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Abstract

In this work, the main singularity theorems are reviewed, and a detailed development of the
required mathematical tools in their proofs is performed. Also, the plausibility and applica-
bility of the assumptions of the theorems to realistic spacetimes and how the results might
change if other assumptions were made are discussed. Finally, some examples to illustrate a
range of cases regarding the fulfillment of the hypothesis of the theorems are provided and
analyzed. The stress is put in how regular spacetimes succeed in avoiding the hypothesis in
singularity theorems and which consequences this has on them.
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Introduction

Since Einstein published his famous field equations of General Relativity in 1915, founding an
essential yet not fully explored branch of physics, many efforts have been put in developing
this theory. In just a few years, several solutions to the complicated equations were found,
describing some interesting physical scenarios and even solving some problems such as the
precession of the perihelion of Mercury, confirming the success of the new theory. However, it
was not unnoticed that in most examples there were problematic regions, catastrophic events.
In these ‘places’ there was a breakdown of not only General Relativity, but of all physics.
Nevertheless, it seemed that the new theory itself was not only allowing for its own collapse,
but also favouring it. These mysterious ‘places’ were called singularities, and in most cases,
they seemed unavoidable.

However, the physicists that early developed General Relativity did not regard the sin-
gularities as a problem. Although there appeared infinite physical observable quantities at
them, they just dismissed the singularities as mathematical artifacts due to the symmetry of
the already known exact solutions of Einstein’s equations or as unreachable effects. It would
take a new generation of physicists to consider the problem more seriously. Although there
are other tools for the study of singularities, Physics needed what we now call singularity the-
orems in order to clarify the nature of singularities, when would they appear and the problem
of their abundance in GR. On the one hand, the physical importance of the topic was clear,
since singularities are outside the limits of application of GR and it is crucial to keep under
control when, where and under which conditions they may or must occur. But on the other
hand, the study of singularity theorems was about to be a brand new field within General
Relativity, than even Einstein had not predicted when he was developing his theory.

Indeed, in 1955 (ironically, a few days after Einstein’s death) Raychaudhuri (and also Ko-
mar, independently) published what could be considered the first singularity theorem. This
achievement motivated further investigation on the topic. Ten years later, in 1965, Penrose
wanted to prove that singularities were not formed due to the assumption of spherical sym-
metry in the cosmological and astrophysical models by introducing several new ideas. As a
result, he ended up proving his own singularity theorem. This could be considered the first
‘modern’ singularity theorem, in the sense that a new whole set of important concepts and
developments were used in its making. This theorem inspired a lot of works, in particular
those of Hawking who also published a singularity theorem in 1967. After some years of this
revolution, several results were achieved, and in 1970, Penrose and Hawking collected them
in a very strong theorem, which still is the main singularity theorem. After these years, there
have been a lot of attempts to improve the theorems and to look for new results.

From a physical point of view, it is clear that the singularity theorems are relevant and
necessary in order to make General Relativity a more complete theory and to understand what
are and why do singularities appear. However, from a mathematical point of view they are
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also a milestone. All the tools necessary for it are a combination of several mathematical areas
such as Differential Geometry or Topology. The ideas, techniques and mechanisms developed
for the specific goal of the analysis of singularities can also be applied to more general scenarios
and even modified with relatively little effort.

In this document, the probably most important singularity theorems by Raychaudhuri,
Penrose and Hawking are reviewed, as well as the mathematical and physical foundations
necessary to understand their meaning and conclusions. Moreover, some insights in their
hypothesis and results are provided and why they are needed (or not) in order to ensure the
existence of a singularity (and eventually, how to avoid it) is studied. This will be better
illustrated with some final examples.

The approach used to develop the singularity theorems was fully classical: quantum gravity
was not considered. Obviously, ignoring quantum effects makes the results ‘wrong’ in the sense
that one expects them to considerably change the classical theorems. In fact, since the main
results are not just valid for GR, but for a theory featuring a manifold, including quantum
effects does not necessarily make the theorems unapplicable. Some comments will be made
about that.

The structure of the document is as follows. In Chapter 1, the basic mathematical tools
indispensable for the statements and proofs of the main singularity theorems are presented and
developed and concepts such as energy conditions, congruences or trapped sets and introduced.
In Chapter 2, three of the most important singularity theorems are stated and proved, along
with some necessary previous results. In Chapter 3, the hypothesis used in the theorems,
their plausibility and applicability are discussed, and how the conclusions change if some of
them are modified or removed is explored. In Chapter 4, some examples of spacetimes are
provided, paying special attention to the characteristics that make them singular or regular
and comparing them to the hypothesis in the theorems.

The notation used in this work is quite standard, however a few remarks may be in order.
Greek indices run from 0 to 3 (µ, ν, ...) while latin indices run from 1 to 3 (i, j, ...) and capital
latin indices run from 2 to 3 (A,B, ...) unless it is explicitly stated. The units 8πG = c = 1
will be used except explicitly stated, and Einstein’s equations are written as:

Rµν −
1

2
Rgµν = Tµν

where gµν is the metric, Rµν is the Ricci tensor, R the curvature scalar and Tµν the energy-
momentum tensor. The tangent vectors with respect to the coordinates {xµ} are noted by
∂µ. The closure and boundary of a set ζ are ζ̄ and ∂ζ respectively and the set difference is
denoted by \. One forms will be denoted by bold symbols (n), whereas vector will simply be
written in standard style (v).
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Chapter 1

Mathematical and physical basis

In this chapter the main mathematical and physical concepts involved in the development of
the singularity theorems are presented. Throughout the chapter, reference [1] is strongly used.

1.1 Preliminaries

In General Relativity, the background where events take place is no longer a passive object.
Instead, it is a main element in the theory and the behaviour of everything that is in the
universe depends on its shape, which in turn depends on everything in it. As it is well known,
this object is called spacetime and mathematically it is a manifold with a metric associated.
However, physically, we can not accept any manifold or metric, which could have strange
physics not corresponding with those of our world, since ultimately the goal of physics is to
explain and predict our universe.

Thus, we will only consider ‘well-behaved’ spacetimes, in the sense of the following defini-
tion.

Definition 1.1. ([1] p. 704) A Ck spacetime is a pair (V4, g), where V4 is a paracompact,
oriented, connected, Hausdorff, 4-dimensional differentiable manifold and g is a Ck Lorentzian
metric, with signature (−,+,+,+).

It may seem that we ask the spacetime a lot of topological properties, nevertheless, they
are the ones that allow us to do some key mathematical steps that one would take for granted
because of their naturalness. The metric must have this signature in order to recover the
special relativity limit. We also require a differentiability grade to the metric in order to
achieve as much smoothness as possible. However, this will not always be possible due to
the properties of each particular metric, but we will at least demand k ≥ 2− ( recall that a
function f is Ck− if it is Ck−1 and its k − 1 derivatives are locally Lipschitz).

In order to navigate, identify and work with the points of the spacetime, one must introduce
a coordinate system. Obviously, there exist not only one coordinate system but infinite, though
some of them will have more convenient properties than others. It is worth to remark that
the physics of each spacetime is fully contained in the metric and it does not depend on the
coordinate system chosen, although sometimes could seem so.

Since the spacetime is a differentiable manifold, at each point p ∈ V4 one can construct
the tangent space to V4: TpV4 ∼= R4 with the metric g|p : TpV4 × TpV4 −→ R. The elements in

3



this vector space are called tangent vectors. Since the metric is Lorentzian, it is not definite
positive and hence the tangent vectors can be classified as:

Definition 1.2. ([1] p. 704, [2] p. 38) A vector v ∈ TpV4 is:

• timelike if g(v, v)|p < 0.

• null or lightlike if g(v, v)|p = 0.

• spacelike if g(v, v)|p > 0.

• causal if it is timelike or null.

Instead of g(v, v) it is standard to use the Einstein summation convention: gµνv
µvν = vµvµ,

where vα are the components of the vector: v = vα ∂
∂xα

= vα∂α in the basis of the tangent
space {∂µ} defined by the coordinates {xµ}.

It must be remarked that, since the signature of the metric is (−,+,+,+), there will be
some directions in the tangent space with essentially a different nature than the others. These
directions intend to represent time somehow and are associated with timelike vectors.

Besides, we can specify a sense of time by choosing an arbitrary timelike vector t ∈ TpV4
to be future-pointing at p ∈ V4. By doing this, all non-zero timelike and null vectors v ∈ TpV4
are divided into future pointing if vµtµ < 0 and past pointing if vµtµ > 0. If the choice of the
reference vector can be made in all the spacetime V4 continuously, V4 is called time-orientable.
We will assume all the spacetimes to be time-orientable. This endows the tangent space at
each point TpV4 with the same structure as Minkowski spacetime, namely, a two sheeted light
cone separating past and future directions.

A very important object in General Relativity are curves. Curves are (possibly smooth)
functions γ : I ⊆ R −→ V4 parametrized by some parameter, which is not unique. However,
not all curves are of interest in physics, since they are to represent histories of particles through
the universe. In this sense, we want them to have some relevance, given by the following
definition.

Definition 1.3. ([1] p. 707) A curve γ(τ) ⊂ V4 parametrized by τ is timelike (resp. null,
spacelike, causal, future-directed, past-directed) if its tangent vector u = dγ

dτ
is timelike (resp.

null, spacelike, causal, future-pointing, past-pointing) all along the curve.

Indeed, the curves we will focus on are the ones whose tangent vectors keep their be-
haviour. One could easily imagine a piecewise spacelike and timelike curve, but its physical
interpretation would not be as clear, since by causality we want everything in our spacetime
to move in a causal way. In order to study singularities, we will also be highly interested in
knowing whether a curve starts or ends at some point or continues forever:

Definition 1.4. ([1] p. 714, [2] p. 184) Let γ : I −→ V4 be a curve and p ∈ V4 a point. p
is a right (resp. left) endpoint of γ if ∀Up neighbourhood of p, ∃u0 ∈ I such that γ(u) ∈ Up
∀u ≥ u0 (resp. u ≤ u0). If a curve has no endpoints, it is endless or inextendible.

If the curve is causal and future-directed, we just call a right endpoint a future endpoint
and a left endpoint a past endpoint. It is clear from the definition that the curve gets confined
into a vicinity of the endpoint, independently of whether it has finite or infinite parameter.
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Surfaces and Hypersurfaces

As it could not be otherwise, surfaces and hypersurfaces also have a prominent role in General
Relativity. These are more complex than curves, since the extra dimensions allow for many
new aspects to take into account.

Definition 1.5. ([1] p. 705, [2] p. 44) Let Σ be an orientable 3-dimensional manifold. A
hypersurface is the image of a continuous piecewise C3 map Φ : Σ −→ V4.

By abuse of notation, we usually denote the hypersurface Φ(Σ) by simply Σ. Also, we will
refer to the parametric form of the hypersurface as xα = Φ(ui) where ui are the 3 parameters
parametrizing the hypersurface.

Given a hypersurface Σ ⊂ V4 defined by its parametrization Φµ(ui), since it is a manifold
by itself, we can construct its tangent space TpΣ ⊂ TpV4 and use as a basis its natural basis
given the parametrization

ei =
∂Φµ

∂ui
∂

∂xµ

∣∣∣∣
p

.

These vectors are called tangent vectors of Σ.
We will be interested in the metric properties of hypersurfaces. These can be summarized

by two different tensors, called the first and second fundamental forms.

Definition 1.6. ([1] p. 706, [2] p. 44) Let Σ be a hypersurface of V4 parametrized by Φµ(ui).
The first fundamental form of Σ is

γij = gµν
∂Φµ

∂ui
∂Φν

∂uj
= gµνe

µ
i e
ν
j .

The first fundamental form is the tensor containing the scalar products of the tangent
vectors of Σ and it can be regarded as the metric on Σ, so it is useful to perform metric
calculations on Σ. However, if we want to know the way the hypersurface is embedded into
V4, this is not enough. For this, we have to introduce normal vectors.

Definition 1.7. ([1] p. 706, [2] p. 44) A non-zero one-form n defined on a hypersurface Σ
with tangent vectors eαi is normal if nµe

µ
i = 0.

Obviously, the normal vector components will then be nµ = gµνnν .
Note that, for hypersurfaces, the normal one-form is defined up to a multiplicative factor.

This is because, since a 3-dimensional basis of TpΣ is a subspace of the 4-dimensional TpV4
at each point p, and nµ is orthogonal to each eµi (and hence, to the whole TpΣ), if another
normal mµ existed, by orthogonality, it must be parallel to nµ.

Somehow, normal vectors enable us to describe a 3-dimensional object with a single vector.

Definition 1.8. ([1] p. 707, [2] p. 46) Let Σ be a hypersurface of V4 parametrized by Φµ(ui)
and with nµ its normal form. The second fundamental form of nµ is

Kij(n) = −nµeνi∇νe
µ
j = eµj e

ν
i∇νnµ.

The second fundamental form is the tensor containing the projections of the covariant
derivative of the normal vector onto the hypersurface.

As with the curves, hypersurfaces can have many shapes and behaviours, and mathemat-
ically, they are perfectly fine. However, the interesting ones are those whose behaviour does
not change from point to point:

5



Definition 1.9. ([1] p. 706, [2] p. 44) A hypersurface Σ is spacelike (resp. null) if its normal
form n is timelike (resp. null) everywhere on Σ.

As for surfaces, the definition and results are analogous with some changes:

Definition 1.10. ([1] p. 705) Let S be an orientable 2-dimensional manifold. A surface is
the image of a continuous piecewise C3 map Φ : S −→ V4.

The definitions and formulas for surfaces are similar to those for hypersurfaces, but we
have to take into account that, since they are 2-dimensional, a basis of their tangent space
will have only 2 vectors, hence the first and fundamental forms will now be 2 × 2 tensors.
Also, by the same reason, the normal space to the surface has dimension 2, so we can choose
two linearly independent normal forms. If the surface is spacelike (this is, it has at least a
timelike normal form), then we can choose the two normal forms to be null. Let them be
k±µ . Additionally, since the forms are null and cannot be normalised, there are two degrees
of freedom. Once we fix one of them, we can normalize the other one with the normalization
condition k+µ k

−µ = −1.

Geodesics

Among curves, geodesics are a particularly important group. In General Relativity, free parti-
cles with no other influence than themselves will follow the causal geodesics of the spacetime.
Conversely, particles with acceleration will not describe geodesics, but other appropriate curves
instead. Hence, geodesics can be thought as the curves without acceleration. The formal def-
inition is:

Definition 1.11. ([1] p. 707, [3] p. 6, [4] p. 41) A geodesic is a curve γ(u) ⊂ V4 parametrized
by u of class C2 such that its tangent field vµ = d

du
γα(u) satisfies vµ∇µv

ν = A(u)vν for some
function A(u) on the curve.

It is clear that if we solve for vµ with initial conditions the equation of the condition on the
definition we will find the geodesics of the spacetime in question. That equation is called the
geodesic equation and it is a non-linear ODE system of order 2. However, it can be slightly
simplified. By reparametrizing the curve, it is possible to make the right hand side of the
geodesic equation vanish. Consider a new parameter τ = τ(u) and call λ = dτ

du
its jacobian.

Then, by using the chain rule, v(u) = dγ
du

= dγ
dτ

dτ
du

= ṽ(τ)λ, where the tilde stands to avoid
confusion. Using this in the geodesic equation, we obtain λṽα∇α(ṽβλ) = Aλṽβ. The covariant
derivative satisfies ∇α(ṽβλ) = λ∇αṽ

β + ṽβ∇αλ and taking into account that ∇αλ = ∂αλ
because it is a scalar, we end up with

λ2ṽα∇αṽ
β = ṽβ(Aλ− λṽα∂αλ).

We see we can make the right hand side vanish if it is fulfilled that Aλ = λṽα∂αλ = ∂vλ = dλ
du

.
Hence, we can choose λ such that dλ

du
= Aλ, which leads to

λ = λ0e
∫ u
u0
A(u)du

,

taking into account the right initial conditions u0 and the value of λ0 = λ(u0) at this point.
From this we can also see that, since dτ

du
= λ, then

τ − τ0 = λ0

∫ u

u0

e
∫ s
s0
A(s)ds

du,
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which due to the choice of initial conditions can be written as τ = af(u) + b where a, b are
arbitrary. Such parameters are called affine parameters and they remain affine under the
transformation τ̃ = aτ + b, from this their name. All in all, this implies that the geodesic
equation for affinely parametrized geodesics can be written as:

vµ∇µv
ν = 0. (1.1)

Note that we are able to talk about timelike, spacelike or null geodesics since the norm of
normalized tangent vectors will not change. We will always use the affine parameters when
treating with geodesics not only because the problem of finding them becomes simpler, but
because they have better properties. Namely, from their transformation law it is clear that
if one affine parameter does not diverge, none of them will. However, a non-affine parameter
could diverge while affine parameter do not. This will be important later because if a geodesic
only attains finite values of its affine parameter, this is indicating a singularity. This fact
motivates the following definition:

Definition 1.12. ([1] p. 708, [2] p. 33) A geodesic is complete if it is defined for all values of
its affine parameter. A spacetime is geodesically complete at p ∈ V4 if all geodesics emanating
from p are complete. A spacetime is geodesically complete if it is complete ∀p ∈ V4.

This concept will be crucial to the singularity theorems, since an incomplete geodesic
means that a material particle travelling along it would suddenly disappear in a finite ‘time’,
while a complete geodesic would allow the particle to travel forever. We will come back to
this discussion later.

The geodesic equation 1.1 for a affinely parametrized geodesic γ(τ) can also be written in
a totally equivalent way by developing the covariant derivative as:

d2γµ

dτ 2
+ Γµνσ

∣∣
γ(τ)

dγν

dτ

dγσ

dτ
= 0, (1.2)

where Γµνσ are the Christoffel symbols, which are to be evaluated at the points of the
geodesic. In this form, we are able to clearly see that the geodesic equation is a second order
ODE system for γ(τ), hence giving as initial conditions a point p = γ(0) and a tangent vector
v = dγ

dτ
|τ=0 fully determines the solution in a certain interval of τ . We denote this set of

solutions by xµ = G(τ ; p, v), where xµ = γp,v(τ) is the point of the geodesic that starts at p
with velocity v.

This observation provides a very convenient set of coordinates. Consider the exponential
map exp : O ⊆ TpV4 −→ U ⊆ V4, defined by exp(v) = G(1; p, v) where 0 ∈ O and p ∈ U .
Note that exp(τv) = G(1; p, τv) = G(τ ; p, v). Then we can naturally define:

Definition 1.13. ([1] p. 708, [2] p. 34) The normal coordinates based at p are {Xµ}, defined
by xµ = Gµ(1; p,Xµ). A neighbourhood of p with the normal coordinates is called a normal
neighbourhood. A maximal normal neighbourhood of p is denoted by Np.

Note that we can always take a convex subset from the set of points where normal coordi-
nates hold and that outside Np, some geodesics can not be defined.

Normal coordinates are very convenient when working with geodesics emanating from a
point p, since the expression of the points along the geodesics in the spacetime becomes simple.
Namely, the coordinates of a geodesic with tangent vector vα at p are simply xα(t) = tvα.
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1.2 Energy conditions

In this section references [2] (Section 4.3) and [3] (Section 2.1) are used. Recalling the Einstein
field equations (using natural units c = 8πG = 1),

Rµν −
1

2
Rgµν = Tµν (1.3)

where Tµν is the energy-momentum tensor, Rµν the Ricci curvature tensor and R the Ricci
curvature scalar, it is obvious that the energy density distribution in the spacetime directly
affects its geometry. We impose the energy-momentum tensor to be symmetric T µν = T νµ

and to satisfy the energy conservation condition ∇µT
µν = 0. These are standard conditions to

the energy distribution in order to avoid degeneration. However, they are not very restrictive
and a lot of possibilities are still allowed, many of which are unrealistic. The way in which we
impose energy to behave in a convenient way are conditions on the energy-momentum tensor
called energy conditions.

