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Nanoparticles capable of efficiently generating nonlinear optical signals, like second harmonic

generation, are attracting a lot of attention as potential background-free and stable nano-probes for

biological imaging. However, second harmonic nanoparticles of different species do not produce

readily distinguishable optical signals, as the excitation laser mainly defines their second harmonic

spectrum. This is in marked contrast to other fluorescent nano-probes like quantum dots that emit

light at different colors depending on their sizes and materials. Here, we present the use of resonant

plasmonic nanoparticles, combined with broadband phase-controlled laser pulses, as tunable sour-

ces of multicolor second harmonic generation. The resonant plasmonic nanoparticles strongly inter-

act with the electromagnetic field of the incident light, enhancing the efficiency of nonlinear

optical processes. Because the plasmon resonance in these structures is spectrally narrower than the

laser bandwidth, the plasmonic nanoparticles imprint their fingerprints on the second harmonic

spectrum. We show how nanoparticles of different sizes produce different colors in the second har-

monic spectra even when excited with the same laser pulse. Using these resonant plasmonic nano-

particles as nano-probes is promising for multicolor second harmonic imaging while keeping all

the advantages of nonlinear optical microscopy. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4942902]

Fluorescence microscopy is a widely used technique in

biological imaging that enables the study of subcellular com-

ponents and dynamical processes in vivo. A key challenge in

fluorescence microscopy is to find suitable fluorescent

markers or probes that when attached to specific proteins

or compounds allow easy observation during a sufficient

amount of time.1 The commonly used visible fluorescent

markers are often problematic as they undergo photo-

induced processes like blinking and bleaching that limit

the stability of the experiment and the amount of detectable

photons. Additionally, biological samples present auto-

fluorescence in the visible range of the spectrum that may

overlap with the emission of the markers, which is an impor-

tant source of noise in the measurement.1–4 To overcome

these limitations, researchers have recently devoted consid-

erable attention to a different kind of marker: nanoparticles

(NP) that can be excited via two-photon excitation and gen-

erate second harmonic (SH) radiation.2,3,5,6 NPs like barium

titanate (BaTiO3), lithium niobate (LiNbO3), iron iodate

(Fe(IO3)3), silicon carbide (SiC), and zinc oxide (ZnO)2,5

are stable over blinking and bleaching, which allows long

time observations, emit in a relatively narrow spectral range,

so they can be spectrally separated from sample auto-

fluorescence, and can be excited with near infrared light,

which limits photo-damage of the sample and increases

the penetration depth for deep tissue imaging.7 However, the

emission spectrum of these NPs is mainly determined by the

excitation laser and does not change for different NPs. This

is in contrast to other widely used fluorescent markers, like

quantum dots (QDs), which emit at different wavelengths

according to their sizes and materials, even when excited

with the same laser source. This allows for the labelling of

different targets using different QDs and distinguish them

with spectrally resolved detection, a technique that is often

called multicolor fluorescence imaging.8,9 Multicolor imag-

ing has so far been limited to fluorescent markers and not

studied for SH NPs. In this work, we demonstrate that reso-

nant plasmonic nanoparticles (RPNPs) can create distinct

colors in the SH spectrum even when using the same excita-

tion laser, which may allow multicolor SH imaging.

RPNPs are metallic NPs that efficiently interact with

optical radiation taking advantage of localized surface plas-

mon resonances (LSPRs) in the visible and near infrared

region of the spectrum.10–12 Among other appealing proper-

ties, RPNPs greatly enhance nonlinear optical effects.13,14

Second harmonic from RPNPs has been recently meas-

ured,15–18 and different methods to further enhance this

nonlinear effect by engineering the RPNPs have been pro-

posed.19–23 Interestingly, in a recent work,24 we showed that

the SH spectrum generated by RPNPs interacting with suffi-

ciently broadband laser pulses depends on both the laser

spectrum and the LSPR. This gives the unique possibility of

distinguishing two different RPNPs, characterized by differ-

ent LSPRs, based on their SH spectra. More importantly, by

exploiting our ability of precisely phase shaping the ultrafast

laser pulse,25 we describe here an experiment (sketched in

Fig. 1) in which a suitable selection of the RPNPs combined

with a tailored phase shape is used to generate different col-

ors in the SH spectra of the RPNPs, which is at the basis of

multicolor SH imaging. The biocompatibility of metallic

NPs26 together with the versatility in the fabrication

a)Author to whom correspondence should be addressed. Electronic mail:

Niek.vanHulst@ICFO.eu
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processes makes the results presented here relevant for bio-

logical applications.

