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Introduction

An increasing amount of experimental evidence is showing that changes in the
mechanical properties of cells are associated to disease progression [1-6], with
cancer being among the most impacting on patients. In order to measure these
cellular physical changes, several experimental methods have been developed
that couple in vitro biomechanical assays, continuum mechanics theory and
computational protocols. One of these methods has been developed by Le Berre
et al. [8] and consists in a devise for the soft confinement and deformation of
cells in vitro. In this work, we will build a computational physical model of
the soft confiner, which further allows to quantify the degree of elasticity in the
compliance that cells experimentally present to deformation. We carried out
this effort in collaboration with scientists at the Institute of Bioengineering of
Catalonia (IBEC) and at the University College London (UCL), who provided
the experimental basis of the model. The in silico physical model we have
developed is founded on a set of working assumptions that, on the one hand,
aims at simplifying the complexity of cellular biomechanics and, on the other
hand, aims at providing experimentalists with a handy computational tool for
the an efficient assessment of cell stiffness in vitro. In chapter 1 we briefly
describe the biological context of my work and the goal of the project. In
chapter 2, we present the in silico model of the soft confiner. In chapter 3 we
present the results of our studies. In chapter 4 we discuss our results along with
future works.
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1 Biological background

1.1 Biology overview

Eukaryote cells are composed of an external membrane and a cytoplasm with the
different organelles such as nucleus, mitochondria or ribosomes [1]. Although
their interaction is complex, we can divide cells’ elements in two groups, tak-
ing into account their role in cell response to deformation. External wall and
cytoskeleton are those responsible for the cell’s response to deformation, and
the cytoplasm with the rest of the organelles are the determinants of the cell’s
shape[1,4].

Cellular membranes are mostly made of protein and lipid layers that work
as a wall between the cell’s interior and the external world [1]. The cytoskeleton
is a network of filaments that extends throughout the whole cell. It branches to
the inner face of the cell’s wall, forming a layer called actin cortex. The coupling
between the cell membrane, the actin cortex and the cell interior is considered
to give rise to the characteristic visco-elastic response to deformation that has
been experimentally observed [1-4].

1.2 Biomechanical assays

Biomechanical assays are experimental setups for the study of mechanical prop-
erties of cells and tissues. These setups provide experimental datasets that often
consist of measurements of cell deformation. These datasets constitute the ex-
perimental basis for theoretical or computational models that are coupled to the
experimental set-ups to allow further quantification of mechanical properties of
cells. Among these set-ups, it is worth mentioning:

• Atomic Force Microscopy : This is the most popular assay. Cells
are deformed by their contact interaction with the free end of microscopic
cantilever. Registering the deflection of the cantilever and the deformation
of the cell, the applied force and then the stiffness of the cell are [1].
As the contact is performed on a small portion of the cell’s surface, the
non-homogeneity of cellular structure plays an important role. Moreover,
the viscous nature of the cells mean that the rate at which the load is
applied is also a factor that has to be taken into account. To avoid this
phenomenon, some analysis are limited to the range of small deformations,
coupling linear elastic models to obtain apparent stiffness values.

• Optical stretcher : In this approach, a double laser beam is passed
through a suspended cell, stretching it in opposite directions [3,7]. The
applied force is then calculated through laser physics, using the change
of properties the laser experiences. Two linear elastic models of the cell
(either as an elastic sphere or as an elastic shell) have been used to retrieve
the elastic moduli of the cells after analysing the forces and the registered
deformation [7].
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• Mechanical micro-plate stretcher : This procedure stretches cells sev-
eral times with a known load. The observed deformations are introduced
into a spring model to retrieve the stiffness of the cell [11].

• Laser ablation: This method is used in the study of cell’s cortex. Laser
rays are used to cut the cortex surface. Monitoring the effects of said cuts,
physical parameters such as the propagation of the stress or the time of
stress relaxation are calculated. These parameters are then used to define
the visco-elastic behaviour of the material [10].

1.3 Dynamic cell confinement

The previously presented assays have to choose between cell confinement control
and the number of tested cells [7]. Classic methods like Atomic Force Microscopy
work one cell at a time, and those allowing the study of large groups of cells
(like the Optical Stretcher presented in [7]) are limited in their confinement
capabilities. For our approach, we obtain data through a novel biomechanical
assay called dynamic cell confiner, developed by M. le Berre et al [8].