Although T νµ is symmetric, its matrix representation T νµ = gνρT
µρ is not, hence it will not

always diagonalize. Several cases arise then, but the most important is when the T νµ tensor
diagonalises, and we call it a type I energy-momentum tensor. The type I energy-momentum
tensors are the most common in terms of energy density distributions that describe realistic
spacetimes. In this case, there exists an orthonormal basis {eµA} (we will exceptionally use
capital latin letters running from 0 to 3 to differentiate each vector in the basis in the following
development to avoid confusion) in which it can be written as:

T µν = ρeµ0e
ν
0 + p1e

µ
1e
ν
1 + p2e

µ
2e
ν
2 + p3e

µ
3e
ν
3 = TAAeµAe

ν
A,

with eµ0 timelike and eµi spacelike. Therefore, this basis satisfies the relations

gµνe
µ
Ae

ν
B = ηAB, gµν = ηABeµAe

ν
B, (1.4)

where ηAB is the Minkowski metric. It is immediate that Tµνe
µ
A = TBBηABeBν .

Note that this implies that an observer using this basis as a frame of reference will make
local measurements as if the metric was flat. Also, this observer will measure:

Tµνe
µ
Ae

ν
A = TAA.

The physical interpretation of the obtained eigenvalues is straightforward: ρ represents
the energy density as measured by an observer with tangent vector eµ0 and pi represent the
principal pressures in the three spacelike directions eµi .

If the three principal pressures are equal, pi = p, then the matter filling the universe is
spatially isotropic. This corresponds to a perfect fluid if eµ0 = uµ is the velocity vector field of
the fluid in the adapted frame of reference. By using the second relation in 1.4, we can rewrite
its energy-momentum tensor as:

T µν = ρuµuν + p (eµ1e
ν
1 + eµ2e

ν
2 + eµ3e

ν
3) = ρuµuν + p (gµν + uµuν) = (1.5)

(ρ+ p)uµuν + pgµν . (1.6)

Similarly, if two of the pressures are equal, p1 = pr, p2 = p3 = pT , then there is a preferred
axis in the fluid. Again, in the adapted frame of reference, the energy-momentum tensor can
be written as:

T µν = (ρ+ pT )uµuν + (pr − pT ) eµ1e
ν
1 + pTg

µν .
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We now proceed to introduce the relevant energy conditions used in singularity the-
ory. In the following calculations, we use p0 = ρ to compactify the notation. Any time-
like vector (vαvα < 0) can be written in the orthonormal coordinates in the form vα =
γ (eα0 + aeα1 + beα2 + ceα3 ) with a2 + b2 + c2 < 1, where if we want vα to be normalized, we need

γ = (1− a2 − b2 − c2)−
1
2 . Null vectors can be written as kα = γ (eα0 + aeα1 + beα2 + ceα3 ) and

must satisfy a2 + b2 + c2 = 1. We will denote a, b, c by ai and we will take a0 = 1, hence the
components of the vectors will be γaµ. Note that the set of null vectors is the boundary of
the set of timelike vectors, hence if a continuous function satisfies certain property for timelike
vectors, by continuity, it will also hold for null vectors.

Weak energy condition (WEC)

The most basic energy condition is to require the energy density to be positive. The reason-
ability of this condition is classically undisputed, although quantum effects such as Casimir
effect violate it.

Definition 1.14. ([1] p. 722, [2] p. 89, [3] p. 30) The weak energy condition is Tαβv
αvβ ≥ 0,

∀vα timelike.

By continuity of the energy-momentum tensor and the metric, the WEC also implies
Tαβk

αkβ ≥ 0 ∀kα null.
Assuming a spacetime has a type I energy-momentum tensor and satisfies the WEC, then

the energy density that an observer with tangent vector vα = γ (eα0 + aeα1 + beα2 + ceα3 ) mea-
sures is:

0 ≤ Tαβv
αvβ = Tαβγ

2aAeαAa
BeβB = γ2aAaBTαβe

α
Ae

β
B = γ2aAaBTAAηAAeAβe

β
B =

= γ2aAaBTAAηAAηAB = γ2(ρ+ a2p1 + b2p2 + c2p3).

In particular, taking an observer with tangent vector eµ0 (this is, a = b = c = 0), the WEC
implies

ρ ≥ 0.

Similarly, if we choose an observer with tangent vector eµ0 + aieµi (fixed i and 0 < ai ≤ 1) we
obtain the condition

0 ≤ ρ+ ai
2pi ≤ ρ+ pi.

This means that the WEC constrains the energy density in the spacetime to be positive.
However, the principal pressures can still be negative, but bounded by pi ≥ −ρ.

Dominant energy condition (DEC)

A further, while still very reasonable condition, is that in addition to maintain the energy
density seen by all the observers positive, the matter has to move in a causal way. T µνvµ is
the matter momentum density measured by an observer with tangent vector vα. Hence, this
condition is:

Definition 1.15. ([1] p. 722, [2] p. 91, [3] p. 32) The dominant energy condition is Tαβv
αvβ ≥

0, ∀vα timelike and that Tαβvβ must be causal.
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We already have seen that the first of the conditions is equivalent to ρ ≥ 0 and ρ+ pi ≥ 0.
For Tαβvβ to be causal means that T µνvµTνγv

γ ≤ 0. Hence, with a type I energy-
momentum tensor:

0 ≥ TAAeµAe
ν
AT

BBeBνeBγa
CeCµa

DeγD = TAATBBaCaD(eBνe
ν
A)(eµAeCµ)(eBγe

γ
D) =

= TAATBBaCaDηABηACηDB = −ρ2 + a2p21 + b2p22 + c3p23,

where a2 + b2 + c2 ≤ 1. Taking a = b = c = 0 leads to 0 ≥ −ρ2 which is the same
ρ ≥ 0 as before. Taking one of the ai ≤ 1 at a time while keeping the others at 0, leads to
0 ≥ −ρ2 + ai

2p2i which translates to ρ2 ≥ a2i p
2
i . Since we are imposing the condition for ai ≤ 1

and we want to ensure its fulfilling for all ai, we have to impose the least restrictive of them
which is ai = 1. Thus, the DEC implies:

ρ ≥ 0, ρ ≥ |pi|,

which can be rewritten by developing the absolute value as:

ρ ≥ 0, ρ+ pi ≥ 0, ρ− pi ≥ 0.

Strong energy condition (SEC)

The SEC requires Rαβv
αvβ ≥ 0, ∀vα timelike. However, unlike the previous conditions,

this one does not have a direct, clear physical interpretation. Its importance comes from
the Raychaudhuri equation 1.13 that we will present later, in which this quantity becomes
important. The effect of imposing the SEC (through the Raychaudhuri equation) is to focus
timelike congruences of curves, forcing them to move closer to each other, although the SEC
alone is not sufficient for this to happen.

We would like to express this condition in terms of the energy-momentum tensor in order
to be able to call it a proper energy condition. This can be done by using Einstein’s equations
1.3. First take its trace by multiplying by gµν :

R− 1

2
4R = T,

since gµνg
µν = δµµ = 4 in our 4-dimensional spacetime, R = Rµ

µ and denoting T = T µµ .
Hence, T = −R. Finally, using this and equation 1.3 again in the SEC condition we obtain:

Definition 1.16. ([1] p. 722, [2] p. 95, [3] p. 31) The strong energy condition is Tαβv
αvβ ≥

1
2
Tvνvν ∀vα timelike.

The trace of a type I energy-momentum tensor can be easily calculated:

T = T µµ = T µνgµν = (ρeµ0e
ν
0 + p1e

µ
1e
ν
1 + p2e

µ
2e
ν
2 + p3e

µ
3e
ν
3) gµν = pαηαα = −ρ+

∑
i

pi.

Since we take vµ normalized, 1
2
Tvνvν = 1

2
(ρ −

∑
i pi). Hence, the SEC for type I energy-

momentum tensors translates into:

ρ

(
γ2 − 1

2

)
+
∑
i

pi

(
ai

2
γ2 +

1

2

)
≥ 0.
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Taking as a particular case the observer with tangent vector eµ0 (this is, all of the ai = 0, which
means γ = 1) we obtain

ρ+
∑
i

pi ≥ 0. (1.7)

Taking the observer with tangent vector eµ0 +aieµi (this is, one ai 6= 0 which means γ2 = 1

1−ai2 ),

a simple calculation leads to
ρ+ pi ≥ 0.

Null convergence condition (NCC)

The NCC is the analogous condition as SEC for null vectors.

Definition 1.17. ([1] p. 721, [2] p. 95 The null convergence condition is Rαβk
αkβ ≥ 0, ∀kα

null.

From similar calculations as before, it can be seen that the NCC translates into ρ+ a2p1 +
b2p2 + c2p3 ≥ 0 with a2 + b2 + c2 = 1.

As before, there is no direct physical motivation beyond the suggested by the null Ray-
chaudhuri equation 1.15 of focusing null congruences of curves. Note that the SEC implies
the NCC.

1.3 Congruences

In the spacetime manifold, there is an infinite number of possible curves to study. However,
when considering some specific scenarios, we will not be interested in all of them. Often
enough, we will want the curves to represent the evolution of fluid particles, or the possible
paths from a particular point. In these cases, we will want to consider a set of curves such that
fill a certain region without crossing each others after the initial point in order to represent
correctly the mentioned above. This kind of sets of curves are called congruences.

Definition 1.18. ([1] p. 715, [3] p. 36) A congruence of curves in a domain D ⊆ V4 is a
family of curves Γ, such that ∀p ∈ D, ∃!γ ∈ Γ such that p ∈ γ. A congruence is timelike (resp.
null) if its tangent field is timelike (resp. null).

Then, it is clear that congruences are relevant for the study of the spacetime in the sense
that we will not have to treat curves individually, since studying the geometry of the congru-
ence as a whole will give us enough information.

We will develop the theory for timelike and null congruences separately because, although
their developments and results are similar, there are some fundamental differences which are
worth remarking. Hence, we will first review timelike congruences in detail and then we will
do the same for null congruences, omitting the totally analogous parts with the previous case.

Timelike congruences

In this section references [2] (Section 4.1), [3] (Section 2.3) and [4] (Section 9.2) are used. Let
uµ be the tangent vector to a timelike congruence. We can always choose the parameter of the
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curves in such a way that the tangent vector of the congruence is unitary uµuµ = −1. Since
uµ is timelike, we can choose three more spacelike vectors orthonormal to uµ forming a basis
of TpV4, or in other words, we can naturally separate the tangent space in TpV4 = u(p)⊕Hp,
with Hp a 3-dimensional spacelike subspace of TpV4. This subspace Hp, being orthogonal to
uµ, contains the spatial information of the congruence, which can be used to compute its
geometric quantities. To do so, we have to construct the projector onto Hp, given by:

hµν ≡ gµν + uµuν ⇐⇒ hµν = δµν + uµuν .

In particular, the metric tensor is decomposed as gµν = −uµuν + hµν . It becomes clear that
hµν will be the metric of a hypersurface orthogonal to uµ at each point.

Some of its properties are immediate:

hµνh
ν
ρ = (δµν + uµuν)

(
δνρ + uνuρ

)
= δµν δ

ν
ρ + δµνu

νuρ + uµuνδ
ν
ρ + uµuνu

νuρ =

= δµρ + uµuρ + uµuρ − uµuρ = hµρ ,

hµµ = δµµ + uµuµ = 4− 1 = 3, hµνu
ν = (δµν + uµuν)u

ν = uµ − uµ = 0, hµν = hνµ,

From this, it is clear that hµν is orthogonal to uµ, so we can split any tensor parts parallel
and orthogonal to uµ. For instance, any 2-covariant tensor can be written as:

Tµν = Tσρδ
σ
µδ

ρ
ν = Tσρ

(
hσµ − uσuµ

)
(hρν − uρuν) =

= hσµh
ρ
νTσρ + uσuµu

ρuνTσρ − hσµuρuνTσρ − hρνuσuµTσρ.

In particular, we can write the covariant derivative of u, which is the relevant quantity we
want to compute to know the changes in the geometry of the congruence as:

∇νuµ = hσµh
ρ
ν∇ρuσ + uσuµu

ρuν∇ρuσ − hσµuρuν∇ρuσ − hρνuσuµ∇ρuσ.

The acceleration of the congruence is aµ ≡ uρ∇ρu
µ (since it is the derivative of the velocity

vector). We observe that this quantity is how much the congruence differs from being affinely
parametrized geodesic (recall the geodesic equation 1.1), hence, if aµ = 0, uµ is geodesic.
Note that the acceleration is also orthogonal to uµ since aµuµ = uρuµ∇ρu

µ = 1
2
uρ∇ρ (uµu

µ) =
1
2
uρ∇ρ (−1) = 0.

Using this and the properties

hσµaσ =
(
δσµ + uσuµ

)
aσ = aµ,

hρνu
σuµ∇ρuσ = (δρν + uρuν)u

σuµ∇ρuσ = uσuµ∇νuσ + uµu
σaσ = 0,

we get:

∇νuµ = hσµh
ρ
ν∇ρuσ + uµuνu

σaσ − hσµuνaσ − hρνuσuµ∇ρuσ = hσµh
ρ
ν∇ρuσ − uνaµ. (1.8)

For the spatial part of the covariant derivative, it is useful to use a decomposition of the total
deformation of the congruence in pure deformations which can be more easily understood.
This is done by using:

hρµh
σ
ν∇ρuσ =

θ

3
hµν + σµν + ωµν ,
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where θ ≡ ∇µu
µ is the expansion scalar, σµν ≡ 1

2
hρµh

σ
ν (∇σuρ +∇ρuσ) − θ

3
hµν is the shear

tensor and ωµν ≡ 1
2
hρµh

σ
ν (∇σuρ −∇ρuσ) is the rotation tensor. It is straightforward to see

that σµν = σνµ, ωµν = −ωνµ, σµµ = ωµµ = 0 and σµνu
µ = ωµνu

µ = 0. Note that ωµν and σµν are
traceless, so that the trace of the spatial part is concentrated in θ.

To understand why these quantities are useful, let us illustrate the 2-dimensional Newto-
nian case [3] (Section 2.2). For this, imagine a 2-dimensional deformable medium evolving in
time as pictured in Figure 1.1. If the vector between two points in the plane is given by ξA,
then for small distances we can write by approximating at first order

dξA

dt
' KA

Bξ
B,

where KA
B is the tensor containing the medium dynamics at first order. Then, for small time

intervals dt, then

ξA(t0 + dt) = ξA(t0) +KA
B(t0)ξ

A(t0)dt.

To see the effect of the deformation tensors that concern us, let us consider a circle in the
deformable plane defined by

ξA =

(
r cosφ
r sinφ

)
,

with φ ∈ [0, 2π) and let us see the resulting shape after a little time interval of being subject
to each deformation tensor.

 

Figure 1.1: Deformation of a 2-dimensional circle in the deformable medium defined by the
congruence (blue lines).

By symmetry of the shear tensor, antisymmetry of the rotation tensor and the fact that
their traces vanish, in 2D the only possibility is to write :

σBA =

(
σ+ σ×
σ× −σ+

)
, ωBA =

(
0 ω
−ω 0

)
,
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where A,B = 1, 2. Through trivial calculations, one can see that the resulting shapes are:

ξAσ = r

(
(1 + dt σ+) cosφ+ dt σ× sinφ
dt σ× cosφ+ (1− dt σ+) sinφ

)
, ξAω =

(
r cos(φ− ωdt)
r sin(φ− ωdt)

)
.

The radius at each angle of the figure after applying the shear tensor will be, up to first
order in dt, r(φ) ' r(1+dtσ+ cos 2φ+dtσ× sin 2φ). As we can see, the effect of the shear tensor
on the circle is to deform it into an ellipse with its major axis oriented at an angle determined
by its parameters σ+ and σ×. One can also check that the area of the new figure is still the
same that of the circle, so overall, the effect is that of a shearing, and from this the name of
the tensor. Similarly, it is trivial to see that the rotation tensor performs a rotation on the
circle, also leaving invariant the area. The fact that none of the tensors has trace translates
into the fact that they do not change the volume of the figure on which they are acting. All
the trace of the spatial part of the covariant derivative is focused on θ, which will be the most
important quantity.

To understand its effect, let us study the volume of shapes orthogonal to the congruence.
Choose a particular curve γ in the congruence and a point p ∈ γ such that p = γ(τp).
Then construct a small 3-dimensional neighbourhood δΣ(τp) of p such that δΣ(τp) intersects γ
orthogonally (and only γ, note that there is no reason to assume that the neighbouring curves
intersects δΣ(τp) orthogonally), and such that through each p′ ∈ δΣ(τp), there passes a different
curve of the congruence γ′ fulfilling γ′(τp) = p′. We can always do this by reparametrizing
the curves. This neighbourhood is three dimensional, and since each point in them is from a
different geodesic, we can label the geodesics crossing it by some coordinates {yi}. As we can
do this for each τ , we can obtain a system of coordinates covering all the domain with {yi, τ}.

With this coordinates, since along each geodesic the only coordinate changing its value is
τ , ∂τ |yi = uµ is simply the tangent vector of the congruence. Let eµi = ∂yi |τ the tangent vectors
to δΣ(τp). Then, note that uµe

µ
i = 0 (again, only on γ) and that on each of the hypersurfaces,

the first fundamental form is hij = gµνe
µ
i e
ν
j , which implies hij = hµνe

µ
i e
ν
j on γ. The volume

element on δΣ(τp) can be written as δV =
√
h d3y with h = det(hij). Since yi are constant

along each curve, d3y does not change when varying τ . Hence the variation of the volume
element along the curves of the congruence is given by:

1

δV

d

dτ
δV =

1√
h

d

dτ

√
h =

1

2
hij
dhij
dτ

.

Further developing the derivative of the metric by using that eνi∇νu
µ = ∂yiu

µ = ∂yi∂τx
µ =

∂τ∂yix
µ = ∂τe

µ
i = uν∇νe

µ
i , we get:

dhij
dτ

=
d

dτ

(
gµνe

µ
i e
ν
j

)
= uα∇α

(
gµνe

µ
i e
ν
j

)
= uαgµνe

µ
i∇αe

ν
j + uαgµνe

ν
j∇αe

µ
i =

= gµνe
µ
i e
α
j∇αu

ν + gµνe
ν
j e
α
i ∇αu

µ = eµi e
α
j∇αuµ + eνj e

α
i ∇αuν = (∇µuν +∇νuµ) eµi e

ν
j .

Then:

1

δV

d

dτ
δV =

1

2
hij (∇µuν +∇νuµ) eµi e

ν
j =

1

2
(∇µuν +∇νuµ) gµν = ∇µu

µ = θ.
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Thus, θ is the variation of the volume element orthogonal to the congruence. Actually, the
previous relation, since δV is a scalar, implies

£uV = θV. (1.9)

Then, if f i are three independent functions constant along each curve in the congruence, this
is, uµ∂µf

i = 0, then df i are orthogonal to uµ and since they are independent, we can write
the volume form as

V = v df 1 ∧ df 2 ∧ df 3.

Calculating the Lie derivative of this expression, we obtain:

£uV = £uv df
1 ∧ df 2 ∧ df 3 + v £udf

1 ∧ df 2 ∧ df 3 + v df 1 ∧£udf
2 ∧ df 3 + v df 1 ∧ df 2 ∧£udf

3.