In the experiment, we used a �15 fs titanium sapphire

laser (Octavius 85M, Menlo Systems) tuned to a central wave-

length of�830 nm with a bandwidth of�100 nm (see the spec-

trum in Fig. 1) as the broadband laser source. A pulse shaper

arranged in a 4f configuration controls the spectral phase of the

laser pulse, and a liquid crystal spatial light modulator (SLM)

is used as the active element. The phase-shaped laser pulse is

then sent to a two-photon microscope equipped with a high nu-

merical aperture objective (1.3 NA) that focuses the laser beam

on a sample containing the RPNPs. The sample can be raster

scanned with respect to the objective using a nanometer preci-

sion piezoelectric scanner. The second harmonic generation

(SHG) from the RPNPs is collected by the same objective in

reflection geometry, spectrally filtered to reject the laser reflec-

tion and Rayleigh-scattered light, and sent to the photodetec-

tors. Two-dimensional SH images of the sample are acquired

using avalanche photodiodes (APDs), whereas a spectrometer

equipped with an electron-multiplying charge-coupled device

(emCCD) camera is used for spectral measurements.

We studied two different types of RPNPs: (i) silver nano-

rods of lengths ranging from 425 to 485 nm were used to dem-

onstrate the experimental concept, i.e., the use of RPNPs with

detuned LSPRs to produce different SH spectra; (ii) gold

nano-rods of 100 to 130 nm in length allowed us to test the

multicolor SH imaging technique on smaller NPs, therefore

better suited for bio-labeling. Both types of RPNPs were pre-

pared using electron beam lithography on a glass substrate

coated with a 10 nm thin layer of indium-tin-oxide (ITO).

The silver RPNPs were arranged in arrays. Each array

contains several nano-rods of identical lengths; changing

array, the length of the RPNPs is changed to tune the spectral

position of the LSPR across the laser spectrum. Here, we

consider four different arrays of RPNPs (NP1, NP2, NP3,

and NP4) of 425 to 485 nm in length. The RPNPs were fabri-

cated to be resonant with different portions of the excitation

laser: NP1 are resonant with the blue side of the laser spec-

trum, and the LSPRs continuously shift to the red for the

other RPNPs. NP4 were fabricated to be resonant with the

red side of the laser spectrum. The specific shape and mate-

rial used for RPNPs were chosen to produce high SHG and

present narrow LSPRs at the laser wavelengths. The silver

RPNPs therefore were best suited to measure SH spectra of

individual RPNPs on the CCD camera, which requires higher

signal than in the case of imaging with an APD. The gold

RPNP sample was instead prepared to have RPNPs with dif-

ferent lengths (and LSPRs) next to each other, to demon-

strate the multicolor SH imaging technique.

First, we investigate the influence of the spectral position

of the LSPRs on the SH spectra for the silver RPNPs. Typical

scanning electron microscope (SEM) images of the fabricated

RPNPs are shown in Fig. 2. The experiment is performed as

follows: first, a Fourier-limited pulse (the shortest possible

pulse for a given spectrum) is obtained at the sample position

using the procedure of Ref. 25. The Fourier-limited pulse is

then used to generate SH from the RPNPs. Detecting the SHG

with the APD while scanning the sample position with respect

to the objective allows us to acquire two dimensional SH

images of the sample, as the one shown in Fig. 2(a) for one

NP1 array. From such a scan, it is possible to select

an individual RPNP and to direct its SHG to the spectrometer

for spectral measurements. Because the SHG is a nonlinear

process, its spectrum depends on the laser spectral phase,

which gives us the possibility of acquiring different SH spec-

tra from the same RPNP by changing the spectral phase

applied with the SLM. In practice, for every RPNP, we collect

128 different SH spectra corresponding to 128 different

applied phases. This phase scan is carried out following the

FIG. 1. Main concept of the experiment. A broadband laser pulse, after

being shaped in its spectral phase by a pulse shaper, excites a sample of res-

onant plasmonic nanoparticles (RPNPs). If the RPNPs have different sizes,

their plasmonic resonances are also spectrally shifted. In this case, for a suit-