1.3.1 Elastic confinement

The dynamic cell confinement is a non-destructive method consisting in putting
a group of scattered isolated cells under an environment of controlled stiffness
and geometry. Cells are confined between the glass slide they are cultured
and one gel slide of known stiffness. The glass slide can be functionalised in
order to either keep cells in suspension over it or to allow them to adhere to
it. This adhesion determines the shape adopted by the cell, which is spherical
for suspended cells and semi-spherical or dome-shaped for attached cells. A
schematic of the experimental set-up is illustrated in figure 1.

The machine has an empty chamber covered by a elastic membrane with a
piston and the gel slide attached to it. After applying vacuum in the chamber,
the membrane is deformed due to the difference between internal pressure and
atmospheric pressure. This moves the piston downwards, pressing the gel over
the cell culture. Modifying the chamber pressure, the piston position and the
pressure applied over the gel can be regulated.

Once the cells are surrounded by the gel, their deformation can be easily
observed using common optical techniques. Then, knowing the gel stiffness, the
pressure applied and the deformation the cells experience, the next step will
be to relate this data with the physical parameters of the studied cells using a
computational physical model.
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Figure 1: Dynamic confiner scheme, adapted from M. le Berre et al [8]. The left
image, state A, shows the confiner before to vacuum. We can see the Piston (Pi)
with the attached confiner slide (Cs) over the cell culture substrate (Cus). In
state B, vacuum is created through channel (Ch), causing the membrane (Mem)
to go down together with the piston and the confinement slide
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2 Numerical model

This section provides the development of the FEM used to simulate the dynamic
cell confiner. Starting with the made assumptions, it will continue with the
equations included in the solution, then the geometrical model and FEM mesh,
the solving routine and finally the different simulations that were calculated.

2.1 Assumptions

The following assumptions will be made in order to develop the stress-deformation
equations :

1. Body forces, such as gravity, will not be considered, as cells are expected
to experience forces much greater than their own weight.

2. Inertial forces will be neglected.

3. The materials can be defined as Neo-Hookean material, a suitable formu-
lation for materials undergoing large deformations [17].

4. The contact between elements is frictionless.

5. The time scale of the experiment is small enough to not consider viscous
effects.

6. Cells are attached to their substrate.

7. The geometrical model will be based upon the scheme presented in figure
2.

Figure 2: 2D scheme of the experiment for suspended (spherical) cells. The
elements are not at scale. Reproduced with permission of its original author,
Vito Conte
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2.2 Equilibrium

Given a general deformable body, the Cauchy stress tensor σ relates the traction
forces t acting over a certain point P and on a surface with normal n , as:

t(n) = σn (1)

Stresses in the reference configuration can be expressed using the Second
Piola-Kirchoff stress tensor S , obtained from the Cauchy stress tensor:

S = JF -1σF -T -1

(2)

Where F is the rate of deformation tensor.
For a general deformable body, the local spatial equilibrium equation (equi-

librium for any given point in the deformed configuration) is

∇σ + f = 0 (3)

Where σ represents the forces acting on the boundary, and f those acting
on the volume.

According to assumption 1 equation (3) becomes

∇σ = 0 (4)

2.3 Constitutive equation

Constitutive equations give the relationship between the stresses σ and the
body’s deformation. As the elastic potential Ψ represents the work done by the
stresses from the initial to the current position [11], it will be used to deriver the
constitutive equation of the material. For Neo-Hookean material the expression
is

Ψ =
µ

2
(Ic − 3)− µlnJ +

λ

2
(lnJ)2 (5)

Where λ and µ are the material’s Lamé first and second parameters respec-
tively, and J is the jacobian of the deformation gradient tensor.

The relationship between this elastic potential and the second Piola-Kirchoff
stress tensor S is given by

S = 2
∂Ψ

∂C
= µ(I −C-1) + λ(lnJ)C-1 (6)

Using equation (2) to substitute S for σ

σ =
µ

J
(FFT − I) +

λ

J
(lnJ)I (7)

This equation will be included in (4)

∇σ = ∇[
µ

J
(FFT − I) +

λ

J
(lnJ)I] = 0 (8)
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2.3.1 Analytical solution for 1D confined gel

In order to illustrate the previously shown equations, a simple version of the
problem can be solved. The next assumptions will be made.