Since £udf
i = d (£uf

i) = d (uµ∂µf
i) = 0, then on using 1.9 we simply have £uv df

1∧df 2∧df 3 =
θv df 1 ∧ df 2 ∧ df 3 and thus, £uv = uµ∂µv = θv, or alternatively,

θ = uµ∂µ (ln v) . (1.10)

To prove this statement, we have made use of a new coordinate system to make calculations
easier. However, we have remarked that in general, the natural reference frame in those
coordinates is not orthogonal (except on γ, where it is by construction). Since the most
interesting frames of reference are the orthonormal ones, we are interested in knowing in
which congruences it is possible to construct an adequate reference frame. This is given by:

Theorem 1.19. (Frobenius) ([1] p. 717, [3] p. 38) Let uµ be the tangent vector to a timelike
congruence. If the congruence is orthogonal to a hypersurface Σ, then ωµν = 0.

Proof. For the direct implication, assume uµ is orthogonal to Σ, hence, it is proportional to
the normal form, which in turn is the gradient of a scalar function. Hence, uµ = −f∂αΦ. To
see that the congruence is irrotational, we have to see that ωµν = 0, which is equivalent to
seeing that ∇νuµ −∇µuν = 0. The computation is straightforward:

∇νuµ −∇µuν = −f∂ν∂µΦ− ∂νf∂µΦ + f∂µ∂νΦ + ∂µf∂νΦ =
1

f
(uµ∂νf − uν∂µf) .

Additionally, we know that ωµνu
ν = 0 is orthogonal to the congruence. Using this condition,

we obtain:

0 =
1

f
(uνuµ∂νf − uνuν∂µf) =

1

f
(∂µf + uνuµ∂νf) .

Then, ∂µf = −uνuµ∂νf and it is direct to see that:

∇νuµ −∇µuν =
1

f
(uµ∂νf + uνu

νuµ∂νf) =
1

f
(uµ∂νf − uµ∂νf) = 0.

Hence, ωµν = 0.
For the inverse implication, we assume that ∇νuµ = ∇µuν and we want to see that u = dΦ

for some function Φ. To see this, let us prove that u = uµdx
µ is a closed form.

du = d (uµdx
µ) = duµ ∧ dxµ = (∂νuµdx

ν) ∧ dxmu = ∂νuµdx
µ ∧ dxν .

Since ∇νuµ = ∇µuν , then it follows that ∂νuµ = ∂µuν , and since dxµ ∧ dxν = −dxν ∧ dxµ, it is
clear that du = 0. Thus, by Poincare’s Lemma (see reference [5], Theorem 4.11), there exists
a scalar function Φ such that dΦ = u, which means that u is proportional to the normal form
of a certain hypersurface Σ, hence the congruence is orthogonal to Σ.
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Congruences emanating from a point have a similar property:

Lemma 1.20. ([1] p. 710) The timelike geodesic congruence emanating from a point p with
affine parameter τ is orthogonal to the hypersurfaces Στ0 = {τ = τ0} within Np.

Proof. In normal coordinates, we can write all the points in space by following the geodesics as
Xµ = vµτ . Plugging this into the geodesic equation 1.2, one obtains Γσµν(τv)vµvν = 0. From
the known formula for the Christoffel symbols using the Levi-Civita connection, one trivially
gets:

(2∂µgνρ(τv)− ∂ρgµν(τv)) vµvν = 0.

Since along geodesics the scalar products remain constant, in normal coordinates we can
write

gµν(τv)vµvν − gµν(0)vµvν = 0.

Differentiating this with respect to vρ, one gets:

0 =∂ρ [gµν(τv)vµvν − gµν(0)vµvν ] =

=∂ρgµν(τv)vµvν + 2gµρ(τv)vµ − ∂ρgµν(0)vµvν − 2gµρ(0)vµ = 2
d

dτ
[gρµ(τv)τvµ − gρµ(0)τvµ] .

From this we conclude that:

gµν(X)Xµ = gµν(0)Xµ. (1.11)

In normal coordinates, the tangent vector of the normalized geodesic congruence emanating
form p can be simply written as u = Xµ√

−gµν(0)XµXν
∂µ, and its corresponding one-form as

u =
gµν(X)Xµ√
−gµν(0)XµXν

dXν =
gµν(0)Xµ√
−gµν(0)XµXν

dXν = −d
(√
−gµν(0)XµXν

)
,

by using equation 1.11. Then, the congruence is orthogonal to the hypersurfaces

τ =
√
−gµν(0)XµXν = constant.

Since θ is the most relevant geometrical quantity in the congruence, we are interested in
tracking the evolution of θ along the curves of the congruence. Its variation will be given by
Dθ
dτ

= uµ∇µθ = uµ∇µ∇νu
ν (keeping in mind that, since θ is a scalar, ∇µθ = ∂µθ). Using the

trace of the Ricci identity

(∇µ∇ν −∇ν∇µ)uα = Rα
ρµνu

ρ, (1.12)

contracted with uµ one gets the relation

uµ (∇µ∇νu
ν −∇ν∇µu

ν) = −Rµνu
µuν .

Furthermore, we can use that ∇ν (uµ∇µu
ν) = ∇νu

µ∇µu
ν + uµ∇ν∇µu

ν . Then, summing up,
we can write:

uµ∂µθ = uµ∇µθ = ∇ν (uµ∇µu
ν)−∇νu

µ∇µu
ν −Rµνu

µuν = ∇νa
ν −∇νuµ∇µuν −Rµνu

µuν .
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As we had seen before, the covariant derivative term can be written as ∇νuµ = −uνaµ +
θ
3
hµν + σµν + ωµν . Since aµ, hµν , σµν , ωµν are orthogonal to uµ, when developing the term
∇νuµ∇µuν , the only surviving contributions will be:

∇νuµ∇µuν =
θ2

9
hµνh

νµ + σµνσ
νµ + ωµνω

µν .

As seen before, hµνh
νµ = hµµ = 3, σµν = σνµ, ωµν = −ωνµ, and putting all the pieces together,

we finally get Raychaudhuri’s equation ([1] p. 717, [3] p. 40):

uµ∂µθ +
θ2

3
−∇µa

µ − ωµνωµν + σµνσ
µν +Rµνu

µuν = 0. (1.13)

This equation is key to control the evolution of the congruence. In particular, it determines
the behaviour of the volume element orthogonal to the congruence in equation 1.10. It rapidly
becomes evident that if the volume element becomes 0 at some point, or equivalently θ → −∞,
the congruence as we have defined it will end there because the curves will meet. This motivates
the following definition:

Definition 1.21. ([1] p. 718, [4] p. 223) A point q ∈ V4 is conjugate to a point p ∈ V4 if along
a curve of the geodesic timelike congruence emanating from p it holds that limx→q θ(x) = −∞.

A point q ∈ V4 is focal to a spacelike hypersurface Σ ⊂ V4 if along a curve of the geodesic
timelike congruence emanating orthogonally from Σ it holds that limx→q θ(x) = −∞.

Clearly, if θ < 0, the geodesics in the congruence will get closer. However, in the extreme
case of conjugate and focal points where θ → −∞, the geodesics will be so highly concentrated
that they will eventually meet at those points, as illustrated in Figure 1.2.

 

 

Figure 1.2: Two conjugate points. The geodesics in the congruence emanating from one point
reconverge to its conjugate point.
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As we will see later, one can assure the existence of conjugate or focal points if certain
conditions are met. To that end, let us introduce now a new condition:

Definition 1.22. ([1] p. 721, [2] p. 101) The timelike generic condition holds if in each time-
like geodesic with tangent vector vµ, the condition v[αRρ]µν[σvβ]v

µvν 6= 0 is fulfilled at some
point.

However, because of the antisymmetry properties of the Riemman tensor, one can rewrite
the timelike generic condition easily as Rρµνσu

µuν 6= 0, and it can be proved that if the SEC is
fulfilled strictly (Rµνu

µuν > 0 for timelike uµ), then the timelike generic condition holds. This
condition, as its name already suggests, is a very generic condition that most of the spacetimes
fulfill. Actually, its only purpose is to exclude from the singularity theorems a very specific
selection of spacetimes. The condition is interpreted as the fact that every free particle has to
interact with gravity in some way.

Null congruences

In this section reference [3] (Section 2.4) is used. We can develop the same ideas as before for
null congruences, obtaining pretty similar results.

Let kµ be the tangent vector to a null geodesic (not necessarily affinely parametrized)
congruence, with kµkµ = 0. In the timelike case, we took a basis of each TpV4 including the
tangent vector to the timelike congruence. However, we can not do the same in the null case,
because the metric has signature (−,+,+,+), meaning that every vector in TpV4 must be able
to be written as a linear combination of one timelike and three spacelike vectors. Since our
available vector kµ is null, we can not simply choose three more spacelike vectors to complete
the basis, and in the same way we can not define a projector orthogonal to kµ to track the
variation in the geometry of the congruence by the same means as before.

The solution is to introduce a new null vector field lµ linearly independent together with
kµ. Due to the 0 norm of kµ and lµ, we can also impose the normalization condition lµk

µ = −1.
Note that now we are able to choose 2 linearly independent spacelike vectors to form a basis
together with kµ and lµ.

Now, we can construct a projector truly orthogonal to kµ defined by:

Nµν = gµν + kµlν + kνlµ ⇐⇒ Nµ
ν = δµν + kνl

µ + kµlν ,

and satisfying

Nµ
ν k

ν = (δµν + kνl
µ + kµlν) k

ν = kµ + lµ(kνk
ν) + kµ(lνk

ν) = kµ − kµ = 0,

Nµν = Nνµ, Nµ
µ = δµµ + kµl

µ + kµlµ = 4− 1− 1 = 2, Nµ
ν l
ν = 0,

Nµ
νN

ν
ρ = (δµν + kνl

µ + kµlν)
(
δνρ + kρl

ν + kνlρ
)

=

=δµρ + kρl
µ + kµlρ + kρl

µ − lµkρ + kµlρ − kµlρ = δµρ + kρl
µ + kµlρ = Nµ

ρ .

Since the spacelike subspace of the tangent space has now dimension 2, it seems logical
that we can build an orthogonal surface to kµ. We can not do it genuinely orthogonal to a
hypersurface, because if kµ is the normal vector of a hypersurface, since kµkµ = 0, then it
is also tangent to it. But we can find a surface such that the two null vectors kµ and lµ are
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orthogonal to it, and we can complete a basis of the tangent space with two more spacelike
vectors tangent to the surface.

As we intend to prove the null version of the Raychaudhuri equation, the steps to follow
are clear after the proof in the timelike case. We first separate the covariant derivative of kµ,
by using that kµ∇νkµ = 0:

∇νkµ = δσµδ
ρ
ν∇ρkσ =

(
Nσ
µ − kµlσ − kσlµ

)
(Nρ

ν − kνlρ − kρlν)∇ρkσ =

= Nσ
µN

ρ
ν∇ρkσ − kµlνkρlσ∇ρkσ − kµkνlρlσ∇ρkσ − kνlρ∇ρkµ − kρlν∇ρkµ − kµlσ∇νkσ =

= Nσ
µN

ρ
ν∇ρkσ − kµkνlρlσ∇ρkσ − kνlρ∇ρkµ − kµlσ∇νkσ, (1.14)

since kα∇αk
β = fkβ.

From all these terms, the only genuinely orthogonal part to kµ is Nσ
µN

ρ
ν∇ρkσ, because on

being contracted with all kµ, kν , lµ, lν it vanishes, unlike the other terms. Hence, as again, we
can decompose the purely spatial part as:

Nσ
µN

ρ
ν∇ρkσ =

1

2
ϑNµν + σµν + ωµν ,

with ϑ ≡ ∇µk
µ + kµlν∇µkν , obtained from the trace of equation 1.14, and

σµν ≡
1

2
Nρ
µN

σ
ν (∇σkρ +∇ρkσ)− ϑ

2
Nµν ,

ωµν ≡
1

2
Nρ
µN

σ
ν (∇σkρ −∇ρkσ) .

Similarly, using the above expression for the covariant derivative of kµ and the trace of the
Ricci identity, we can derive the analogous to the Raychaudhuri equation in the null case ([3]
p. 58):

kµ∂µϑ + ϑkµlν∇µkν +
ϑ2

2
+ σµνσ

µν − ωµνωµν +Rµνk
µkν = 0. (1.15)

The result is essentially the same as 1.13, with just a factor 2 as a difference, and hence,
the behaviour of ϑ will be similar to the behaviour of θ for timelike congruences. Being this
way, we can also define the concept of conjugate and focal points with null congruences as in
the timelike case:

Definition 1.23. ([1] p. 725) A point q ∈ V4 is conjugate to a point p ∈ V4 if along a curve
of the geodesic null congruence emanating from p it holds that limx→q ϑ(x) = −∞.

A point q ∈ V4 is focal to a spacelike surface S ⊂ V4 if along a curve of the geodesic null
congruence emanating orthogonally from S it holds that limx→q ϑ(x) = −∞.

As said before, we want to know the conditions under which the existence of focal or
conjugate points is assured. Again, we will need to define another condition:

Definition 1.24. ([1] p. 721, [2] p. 101) The null generic condition holds if in each null
geodesic with tangent vector kµ, the condition k[αRρ]µν[σkβ]k

µkν 6= 0 is fulfilled at some point.
The generic condition holds if both the timelike and null generic conditions hold.

The interpretation of the null generic condition is no different from the timelike case,
although we can not rewrite it in the same way. Though, there exists an easier way to check
whether it is fulfilled:

Proposition 1.25. ([1] p. 723) Let kµ be the tangent vector to a null geodesic. If the NCC
(Rµνk

µkν > 0) holds, the null generic condition is satisfied for this geodesic.
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1.4 Maximal curves

Since we are in a Lorentzian space and vectors may have positive, negative or zero norm,
the metric properties are not alike those of Riemannian spaces. In these, since all non-zero
tangent vectors have positive norm, it makes sense to talk about curves of minimum length
between two points. With a Lorentzian metric, this is not like this anymore, although we can
still define a notion of length of curves in the standard way:

Definition 1.26. ([1] p. 725, [2] p. 105, [4] p. 233) The length of a piecewise differentiable
curve γ(u) with tangent vector v(u) between p = γ(u1), q = γ(u2) ∈ V4 is

L(p, q; γ) =

∫ u2

u1

√
|gµνvµvν |du. (1.16)

The integral has to be computed over the differentiable segments, and it is well defined
since it is invariant under reparametrizations of the curve, since if ũ is the new parameter
obeying dũ = λ du, then:

L(p, q; γ) =

∫ ũ2

ũ1

√
|gµνλṽµλṽν |

dũ

λ
=

∫ ũ2

ũ1

√
|gµν ṽµṽν |dũ.

It is obvious that L = 0 for null curves either geodesics or sequences of null geodesics
segments, and for timelike curves, we have L > 0. Note that now, for curves joining two given
points, the minimum possible arc length is L = 0, since any causal curve can be approximated
by null segments in zigzag as shown in Figure 1.3.

 

 

Figure 1.3: Any timelike curve (orange) can be approximated by curves formed of null geodesic
segments in a zig zag (black and green).

However, there may be a maximum in the length of causal curves joining two points because
a causal curve is relatively constrained when going from one point to another as its tangent
vector must remain inside the light cone. This motivates the following definition:
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Definition 1.27. ([1] p. 725) Let p, q ∈ V4 be points and γ0 a causal curve joining p and q.
γ0 is maximal if ∀γ causal curve joining p and q holds L(p, q; γ0) ≥ L(p, q; γ). γ0 is locally
maximal if ∃ Uγ0 neighbourhood of γ0 such that ∀γ ⊆ Uγ0 holds L(p, q; γ0) ≥ L(p, q; γ).

1.5 Causality

In this section references [2] (Chapter 6) and [4] (Chapter 8) are used. The concept of causality
in a general spacetime is not as simple as in R4 with Minkowski’s metric, used in special
relativity. In the latter, there is a two-sheeted light cone at each point, one sheet corresponding
to the future, one to the past and timelike trajectories can only exist inside the cone, while
null geodesics can only exist on the cone. Furthermore, this cone is always oriented the same
way, so as a result, its causal structure is quite simple. However, when moving to a general
spacetime, the topology can become much more complicated than that of a flat space. The
light cones here are defined as:

Definition 1.28. ([1] p. 711, [4], p. 189) The future light cone in p ∈ V4 is

∂C+
p = {exp(v) | v ∈ Np ⊂ TpV4, v future directed, gµνv

µvν = 0}.

The interior of the future light cone is

C+
p = {exp(v) | v ∈ Np ⊂ TpV4, v future directed, gµνv

µvν < 0}.

Analogously with the past light cone.

One must notice that the light cones belong to the tangent spaces of each point. In the
trivial Minkowski spacetime this happened too, but due to the trivial topology, one can identify
the vectors in the tangent space with the points of the spacetime themselves. Now in general,
the light cones change orientation from point to point and, in addition, some regions could be
cut out of the spacetime, so to take this into account, we restrict the light cone to Np ⊂ TpV4,
where we can assure that the geodesics are well behaved.

Proposition 1.29. ([1] p. 711) Let γ be a curve starting at p completely contained in Np. γ
is a null geodesic if and only if γ ⊂ ∂C+

p .

Proof. Let us use normal coordinates, in which the point p is the point 0. Let γµ(u) be the
coordinates of a general curve in normal coordinates. Note that γµ(u) is geodesic if and only
if γµ(u) = uvµ. Let us denote the tangent vector of the curve γµ(u) as vµ(u).

If γ is a null geodesic, then, gµν(0)γµ(u)γν(u) = 0 and γµ(u) = uvµ. But this means that
γ is contained into the light cone.

Conversely, if γ ⊂ ∂C+
p , then gµν(0)γµ(u)γν(u) = 0. Differentiating this relation with

respect to u, we find that gµν(0)vµ(u)γν(u) = 0. Then, using equation 1.11, it follows that

gµν(γ)γµ(u)γν(u) = 0, gµν(γ)vµ(u)γν(u) = 0.

Since vµ is tangent to γ, which is null by the first equality, and vµ and γµ are orthogonal by
the second, then it must be that vµ = f(u)γµ, hence vµ is null too. Therefore, γ is a null
geodesic.

21



Lemma 1.30. ([1] p. 726) The causal geodesics from p are maximal in Np.

Proof. Take q ∈ ∂C+
p ∪ C+

p . If q ∈ ∂C+
p , by Proposition 1.29, the only causal curve joining p

and q is the null geodesic and it is necessarily maximal.
If q ∈ C+

p , by Lemma 1.20, the congruence of timelike geodesics emanating from p is

orthogonal to the hypersurfaces τ =
√
−gµν(0)XµXν = constant (using normal coordinates).

We can define then a new coordinate system {yµ} = {τ, yi} with yi = Xi√
−gµν(0)XµXν

. By doing

this, the line element has transformed into

ds2 = −dτ 2 + gij(y
µ)dyidyj,

where gij is positive definite.
Consider any curve from p to q parametrized by τ = u, yi = γi(u). Then, its length 1.16 is

L(p, q; γ) =

∫ uq

0

√
1− gij(γ)

dγi

du

dγj

du
du.

Since gij is positive definite, gij(γ)dγ
i

du
dγj

du
≥ 0, so it is clear that the maximum length is attained

when γi are constant, which are the timelike geodesics form p.

Proposition 1.31. ([1] p. 729, [2] p. 115) Let γ be a causal curve from p to q. There is no
neighbourhood of γ containing a timelike curve from p to q ⇐⇒ γ is a null geodesic segment
from p to q with no conjugate point to p between p and q.

