacity remains available for new industrial discharges: 

 scheduledmdcapacityavailable VVVVV =  (1) 

Therefore, if availablei VV   then there is enough space in the jW  to accept the 

wastewater mass. 

To verify pollutant concentration admissibility the process is similar although a 

jW  can admit a higher concentration than the one it can effectively manage; 

however, this will imply a significant higher cost for the industry. Pollutant 

concentration admissibility depends on how much pollutant concentration jW  can 

manage as a parameter design of the plant ( r

admissibleC ). Thus, if r

i

r

admissible CC   the 

wastewater mass will be accepted without extra cost. Otherwise, the pollutant 

overload will carry an extra cost to the price that industry has to pay. This price is 

calculated by jW  as follows: 

 )(),(=)),,((=),( ijijiiji WWPCWVVCwwtpCVPWWWP   (2) 

Eq. 2 is divided into two parts: a volumetric cost and a pollutant cost. The first 

represents the cost of accepting a certain volume of wastewater generated by iI  

according to the current state of the jW  as well as the taxes defined by the 

competent authority. The second computes the price of processing the wastewater 

discharged by industry iI  according to its pollutant concentration. 



6 Norms 

Scenarios like the one introduced in this Chapter present several actors ( e.g.,  

Industrial Operator, Industrial WWRetainer, WWTreater etc. ) with a variety of 

goals that sometimes are conflicting between them. For instance, the Industrial 

Operator aims at making profit which in turn will generate wastewater, effectively 

polluting the environment. The WWTreater aims at cleaning wastewater for 

protecting the environment at the lowest possible price. Therefore, from the 

individual point of view of an Industrial Operator, the more industrial activity the 

better, even if it results in more polluted water. However, from the individual point 

of view of a WWTreater the less industrial activity the better, as the water will be 

less polluted and therefore will be easier and cheaper to clean. Bringing this 

self-interest to the extreme, the ideal situation for Industrial Operator is a scenario 

with no environmental protection, where the river can be polluted without 

constraints. The ideal situation for WWTreater is a scenario where there are no 

polluting elements (no industries, no households) and therefore the river is never 

polluted. However, the ideal situation from the holistic point of view of the society 

(as a group of interconnected individuals) is to find a balance to protect the 

environment while promoting industrial activity. 

Furthermore, the roles in the scenario depend on each other for achieving their 

goals, and therefore they interact in multiple ways. The combination of these two 

factors results in a society of interacting agents with heterogeneous goals. In order 

to tame the complexity of these interactions, and to align the overall system with a 

common high level goal (e.g., protecting the environment without compromising 

industrial activity) norm-aware electronic distributed systems can be used. 

Electronic specifications of norms are one of the mechanisms being applied to 

define and enforce acceptable behaviour of electronic distributed systems which 

should comply with some (typically human) regulations. One of the options for 

providing norm-aware MAS are Electronic Institutions (EI) (Vázquez-Salceda 

2003). They are models of human institutions with a norm specification provided in 

a machine-readable formalism. The main idea behind EI is capturing the essence of 

an institution (mainly norms and protocols) in a machine processable form. 

Some functionalities in the system depend on the Competent Authority role 

detecting exceptional situations and applying the appropriate restrictions. For 

instance, if a meteorological overflow is notified WWPTs can exceed their 

treatment capacity if they take water from the influent. Therefore plants must limit 

their influent intake until the overflow is solved. It means water from the influent is 

not completely treated and to protect the environment industries can not discharge 

wastewater to the river until the overflow is solved. In order to tackle these 

restrictions we use ALIVE ’s normative structure, grounded on regulative and 

constitutive norms. Such norms specify actor’s obligations (WWTPS must limit 

influent intake until the overflow is solved), prohibitions (discharging water masses 

with high concentrations of mercury) and permissions (industries can not discharge 

wastewater to the river until the overflow is solved). In scenarios like the one 



presented here, MAS are applied to systems with an overall holistic goal and it is 