• The gel only deforms along the Z axis

• The displacement is known for the lowest (z=0, u0 = 0) and highest (z=H,
uH = -d) layers

Derivation of the Cauchy stress As we are not considering the Poisson
effect, the displacement field and the deformation gradient tensor will have the
following expressions:

x = X +

 0
0
uz

 ; F =
∂x

∂X
=

1 0 0
0 1 0
0 0 1 + u′z

 (9)

This allows us to define J and C :

J = det(F) = 1 + u′z; C = FtF =

1 0 0
0 1 0
0 0 (1 + u′z)

2

 (10)

Being uz(z) an unknown function and u′z its first partial derivative with
respect to Z.

Considering again equation 6 and combining it with (10) we can obtain S:

S = µ

0 0 0
0 0 0
0 0 1− (1 + u′z)

-2

 + λlnJ

1 0 0
0 1 0
0 0 (1 + u′z)

-2

 =

=

λlnJ 0 0
0 λlnJ 0
0 0 µ[1− (1 + u′z)

-2] + λlnJ(1 + u′z)
-2


And with (2):

σ = (1 + u′z)-1

λlnJ 0 0
0 λlnJ 0
0 0 (1 + u′z)

2[µ[1− (1 + u′z)
-2] + λlnJ(1 + u′z)

-2]


And the stresses in the XY plane:

Szz = µ[1− (1 + u′z)
-2] + λlnJ(1 + u′z)

-2

σzz = (1 + u′z)[µ[1− (1 + u′z)
-2] + λlnJ(1 + u′z)

-2]
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Displacement function uz (z) To find uz(z), we’ll apply the next conditions:
Cauchy’s principle for ∇σ, and known displacements for uz(z):

∇σ = 0

u0 = 0

uH = −d
(11)

Applying the first condition, the following equation is obtained:

∂ σzz

∂z
=
∂(1 + u′z)

2[µ(1− 1
(1+u′

z)2
) + λ lnJ

(1+u′
z)2

]

∂z
=

= µu′′z + µ
u′′z

(1 + u′z)2
+ λ

u′′z(1− ln(1 + u′z))

(1 + u′z)2
=

= u′′z[µ(1 +
1

(1 + u′z)2
+ λ

(1− ln(1 + u′z))

(1 + u′z)2
] = 0

Therefore, the problem presents two possible solutions, either u′′z(z) = 0, or

µ(1 + 1
(1+u′z)2

+ λ (1−ln(1+u′
z))

(1+u′z)2
) = 0

First solution: Integrating u′′z = 0 with respect to Z we obtain a linear uz(z):

uz(z) = Az +B

Where A and B two constants. Applying the second and third conditions:

u0 = A · 0 +B = 0⇒ B = 0

uH = A ·H = −d⇒ A = − d

H

The displacement function uz is found. As it will be later shown, this is the
only possible solution.

uz(z) = − d

H
z

Second solution: The equation µ(1 + 1
(1+u′z)2

+ λ (1−ln(1+u′
z))

(1+u′z)2
] = 0 is an

equation of the form F (y) = 0, where y is u′z. Its solution is u’z = constant,
and then, uz is a linear function.

Multiplying by (1 + u′z)2 and dividing by µ the equation adquires the next
expression:

(1 + u′z)2 + 1 +
λ

µ
[1− ln(1 + u′z)] = 0 (12)

Expressing µ and λ in terms of the material’s Young modulus E and Poisson’s
ratio ν in (7):

(1 + u′z)2 + 1 +
2ν

1− 2ν
[1− ln(1 + u′z)] = 0 (13)
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Figure 3 shows the plot of the function for ν = 0. As it can be seen, there is no
solution for F(u’z) = (1 + u′z)2 + 1 + 2ν

1−2ν [1 − ln(1 + u′z)]. Increasing ν until
its limit value of 0.5 does not change this fact.

Figure 3: Analytical solution of equation (13)

2.4 Derivation of weak form

The equilibrium equations shown in the previous section are in their strong
form. The next step is to express them in their weak (or integral) form, in such
a way that we can extend the equilibrium to the whole body. To do so, the
principle of virtual work will be applied .