Proof. The inverse implication stands because since if γ is a null geodesic without conjugate
points, then it is defined by Lemma 1.30.

However, these sets are not as useful. In order to develop a causality theory, we will need to
generalize them. Namely, the light cones can not be defined outside Np, which is inconvenient,
since as long as just one of the geodesics can not be defined from some point on, Np ends and
this can easily happen when singularities are involved. Instead, the used sets are more general,
while keeping the same idea:

Definition 1.32. ([1] p. 730, [2] p. 182-184, [4] p. 191) The chronological future of p ∈ V4 is

I+(p) = {x ∈ V4| exists a future-directed timelike curve from p to x}.

The causal future of p is

J+(p) = {x ∈ V4| exists a future-directed causal curve from p to x}.

The future horismos of p is

E+(p) = J+(p) \ I+(p).

For a set ζ ⊆ V4, its chronological future is I+(ζ) = ∪
p∈ζ
I+(p). Analogously for J+(ζ), E+(ζ).

The definitions with past instead of future are completely analogous and are denoted by a −
instead of a +.
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The relation between these sets and the light cone is immediate. Choose a point p and
consider the spacetime (Np, g). Then, in this spactime, I+(p) = C+

p , E+(p) = ∂C+
p and

J+(p) = C+
p ∪ ∂C+

p . However, outside the maximal normal neighbourhood, where geodesics
do not behave as well as we wished, these equalities do not hold. This is the reason one uses
in general the sets I+(ζ), J+(ζ), E+(ζ) as this approach allows to treat the causality in a more
general way than the light cones.

Note that the trivial curve from p to p, which we can treat as a null curve since it has 0
length, is also in J+(p), so ζ ⊂ J+(ζ). It is obvious by Proposition 1.31 that if q ∈ E+(p),
then any causal curve connecting p and q must be a null geodesic segment, since no timelike
curve can reach q.

Proposition 1.33. ([1] p. 731, [2] p. 182) I+(ζ) is open and I+(ζ) = I+(ζ)

Proof. For the first part, let p ∈ ζ, q ∈ I+(p) and γ be a timelike curve joining p and
q. Consider Nq and its subset C−q , the past interior of the light cone, which is open by
construction and choose a point r ∈ C−q ∩ γ. Then, q ∈ C+

r and every point in C+
r can be

reached by p by taking γ from p to r and then a suitable curve in C+
r . Then, q ∈ C+

r ⊂ I+(p)
the interior of the light cone is an open neighbourhood of q. Hence, I+(p) is open. Since the
arbitrary union of open sets is open, it follows that I+(ζ) is open.

As for the second part, the inclusion I+(ζ) ⊆ I+(ζ) is obvious. For the converse, take a
point p ∈ I+(ζ). Then there is a point q ∈ ζ that fulfills q ∈ I−(p). Since I−(p) is open, there
is a neighbourhood of q totally contained in I−(p), but since q ∈ ζ, this neighbourhood must
also contain some point r ∈ ζ. Then, r ∈ I−(q) hence p ∈ I+(r) ⊆ I+(ζ).

However, J+(ζ) is not always closed, because of the possibility of missing points in the
manifold. Note that in the example taking as the spacetime (Np, g), J+(ζ) is closed because
of the simple properties of Np.

As it seems evident, the chronological and causal future give a lot of information about the
spacetime as well as about their base set. We provide now some further useful classification
of sets:

Definition 1.34. ([1] p. 731, [2] p. 186) An achronal set ζ ⊆ V4 is a set such that I+(ζ)∩ζ =
∅. An acausal set ζ ⊆ V4 is a set such that J+(ζ) ∩ ζ = ∅.

Note that if I−(ζ)∩ ζ = ∅, ζ is achronal as well. It is clear that in an achronal set, two of
its point can not be connected by any timelike curve, though they still could be joined by some
null curves, whereas in acausal sets, points can not be connected by causal curves. Hence,
achronal and acausal sets are in some way patches of the spacetime in a certain ‘instant of
time’.

Definition 1.35. ([1] p. 731, [2] p. 186) A future set ζ ⊆ V4 is a set such that I+(ζ) ⊆ ζ.

It follows from the definition that a future set has to be necessarily ‘big’ in order to contain
its chronological future. Note that for every ζ, I+(ζ) is a future set.

The boundary of I+(ζ), ∂I+(ζ) = ∂J+(ζ), of any set ζ is achronal, because if a point
p ∈ ∂I+(ζ) could be reached by a timelike curve from a point in ∂I+(ζ), then p ∈ I+(ζ) and
since I+(ζ) is open, p can not belong to it and its boundary simultaneously. This has a special
name:
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Definition 1.36. ([1] p. 732, [2] p. 187) A proper achronal boundary is the boundary of a
future set.

Proposition 1.37. ([1] p. 733, [2] p. 187) Any point in a proper achronal boundary is either
contained in an acausal set, contained in a null geodesic segment or it is a past or future
endpoint of the null geodesic segments.

In order to endow the spacetime with a sense of causality, this is, to respect the ‘flow of
time’, one must impose further conditions, because until now, nothing forbids a causal curve
to be in a closed loop or to influence its own past. Historically, the development of causality
conditions led to a cascade of more and more restrictive conditions, since none of the previous
solved the problem totally. Here we present some of the relevant causality conditions:

Definition 1.38. ([1] p. 734, [2] p. 189, 192, [4] p. 196) A spacetime (V4, g) satisfies

• the chronology condition at p ∈ V4 if p /∈ I+(p).

• the strong causality condition at p ∈ V4 if there are arbitrarily small neighbourhoods of
p, Up, such that for all future directed causal curves γ, γ ∩ Up is not a disconnected set.

The chronology condition simply forces that an event p can not influence itself in the
future. If this happened, past could be ‘changed’ since we could follow a trajectory and return
to the same point for a second time. However, it could happen that even not passing through
the same exact event p, a curve could influence a part of I+(p) by passing close to p. This is
forbidden by the strong causality condition, since it imposes that a curve can not come back
near to one of its points.

Still, both of the above conditions fail to avoid paradoxes, because they still allow for n
points affecting the future of each other simultaneously, which clearly is a causal violation.
Hence, it is needed another approach to avoid paradoxes. A way to ensure that, plainly
speaking, ‘future can not affect past’ is given by the following idea:

Definition 1.39. ([1] p. 734, [2] p. 198) A spacetime (V4, g) satisfies the stable causality con-
dition if there exists a function f such that df is timelike everywhere.

Assume the condition holds and that −df = −∂µfdxµ is future pointing. Let kµ be a
future-directed causal curve. Then, since both are future pointing, −kµ∂µf < 0. This means
that Df

dτ
> 0, so f increases along every future directed causal curve. Furthermore, then

the hypersurfaces {f = constant} are spacelike because −df is timelike. Hence, each causal
curve can only intersect each of these hypersurfaces once. For this reason, f is called a ‘time
function’, and it foliates the spacetime in ‘instants of time’, avoiding causality violations. Note
that if the stable causality condition holds, then the chronology condition holds ([1] p. 739,
[4] p. 199). However, not all problems are solved since this does not impose anything on the
topology of the spacetime and some strange events can still happen.

Finally, the most important causality condition is a generalization of the strong causality
condition:

Definition 1.40. ([1] p. 734, [2] p. 206) A spacetime (V4, g) is globally hyperbolic if it satisfies
the strong causality condition and J+(p) ∩ J−(q) is compact ∀p, q ∈ V4.
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Although this is a causality condition, its fulfilling implies many good properties of the
spacetime which are extremely useful. We will discuss this later.

Now that the causality conditions are well established, we can take into account that in
General Relativity information can not travel faster than light. We will see next that given a
region Σ satisfying certain conditions, there will be a certain region in which everything will
be entirely determined by Σ. This idea can be regarded as a kind of initial conditions from
which all the information in some region can be predicted given that we know the appropriate
initial information. To formalize this idea, we must introduce new sets:

Definition 1.41. ([1] p. 741, [2], p. 201, 202, [4] p. 200) The future Cauchy domain of de-
pendence of a set ζ is

D+(ζ) = {x ∈ V4 | ∀γ past directed endless causal curve from x, γ ∩ ζ 6= ∅}.

The future Cauchy horizon of a set ζ is

H+(ζ) = D+(ζ) \ I−
[
D+(ζ)

]
.

Analogously for past Cauchy domain and horizon. The full Cauchy domain of dependence is
D(ζ) = D(ζ)+ ∪D(ζ)−. The full Cauchy horizon is H(ζ) = H(ζ)+ ∪H(ζ)−.

Their physical intuition is quite clear. If matter and energy propagate causally, every
point in D+(ζ) is exclusively influenced by matter and energy in ζ. Also, information in every
point in D−(ζ) can be predicted by knowing the initial information on ζ. Finally, D(ζ) is the
set of events of which we can predict all the information by just its knowledge at ζ whereas
H(ζ) is the ‘limit’ of what can be predicted. It seems clear that these definitions are only
relevant for achronal sets, because for a set ζ with points that can be joined by timelike curves,
the non-achronal subsets of ζ, ζ̃, will have D+(ζ̃) = ζ̃, hence we can not predict any extra
information.

It is immediate that for ζ a closed achronal set, ζ ⊆ D+(ζ) ⊆ J+(ζ), ∂D+(ζ) = H+(ζ)∪ ζ
and H(ζ) = ∂D(ζ).

Proposition 1.42. ([1] p. 741) For ζ achronal, H+(ζ) is achronal.

Proof. From the fact that H+(ζ) ⊂ D+(ζ) it follows that:

I−[H+(ζ)] ⊂ I−[D+(ζ)] = I−[D+(ζ)] ⊂ V4 −H+(ζ),

where in the last step it has been used that ζ is achronal and that H+(ζ) ⊂ ∂D+(ζ). Thus,
I−[H+(ζ)] ∩H+(ζ) = ∅ and H+(ζ) is achronal.

Since we are most interested in achronal sets, it seems logical to want to find its ‘boundary’
in the sense that we would like to know where this set ends ‘spatially speaking’, since it is
already evident that this will be closely related to H+(ζ). To develop this formally, we need
to introduce that sense of ‘only spatial boundary’. We call to this concept edge:

Definition 1.43. ([1] p. 742, [2] p. 202, [4] p. 200) The edge of a closed, achornal set ζ is
edge(ζ) = {x ∈ ζ | ∀Ux neighbourhood of x, ∃ p ∈ C−x , q ∈ C+

x , γ future directed timelike
curve from p to q such that p, q ∈ Ux, γ ⊂ Ux and γ ∩ ζ = ∅}.
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Although the definition is quite technical, the basic idea is that of ‘only spatial boundary’.
A way to find easily the points that belong to the edge is by means of the formula edge(ζ) =(
ζ̄ \ ζ

)
∪ {points where ζ is not a continuous 3-manifold}, which can be proved. Intuitively,

one might imagine (as in Figure 1.4) that since the points in H+(ζ) are the limits of the
predictable events, the points in edge(ζ) might have a tight connection to this set. This is
true, and it is given by the following proposition:

Proposition 1.44. ([1] p. 742, [2] p. 203, [4] p. 203) Let ζ be a closed achronal set. Every
p ∈ H+(ζ) lies on a null geodesic contained entirely in H+(ζ) which either is past inextendible
or has a past endpoint on edge(ζ).

Proof. Available in the references.
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Figure 1.4: Relevant sets in causality in a general scenario. The points in edge(ζ) are in red.
Note that points in H+(ζ) are geodesics that start in edge(ζ) or have no past endpoint (since
the removed points do not belong to the spacetime).

In terms of spacelike sets containing enough information to predict events in other regions,
the most important are Cauchy hypersurfaces:

Definition 1.45. ([1] p. 742, [2] p. 205, [4] p. 201) A partial Cauchy hypersurface is an edge-
less closed acausal set. A global Cauchy hypersurface (or simply Cauchy hypersurface) is an
edgeless closed acausal set Σ such that D(Σ) = V4.

It is clear that a partial and global Cauchy hypersurface are actually hypersurfaces, since
they have no edge and hence they must be 3-dimensional manifolds. Provided the full Cauchy
domain of dependence of a Cauchy hypersurface is all the spacetime, the entire past and future
are determined by knowing all the information in it and moreover, since it is achronal, one
can think about it as a representation of an ‘instant of time’ of the universe. However, to
predict the future of the whole universe, one would have to know all the data of a spacelike
hypersurface, which is impossible to do.
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The difference between partial and global Cauchy hypersurfaces is subtle. Note that a
Cauchy hypersurface has H+(Σ) = ∅, while a partial Cauchy hypersurface has non-empty
Cauchy horizon. Furthermore, every causal curve intersects a Cauchy hypersurface exactly
once, while it intersects a partial Cauchy hypersurface at most once.

To illustrate the partial Cauchy hypersurfaces concept, consider the spacetime (R4, ηµν)
with the Minkowski metric and consider a two-sheeted hyperboloid t2 − x2 − y2 − z2 = 1
(depicted in Figure 1.5). This hypersurface has no edge, since it extends to infinity. The light
cones from the origin (t2 − x2 − y2 − z2 = 0) totally enclose the hyperboloid and the lower
part of the cone is the Cauchy horizon of the lower sheet of the hyperboloid, and analogously
with the upper parts. We clearly see that the null geodesics γ(τ) = (τ,±τ, 0, 0) do not cross
the hyperboloid so each sheet is only a partial Cauchy hypersurface.

 

Figure 1.5: Light cone at the origin (black) and a two-sheeted hyperboloid (orange). Each
sheet of the hyperboloid is a partial Cauchy hypersurface.

The hypersurfaces generated by the ‘time function’ in a stably causal spacetime are also
in general partial Cauchy hypersurfaces. The fact that every causal curve intersects only once
every Cauchy hypersurface is a very powerful indication that we could do a similar construction
in this case:

Corollary 1.46. ([1] p. 747) If V4 contains a Cauchy hypersurface Σ, then V4
f∼= R × Σ and

∀c ∈ R, f−1({c} × Σ) is a Cauchy hypersurface.

Proof. Choose a timelike congruence with tangent vector uµ and let Π : V4 → Σ be the map
that takes each point through the curve in the congruence passing through it until it reaches
Σ (which happens exactly once). Then the homeomorphism is given by f : V4 → R× Σ with
f(x) = (τ,Π(x)), where τ is the parameter in the curve from Π(x) corresponding to x, and
the inverse is f−1(τ, x) = y, where y is the point at parameter τ from the curve emanating
from Σ at x. This evidently is a bijection and both f and f−1 are continuous.

We have mentioned before that global hyperbolicity is not just a causality condition. This
is because of the following property:
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Proposition 1.47. ([1] p. 746, [4] p. 207) V4 is globally hyperbolic ⇐⇒ V4 contains a
Cauchy hypersurface.

Hence global hyperbolicity implies all the good properties above, namely, we can naturally
define a ‘time’, we could predict the whole future and past of the universe provided we know
the appropriate information. Moreover, by Corollary 1.46, the spacetime is foliated and we
have a time function, so the spacetime is also causally stable, and hence, the chronology
condition also holds (also, [1] p. 740, [4] p. 205).

1.6 Trapped sets

In highly curved spacetimes, and in particular near singularities, it is likely that it appears a
region so influenced by the curvature that even light can not escape from it. Mathematically,
the tool we use to study these situations are trapped sets. Historically, the first concept to be
developed were trapped surfaces, a very important particular case of trapped sets.

Let S be a spacelike surface so that we can choose two null normal fields to it, k±
µ
. The

traces of its null fundamental forms are K± = K±
A
A = γABK±AB. Let us introduce a new

parameter κ = K+K−. The surfaces can be classified as:

Definition 1.48. ([1] p. 775, 776) A spacelike surface S is:

• trapped if κ > 0 everywhere on S.

• marginally trapped if κ = 0 everywhere on S.

• absolutely non-trapped if κ < 0 everywhere on S.

• untrapped otherwise.

Moreover, S is future trapped if each of the K± < 0 and past trapped if K± > 0.

The interpretation of this definition is simple, one just has to realize that

K± = γABK±AB = Nµν∇νkµ = ϑ±,

are the expansions of the two null geodesic congruences tangent to k±. Hence, a surface will
be trapped if the two geodesic congruences orthogonal to it both converge or diverge.

However, a general surface will be just a ‘patch’, and if we consider an object and several
surfaces around it, the scalar κ could give different results for each of them. Moreover, it is
easy to build trapped surfaces in any spacetime, so to extract the useful information we use
instead closed trapped surfaces:

Definition 1.49. ([1] p. 778) A closed trapped surface is a compact without boundary trapped
surface.

A clear example of a closed trapped surface is a 2-sphere inside of a spherically symmetric
black hole. Let us develop this example. A 2-sphere is a spacelike 2-dimensional sphere. The
two families of null geodesics here are the outgoing, which travel outwards the sphere and
ingoing, which travel inwards (see Figure 1.6). In absence of any gravitational influence, the
outgoing congruence forms spheres when considering the surfaces at constant affine parameter
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that grow bigger as time passes, while the ingoing congruence forms smaller spheres. However,
when we consider the same 2-sphere inside a black hole (a strong gravitational field), then
both the outgoing and ingoing geodesics will form smaller spheres than the original one, since
the geodesics that went outwards originally now bend and are forced to go inwards as well.
Hence, every null geodesic starting at the surface will converge to the center and κ > 0. This
is an example of closed trapped surface.

 

‘Outgoing’ wavefront 

Ingoing wavefront 

𝑟 = 𝑅 
𝑟 = 𝑅 

𝑟 𝑟 

𝑡 𝑡 

𝑅 𝑅 

Outgoing wavefront 

Ingoing wavefront 

Ingoing wavefront 

‘Outgoing’ wavefront 

Figure 1.6: 2-spheres of areal radius r = R emitting light rays inside a black hole (right) and
outside (left). The signals emitted by each point in the 2-sphere (in red) on the left form two
wave fronts, one expanding and the other contracting, while the wave fronts created by the
signals emitted by 2-sphere on the right both contract. The 2-sphere on the right is a closed
trapped surface.

In general, closed trapped surfaces may have any shape, although they must be homeomor-
phic to a sphere. An easy way to determine whether a generic surface is trapped or not is as
described in [6]. Defining the mean curvature vector of a surface as Hµ = −K−k+µ−K+k−

µ
,

one can trivially rewrite κ = −1
2
HµH

µ. There exists a coordinate system {xµ} = {xa, xA}
where a, b = 0, 1 and A,B = 2, 3, in which a surface S can be parametrized as Φ(u2, u3) =
(X0, X1, u2, u3) locally. Then, the null normals are of the form k± = k±b dx

b. Assume the
metric is written as:

ds2 = gabdx
adxb + 2gaAdx

adxA + gABdx
AdxB.

The second fundamental form in these conditions simply becomes:

K±AB = δµAδ
ν
B∇µk

±
ν = δµAδ

ν
B

(
∂µk

±
ν − k±λ Γλµν

)
= −k±b ΓbAB.
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Then, by defining eU =
√

det gAB and ga = gaAdx
A, it is straightforward to compute:

Hµ = δaµ (∂aU − divga) ,

and hence from this one can easily compute κ using κ = −1
2
gabHaHb.

This provides a simple way to determine if a closed surface is trapped or not using the
metric and the mean curvature vector. In particular, in spherical symmetry with general
coordinates (x0, x1, θ, φ), the metric can be written as:

ds2 = gabdx
adxb +R2(xa)dΩ2.

The relevant quantities are U = ln(R2 sin θ) and ga = 0, so

Ha = 2
∂aR

R
.

Then, κ is easily calculated as:

κ = − 2

R2
gab ∂aR ∂bR.