not desirable that an agent’s autonomous and emergent behaviour diverges from the 

overall goal of the system. In order to limit this agent autonomy and ensure a certain 

coherence between the goals of the particular agents and the overall goals of the 

system, norms can be applied. Furthermore, norms make the behaviour more 

predictable, effectively reducing the complexity of the system. Taking this into 

account, the scenario presented in Section2.1 provides an exciting new line of 

research: modelling and implementing the set of norms that will make the system’s 

objectives ( e.g., have an environmental sustainable system) stand on top of 

individuals’ objectives (e.g., make profit in the case of the industries). Furthermore, 

the set of norms provided is not static, as norms will have to evolve through time 

just as individuals’ behaviour changes to adapt to dynamic circumstances. Not only 

deciding how these norms will have to be adapted is an exciting challenge, but also 

designing mechanisms to support norm dynamics at run-time. Such mechanisms 

effectively support adding, removing or updating norms at run-time and while 

inferring the social state. On the one hand, we can not afford to miss the violation of 

a norm just because we are updating it. On the other hand, we have to infer a social 

state consistent with the changes performed in the norms (e.g., it makes no sense to 

punish an agent for violating a norm that has been removed). 

This section provides examples of norms modelled used the framework 

introduced in (Gómez-Sebastià 2016) and examples on how social and 

technological changes can affect these norms. For each norm a formal model is 

provided, as well as the time line depicting the implications of the norm change. 

Examples for all operations supported by our framework are provided. Norms are 

inspired on European, national and local wastewater treatment directives. 

Our model supports two possible operations (adding and removing norms, 

accounting norm update as a combination of the two basic operations) in two forms 

(retroactively and prospectively). The model also supports regulative norms (with 

obligations, prohibitions and permissions), constitutive norms and institutional 

powers (including both constitutive powers and normative powers). 

6.1 Obligation prospective add: 

The European council directive for Wastewater treatment (European Council 1991) 

in Article 4 and the Catalan plan for Wasterwater treatment inspired on this 

directive (Generalitat de Catalunya 2005) state: 

Member States shall ensure that urban wastewater entering collecting systems shall 

before discharge be subject to secondary treatment or an equivalent treatment as 

follows: 

 at the latest by 31 December 2000 for all discharges from agglomerations of 

more than 15 000 p.e. (population equivalent)  



 at the latest by 31 December 2005 for all discharges from agglomerations of 

between 10 000 and 15 000 p.e.  

It means that, by the date ’01 January 2006’ each WiWWTP  with a p.e. of 

10.000 or more have the obligation to perform a secondary treatment (or a treatment 

that counts-as secondary treatment, that is, an equivalent) before discharging water 

to the river. Failing to comply with the norm will result in the WTTP being 

sanctioned. Fig. 6 shows the formal specification of the regulative norm in our 

model. 

 

Fig. 6. Example of formal norm specification for obligation 

Following the example, the regulative norm is introduced in the system via a 

Prospective Promulgation operation on the date ’01 January 2006’. Therefore, if a 

WiW  with a p.e. of 10.000 or more violated the regulative norm ( i.e. discharged 

water without treating it) before ’01 January 2006’, the act has no legal 

consequences. However, if the plant violates the norm after the promulgation date, 

it will be sanctioned for the act. In the example depicted in Fig. 7, iW  discharges 

untreated water masses 21,MM  before norm promulgation without legal 

consequences. However, discharging untreated water 3M  after promulgation 

results in a sanction being applied. 

 

Fig. 7. Example of timeline for prospective add of a an obligation 



6.2 Obligation prospective remove: 

The European council directive for Wastewater treatment (European Council 1991) 

states in Annex I point D.5:  

Extreme values for the water quality in question shall not be taken into 

consideration when they are the result of unusual situations such as those due to 

heavy rain.  