able selection of the laser spectral phase, a different second harmonic spec-

trum is generated. Spectrally selective detection can be used to distinguish

the RPNPs and create multicolor images.

FIG. 2. (a) Two dimensional SH image of one NP1 array. Silver markers at

the edges delimit the array. (b) Typical SEM images of the RPNPs. (c)

Spectrally resolved MIIPS scan for a single NP1. (d) Spectrally integrated

MIIPS scan resulting from the scan above.

083115-2 Accanto et al. Appl. Phys. Lett. 108, 083115 (2016)
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Multiphoton Intrapulse Interference Phase Scan (MIIPS)

method, as described in Refs. 27–29.

During a MIIPS scan, a set of known sinusoidal spectral

phases uðx; dÞ ¼ a sin ðcx� dÞ is applied to the laser pulse

by the SLM, as a function of the phase offset d that varies

from 0 to 2p, and the corresponding SH spectra are measured

for every d. This produces spectrograms similar to the one

reported in Fig. 2(c). Vertical cuts through the spectrogram

correspond to SH spectra taken for different spectral phases

applied by the SLM (different d values). Fig. 2(d) shows

the spectrally integrated MIIPS trace for the same RPNP,

namely, the same scan as the one shown in Fig. 2(c), but

integrated along the vertical axis. From this scan, one can

better identify the positions of the absolute SH maxima and

minima in the MIIPS trace.

We first discuss the possibility of achieving contrast in

the total SH intensity using phase shaping. These results

might provide a useful tool for distinguishing two different

RPNPs when spectrally resolved detection is not available. It

was shown in Ref. 2 that contrast in the SH intensity can be

obtained between different materials (BaTiO3 and SiC NPs)

by changing the wavelength of a relatively narrowband laser

from 800 to 880 nm, as a consequence of different conver-

sion efficiencies of the materials at the two wavelengths.

However, this contrast mechanism requires two different

lasers to be aligned in exactly the same way in an optical

microscope, which is a cumbersome operation.

In Figs. 3(a)–3(c), we plot pairs of spectrally integrated

MIIPS traces corresponding to four different RPNPs. Clearly,

the positions of the SH maxima and minima change for differ-

ent LSPRs, or in other words, the SH maxima and minima

for different RPNPs are obtained for different values of d.

Moreover, the relative change is bigger for LSPRs that are

farther apart in the spectral domain. NP1 and NP4 were fabri-

cated to be resonant on opposite sides of the laser spectrum,

and the corresponding spectrally integrated MIIPS traces

(Fig. 3(a)) are maximally shifted in the d axis. The maxima

and minima for these two RPNPs are completely out of phase.

The relative shift is reduced for NP3 and NP4 and is almost

zero in the case of NP2 and NP3, which are characterized

by LSPRs that are much closer in the spectral domain. The

fact that different RPNPs reach the SH maximum at different

d values gives the unique possibility of controlling the con-

trast in the SHG from different RPNPs simply by changing

the laser spectral phase, which is less demanding than switch-

ing between two different laser wavelengths. This idea is

supported by the graphs of Figs. 3(d)–3(f) where the ratio of

the spectrally integrated MIIPS signal between NP1/NP4,

NP3/NP4, and NP2/NP3 is plotted. One should interpret these

graphs as follows: the ratio between the SH signals oscillates

between �0.4 and �1.3 for NP1-NP4, between �0.6 and

�1.1 for NP3-NP4, and is almost constant for NP2-NP3 as a

function of d. As indicated in the graphs, we call d14 the

d value at which the ratio NP1/NP4 is the largest (so that NP1

is brighter than NP4) and d41 the d value at which the ratio

NP1/NP4 is the smallest (so that NP4 is brighter than NP1).