From the example and the intuition, one can already see that closed trapped surfaces have
the property that the null geodesics starting at them will tend to get closer to each others.
If we want to generalize the idea to more general sets, we can follow this idea. Like this, we
define:

Definition 1.50. ([1] p. 780) A future trapped set is a non-empty achronal set ζ such that
E+(ζ) is compact.

Note that closed trapped surfaces are not necessarily trapped sets because they may not be
achronal. Moreover, as seen before, if the spacetime is not null geodesically complete, E+(S)
can be non-compact and hence S would not be a trapped set neither.
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Chapter 2

Singularities and singularity theorems

2.1 Singularities

In this section reference [2] (Section 8.1) and [4] (Section 9.1) are used. The concept of singu-
larity is well understood intuitively as a ‘region’ of the spacetime in which something is wrong
or missing. One can rapidly think that points where some component of the metric or some
curvature related quantity diverges are such ‘bad’ points. However, the complexity of some
manifolds allows for many other phenomena, so this is not enough to cover all possibilities.

Consider an incomplete causal geodesic, and consider an observer travelling through it.
Since the affine parameter is bounded by the incompleteness of the geodesic, the observer
travelling along it would simply disappear at finite time. This indicates that something is
missing in the spacetime.

If some physical quantity diverges at a point, we could be tempted to simply not consider
it. However, this does not solve the problem of incomplete geodesics approaching that point.
Furthermore, the divergence problem is also not solved because it becomes arbitrarily big
around the catastrophic point. Actually, that point does not even belong to the manifold.

The problem of singularities at this point is severe, because we have to study some regions
which ‘do not exist’ at all, since they are not places. Hence, we first have to find a way to
describe such entities. Historically, the process of reaching a suitable description of the singu-
larity theory was sheer trial and error, arising a new counterexample for each new proposal.
However, this seems to have reached to an end with the following approach.

Definition 2.1. ([1] p. 759) An envelopment of the spacetime (V4, g) is an embedding Φ :
V4 −→ V̂4, with V̂4 a connected manifold. The boundary of Φ(V4) is ∂̂V4 ⊂ V̂4. An extension
of (V4, g) is a spacetime (V̂4, ĝ) where ĝ = (Φ−1)

?
g. The extension is Ck regular if ĝ is Ck at

∂̂V4. Otherwise, the extension is singular.

In the definition of extension appears the pullback of g by Φ−1, which is calculated as:
ĝ(u, v) = (Φ−1)

?
(g) (u, v) = g(Φ−1(u),Φ−1(v)), with u, v ∈ Φ(V4).

With this formalism, we are able to treat those points that were not part of the spacetime
initially. Note that we can extend a spacetime in many ways, some of them may be singular,
some may be Ck and some even C∞. This is indeed a problem because usually the extension
must be fabricated taking into account some physical considerations, and this is not always
straightforward. As for curves, note that now for some extensions, incomplete geodesics can
become now complete. However, this may not happen for every extension. Hence, it would
be excellent to be able to know in which cases any curve can be completed.
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It seems clear that geodesic incompleteness indicates singularities, because this means
that a free falling particle can simply disappear (or appear) from the spacetime. But not only
geodesics may have this problem. Curves in general may also be ‘incomplete’ and this is again
‘wrong’ because observers can travel through them as well. In fact, even if the geodesics are
complete, this still does not mean that all curves are complete in a spacetime.

We have already studied geodesics and seen that they can be parametrized by an affine
parameter. However, general curves do not have any affine parameter associated. To define
the sense of completeness of a general curve, we must introduce a new type of parameter:

Definition 2.2. ([1] p. 763, [2] p. 259) Let γ(u) be a C1 curve parametrized by u pass-
ing through γ(up) = p, with tangent vector v. The generalized affine parameter is τ =∫ u
up

√
δµνvµvν du.

Definition 2.3. ([1] p. 763, [2] p. 259) A C1 endless curve from p ∈ V4 is complete if the
generalized affine parameter is defined τ ∈ [0,∞). A spacetime is b-complete (bundle complete)
at p if all C1 curves emanating form p are complete. A spacetime is b-complete if it is so ∀p ∈ V4.

The generalized affine parameter depends on the initial point p and the basis we choose,
so one could ask if b-completeness is well defined. However, this is not a problem because
even if the value is different, if one generalized affine parameter only reaches finite values, all
of them do, and this is the only thing we want to know regarding completeness.

Hence it seems that b-completeness is what we need to get rid of singularities, because:

Proposition 2.4. ([1] p. 763, [2] p. 260) A b-complete spacetime has no regular exetnsion.

Proof. Suppose V4 has a C1 regular extension given by the envelopment Φ. Then, there would
exist a non-empty ∂̂V4 where the extended metric is C1. Since Φ is an isometry between V4 and
Φ(V4), it leaves the generalized affinely parametrized curves from V4 invariant in Φ(V4). But the
curves in Φ(V4) approaching ∂̂V4 would have bounded generalized affine parameters, whereas
the curves in V4 are complete and thus their generalized affine parameter is unbounded, hence
Φ can not exist and there is no regular extension.

Since a b-complete spacetime has no regular extension, the only possible extensions are
singular, and since it is b-complete, those extensions would only add points at infinity, which
are unreachable and hence are not be considered singularities. Instead, we want singularities
to be points where there is a curve that ends in an irregular way. Finally, we can define a
singularity:

Definition 2.5. ([1] p. 763) A singularity of (V4, g) relative to a singular extension (V̂4, ĝ) is
the endpoint in V̂4 of a curve incomplete within (V4, g).

This definition depends on the extension we choose, as expected because singularities do not
belong to the spacetime, but to the extended one. This means that a ‘point’ may be singular
or regular depending on the extension. If this happens, we call this singularity removable,
because we can choose the regular extension and the problem disappears, although this may
not always be desirable for physical reasons. If a singularity can not be removed with any
extension, then it is called essential.

The different types of essential singularities are classified according to how ‘bad’ the cur-
vature of the spacetime behaves when approaching the singular point [7]. This is measured
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using the Riemann curvature tensor, Rµνσρ, which fully determines the curvature and has 20
linearly independent components in 4 dimensions. However, its components are not tensors
themselves and depend on the particular reference system chosen. The proper way to in-
variantly fully describe curvature is to construct scalars (hence, invariants) from Rµνσρ and
gµν by contractions, called scalar curvature invariants. In 4 dimensions, there are up to 14
algebraically independent curvature invariants.

Definition 2.6. ([1] p. 765, [2] p. 260) Essential singularities can be classified as:

• Ck quasi-regular singularities if all the components of the k-th covariant derivative of
the Riemman tensor are locally bounded when approaching the singularity along any
incomplete curve using a parallelly propagated orthonormal basis.

• Ck non-scalar curvature singularities if they are not Ck quasi-regular but all the scalar
curvature invariants remain well-behaved when approaching the singularity.

• Ck scalar curvature singularities if they are not Ck quasi-regular and at least a scalar
curvature invariant diverges when approaching the singularity.

Non-quasi regular singularities are called matter singularities if the problem arises with some
component of the Ricci tensor.

It is clear that scalar curvature singularities are the most ‘severe’, since a curvature in-
variant, which is a intrinsic property of the spacetime, diverges. In general, the problem of
proving the existence of a singularity is simple, given that we have several methods to do so.
Namely, we have the singularity theorems.

2.2 Singularity theorems

In the first steps of General Relativity, the fact that many of the spacetimes considered by
physicists had some singularity did not concern them in excess. However, later on it was
realized that singularities were a big issue and the fact that they appeared so often was not
satisfactory. This was one of the motivations for the development of the singularity theorems,
to check that singularities were not mathematical artifacts arising from symmetries in the
already known solutions. Besides, singularity theorems now serve to detect under which
conditions we must expect a singularity, which is also useful when constructing spacetimes
with no singularities at all.

We will present here three of the most important singularity theorems. Nevertheless, before
that we will need to develop further some concepts introduced in the previous chapter.

The first singularity theorem to be proved was based on Raychaudhuri’s equation. This
theorem does not actually need most of the concepts discussed before because it was published
prior to their creation, and certainly is different in many aspects to the ‘modern’ theorems
which use the new Penrose’s ideas. Still, besides its historical importance, this theorem is
strong because of the strength of its result.

Theorem 2.7. (Raychaudhuri-Komar): ([1] p. 787) Let the spacetime be filled with a
perfect fluid with velocity vector uµ such that the congruence it generates is geodesic and
irrotational. If the strong energy condition SEC holds, and the expansion of the congruence
θ0 > 0 is positive at some instant, then, there is a matter singularity in the finite past along
every integral curve of uµ.
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Proof. We are assuming ωµν = 0, aµ = 0 and Rµνu
µuν ≥ 0. The Raychaudhuri equation 1.13

in these conditions reads:

uµ∂µθ +
θ2

3
= −σµνσµν −Rµνu

µuν ≤ 0,

since the SEC holds and the other term is a square. Since the congruence is irrotational and
has no acceleration, by Frobenius Theorem 1.19, u = −dτ for some function τ . This means
that the hypersurfaces τ = C are orthogonal to the congruence. Let us denote by Σ0 the
hypersurface corresponding with τ = τ0. We can build a coordinate system by taking a point
p ∈ Σ0 and choosing coordinates {xi} on it. Then, {τ, xi} is a coordinate system that foliates
the spacetime. In this coordinates, the covariant derivative along u, becomes uµ∇µf = df

dτ
.

Thus, in this system we can write, using the relation 1.10:

dθ

dτ
+
θ2

3
=

3

V
1
3

d2V
1
3

dτ 2
≤ 0.

Integrating the differential equation, we obtain:

V
1
3 ≤ V

1
3
0

[
1 +

θ0
3

(τ − τ0)
]
,

where V0, θ0 are these quantities at τ0. Hence we see that when we approach τ → τ0− 3
θ0
< τ0

from the future, V
1
3 → 0. This already indicates that something will be wrong at this point.

To check whether it is a matter singularity, let us do the explicit calculations. The energy-
momentum tensor for a perfect fluid is T µν = (ρ + p)uµuν + pgµν = ρuµuν + phµν . Imposing
the conservation equation, ∇µT

µν = 0, we get:

uµuν∇µρ+ ρuµ∇µu
ν + ρuν∇µu

ν + ρuν∇µu
µ + hµν∇µp+ p∇µh

µν = 0.

Using the definition of the expansion θ = ∇µu
µ, and separating the terms in parallel and

orthogonal to uµ, which must be linearly independent, we obtain that:

uµ∇µρ+ (ρ+ p)θ = 0, (ρ+ p) aµ + hµν∇µp = 0. (2.1)

In particular, denoting a = V
1
3 , we can rewrite θ = 1

a
da
dτ

and using the chain rule on dρ
dτ

, the
first equation in our coordinate system takes the form:

dρ

da
+ 3(ρ+ p)

1

a
= 0 =⇒ a2

dρ

da
+ 3(ρ+ p)a = 0 =⇒ d(ρa2)

da
+ a(ρ+ 3p) = 0,

which leads to:

ρ =
1

a2

(
ρ0a

2
0 −

∫ a

a0

a(ρ+ 3p)da

)
=

1

a2

(
ρ0a

2
0 +

∫ a0

a

a(ρ+ 3p)da

)
≥ ρ0a

2
0

a2
,

if a < a0, where we have used that a is always a positive quantity, and that the SEC implies
ρ+3p ≥ 0, hence the integral is positive. Thus, as a→ 0, ρ→∞. Since the momentum-energy
tensor diverges, by Einstein’s equations, the Ricci tensor diverges too. Thus, the singularity
is a matter singularity.
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Although its conclusion is very strong, the theorem asks for the spacetime to be filled with
a geodesic, irrotational perfect fluid. In particular, look at the second equation in 2.1. By
imposing a geodesic congruence, aµ = 0, the pressure gradient is forced to vanish. All in all,
these restrictions are very particular and of low applicability. Thus, we would like to have with
less restrictive hypothesis, which can apply to most of the spacetimes. This is why physicists
continued working on the topic.

Before stating the other theorems, it is time to prove some results that will be fundamental
for the proofs. Let us start proving some properties about focusing of curves and its relation
to curve incompleteness. This will be very important in the theorem’s proofs because they
are based on ensuring that at least a geodesic is incomplete. To that end, we are interested in
conjugate and focal points, the points where curves reconverge and meet again. The important
results about the appearance of conjugate and focal points are the ones that follow.

Proposition 2.8. ([1] p. 720, [2] p. 97, [4] p. 226) Let p ∈ V4 be a point (resp. Σ be a hyper-
surface) and consider the timelike geodesic congruence emanating from it (resp. orthogonally
to Σ). If θr < 0 at some point r and Rαβv

αvβ ≥ 0 SEC holds along the timelike geodesic γ
through r, then ∃q ∈ γ conjugate point to p (resp. focal to Σ) at a finite proper time τ < 3

|θr|
after r if γ can be extended so far.

Proof. The considered congruence uµ is irrotational in both cases: where it emanates from p
and orthogonally from Σ. In the former, by Lemma 1.20, the congruence is orthogonal to an
hypersurface of the form {τ = τ0}, where τ is the affine parameter of uµ. Hence, by Theorem
1.19 the congruence is irrotational. In the latter case, we just directly apply Theorem 1.19
and obtain that in both cases, the congruence is irrotational.

Hence, ωµν = 0 and aµ = 0 since uµ is geodesic, so the Raychaudhuri equation 1.13 simply
reads:

uµ∂µθ +
θ2

3
+ σµνσ

µν +Rµνu
µuν = 0.

Using the fact that σµνσ
µν is always positive and that the SEC holds we can write it as:

dθ

dτ
+
θ2

3
= −σµνσµν −Rµνu

µuν ≤ 0.

We can integrate this differential inequality, starting from the point r with value τr of the
affine parameter of its geodesic where the expansion θr < 0 is negative:∫ θ

θr

dθ

θ2
≤ −

∫ τ

τr

dτ

3
.

From this we obtain that:
1

θ
≥ 1

θr
+
τ − τr

3
.

Since the right hand side is negative in the region τ − τr ≤ 3
−θr where we are working, and

the left hand side is negative because θ was at τ = τr and its derivative is negative, the same
expression can be written as:

1
1
θr

+ τ−τr
3

≥ θ.

Hence, θ → −∞ at some value τ ≤ τr + 3
|θr| (because of the inequality), if the geodesic can be

extended up to that affine parameter value.
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Proposition 2.9. ([1] p. 721, [2] p. 98, [4] p. 227) Assume the SEC holds along a future-
directed timelike geodesic γ and that the timelike generic condition holds at p = γ(τp). Then
γ has a pair of conjugate point if it can be extended so far.

Proof. Consider the future-directed timelike geodesic congruences emanating from each point
q = γ(τq) with τq < τp. By Lemma 1.20 and Theorem 1.19, these congruences are irrotational.
Let us analyze the quantity θq(τp) for each of the congruences. If θq(τp) ≤ 0, then, since the
SEC holds, the congruences are geodesic and irrotational, from Raychauduri’s equation 1.13
it follows that:

dθ

dτ
= −θ

2

3
− σµνσµν −Rµνu

µuν ≤ 0, (2.2)

so that θq(τ) ≤ 0 for τ > τp. Now, if θq(τ) < 0 at some point τ > τp, by Proposition 2.8, there
exists a conjugate point r to q with τr > τp and the statement holds. It remains to study the
case where θ vanishes everywhere after τp. However, this is impossible because if it happened,
then θ = dθ

dτ
= 0, and Raychaudhuri’s equation would become:

0 = σµνσ
µν +Rµνu

µuν , (2.3)

and since both terms are non-negative, the only possibility left is σµν = Rµνu
µuν = 0. Then,

by equation 1.8 it follows that ∇νuµ = 0. Following the same steps than in Section 1.3, from
equation 1.12, it is easy to see that this implies Rρµσνu

µuν = 0. But by assumption, this can
not happen at p.

If θq(τp) > 0, the same construction does not work. Instead, consider a point r = γ(τr),
with τr bigger than the value of the affine parameter of all the conjugate points considered in
the previous case. Take the past directed timelike congruence emanating from r. If it has a
conjugate point between r and p, then the result holds. Otherwise, if the past directed expan-
sion of the congruence at p is positive, θ̃q(τp) > 0 (and hence, the future-directed expansion is
negative), then again by Proposition 2.8, the congruence would have to have a conjugate point
before τr by construction, but this can not be since it reaches τr. Thus, θ̃q(τp) < 0, and using
Proposition 2.8 with the past-directed congruence form r, then there is a conjugate point to
r at a finite proper time from p.

Proposition 2.10. ([1] p. 725, [2] p. 101, [4] p. 231) Let p ∈ V4 be a point (resp. S be a
spacelike surface) and consider the null geodesic congruence emanating from it (resp. orthog-
onally from S). If ϑr < 0 at some point r and the NCC, Rαβk

αkβ ≥ 0 holds along the null
geodesic γ through r, then ∃q ∈ γ conjugate point to p (resp. focal to S) at a finite proper
time τ < 2

|ϑr| after r if γ can be extended so far.

Proof. Totally analogous to the proof of Proposition 2.8 using Raychaudhuri’s equation 1.15
for null congruences and using the suitable reference system for null congruences.

Proposition 2.11. ([1] p. 725, [2] p. 101, [4] p. 232) Assume the NCC and the null generic
condition hold along a future-directed null geodesic γ. Then there exist q, r ∈ γ conjugate
points if γ can be extended so far.

Proof. Totally analogous to the proof of Proposition 2.9, using Raychaudhuri’s equation 1.15.
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It seems that the theory tends to make curves get closer with ease, namely, if SEC (or
NCC) is fulfilled, the only thing that it takes for a geodesic to have a pair of conjugate points
is to satisfy the (timelike or null) generic condition at one point (Propositions 2.9 and 2.11).
Similarly with Propositions 2.8 and 2.10, which also ask for SEC (or NCC) and some extra
condition. This, up to certain degree, explains why singularities are so abundant, although
the focusing of curves alone does not imply the existence of a singularity. The only problem
is that the SEC and NCC, as explained before, do not respond to any physical motivation,
instead they are the conditions needed precisely for the convergences of congruences through
Raychaudhuri’s equation. In this sense, it is worth to discuss whether these conditions make
enough sense for these propositions (and by extension, the theorems) be useful. We will do
this later.

Furthermore, it is important to note that these propositions grant the existence of conjugate
or focal points provided that the geodesics can be extended until them. This means that if
the geodesics are incomplete before them for some reason, then the conjugate points will not
exist. This will be key to the singularity theorems.

The next topic needing more coverage is that of trapped sets, since they are also an essential
part of the singularity theorems.

Proposition 2.12. ([1] p. 780) Let S be a closed future trapped surface and assume the NCC
holds. Then, either E+(S) is compact or the spacetime is null geodesically incomplete to the
future, or both.

Proof. If the spacetime is null geodesically incomplete to the future, then the result holds.
Assume the spacetime is future null geodesically complete. Since S is a future trapped surface,
the expansions ϑ± of both null geodesic congruences emanating orthogonally to S are negative
on S. Since S is compact for it is a closed trapped surface, the maximum and the minimum
of ϑ± is attained on S. Let ϑM be the maximum value of both ϑ± on S.

Since the NCC holds, by Proposition 2.10, since the spacetime is null geodesicall complete,
there is a focal point to S at a finite affine parameter τM ≤ − 2

ϑM
. LetK be the set containing all

the null geodesics in both orthogonal congruences from S up to τM included. By construction,
it is clear that K is compact and E+(S) ⊆ K, so to see that E+(S) is compact we only need
to see that E+(S) is closed.