In our example it stands for the obligation to perform a secondary treatment not 

having effect in unusual situations, such as heavy rain. The obligation has already 

been introduced in Section 6.1 and formally modelled in Fig. 6. However, the model 

does not take into account the fact that the norm is not in place in case of unusual 

situations. One option is to include the exception on the model of the norm ( i.e. 

preventing the norm from activating if water is received by the plant, but an unusual 

situation is in place). Formally, it would imply substituting the activating condition 

of Norm 1N , which is currently ),( ji MWreceived  for 

()),( uationunusualSitMWreceived ji  . However, this solution would result in 

more complex norm formalizations. Furthermore, if new exceptions to the norm are 

added, more conditions would be included in the activating condition, resulting in 

complex and hard to understand norms. A cleaner solution is to allow the competent 

authority (or any other actor with power to alter the norms that govern the system) 

to temporally remove the norm from the system when it is considered appropriate 

(in our example, while the unusual situation takes place). On the one hand, these 

norm could be used to keep norms simple and easy to understand. That is because 

we are leaving the decision of which norms should be active in every scenario to 

higher level (and more expressive) reasoning processes performed by the agents 

responsible of introducing and removing norms in the system. On the other hand, all 

the exceptions to the different norms do not have to be taken into consideration at 

norm design time. They can be introduced later when designing a process that 

decides which norms are active in the system at every point of time. That is, our 

approach allows supporting a normative system which is truly dynamic and adapts 

to changing (and sometimes even not foreseen) situations. 

Following the example depicted in Fig. 8, the norm 1N is removed from the 

system via an Abrogation operation. This allows to effectively implement a general 

exception to the norm while an unusual situation of heavy rain takes place. 

Therefore, if a particular Wastewater Treatment Plant WiW  violated the norm (

i.e.  discharged water without treating it) in a situation of heavy rain, the act has no 

legal consequences. However, if the plant violates the norm outside the unusual 

situation, it will be sanctioned for the act. In this example, a Wastewater Treatment 

Plant iW  discharges untreated water masses 2M  during heavy rain without legal 

consequences. However, discharging untreated water 31,MM  outside the unusual 

situation results in a sanction being applied. Please note that one of the sanctions 



(associated to the discharge of 1M ) is applied during the unusual situation. This is 

because the action causing the norm violation occurred outside the unusual 

situation, and our framework is expressive enough to detect this particular fact. 

 

Fig. 8. Example of timeline for the prospective remove of an obligation 

7 Conclusions and Related work 

Once we have finished introducing our approach of a norm-aware multi-agent 

simulator, we proceed to put it in contrast with similar approaches, focusing on 

detecting confluence points where our work can be complemented by the different 

approaches in the state of the art. Then, we will outline conclusions. 

The work in (Verdaguer et al. 2012) aims at coordinating coordinating industrial 

wastewater discharges between different actors, based on ant colony optimization. 

The system aims at finding the best combination of industrial discharges w.r.t. 

WWTP efficiency, that is, as much capacity as possible is used from the plant 

without overloading it. For doing it, ants are randomly placed on a graph-like search 

space, where nodes are industrial activities and edges possible discharges. The work 

neglects some issues such as the efficiency of a centralized decision system in 

real-world scenarios, or the need to have complete information about industry 

production plans in order to entail expected industrial wastewater discharges. 

Furthermore, the work presented in (Verdaguer et al. 2012) does not take into 

account agents not abiding to the expected patterns of behaviour, and lacks methods 

to deal with such issues. 

The work in (Verdaguer et al. 2012) focuses on the internal reasoning process of 

a coordinator agent (which can be fulfilled by the WWTP agent in our scenario) 

whereas our approach focuses on the structure of the agent society and the 

interactions among agents from an organizational point of view, without detailing 

the internal reasoning processes of the agents. Therefore, we could state both 

approaches are complementary and can benefit from each other. The work in 

(Verdaguer et al. 2012) could benefit from the normative system we propose for 

enforcing acceptable patterns of behaviour (e.g., industries comply with the 

agreements they reach with WWTPs for wastewater treatment) as well as from our 

institutional model to facilitate coordination in complex scenarios where a 

particular agent can fulfil more than one role (e.g., industries with their own WWTP 



that can accept other industry wastewater as long as they are paid enough for 

treating it). 