The same rule applies for the other pairs; for instance, at

the value d34, NP3 is brighter than NP4 and at d23, NP2 is

brighter than NP3. Choosing the spectral phases correspond-

ing to d14 and d41, or the analogous d values for the other

pairs, therefore generates the highest SH contrast in the

RPNPs. The contrast increases for more spectrally separated

LSPRs. Let NP1(d14) be the total SH intensity from NP1 for

the phase d14, the contrast between NP1 and NP4 for the

phases d14 and d41 is

NP1 d14ð Þ
NP4 d14ð Þ �

NP4 d41ð Þ
NP1 d41ð Þ :

The contrast for other particles is defined in the same way. In

the case of NP1-NP4, the maximum contrast reaches a factor

of �3; a factor of �2 for NP3-NP4, and almost no contrast

(or only very little) is obtainable for NP2-NP3.

These results demonstrate that RPNPs of different

lengths coupled to ultrafast phase-controlled laser pulses

can be used to obtain contrast in the SHG. However, this

contrast is obtained upon the application of two different

spectral phases on the SLM. For imaging purposes, this

requires acquiring two different images of the sample, one

for each spectral phase. Even if this might be simpler than

changing the laser wavelength, it still requires two different

actions. We now show that, once having two RPNPs that

differ enough in their LSPRs, the best way of obtaining

contrast in the SHG is to spectrally split the detection and

separate the long and short wavelengths in the second har-

monic (Fig. 4).

Given the laser spectrum shown in Fig. 1, we split the SHG

between the blue (k < 408 nm) and the red (k > 413 nm)

spectral window (as the dashed black line in Fig. 4), and for

a specific pair of RPNPs, we look for the spectral phase (the

d value in the MIIPS scans) that maximizes the contrast

between the two spectral windows. From Fig. 3, we concluded

that the pair NP2-NP3 does not produce SH contrast; therefore,

we focus on the pairs NP1-NP4 and NP3-NP4. As Fig. 4 clearly

shows, for the pair NP1-NP4, one can find a d value for which

FIG. 3. (a), (b), and (c) Spectrally integrated MIIPS traces of the indicated

antenna pairs. (d), (e), and (f) Ratio of the spectrally integrated SH intensity

between NP1/NP4, NP3/NP4, and NP2/NP3 RPNPs, respectively, as a func-

tion of the phase offset. The arrows represent for each graph the points at

which maximum and minimum ratio occur. The corresponding d values gen-

erate maximum contrast between the two RPNPs.
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the SH spectra peak on the opposite sides of the SH range. If we

take two detectors (two separate APDs) and send with a

dichroic mirror the blue wavelength to the first APD (“blue” de-

tector) and the red to the second APD (“red” detector), the spa-

tial images obtained with the two APDs will look very different.

At the top of Fig. 4(a), we draw how such experiment would

look like. The red and blue spots represent the SH emitted by

NP4 and NP1 and detected by the red and the blue detectors,

respectively. The spatially integrated intensity of the spots cor-

responds to the spectrally integrated SH spectra of Fig. 4(a) in

the corresponding spectral window. Clearly, the blue detector is

mainly sensitive to the SH from NP1 whereas the red detector

mainly sees NP4. With NP1blue and NP1red, the total SH inten-

sity from NP1 in the blue and red spectral windows, respec-

tively, the contrast between NP1 and NP4 in the two different

detectors is defined as

NP1blue

NP4blue
� NP4red

NP1red
:

For the NP1-NP4 pair, from Fig. 4(a), we calculate a total

spectrally resolved contrast of �50. As already shown in

Fig. 3, for the other RPNP pairs, the contrast decreases as the

spectral position of the corresponding LSPRs gets closer to

each other. For NP2-NP4 (Fig. 4(b)), we can find a d value

for which the contrast between the blue and the red detectors

is �6, and for NP2-NP3, almost no spectral contrast can be

achieved.