Consider the equilibrium equation in (8). Premultiplying it for a virtual
velocity δv we obtain the infinitesimal virtual work:

δw = ∇σ · δv = 0 (14)

Integrating with respect to the total volume:

δW =

∫
V

δv · ∇σ dV = 0 (15)

To open ∇σ · δv and given that σ is a symmetric tensor σT = σ we apply
the next relation for any second order tensor S and any vector v:

∇(ST · v) =S : ∇v + v · ∇S (16)

Substituting S per σ and v per δv, and reordering (16), the total work of
(15) becomes

δW =

∫
V

∇(σ · δv)− σ : ∇δv dV = 0 (17)
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Applying Gauss theorem we can separate both terms of (17) into one surface
integral and one volume integral:

δW =

∫
S

δv · σ · n dS −
∫
V

σ : ∇δv dV = 0 (18)

Reordering again, we obtain the next expression of the weak form

δW =

∫
S

n · σ · δv dS −
∫
V

∇δ v : σ dV = 0 (19)

We can express the gradient of the virtual velocity ∇δv as the symmetric
virtual rate of deformation δd

δW =

∫
S

n · σ · δv dS −
∫
V

δ d : σ dV = 0 (20)

2.5 Finite Element Discretisation

The last step to obtain a system of equations that can be solved is the dis-
cretization of the solids into finite elements.

Considering Ni, bilinear interpolation functions acting on any node i:

δv = Ni(ξ)δvi (21)

Combining (21) with the following relation δd : σ = {δd}T : {σ}, we can
obtain:

{d} = Baδva (22)

Where the tensor Ba is defined as:

Ba =


∂xNa 0 0

0 ∂yNa 0
0 0 ∂zNa

∂xNa ∂yNa 0
∂xNa 0 ∂zNa

0 ∂yNa ∂zNa

 (23)

We use this expression to build the final system of equations, considering
the nodal contributions A for every term. This way, the expression of (20)
becomes:

g = A ga = A
∫
V

BT
a {σ} dV (24)

This is the basic system of equations that will be solved using Newton-
Raphson method to find the deformed configuration and stresses in our problem.
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2.6 Contact

Having a look at the experiment in the previous chapter, the studied cells are
located between two different materials, the gel above it and the glass under it.
As the experiment is carried out, the gel will envelop the cell, compressing it
by direct contact. In order to model the interactions between elements, several
methods have been developed. For the problem presented in this document,
the considered method is the Master-slave. This approach is quite different
from the traditional such as the Penalty method or the Augmented Lagrangian
method. To illustrate the difference and show the master slave method, they
will be briefly explained and compared.

Contact overview

The general idea is the modelling of the contact through a elastic-potential (or
energy)-like function representing the constraints associated to contact between
bodies (usually, impenetrability). Once contact is detected, the function pe-
nalises those configurations who violate the considered constraints, increasing
the total elastic potential. Usually, this means that those solutions in which one
body penetrates the other will get discarded, as they imply the appearance of
high forces and the increase of the total energy.

A formulation of the extended elastic potential can be seen in its uncon-
strained form as:

min (δW +

∫
Γ

f(X, q) dΓ ) (25)

Where f(X, q) is the penalty function involving contact. It can be observed
that the added term depends on the final configuration (X) and other param-
eters that may be taken into consideration (q).

In order for the contact to be detected, the slave nodes coordinates are
parametrised with respect to the master’s surface. Consider in general two
bodies, master and slave. To evaluate if there is contact the coordinates of
the slave’s nodes are projected into the master’s surface through a mapping
function. For every node i, this takes the following expression:

xξi = ϕ(ξi) (26)

Where ξi is the parametrized coordinate of the node i at the master’s surface,
and ϕ(ξi) is the mapping function that projects the slave nodes into the master’s
surface. As contact happens at the boundary (surface for 3D bodies, and lines
for 2D bodies), this projection of the slave coordinates has 1 degree of freedom
less than the nodes coordinates. If we consider the normal distance between
nodes:

Φ(xi) = (xi − xξi) · nξi (27)

nξi is the normal distance in the master’s surface evaluated at point xi(ξ).
When Φ(xi) ≤ 0, contact is detected between node i and the master’s surface.
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Figure 4: Scheme of the elements involved in the contact evaluation. Adapted
from J. J. Muñoz [14]

2.6.1 The penalty method

The penalty method gets its name due to the inclusion of a penalty parameter
p in its formulation. The contact function is

f(dN , p) =
p

2
〈−dN 〉2 (28)

Where dN is the normal distance between nodes in contact, and 〈−dN 〉2
makes use of the Macaulay bracket, meaning that 〈−dN 〉 = −dN for dN ≥
0, and 〈−dN 〉 = 0 otherwise. This way, if there is no contact between nodes
(dN > 0), the total energy function does not get altered. This function, although
simple, has a disadvantage given by its non-differentiability in dN = 0. Given
that the final solution will be computed through the use of Newton-Raphson
method, this fact could lead to convergence problems.