Market-based approaches are another alternative to coordinate the use of natural 

resources in heteronegous societies of actors. In (Garrido et al. 2013) m Water is 

introduced. m Water is a regulated virtual market simulation where autonomous 

agents trade rights for the use of water in a closed basin. The idea behind  
m Water is allowing policy makers to compare different market configurations 

using market performance indicators. Market configurations contain several 

parameters, including participant population (supporting different behavioural 

templates) and the set of regulations and protocols to be used during the negotiation 

process. Just like our approach, m Water aims at narrowing the gap between water 

management simulations (based on equational descriptions) and social simulations. 

The motivation behind social simulations is to mimic the behaviour of autonomous 

rational individuals and groups of individuals (Smajgl et al. 2009). The main idea is 

modelling not only hydraulic factors (which can be perfectly modelled using 

equational systems) but also social factors, including norm typology and actor’s 

behavioural templates. 
m Water and our proposal have several characteristics in common. Both are 

social simulations grounded on Electronic Institutions able to represent roles, 

coordination scenes, objectives and a normative system. However, when compared 

to our approach m Water presents a more specific and in-depth proposal. m Water 

focuses on negotiation for water use rights, whereas our proposal covers the whole 

river basin management scenario, therefore the negotiation process is not presented 

with such detail. Furthermore, while m Water correctly emphasises the need to 

flexible and dynamic normative systems ( e.g., authors stress the need of 

’organization schemes that are flexible and able to adapt to a changing 

environment with multiple situations’) no method for supporting them is presented. 

Our proposal clearly remarks that this method is available, and we provided an 

exhaustive set of examples based on river basin management. On the one hand, we 

consider our proposal could benefit from the work done in m Water for 

implementing more expressive and powerful auction mechanisms when negotiating 

for wastewater treatment resources. On the other hand, we consider m Water could 

benefit from our proposal to widen the application scenario (limited not only to 

interactions involved on the negotiation for water use rights, but covering the whole 

set of interactions present in river basin management) and support dynamic 

normative systems, able to change the set of norms during the simulations, 

effectively adapting them to new situations and requirements. This would allow to 

simulate not only new sets of policies but also sets of policies evolving through 

time, allowing to evaluate not only the impact of the new set of policies in the 

system, but also the performance of the evolution ( e.g., measuring how long does it 

take for the new policies to be adopted and the performance of the system during the 

transition between different sets of policies). In general we consider evaluating the 

impact on the system of policy evolution, while the simulation keeps running and 



the different actors pursuing their objectives, opens new, more realistic and exciting 

lines of future work w.r.t. simulations for policy optimisation. 

The work presented in (Ernst et al. 2007) presents a social simulator integrated 

with a DSS where a set of heterogeneous agents interacts. We like the idea of 

merging different agent behaviours and perceptions (including environmental, 

social and legal perceptions) via a 5 step reasoning process. However, we consider 

the approach could benefit from a clearly defined social model integrated in the 

reasoning process via socially-aware reasoning methods. Furthermore, it might be 

interesting to integrate protocols and regulations in the reasoning process (e.g., in 

the form of sanctions for agents consuming too much water in drought situations). 

The work presented in (Gailliard et al. 2014) proposes a model for river basin 

governance that includes what is known as a ‘boundary worker’. Boundary 

workers, such as river basin managers, are interfaces aimed at facilitating an 

evolution towards more sustainable practices in river-basin governance. The main 

aim of (Gailliard et al. 2014) is to analyze the impact of boundary workers on the 

behaviour of heterogeneous actors interacting on a common social-hydrosystem. 