Let {pn} ⊂ E+(S) be a sequence of points and p its limit. To prove that it is closed
we must see that p ∈ E+(S). By construction, E+(S) ⊆ K ⊂ J+(S). K is closed, hence,
p ∈ K ⊂ J+(S). Since J+(S) = E+(S) ∪ I+(S), it is enough to see that p /∈ I+(S). If
p ∈ I+(S), since it is open, there would exist a neighbourhood p ∈ Up ⊂ I+(S) such that some
pn ∈ I+(S), but this is impossible since pn ∈ E+(S). Therefore p ∈ E+(S), hence it is closed,
and thus compact.

Proposition 2.13. ([1] p. 781) Let p ∈ V4 and assume the NCC holds. If the expansion of
the future directed null geodesic congruence emanating from p becomes negative along every
curve of the congruence, then, either E+(p) is compact or the spacetime is null geodesically
incomplete, or both.

Proof. If the spacetime is null geodesically incomplete, then the result holds. Assume the
spacetime is null geodesically complete. Since ϑ < 0 at some point in each null geodesic from
p and the NCC holds, by geodesic completeness, using Proposition 2.10 we know there will
be a conjugate point to p along each geodesic before a finite value of the affine parameter.
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Then, we can define the compact set K in the same way as in Proposition 2.12 and the rest
is analogous to its proof.

Proposition 2.14. ([1] p. 785) Let S be a closed future trapped surface and assume the
NCC and the strong causality condition hold. Then, either E+(S)∩ S is a trapped set or the
spacetime is null geodesically incomplete, or both.

Proof. If the spacetime is null geodesically incomplete, then the result holds. Assume the
spacetime is null geodesically complete. Since the NCC holds and the spacetime is null
geodesically complete, by Proposition 2.12, E+(S) is compact. S is compact by definition,
hence E+(S) ∩ S is also compact and non-empty. We want to prove that E+[E+(S) ∩ S] is
compact. To do so, we will compute the set directly. Let us first find I+[E+(S) ∩ S] and
J+[E+(S) ∩ S].

We want to find I+[E+(S) ∩ S]. Cover S with convex normal neighbourhoods. Since the
strong causality conditions holds, we can choose the neighbourhoods such that their intersec-
tion with every causal curve is a connected set, and since S is spacelike, the intersection of S
with the neighbourhoods can be made to be achronal. Since S is compact, we can extract a
finite subcover {Ui}i=1...n. Let q ∈ I+(S). Let p1 ∈ U1 such that q ∈ I+(p1). Since S ⊂ J+(S),
S ∩ J+(S) = S. In the case that p1 ∈ S ∩ E+(S), it follows that q ∈ I+[S ∩ E+(S)]. Other-
wise, since p1 ∈ S but p1 /∈ E+(S), then p1 /∈ I+(S) and there must exist p2 ∈ U2 such that
p1 ∈ I+(p2). Since we have taken S ∩ U1 achronal, p2 /∈ U1, hence p2 ∈ U2 \ U1. In the case
that p2 ∈ S ∩ E+(S), it follows from p1 ∈ I+(p2) and q ∈ I+(p1) that q ∈ I+[S ∩ E+(S)].

Otherwise, we can repeat the process and find further points pk ∈ Uk \
(⋃k

i=1 Ui
)

until one of

them satisfies pk ∈ S ∩ E+(S). Since the subcover is finite, and S ∩ E+(S) is not empty, this
must finish so there must be some pj ∈ S ∩ E+(S). Hence, q ∈ I+[S ∩ E+(S)] which implies
I+(S) ⊂ I+[S ∩ E+(S)]. Since S ∩ E+(S) ⊂ S, then I+[S ∩ E+(S)] ⊂ I+(S). Therefore,
I+[E+(S) ∩ S] = I+(S).

We now want to find J+[E+(S) ∩ S]. Let r ∈ J+(S) = I+(S) ∪ E+(S). Let us examine
both cases. If r ∈ I+(S), then

r ∈ I+(S) = I+[E+(S) ∩ S] ⊂ J+[E+(S) ∩ S].

If r ∈ E+(S), then there is a point p ∈ S such that r ∈ E+(p), but p /∈ I+(S) because
otherwise r ∈ I+(S). Thus, p ∈ S \ I+(S) so p ∈ E+(S) ∩ S and

r ∈ E+[E+(S) ∩ S] ⊂ J+[E+(S) ∩ S].

In both cases we obtained the same result, hence, if r ∈ J+(S), then r ∈ J+[E+(S) ∩ S] and
J+(S) ⊂ J+[E+(S) ∩ S]. Since E+(S) ∩ S ⊂ S, trivially J+[E+(S) ∩ S] ⊂ J+(S). Therefore,
J+[E+(S) ∩ S] = J+(S).

Therefore,

E+[E+(S) ∩ S] = J+[E+(S) ∩ S] \ I+[E+(S) ∩ S] = J+(S) \ I+(S) = E+(S),

which is compact by Proposition 2.12 and null geodesic completeness, so E+(S)∩S is a trapped
set.

Note that by Proposition 2.12 if NCC holds and the spacetime is null geodesically com-
plete, then a closed trapped surface is a trapped set if it is achronal. But even if it is not, by
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Proposition 2.14, there is always a subset of it that is a trapped set (provided the spacetime
is null geodesically complete). Points are also trapped sets if the NCC holds and the null
geodesic congruence emanating from them reconverge if, again, the spacetime is null geodesi-
cally complete. Note that if the spacetime is null geodesically incomplete, the main results in
the propositions may still hold, because for that we only need that the null geodesics emanat-
ing from the surface or the point are complete, whereas the spacetime is incomplete as long
as any geodesic is incomplete. This is why the statements include the option of the spacetime
being null geodesically incomplete and the main result to hold.

So it seems that if the spacetime is null geodesically complete, the existence of trapped
sets is guaranteed as long as few restrictive conditions are satisfied. On the other hand, if
the spacetime is null geodesically incomplete, then it is likely to have a singularity. Since
trapped sets have somehow a ‘compact future’, this also seems to indicate that something is
wrong and possibly, a singularity. So again, it seems that the theory favours the appearance
of singularities. As we will see next, trapped sets have a main role in the singularity theorems.

We also need some extra results about causality conditions. Note that all of them are
related and are not independent. Here we state some properties:

Proposition 2.15. ([1] p. 780) Assume the chronology condition holds. If every null endless
geodesic has a pair of conjugate points, then strong causality condition holds.

Proof. Suppose the strong causality condition does not hold at p. Take the maximal normal
neighbourhood Np and choose a sequence of nested neighbourhoods of p, {Un} converging to
p. Then, for each Un there exists a causal curve γn starting in it, leaving and then returning
to it. It can be seen that the limit curve γ of γn is a causal curve which starts are p and
passes through p again. If γ was timelike, this would violate the chronology condition because
p ∈ I+(p), hence it is impossible. Then γ must be a null geodesic. But by assumption, it has
a pair of conjugate points and by Proposition 1.31, there exist two points of γ which can be
joined through a timelike curve λ. But then, with pieces of the appropriate λ and γn, we can
build a closed timelike curve, which again violates the chronology condition. Hence, this is
not possible and the strong causality condition must hold.

Corollary 2.16. ([1] p. 737) Assume the NCC, the chronology and the generic condition hold.
Then, the spacetime either satisfies the strong causality condition or it is null geodesically
incomplete.

Proof. Since the NCC and the null generic condition hold, by Proposition 2.11, either every
null geodesic has a pair of conjugate points or the spacetime is null geodesically incomplete.
But in the former, we can use Proposition 2.15 since all its assumptions are fulfilled, and then,
the strong causality condition holds. Therefore, either the strong causality condition holds or
the spacetime is null geodesically incomplete.

Proposition 2.17. ([1], [2]) Let ζ be a closed achronal set. Every p ∈ E+(ζ) either lies on a
null geodesic with a past endpoint on edge(ζ) or p ∈ ζ.

Proof. Let p ∈ E+(ζ) = J+(ζ) \ I+(ζ) ⊇ ζ. If p ∈ ζ, the result holds. Otherwise, as there
exists a causal, but non-timelike curve γ starting at some q ∈ ζ to p, by Proposition 1.31,
then γ is a null geodesic segment without conjugate points between q and p. It is only left to
see that q ∈ edge(ζ). Suppose q /∈ edge(ζ). Then, by definition of edge, there exist r ∈ C+

q ,
s ∈ C−q such that there is not any timelike curve λ joining s and r such that λ ∩ ζ = ∅.

39



Take a timelike curve γ̃ from s to r passing through q. Then, q ∈ I+(s) and since p ∈ E+(q),
then p ∈ J+(s). But by Proposition 1.29, p /∈ E+(s). Hence, p ∈ I+(s). However, since
q /∈ edge(ζ), we can find a timelike curve from s to p such that it intersects ζ. But this means
that p ∈ I+(ζ), which is impossible by assumption. Hence, q ∈ edge(ζ).

Now we are in a condition to prove the modern and most important singularity theorems.
After all the previous work, their proofs will be relatively simple. Their importance is due to
their generality, since as we will see now, their hypothesis just ask for a few objects to exist
or conditions to hold.

Theorem 2.18. (Penrose): ([1] p. 789, [2] p. 263, [4] p. 239) Assume the null convergence
condition holds. If there exists a non-compact Cauchy hypersurface Σ and a closed trapped
surface S, then the spacetime is null geodesically incomplete.

Proof. Suppose the spacetime is null geodesically complete. Since S is a closed trapped surface
(assume it is future trapped, past trapped case leads to an analogous result), the NCC holds
and the spacetime is null geodesically complete, by Proposition 2.12, E+(S) is compact. Note
also that E+(S) = ∂J+(S) is achronal because J+(S) is a future set

Let uµ be the tangent vector to a timelike congruence and let Σ be a non-compact Cauchy
hypersurface. Every curve of the congruence will intersect Σ exactly once, and due to the
achronality of E+(S), every curve of the congruence will intersect it at most once. In these
conditions, we can define the map f : E+(S)→ Σ which transports the points in E+(S) to Σ
through the corresponding curves of the congruence.

Denoting T = f (E+(S)) the image of E+(S) by this map, fH : E+(S)→ T is a homeomor-
phism, since it is clearly a bijection and it continuous with continuous inverse by continuity of
the congruence uµ [4]. As E+(S) is compact, so is T by the homeomorphism and hence, T is
closed as a subset of Σ. E+(S) is a 3-dimensional submanifold of V4 because it is an achronal
proper boundary, so each point p ∈ E+(S) has a 3-dimensional neighbourhood homeomor-
phic to an open ball in R3 totally contained in E+(S), and since fH is an homeomorphism,
this also happens in T , which means T is an open subset of Σ. But as Σ is connected and
T = f (E+(S)) is non-empty because the spacetime is null geodesically complete, and T is
open and closed, then it must happen that T = Σ. However, T is compact while Σ is non-
compact by assumption, so this is not possible by the homeomorphism and E+(S) can not be
compact. Hence, the assumption we made at the beginning is false hence the spacetime must
be null geodesically incomplete.

After this theorem was published, a lot of research on the topic was performed. The
culmination of all the subsequent works was the following theorem, which collects most of the
results obtained until then:

Theorem 2.19. (Hawking-Penrose): ([1] p. 792, [2] p. 266, [4] p. 240) Assume the chronol-
ogy, the generic and the strong energy conditions hold. If there exists at least one of the
following:

(i) a compact achronal set Σ without edge,

(ii) a closed trapped surface S,

(iii) a point p such that the null geodesic families emanating from p reconverge,
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then, the spacetime is causal geodesically incomplete.

Proof. To prove the theorem, we need to use a lemma:

Lemma 2.20. (Hawking-Penrose): ([1] p. 791, [2] p. 267) The three following coditions
can not hold simultaneously in a spacetime:

1. every endless causal geodesic has a pair of conjugate points,

2. the chronology condition is satisfied,

3. there is a trapped set.

Proof. The proof of this lemma is very technical and rather lengthy so we will not reproduce
it here, but it can be found in the references.

Now let us prove the theorem. Suppose the spacetime is causal geodesically complete.
Since the SEC (and by continuity also NCC) and the generic condition hold and we have
supposed causal geodesic completeness, by Propositions 2.9 and 2.11 every causal geodesic
has a pair of conjugate points. Also, by assumption, the chronology condition holds. Then,
by Lemma 2.20, there can not be a trapped set in the spacetime.

For (i), we will prove that any compact achronal set Σ without edge is a trapped set.
Indeed, since Σ has no edge, by Proposition 2.17 there are no possible points of E±(Σ) other
than those in Σ itself so we simply have E+(Σ) = E−(Σ) = Σ, which is compact by assumption,
and hence Σ is a trapped set.

For (ii), since we are assuming that the spacetime is null geodesically complete, the NCC
the chronology and the generic condition hold, by Corollary 2.16 the strong causality condition
holds. Hence we can use Proposition 2.14 and we conclude that either E+(S)∩S is a trapped
set because the spacetime is null geodesically complete.

For (iii), we have to note that if the null congruences emanating from p reconverge, then
ϑ < 0 at some point in every curve, so by Proposition 2.13, and since the spacetime is null
geodesically complete, E+(p) is compact and hence p is a trapped set.

If any of the three conditions is satisfied, then there exists a trapped set. But we have
already seen that by Lemma 2.20, such set can not exist. Hence, the assumption we made is
wrong and the spacetime is causal geodesically incomplete.

The power of the theorems is so that after they were proved, physicists asked themselves
whether reasonable astrophysical and cosmological models with no singularities did actually
exist. Although they do, it is hard to build them by avoiding some of the hypothesis in the
theorems. The next chapter is dedicated to the study of the assumptions of the theorems
along with their conclusions, so we will discuss this in it.
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Chapter 3

Assumptions and consequences of the
singularity theorems

In this chapter, Chapter 6 of [1] is used. In the previous section, the most relevant singularity
theorems have been shown. However, there are many other singularity theorems, each one
with its own particularity, although all of them share the same structure: if certain type of
conditions (that depend on each theorem, of course) are satisfied, then the spacetime is causal
geodesically incomplete. One can collect this fact in the following outline:

Singularity theorems pattern. If the spacetime satisfies:

(i) an energy condition,

(ii) a causality condition, and

(iii) a boundary or initial condition

then it contains at least an incomplete causal geodesic.

It seems clear that, in order to make any sense, the conditions required by the theorems
should be feasible and plausible. This is because the theorems were initially devised to explain
the abundance of singularities in the solutions of Einstein’s equations that were interesting in
some way. In order to have stronger and more accurate theorems, we would like to have the
most general possible conditions.

On the other hand, from the point of view of building regular spacetimes, if the hypothesis
of the theorems are too general, it will be hard to find regular spacetimes with the desirable
properties. In this sense, we would want the hypothesis to be weak to easily find suitable
cosmological and astrophysical models.

All in all, the theorems are relatively strong, and at first it was not evident that regular
cosmological models beyond the FLRW family or regular astrophysical models such as black
holes could exist. Now we have some examples of them, built by avoiding the conditions in
the singularity theorems.

Let us analyze each of the types of hypothesis in the theorems separately.
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Energy and generic conditions

The motivation to include the energy and generic conditions is to focus the congruences of
curves. Although generic conditions do not appear in the pattern above, they favour the
existence of conjugate and focal points, which are the important element for the theorems.

As it is obvious from Raychaudhuri’s equations 1.13 and 1.15, if the SEC and the NCC
are fulfilled, respectively, the convergence of timelike and null curves is easier because they
contribute to the negativity of dθ

dτ
and dϑ

dτ
, respectively. However, note that the rotation tensor

and the acceleration terms can still act in the opposite direction. So, even if the energy
conditions are satisfied, this alone does not imply the focusing of congruences.

The standard ways to ascertain focusing of curves are Propositions 2.8, 2.9, 2.10 and 2.11.
These propositions rely on Raychaudhuri’s equation under the appropriate situations, and
Propositions 2.9 and 2.11 also use the timelike and null generic condition to reinforce the
focusing effect.

Generic conditions are present in the hypothesis to exclude some type of spacetimes with
special symmetries from the proofs of the theorems. As it is evident from the example in
Section 4.1.1, generic conditions are indispensable for the theorems. The only problem is that
in those few spacetimes excluded by the generic conditions, we can not apply the singularity
theorems. One could try to develop simpler singularity theorems without generic conditions
for the special cases not covered by the general ones. Unfortunately, simpler versions will not
work, as proved by the many counter examples available.

With regard to the energy conditions demanded by the theorems listed in this work, The-
orem 2.7 asks the SEC, Theorem 2.18 asks NCC and Theorem 2.19 ask the SEC and the
generic condition. Nevertheless, there exist more refined versions which only require averaged
conditions [8], [9], hence even if in some point the conditions does not hold, the theorem may
still work if the spacetime is adequate.

However, the main problem with the required energy conditions in the theorems is their
physical motivation. Indeed, both SEC and NCC do not have a clear physical interpretation,
as they were only inspired by the term Rµνu

µuν in Raychaudhuri’s equation 1.13. And ac-
tually, there are important physical examples that violate the SEC, such as the Higgs scalar
field. Moreover, it is also remarkable that if one considers quantum effects, there appear sev-
eral examples of phemonema violating even WEC. Some examples of this are Casimir effect,
Hawking radiation or cosmological inflation. Thus it seems that quantum effects help avoid-
ing the fulfillment of energy conditions and this could be a way to circumvent the singularity
theorems.

Causality conditions

Causality conditions want to guarantee that causal paradoxes do not happen. For example,
if a particle affects its own past, causality would break down. However, some of the strongest
causality conditions also ensure the existence of maximal geodesics.

With regard to the causality conditions in the theorems listed before, Theorem 2.19 as-
sumes the strong causality condition, Theorem 2.18 assumes global hyperbolicity through the
existence of a Cauchy hypersurface and Theorem 2.7 does not explicitly assume any causality
condition (although in the proof a partial Cauchy hypersurface is constructed from the con-
gruence and it is performed within its Cauchy development, where global hyperbolicity holds).
These conditions force timelike curves not to be closed and keep E±(ζ) non-empty.
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These kind of conditions are hardly questionable physically, as from our observations, it
seems logic to impose an inviolable ‘arrow of time’. However, some work can be done even
without them. For example, from Theorem 5.7 of [1], the chronology conditions does not need
to hold at all the spacetime. It is enough that it is fulfilled in a region causally disconnected
from the ‘violating’ region. Moreover, in certain situations (like in [2], Chapter 8, Section 2,
Theorem 4), even relaxing causality conditions does not help in avoiding the singularities.

Differentiability

A subtle but essential condition for the theorems is the metric g to be C2. This assumption
is used in many points of the development of not only the theorems themselves, but also the
mathematical machinery behind them. Namely, the normal coordinates of Definition 1.13 work
well with C2 differentiability. Although they can also be defined with C2−, in this case, the
change to normal coordinates is only continuous and not differentiable, hence differentiability
of quantities in normal coordinates or dependence of the geodesics on the initial conditions
are affected. Similarly, results on maximal curves, trapped sets, existence of conjugate points,
etc. rely on the C2 differentiability.

This may seem just a technical condition, but in fact, there are some important cases of
spacetimes whose metrics are not C2, for example, the matching of a interior with the exterior
of a star, which is just C2−. However, proving the theorems with lower differentiability degrees
is a really hard task, although it is widely accepted that the results of the singularity theorems
will also hold with C2− metrics. Hence, relaxing differentiability of the spacetimes to C2− would
probably not help at avoiding singularities. Relaxing even more the differentiability degree to
C1 makes the singularity theorems even more inapplicable. Hence, in these conditions we can
find any type of scenarios with or without singularities.