Finally, we have applied the multicolor SH imaging

concept to the gold NP sample, prepared to have NPs of dif-

ferent lengths close to each other. The arrangement of the

sample and the shape of the NPs are clearly resolved in the

SEM images (Fig. 4(c)). In the same array columns of

100 nm gold NPs alternate with columns of 120 nm and

130 nm NPs. The 100 nm NPs are resonant with the blue side

of the laser spectrum, and the resonance shifts to the red for

longer particles. The NPs were imaged with two APDs,

detecting the blue (k < 400 nm) and the red

(400 < k < 420 nm) parts of the SH spectrum, respectively.

The two independent SH images were represented with a

blue and a red pseudo-color scale, respectively, and overlaid

to construct the two-color image of Fig. 4(d). A clear con-

trast between the 100 nm and the longer RPNPs is revealed.

The 100 nm NPs appear blue to violet in the image, while the

120 and 130 nm NPs appear purple to red. It is also apparent

that some NPs do not completely follow this trend or appear

dimmer. This difference is attributed to variations in the

nanofabrication of the RPNPs. The amorphous gold nano-

rods contain single crystal particles, and a size difference of

only 10 nm is sufficient to shift the spectrum. Evidently dif-

ferent species of RPNPs can be readily distinguished by

spectrally resolved SH detection. Moreover, the presented

SH imaging is of direct relevance as it demonstrates that

small, and therefore better suited for labeling purposes, NPs

can be used for multicolor SH imaging.

From the results reported in Fig. 4, we can conclude that

by using suitable RPNPs together with the appropriate laser

spectral phase, we can generate different colors in the SH

spectra, which allows multicolor SH imaging using metallic

nano-particles. This has two great advantages with respect to

the approach illustrated in Fig. 3 or to the contrast mecha-

nism of Ref. 2: (i) it generates much larger contrast, which

allows different RPNPs to be better resolved, and (ii) when

applied to microscopy, it only requires a single acquisition

and two detectors with different spectral filters, as the differ-

ent colors in the SH are generated for the same excitation

conditions. We also wish to stress here that this kind of spec-

tral contrast can be only obtained by using broadband laser

pulses, with a bandwidth larger than the LSPRs, while the

use of narrowband pulses of different wavelengths would not

generate spectral contrast between different RPNPs. In order

to push this contrast further, even broader laser spectra, or

narrower LSPRs would be beneficial.

In summary, we have shown that resonant plasmonic

nano-particles greatly affect nonlinear optical signals such as

second harmonic generation. Using broadband phase con-

trolled laser pulses, we exploit this property to generate dis-

tinguishable SH spectra from different nano-particles.

Owing to the versatility of the fabrication processes, and

the understanding of plasmonic effects developed in recent

years, a great variety of SH responses in nanometric volumes

may be designed. The biocompatibility of metallic nano-

particles makes the results presented here relevant for

FIG. 4. Multicolor second harmonic imaging. (a) and (b) Second harmonic spec-

tra for the indicated nano-rod pair that maximize the contrast between the blue

(k < 408 nm) and red (k > 413 nm) side of the SH range. The black dashed

line indicates the spectral position at which we assume to split the SH detection.

The blue and red dots illustrate how the different RPNPs appear on spectrally

selective two-dimensional images. (c) SEM images of an array of gold RPNPs

of different lengths and higher resolution SEM images of the individual 100 nm

and 130 nm RPNPs. (d) Two-color SH image of a nominally identical array

acquired in one scan, showing contrast between different species, with longer

RPNPs more red. The blue (k < 400 nm) and red (400 < k < 420 nm) side of

the SH-spectrum are pseudo-colored blue and red.
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biological imaging purposes. Exploiting this concept, we

have demonstrated multicolor second harmonic imaging

using RPNPs. These plasmonic probes allow maintaining all

the advantages of nonlinear microscopy, while adding spec-

tral selectivity in the second harmonic generation.
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