This is achieved by creating an agent-based model including qualititative data 

(research questions, expected rules of behaviour, interactions between agents and 

some scenarios to simulate) which can be reviewed via a return field in order to 

calibrate the model as finely as possible. In contrast to (Gailliard et al. 2014) our 

approach supports governance either via a pre-defined set of rules (e.g., provided by 

a river basin manager) or via a consensual agreement between the different actors 

involved in the scenario. In any case, this set of rules will not be static, but will 

evolve through time as new regulations and behaviours emerge in the society of 

actors involved in river basin management. 

To conclude, this chapter has presented a norm-aware agent-based model for 

integrated wastewater management systems. The chapter provides an example on 

how normative systems can be integrated in multi-agent systems where actors’ 

objectives are heterogeneous and sometimes conflicting. The normative system 

allows to align agent’s objectives with common organisational objectives. At the 

same time, it allows to detect undesirable patterns of behaviour in the agents, such 

as free raiders. Thanks to our proposal, misbehaving actors can be sanctioned, 

effectively enforcing good practices among the actors. 

In this aspect, our proposal shows many features in common with several works 

in the state of the art. However, our proposal goes beyond, as it allows the set of 

norms governing the multi-agent system to evolve through time. We provide a wide 

range of examples, where regulative norms in the form of obligations, prohibitions 

and permissions are inserted, removed and updated. Furthermore, we also show 

examples of dynamic operations on constitutive norms and constitutive powers. 

While most of the systems analysed show a less expressive normative language 

(they typically do not account for constitutive norms and constitutive powers) we 

provide a rich set of normative elements (Alvarez-Napagao 2016), supporting 

deontic elements (obligations, prohibitions and permissions), constitutive norms, 

constitutive powers and violation handling norms (i.e. sanctions). Furthermore, our 



normative elements contain a rich structure with activation, maintenance and 

deactivation conditions, as well as deadlines. 

Finally, we support norm dynamics, which is not supported by the proposals 

analysed in the state of the art. We propose four operations to update the normative 

system accounting for norm promulgation and derogation both in prospective and 

retroactive forms. On the one hand, we combine norm operations with a rich set of 

normative elements providing a dynamic normative language that can be adapted to 

a numerous set of contexts and situations. This is specially important in wastewater 

management scenarios, where the set of norms will evolve adapting to situations 

which are typically out of control of managers and legislators (e.g., heavy rains, 

droughts, pollution of the environment). On the other hand we can adapt norms 

while our system is on-line, inferring a normative state consistent with the update. 

In scenarios like wastewater management we can not afford to stop observing the 

social reality, as free raiders and other misbehaving actors could take advantage of 

this situation. 

In contrast, our proposal does not present complex reasoning processes and 

decision taking mechanisms for the agents involved in the system. We focus on the 

normative system, so we can effectively benefit from more expressive and complex 

agents the other proposals include. As a future research direction we plan to 

integrate a norm reasoning process into our simulator. This will allow the agents to 

decide which norms should be changed and how. Our hypothesis is agents can adapt 

norms to the scenario in order to regulate the ussage of natural resources. The 

objective is to avoid or delay the tragedy of the commons from ocurring. 

As a summary, in this chapter we have seen a wide range of norms and norm 

operations, based in real world regulations and protocols, such as (European 

Council 1991). This chapter focuses on how the normative system can evolve. On 

the one hand adapting itself to new regulations and protocols caused by 

technological advances or social changes. On the other hand, adapting itself to 

unexpected situations which are typically out of control of managers and 

legislators, such as heavy rains. Furthermore the work presented in this chapter is 

being integrated into a social simulation system that models the Besòs river basin. 

In such simulation agents participate in a Tragedy of the Commons scenario where 

water quality represents the common good. Agents face the dilemma of breaking 

the rules to increase their utility functions or act legally according to current state of 

norms. Including normative dynamics allows us to adapt norms to environmental 

changes and see if those changes allow the common good to be preserved despite 

agents’ behaviours and selfish interests that drives them to, under certain 

circumstances, act as free riders. 
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