Boundary or initial conditions

These conditions are the analogous of boundary or initial conditions in other classical problems,
in the sense that they determine the events in appropriate regions. In General Relativity, as
we have seen, this may not be as simple as assigning a value to a function. Instead, surfaces,
(Cauchy) hypersurfaces and trapped sets play a fundamental role in the determination of
events in spacetimes.

In the theorems stated in Chapter 2, the boundary or initial conditions required by the
theorems are: in Theorem 2.7, the expansion of the congruence must be positive at some
hypersurface orthogonal to the congruence, in Theorem 2.18, the existence of a closed trapped
surface and the non-compactness of a Cauchy hypersurface and in Theorem 2.19, a triple
condition in which each of the cases leads to a trapped set. Note that in this theorem,
condition (i) can only happen in spatially closed universes since an edgeless set has to expand
to the limits of the spacetime, and it must be compact, hence finite.

As we have reviewed before, there are some ways (or special cases) in which energy and
causality conditions and even differentiability degree can be relaxed while keeping the result
of the singularity theorems. However, this can not be done with the boundary or initial
conditions. They are essential hypothesis in the theorems and can not be removed or relaxed.
Boundary or initial conditions are important because they usually assume or lead to the
existence of a trapped set (or other conditions with an equivalent effect). As we have seen,
this desirable effect is for null geodesics to converge and get confined. At first sight, one could
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think that this already is equivalent to a singularity. However, any of the energy, causal or
boundary conditions alone is obviously not enough in order to ensure a singularity (this is
precisely why we have the singularity theorems). Hence, although boundary conditions are
the most relevant, they must be put together with other conditions properly in order to get
the expected result.

Since they are the central assumptions, and since energy and causality conditions have
been widely tested and studied empirically, the reasonability of boundary or initial conditions
should be checked.

Conclusions of the theorems

It must be noted that the theorems just predict the incompleteness of at least one geodesic.
This result is actually weak compared to what the theorem’s names suggest, as it does not
give much information about the characteristics of an eventual singularity (with the exception
of Theorem 2.7, a very particular case in which we know all the information). Namely, we do
not know if the singularity is removable or essential, as well as its location or severity.

With the information of the existence of an incomplete geodesic, what we can do is to look
for extensions. However, this presents a problem, since a priori we do not have any physical
motivation to choose a particular extension over the infinite number of alternatives we have.
If we can choose a regular extension, it seems logical to do so. The problem is that we do not
know if the extended spacetime will also satisfy the assumptions of the theorems, so maybe it
has a singular extension at the end. It is worth to remark that until we choose a particular
extension, we do not have any information about the kind of singularity we are dealing with,
in case it exists. In the other hand, if there is a singularity, the theorems do not give any
information about where it is or its severity, so again we have to select a particular extension
to be able to say anything, and we will have to determine its properties on our own.

If we compare Theorem 2.7, with Theorems 2.18 and 2.19, one could say that, in the
former, both the assumptions and the conclusions are very strong whereas in the other two,
the assumptions are reasonably general and the conclusions rather vague. Although this is
true, it does not mean that the usefulness of the theorems is small. Singularity theorems are
still a big achievement because of their generality and historical, physical and mathematical
importance.

45



Chapter 4

Examples

4.1 FLRW

For this section, references [10] (Section 2.4), [11] (Section 8.2), [2] (Section 5.3), [1] p. 751
are used. The Friedman-Lemâıtre-Robertson-Walker spacetimes are the homogeneous and
isotropic solutions of Einstein’s equations 1.3. These spacetimes are classified according to the
sign of their spatial curvature, k, which can take the values k = 0, 1,−1, and are called flat,
closed and open respectively. Their metric is given by:

ds2 = −dt2 + a(t)2
[

dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)]
, (4.1)

where r ∈ [0,∞) for k = −1, 0 and r ∈ [0, 1) for k = 1, θ ∈ [0, π), φ ∈ [0, 2π) as usual,
t ∈ I open interval and a(t) is a positive function called scale factor. Note that the closed
model is spatially closed, while the open and flat models are spatially infinite.

The flat FLRW spacetimes are nowadays accepted as the cosmological models for our
universe. Hence, it is interesting to study their singularities. Let us study their properties for
all values of k.

As it is evident from the metric 4.1, the energy-momentum tensor of the spacetime will
diagonalize. In the preferred orthonormal reference frame of an observer with velocity ∂t,
eA = {∂t,

√
1−kr2
a(t)

∂r,
1

r a(t)
∂θ,

1
r sin θ a(t)

∂φ} (A = 0, 1, 2, 3), it is easy to compute using Tµνe
µ
Ae

ν
A,

that the energy-momentum tensor takes the form of a perfect fluid, with

ρ = 3
a′(t)2 + k

a(t)2
,

p = −a
′(t)2 + 2a(t)a′′(t) + k

a(t)2
.

(4.2)

It seems clear that if a(t0) = 0 for some t0, then the metric becomes degenerate. Let us
study what happens in such a case. Assume a Taylor expansion of a(t) around t0 such as
a(t0 + t) = a1t+ a2t

2 +O(t3). Then, it follows that

lim
t→0

ρ = lim
t→0

3
(a1 + 2a2t)

2 + k

(a1t+ a2t2)
2 = 3 lim

t→0

a21 + 4a1a2t+ 4a2t
2 + k

a21t
2 + 2a1a2t3 + a2t4

.
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This limit diverges unless k = −1 and a1 = 1, a2 = 0. In any other case, then we energy-
momentum tensor diverges and we have a matter singularity when approaching t = t0. If the
singularity is at our past, we call it Big Bang and if it is at out future, we call it Big Crunch.

The expansion of the fluid is θ = 3a
′(t)
a(t)

and its acceleration, shear and vorticity vanish:
aµ = 0, ωµν = σµν = 0. Hence, the fluid follows geodesic and irrotational trajectories. These
are the hypothesis of Theorem 2.7. However, for it to be applicable, θ > 0 at some point and
SEC must be fulfilled. It is clear that θ > 0 ⇐⇒ a′(t) > 0 at some value of t. Let us check
the energy conditions.

Obviously, in a perfect fluid, the WEC is fulfilled if ρ ≥ 0 and ρ + p ≥ 0, the DEC is
fulfilled if ρ ≥ 0, ρ+ p ≥ 0 and ρ− p ≥ 0 and the SEC is fulfilled if ρ+ p ≥ 0 and ρ+ 3p ≥ 0.
Hence, a straightforward calculations leads to the conclusion that WEC holds if:

a′(t)2 ≥ a(t)a′′(t)− k and, for k = −1, also a′(t) ≥ 1,

the DEC holds if the WEC holds and additionally(
a(t)2

)′′
+ 2a′(t)2 + 4k ≥ 0,

and the SEC holds if

a′(t)2 ≥ a(t)a′′(t)− k and a′′(t) ≤ 0.

All in all, for Raychaudhuri-Komar Theorem 2.7 to apply, we need a′(t0) > 0 for some t0,
a′(t)2 ≥ a(t)a′′(t) − k and a′′(t) ≤ 0. If these conditions hold, then as seen from the proof of
Theorem 2.7, ρ→∞, which by expression 4.2 implies a(t)→ 0, and we have a Big Bang (or
Big Crunch) in the model.

As for the other theorems in Chapter 2, it is better to study them in particular cases rather
than in the general case to extract more meaningful information from them.

4.1.1 Einstein cosmology

The lack of observational evidence for the expansion of the universe at the beginnings of the
20th century motivated Einstein to find a completely static exact solution of his new theory
in 1917. His model is a particular case of FLRW with k = 1, a(t) = aE constant and metric

ds2 = −dt2 + a2E

[
dr2

1− r2
+ r2

(
dθ2 + sin2 θ dφ2

)]
.
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r=
1 r=

0

Figure 4.1: Penrose diagram for the static Einstein universe [10]. The horizontal dashed lines
are the curves t = constant, while the curved dashed line going from top to bottom are the
curves r = constant.

It is clear that this spacetime is static since its metric does not depend on the timelike
coordinate t. Since a′(t) = a′′(t) = 0, it is also clear that

ρ =
3

a2E
,

p =
−1

a2E
,

and that the WEC, DEC and SEC are satisfied everywhere and θ = 0.
This spacetime is regular and inextendible as seen from the Penrose diagram in Figure 4.1.
Hence, although the congruence is geodesic and irrotational and SEC is fulfilled, Theorem

2.7 does not apply because the model is static (θ = 0).
As for Penrose’s Theorem 2.18, let us try to search for closed trapped surfaces. Since they

must be compact, they must have a maximum value of r at some point p. At that point, the
normal vector to the surface must be a linear combination of ∂t and ∂r. Using this, we obtain
κ = 2 r

2−1
a2Er

2 at p. Since 0 < r < 1, this quantity is never positive, so the closed surfaces are

never trapped. Hence, we can not use Penrose’s Theorem 2.18.
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As for Hawking-Penrose Theorem 2.19, consider the hypersurfaces {t = t0}. This set can
not have any edge points because any timelike curve joining a point in its future with one in
its past necessarily intersects it. Hence it is edgeless.

Posing the geodesic equations for this spacetime for constant θ, φ:

r′′ +
r

1− r2
(r′)2 = 0,

t′′ = 0,

and the null condition

(t′)2 +
a2E

1− r2
(r′)2 = 0,

it is easy to see that the curves

γ(τ) =
(
τ + t0,± sin

(τ
a

+ arcsin r0

)
, θ0, φ0

)
, (4.3)

are radial null geodesics. This suggests that every null geodesic must cross the hypersurface
{t = t0} as it can be checked from the Penrose diagram in Figure 4.1 and hence, it is a Cauchy
hypersurface.

Also, since r ∈ [0, 1) is finite, {t = t0} are compact, so it is an achronal edgeless compact
hypersurface. Additionally, from equation 4.3, it is evident that there are reconverging null
geodesics. However, although the SEC, the chronology condition and the initial conditions
hold, Hawking-Penrose Theorem 2.19 can not be applied because the timelike generic condition
is violated. For instance, consider the geodesic with tangent vector u = ∂t. Since the Riemann
tensor for this spacetime has no term proportional to dxρ⊗ dt⊗ dt⊗ dxσ, then Rρµνσu

µuν = 0
and the timelike generic condition is violated.

Hence, the fact that this spacetime is static, spatially closed and possesses special symme-
tries forbids the existence of a singularity.

4.1.2 Linear state equation models

In this subsection reference [11] (Section 8.3) is used. Consider a perfect fluid in a flat FLRW
spacetime satisfying the state equation

p = ωρ, (4.4)

with ω constant. This model is of interest because there are several particular cases of
this form with specific cosmological physical meaning. One of them is that with ω = 0
and state equation p = 0, which corresponds to an universe filled with matter (dust) that
exerts negligible pressure. Another one is that with ω = 1

3
and state equation p = 1

3
ρ,

which represents radiation particles, which exert a radiation pressure as collected by the state
equation. The most useful model is:

Empty (De Sitter cosmology)

This is the special case with ω = −1 and hence p = −ρ. In this case, the ideal fluid energy-
momentum tensor 1.5 can simply be written as T µν = pgµν , so we can rewrite Einstein’s
equations in the form:

Rµν −
1

2
Rgµν + ρgµν = 0.
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Hence we can interpret this universe as being empty but having a cosmological constant
Λ = ρ, which accounts for dark energy. This model is relevant because it approximates the
early and late stages of our universe, in which the influence of dark energy is much more
dominant than matter.

The conservation of energy equation gives us

0 = ∇µT
µ
t = −∂tρ− 3

∂ta

a
(ρ+ p).

In adapted coordinates, where ∂t is the velocity of the fluid we simply denote the derivative
of f with respect to t as ḟ , and using equation 4.4 we obtain:

ρ̇

ρ
= −3(1 + ω)

ȧ

a
.

Using this along with the first Friedman equation(
ȧ

a

)2

=
ρ

3
,

arising from the tt component of Einstein’s equations, we can trivially solve for ρ(t) and
a(t). For ω 6= −1, integrating we obtain

ρ(t) =
4(

2(
√
ρ0)−1 +

√
3(1 + ω)(t− t0)

)2 ,
a(t) = a0t

2
3(1+ω) ,

and for ω = −1 the equation for ρ reads ρ̇ = 0, hence the solution is:

ρ(t) = ρ0,

a(t) = e
√

ρ0
3
t.

For ω 6= −1 we note that there is a value of t for which ρ becomes infinite. Choosing that
value as the origin of t, the expressions for ρ, p simplify to:

ρ =
4

3t2(1 + ω)2
,

p =
4ω

3t2(1 + ω)2
,

and for ω = −1, conveniently defining H =
√

ρ0
3

, we can write:

ρ = 3H2,

p = −3H2.

Hence, it is direct to compute that this model fulfills the WEC if ω ≥ −1, the DEC if
−1 ≤ ω ≤ 1 and the SEC if ω ≥ −1

3
.

The expansion of the fluid congruence is θ =
√

3ρ, which is equivalent to θ = 2
t(1+ω)

except
for ω = −1, for which we simply have θ = 3H.
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The hypothesis of Raychaudhuri’s Theorem 2.7 are fulfilled for certain values of ω. The
theorem requires the fluid congruence to be geodesic and irrotational, which is fulfilled by all
FLRW spacetimes, and θ0 > 0 and the SEC to be satisfied. For this to happen, we have
already seen that ω ≥ −1

3
, in which case θ always reaches positive values. Hence, if ω ≥ −1

3
,

the universe has a matter singularity at a finite past and we are talking about a cosmological
model with a Big Bang.

However, although Theorem 2.7 fails to apply when ω < −1
3
, there still is a matter singu-

larity for ω > −1 since a(0) = 0 in that range, making t = 0 singular as seen before.
Let us study further the De Sitter cosmology. Its metric can be written as:

ds2 = −dt2 + e2Ht
[
dr2 + r2

(
dθ2 + sin2 θ dφ2

)]
,

with t > 0.
As we have seen before, this spacetime satisfies the WEC and DEC but not the SEC.
Since the SEC does not hold, neither Raychaudhuri’s Theorem 2.7 nor Hawking-Penrose

Theorem 2.19 can be applied.
There is only Penrose’s Theorem 2.18 left to check. In this particular case, the NCC

reads ρ + p ≥ 0, which is fulfilled (because ρ + p = 0). Also, the hypersurfaces {t = t0} are

Cauchy hypersurfaces and non-compact. One can compute κ = 2H2− 2e−2Ht

r2
at the maximum

value of the coordinate r of the closed surfaces, so they are trapped when their range of
r ≥ 1

H
e−HT . This means there exist closed trapped surfaces. Hence, this spacetime has at

least an incomplete geodesic.
We can try to build an extension. By using the coordinate change [2] (p. 124):

t =
1

H
ln
(
cosh(Ht̂) cosχ+ sinh(Ht)

)
,

x =
1

H

cosh(Ht̂) sinχ cos θ

cosh(Ht̂) cosχ+ sinh(Ht̂)
,

y =
1

H

cosh(Ht̂) sinχ sin θ cosφ

cosh(Ht̂) cosχ+ sinh(Ht̂)
,

z =
1

H

cosh(Ht̂) sinχ sin θ sinφ

cosh(Ht̂) cosχ+ sinh(Ht̂)
,

one obtains the metric

ds2 = −dt̂2 +
cosh2(Ht̂)

H2

(
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ

))
,

with t̂ ∈ R, χ ∈ [0, π], θ ∈ [0, π], φ ∈ [0, 2π]. Note that the singularities at χ = 0, π and
θ = 0, π are due the spherical coordinates only and are totally removable. Now, this spacetime
is regular, as can be seen from the Penrose diagram in Figure 4.2.
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r=
1

Figure 4.2: Penrose diagram for the De Sitter universe [10]. In the shaded regions there are
closed trapped surfaces. The horizontal dashed lines represent the curves t = constant and
the vertical dashed lines represent r = constant.

Notice that this extended spacetime is spatially closed with 0 < r < 1. To see this, use
the variable change r = sinχ, so that dχ = 1√

1−r2dr. Using this, the metric becomes:

ds2 = −dt̂2 +
cosh2(Ht̂)

H2

(
dr2

1− r2
+ r2

(
dθ2 + sin2 θdφ

))
,

which is the metric 4.1 with k = 1, corresponding to a spatially closed universe. We will drop
the hat of t̂ from now on.

In the adapted reference frame, we find that the energy momentum tensor is of the type
of a perfect fluid, again with:

ρ = 3H2,

p = −3H2.

Hence, the WEC and DEC are fulfilled, but the SEC is not. The expansion of the fluid
congruence is θ = 3H tanh(Ht) and its acceleration is aµ = 0.
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Hence, although the fluid congruence is geodesic, and θ > 0 for some t, we can not use
Raychaudhuri’s Theorem 2.7 because the SEC is violated.

The NCC reads ρ+p ≥ 0, which is fulfilled because the equality is achieved. The spacetime
is globally hyperbolic because there exist Cauchy hypersurfaces of the form {t = constant}.
However, since it is spatially closed, the Cauchy hypersurfaces can not be non-compact. Hence,
Penrose’s Theorem 2.18 can not be applied.

As for Hawking-Penrose Theorem 2.19, as we have already discussed, there exists a compact
achronal set without edge (a Cauchy hypersurface). Looking at the existence of closed trapped
surfaces, consider κ for a point which maximizes χ in such surfaces. Then, using the null
normal vectors k+ = ∂t −H

√
1−r2

cosh(Ht)
∂r, k

− = 1
2
∂t −H

√
1−r2

2 cosh(Ht)
∂r, it is direct to compute that

κ =
H2 (r2(1 + cosh(2Ht))− 2)

r2 cosh2(Ht)
,

hence closed surfaces with all of their points fulfilling cosh(2Ht) ≥ 2−r2
r2

will be trapped.
However, although the spacetime is globally hyperbolic, hence it also fulfills the chronology

condition and it also contains closed trapped surfaces, since the SEC is violated, we can not
apply Hawking-Penrose Theorem 2.19.

Hence it seems that the violation of the energy condition SEC along with the fact that
this spacetime is spatially closed helps at avoiding singularities.

4.2 Senovilla cosmology

Before this cosmological model was published, the regularity of the known solutions was due
to the unfulfillemnt of an energy, causal or generic condition, which allowed them to avoid the
singularity theorems. This posed the question of whether a regular spacetime could satisfy
the desirable conditions in order to be considered a cosmological model. In fact, even the
desirable conditions for a spacetime to be considered an acceptable cosmological model have
been under discussion as explained in [1]. It seems that an accepted definition for a theoretical
classical cosmological model is any non-static spacetime filled with matter. However, since we
do not completely know everything about our universe, this kind of definitions are speculative
and strongly depend on our current knowledge, hence they are subject to changes if new
physical discoveries are made. Nevertheless, for the moment, we will use this definition of a
cosmological model.

The first such regular spacetime to be found was a manifold with the metric:

ds2 = cosh4(at) cosh2(3aρ)

(
−dt2 +

sinh2(3aρ)

cosh2(3aρ)− 1
dρ2
)

+

+ 4 cosh4(at)
cosh2(3aρ)− 1

36a2 cosh
2
3 (3aρ)

dφ2 + cosh−2(at) cosh−
2
3 (3aρ)dz2,

with a > 0. The full analysis of why this spacetime is regular is in [12], where all the geodesics
are computed and their completeness (and other properties) is checked. Namely, it is shown
that every null geodesic meets each of the hypersurfaces {t = t0}. Hence, this means that
they are Cauchy hypersurfaces, and hence, the spacetime is globally hyperbolic. Thus, it is
causally simple (and the chronology condition also holds) and t a time function (its gradient
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is timelike). Since every causal curve has to meet each {t = t0} and t is a time function,
then every causal curve can be extended to arbitrary values of their affine parameter, so the
spacetime is causal b-complete and hence, regular.

Taking the observer with velocity ∂t and using the natural orthonormal basis suggested by
the coordinates, one finds that the spacetime is filled with a perfect fluid with:

ρ = 15a2sech4(at)sech4(3aρ),

p = 5a2sech4(at)sech4(3aρ),

so it is obvious that the spacetime satisfies the WEC, DEC and SEC everywhere. Additionally,
since the SEC is fulfilled strictly (and hence also the NCC), by Proposition 1.25, the generic
condition holds.

The expansion of the fluid congruence is

θ = 3a sech2(at)sech(3aρ) tanh(at),

and its acceleration is

aµ = −3a (cosh(6aρ)− 1) sinh−1(6aρ)δρµ.

Even though this spacetime satisfies the SEC and θ > 0, Theorem 2.7 can not be applied
because its acceleration is non-zero, hence the fluid congruence that fills the spacetime is not
geodesic.

As for Penrose Theorem 2.18, although the NCC holds and there exists a non-compact
Cauchy hypersurface, there are not any closed trapped surfaces. To see this, take a compact
without boundary spacelike surface S. Since it is compact, it must have a maximum value
of the coordinate ρ at a certian point p. At p, the normal vector to S must be a linear
combination of ∂t and ∂ρ (since at p the tangent vectors to S must be linear combinations of
∂θ and ∂φ only, because S is spacelike and ρ is maximum at p). Then, at p we have

κ = −1

8
a2

(cosh(a(t− 6ρ)) + 5 cosh(at))(cosh(a(6ρ+ t)) + 5 cosh(at))

sinh2(3aρ) cosh4(3aρ) cosh6(at)
< 0.

Hence, there does not exist any closed trapped surface.
As for Hawking-Penrose Theorem 2.19, something similar happens. The SEC, chronology

and generic conditions are fulfilled. However, the initial condition is not. We have already
seen that closed trapped surfaces can not exist. Light cones do not reconverge at any point
because considering the null radial geodesics, one arrives at the system:

ṫ = |ρ̇|, ρ̇ = cosh−4 (at) cosh−2 (3aρ).

It is clear that for future directed outgoing null radial geodesics, ρ it not bounded. Hence,
through each point there is at least a null geodesic that diverges, which means that the light
cones can not reconverge. Finally, compact achronal edgeless sets can not exist due to the
spatial openness of the spacetime.

Thus, it is clear that this spacetimes satisfies all the desirable energy, causal and the
generic conditions and that despite this, it is regular because the initial condition required
by the theorems is not satisfied. Hence, there is still place for regular cosmological models
fulfilling the conditions in which we are interested despite the existence of the singularity
theorems. Unfortunately, this spacetime is not a realistic model for our universe due to its
cylindrical symmetry, since we observe spatial isotropy and homogeneity.
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4.3 Modification of Schwarzschild Metric

In this section, we will set the classical gravitation constant to G0 = 1 in numerical compu-
tations (and will be explicit in the expressions), hence Einstein’s equations become Gµν =
8πG0Tµν .

The very first exact solution of Einstein’s equations was the Schwarzschild metric. This
spacetime represents the empty exterior of a chargeless, non-radiative star. The original
spacetime describes the region r > 2M , but it can be extended to cover the values r < 2M .
This new region is the so called black hole region and it has a singularity at r = 0.

The following metric is a modification of the Schwarzschild metric, allowing for new physical
effects:

ds2 = −
(

1− 2M(r)

r

)
dt2 +

(
1− 2M(r)

r

)−1
dr2 + r2dΩ2,

where dΩ2 = dθ2 + sin2 θ dφ2 is the usual volume element on the 2-spheres.

Using the orthonormal frame of reference {
(

1− 2M(r)
r

)−1/2
∂t,
(

1− 2M(r)
r

)1/2
∂r,

1
r
∂θ,

1
r sin θ

∂φ}

for the region r > 2M(r) and {
(

1− 2M(r)
r

)1/2
∂r,
(

1− 2M(r)
r

)−1/2
∂t,

1
r
∂θ,

1
r sin θ

∂φ} for the re-

gion r < 2M(r), the energy-momentum tensor becomes diagonal with a preferred axis, with:

ρ =
1

4πG0

M ′(r)

r2
,

pr = − 1

4πG0

M ′(r)

r2
,

pT = − 1

8πG0

M ′′(r)

r
.

(4.5)

It can be seen that with these coordinates, the geodesics approaching r = 2M(r) are not
complete, hence it is a singularity. However, one can introduce an extension whose coordinates
are given by:

(u, r, θ, φ) =

(
t+ r + 2M(r) ln

(
r

2M(r)
− 1

)
, r, θ, φ

)
,

which transforms the metric into:

ds2 = −
(

1− 2M(r)

r

)
du2 + 2dudr + r2dΩ2, (4.6)

with u ∈ (−∞,∞), r > 0. See Figure 4.10 for an example.
Now, r = 2M(r) is a regular point, so that it is a removable singularity and we will not

study it further.
The other suspicious point could be r = 0. To study it, it is usual to do a local analysis

of the spacetime around it. Assume a Taylor expansion of M(r) = Arn + O(rn+1), n ≥ 0,
A 6= 0. One has to keep in mind that the results obtained from this analysis only hold in a
small neighbourhood of r = 0. To study this point, let us state a useful result:
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Theorem 4.1. [13] Assume the metric of a spacetime can be written in the form:

ds2 = −a(r)dt2 + b(r)dr2 + r2dΩ2,

with a(r), b(r) ∈ C2. All the second order scalar curvature invariants of the spacetime are
finite at r = 0 ⇐⇒ a(0) = b(0) = 1 and a′(0) = b′(0) = 0.

Since our spacetime is spherically symmetric, we can use Theorem 4.1. In our case, a(r) =
(1− 2Arn−1), b(r) = (1− 2Arn−1)

−1
and hence,

a′(r) = −2A(n− 1)rn−2,

b′(r) =
2A(n− 1)rn−2

(1− 2Arn−1)2
.

Clearly, a(0) = b(0) = 1 for n ≥ 2 and a′(0) = b′(0) = 0 is fulfilled if n ≥ 3. Thus, the
theorem tells us that for n < 3, the spacetime has a scalar curvature singularity at r = 0, and
that for n ≥ 3 it has not (however, there still is the possibility that there is a singularity of
another kind).

Improved Schwarzschild metric

We now analyze a particular case of this metric arising when quantum corrections are taken
into account [14]. The intention is to build a model of a regular black hole which takes
into account quantum gravity effects. In this scenario, the gravitational constant becomes a
function of r, which translates into :

M(r) =
G0Mr3

r3 + ω̃G0(r + γG0M)
,

where G0 is the gravitational constant (since we are dealing with quantum models, it is
useful to use natural units c = ~ = 1) and quantum field theory predicts the values γ = 9

2
, ω̃ =

118
15π

~. We will use these values for the numerical computations. This spacetime represents the
quantum vacuum surrounding a massive spherically symmetric object. However, one can still
use Einstein’s equations to define effective energy density and pressures as in expression 4.5.
M represents the total mass of the black hole (in units of the Planck mass mP ), as it can be
checked by computing ∫ ∞

0

ρ(r)4πr2dr = M.

The behaviour of M(r) is shown in Figure 4.3.
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Figure 4.3: Shape of M(r) using the values M = 10 for the upper curve and M = 1 for the
lower curve (and the values G0 = 1, γ = 9

2
and ω̃ = 118

15π
). When r → 0, M(r) → 0 and as

r →∞, M(r)→ G0M .

Its Taylor expansion at r = 0 is:

M(r) ' r3

ω̃γG0

− r4

ω̃Mγ2G2
0

+O(r5),

hence, by the previous analysis, r = 0 is not a scalar singularity.
As for the energy conditions, the WEC is satisfied if ρ ≥ 0, ρ + pr ≥ 0 and ρ + pT ≥ 0.

In this case, the WEC is fulfilled in all points. The DEC is satisfied if the WEC holds and
ρ− pr ≥ 0 and ρ− pT ≥ 0. This is satisfied in the region r ≤ RDEC , where RDEC is the only
positive solution (see Figures 4.4 and 4.5) of:

FDEC(RDEC) = R4
DEC + 3G0MγR3

DEC − 3G0ωR
2
DEC − 8G2

0MγωRDEC − 6G3
0M

2γ2ω = 0.
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Figure 4.4: 4th order polynomial FDEC(r) for M = 2. It has two complex conjugate roots,
one negative root and one positive root. The positive root is RDEC . The qualitative result is
independent of the specific value of M .
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Figure 4.5: Evolution of the limit of the region where the DEC holds, RDEC with M .

The SEC is satisfied if ρ + pr ≥ 0, ρ + pT ≥ 0 and ρ + pr + 2pT ≥ 0. This holds in the
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region r > RSEC , where RSEC is the positive solution (see Figures 4.6 and 4.7) of:

3R4
SEC + 6G0MγR3

SEC −G0ωR
2
SEC − 3G2

0MγωRSEC − 3G3
0M

2γ2ω = 0.

-20 -15 -10 -5 5
r

-20 000
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40 000

FSEC

Figure 4.6: 4th order polynomial FSEC(r) for M = 2. It has two complex conjugate roots,
one negative root and one positive root. The positive root is RSEC . The qualitative result is
independent of the specific value of M .
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Figure 4.7: Evolution of the limit of the region where the SEC holds, RSEC with M .
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We now study the existence of closed trapped surfaces. Since they are compact, they must
have a maximum (and a minimum) value of the coordinate r. At those points, the normal null
vectors to the surface must be a linear combination of ∂t and ∂r. Taking the future pointing
normal vectors k+ = ∂t + r−2M(r)

r
∂r and k− = r

2(r−2M(r))
∂t− 1

2
∂r for the region r > 2M(r) and

k+ = ∂t − r−2M(r)
r

∂r and k− = r
2(r−2M(r))

∂t + 1
2
∂r for the region r < 2M(r) we obtain:

κ = −2 (r − 2M(r))

r3
= − 2

r2
r3 − 2G0Mr2 + ωG0r +G2

0Mωγ

r3 +G0ω (r +G0Mγ)
.

To study the behaviour of κ, we only need to track the sign of the third order polynomial
F (r) = r3− 2G0Mr2 +ωG0r+G2

0Mωγ. First, we should find its number of roots. To do this,
it is enough to study its discriminant:

∆ = 32M4γωG5
0 + 4M2ω2G4

0 − 27M2γ2ω2G4
0 − 36M2γω2G4

0 − 4ω3G3
0.

If ∆ > 0, the polynomial has 3 different real roots, if ∆ < 0, the polynomial has 1 real root and
if ∆ = 0, all roots are real but there are at least two equal roots. These different behaviours
are collected in Figure 4.8.

2 4 6 8 10
r

-100

100

200

300
FHrL

Figure 4.8: Possible shapes of F (r) depending on the value of its discriminant. The values
of M used are M = 1 for the case ∆ < 0 (blue curve), M = Mcrit ' 3.5 for the case ∆ = 0
(purple curve) and M = 5 for the case ∆ > 0 (yellow curve).

Hence, depending on the value of M we have different scenarios. Its critial value, at which
∆ = 0, is:

Mcrit =

√
ω

64Gγ

√
36γ + 27γ2 +

√
2 + γ (2 + 9γ)

3
2 − 4.
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For M > Mcrit, ∆ > 0 and for M < Mcrit, ∆ < 0. Hence, if M < Mcrit, there is only 1 real
root, which must be at a negative value of r since F (0) = G2

0Mωγ > 0 and lim
r→−∞ F (r) = −∞.

Hence, F (r) > 0 for the relevant region r > 0 and κ < 0. Thus, for M < Mcrit there are not
any closed trapped surfaces.

For M > Mcrit, there is a region of r in which F (r) < 0. Let us call the two roots delimiting
this region rmin, rmax, which are the two positive roots of F (r). If rmin < r < rmax, then κ > 0.
Hence, if the r coordinate of a compact closed surface is inside the limits rmin < r < rmax, it
is a closed trapped surface.

This means that for heavy black holes (M > Mcrit), there are two event horizons: rmin and

rmax. Outside these horizons, F (r) > 0, and since we can write gtt = − r−2M(r)
r

= −F (r)M(r)
G0Mr3

and M(r) > 0, the vector ∂t is timelike. In contrast, inside both horizons, F (r) < 0 and ∂t
is spacelike. This mimics the behaviour of the classical Schwarzschild black hole. Note that
for the limit M →∞, F (r) ' r3 − 2G0Mr2 = r2(r − 2G0M), which recovers the value of the
horizon of the classical Schwarzschild black hole, r = 2G0M .

As M decreases and approaches Mcrit, the two horizons get closer until at M = Mcrit they
coincide in the double zero of F (r). If we decrease M further, then the horizons disappear
altogether. This is depicted in Figure 4.9.

rmax

rmin

0 2 4 6 8 10
M

5
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15

20
r

Figure 4.9: Evolution of the apparent horizons rmin, rmax as a function of the mass of the black
hole. The horizons only appear for M > Mcrit.

As for the singularity theorems in this case, Raychaudhuri’s Theorem 2.7 can not be applied
because this spacetime is not filled by a perfect fluid.

Hawking-Penrose Theorem 2.19 can not be applied because the SEC is only fulfilled in a
certain region r > RSEC .

Let us try with Penrose’s Theorem 2.18. The NCC in this spacetime translates into
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ρ + pT + a2(pr − pT ) ≥ 0 for 1 ≥ a ≥ 0. Since pr − pT = −(ρ + pT ) ≤ 0 as we have
already seen, then ρ + pT + a2(pr − pT ) ≥ ρ + pT + pr − pT = ρ + pr = 0 and the NCC
holds. Penrose’s Theorem 2.18 also asks for a closed trapped surface, which happens only for
M > Mcrit and for a non-compact Cauchy hypersurface. However, in this spacetime there
are Cauchy hypersurfaces only for M < Mcrit. It can be seen from the Penrose diagram for
M > Mcrit in Figure 4.10 that the horizon {r = rmin} is a Cauchy horizon for any edgeless
acausal hypersurface in regions I and I’, hence their Cauchy development can never be all the
manifold.
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r=
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Figure 4.10: Penrose diagram of the maximal extension of the quantum regular black hole
for M > Mcrit [10]. The regions labeled with the same number are isometric. The regions
I are asymptotically flat. Regions II and III are part of the BH. In II, the 2-spheres are
trapped. Note that r = 0 is not a singularity. There exist radial timelike geodesics crossing
the event horizons rmax and rmin and then bouncing in region III and leaving the black hole
[14] (Section G). The regions I, II and III (emphasised with bold lines) are the regions covered
by the coordinates used in metric 4.6.
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Hence it seems that the fact this spacetime is regular comes from the fact that the SEC
does not hold in all its points and that its causal structure is non-trivial.
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Conclusion

The main singularity theorems and their proofs have been reviewed by studying in detail the
necessary tools and the main results. An insight into both the mathematical and physical
views of the reasons and assumptions that motivated and led to the theorems has been made.
Special attention has been payed to the feasibility and applicability of some of them while
exploring what might happen when considering some variations in their hypothesis.

A variety of interesting regular and singular spacetimes have been studied. The features
that make them fulfill the hypothesis of the theorems or, on the contrary, that allow them to
avoid the key hypothesis have been identified.

Although some of the early spacetimes obtained from Einstein’s equations were already
singularity-free, other relevant solutions including both cosmological and astrophysical models
were not. After the singularity theorems were proved, influenced by their strength, one could
have though that regular cosmological models outside the FLRW family (since it is already
difficult to find regular FLRW models) or regular astrophysical objects such as the black hole
could not exist. However, we now know that the singularity theorems are not as restrictive as it
was thought when they were first developed and that there are ways to avoid the singularities
while preserving some desirable conditions. Hence, by having studied the singularities, we
have been able to see that, although in certian situations General Relativity seems to favour
their existence, there are still ways to avoid them. This has been done many times, using the
own singularity theorems as a guide to build regular spacetimes. However, as we have seen,
this will probably imply that in order to avoid the key points in the theorems, the resulting
spacetimes tend to be rather artificial and hence little useful to model our universe. The
natural question arising is whether we will be able to do so with realistic spacetimes that can
describe our universe or astrophysical objects.

Although the results seen here are powerful and meaningful, we have also pointed out that
they are far from ideal. As we have seen, the theorems just predict the incompleteness of at
least one geodesic and we do not know if the singularity is removable or essential, as well as
its location or severity. However, although this result is rather vague, singularity theorems are
still a big achievement because of their generality and historical, physical and mathematical
importance.

Hence an obvious direction for further development would be to improve the theorems,
namely, improving in terms of differentiability of the metric, taking into consideration more
plausible energy conditions or improving the rather vague conclusion of the theorems. How-
ever, as we have already mentioned, these refinements are very challenging mathematically.

Another important advancement would be to include quantum effects in the theory. Recall
that all the results and developments in the first chapters were built with General Relativity in
mind, but they are valid for any gravitational theory using a manifold as the spacetime. As we
have seen in Section 4.3, quantum effects may change the causal structure of the spacetime or
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make it violate the energy conditions. This makes it harder for singularities to exist, allowing
for regular black holes, for instance. If quantum theory is included in cosmological models,
then theories describing early stages of the universe such as inflation arise. Inflation predicts
high negative pressures, which violate the usual energy conditions. Hence this means that the
classical theorems do not apply in this case, leaving the door open for regular models. Also, if
quantum gravity is considered, it is possible to obtain regular cosmological models. It seems,
then, that quantum effects are likely to solve many problems of classical General Relativity.
In this sense, the next step would be to study different approaches to quantum gravity and to
modify the singularity theorems accordingly to achieve a more complete theory.
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Glossary

D+(ζ) Cauchy domain of dependence 25

E+(ζ) Future horismos 22

H+(ζ) Cauchy horizon 25

I+(ζ) Chronological future 22

J+(ζ) Causal future 22

Ck− function 3

Np Maximal normal neighbourhood 7

acausal 23

achronal 23

affine parameter 7

b-completeness 32

Cauchy domain of dependence 25

Cauchy horizon 25

Cauchy hypersurface 26

causal 4

causal future 22

chronological future 22

chronology condition 24

closed trapped surface 28

congruence 11

conjugate points 17

curve 4
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DEC Dominant energy condition 9

edge 25

endpoint 4

energy density 8

energy-momentum tensor 8

envelopment 31

expansion 13

extension 31

first fundamental form 5

FLRW Friedman-Lemâıtre-Robertson-Walker 46

focal point 17

Frobenius Theorem 15

future horismos 22

future set 23

generalized affine parameter 32

geodesic 6

geodesic equation 7

geodesically complete 7

global hyperbolicity 24

Hawking-Penrose Theorem 40

hypersurface 5

inextendible 4

length 20

light cone 21

matter singularity 33

maximal curve 21

maximal normal neighbourhood 7
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NCC Null convergence condition 11

normal 5

normal coordinates 7

null 4

null generic condition 19

partial Cauchy hypersurface 26

Penrose’s Theorem 40

perfect fluid 8

principal pressure 8

proper achronal boundary 24

Raychaudhuri’s equation 17

Raychaudhuri-Komar Theorem 33

rotation tensor 13

scalar curvature singularity 33

SEC Strong energy condition 10

second fundamental form 5

shear tensor 13

singularity 32

spacelike 4

spacetime 3

stable causality condition 24

strong causality condition 24

surface 6

tangent space 3

timelike 4

timelike generic condition 18

trapped set 30

WEC Weak energy condition 9
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