It can be inferred from (28) that the accuracy of the solution is penalty-
parameter dependent. If there is contact between nodes and p is set very high,
the optimal solution would be that one with close to zero distances, as dN would
have to become very low to minimize its contribution to the total elastic energy
of the problem. From this point of view, and being the penalty parameter
of arbitrary value, it seems like the best solution is the highest possible. But
increasing its value worsens the condition number of the stiffness matrix of our
problem, losing accuracy due to convergence problems. If, on the contrary, the
chosen value is very low to ensure convergence, we could find solutions that
imply some penetration between objects, as the added potential would not be
high enough to discard such solution. An in-between value of p must then be
found.

14



2.6.2 The augmented Lagrangian method

The Augmented Lagrangian method was developed to overcome the problems
found with the penalty parameter method. In this case, contact is modelled ex-
tending the Lagrangian of the elastic potential to include some new multipliers.
The energy function included is

f(dNp, λN ) =
1

2p
〈−(λN + pdN )〉2 (29)

Deriving (29) with respect to dN we can obtain the values of the traction in the
contact points:

tN = −〈−(λN + pdN )〉 (30)

In order to obtain the λN that leads to the optimal solution, its first approxima-
tion is λN = 0. This yields an approximate solution and thus, an approximation
of tN that can be used to compute a new value of λN . Iterating this way (aug-
menting the Lagrangian λN ) the optimal solution is found.

In comparison with the penalty method, this approach shows two important
advantages: The solution converges towards the optimal solution, so p can be
chosen smaller. Also, increasing the value of p between iterations speeds the
process, obtaining super-linear convergence. The drawbacks of this methods are,
in first place, the increase in the number of variables and degrees of freedom
of the problem and its subsequent slowing; and in second place, there use of a
non-differentially function (the Macaulay bracket) that can lead to convergence
problems when the Newton-Raphson method is used.

2.6.3 Master-slave method

The Master-slave method, has been developed to transform the contact con-
strained problem into one unconstrained problem. Although at first the prob-
lem is expressed like in the augmented Lagrangian method, using a projec-
tion method known as ”null-space method” the Lagrangian computations are
avoided, creating instead a projection matrix that uses the parametrization of
the slave nodesN(ϕ(ξ)) Taking into account some of its properties, the solution
is given by the following system of non-linear equations:

NT(ϕ(ξ)) · ∇Ψ(x) = 0 (31)

For the null-space method to work efficiently, the master’s surface must be
smooth enough to ensure C1 and G1 continuity. This is achieved with the use
of cubic B-Splines for those nodes that can be in contact, as the traditional
interpolating functions do not provide these requirements. For simplicity rea-
sons, the cubic B-Splines interpolation is usually extended to the whole master’s
body.

After solving (31) with Newton-Raphson method, the final configuration
for every node is found. The advantages of this method in comparison with
the augmented Lagrangian method are several. Firstly, there is no need to

15



compute Lagrangian multipliers. Secondly, the parametrization of the slave
nodes is included in the operator N , reducing the number of degrees of freedom
of the final system of equations. Finally, in the actual computation of (31),
the solutions are calculated for those nodes in contact, reducing the number of
equations.

However, these advantages have a cost. A C1, G1 interpolation function
must be taking into account for the master’s nodes, and the original Lagrangian
problem must be modified to obtain the final system of equations, adding an
extra step to the process.

2.7 Incompressibility

Rubber-like materials are normally considered incompressible. Although it
could have been included in the definition of the strain energy density function
Ψ using a Neo-Hookean incompressible material, for instance, the solver used
in the simulations is configured to work with compressible materials, adding an
incompressibility routine when required. This approach also allows the model
to consider incompressibility for selected areas instead of the whole body. The
method used in our solution is the already explained penalty method. The ex-
pression of the functional to be minimised is adapted from V. Conte, J.J. Muñoz
and M. Miodownik [15], who considered an extra term involving internal pres-
sure. In this case is

δw +
p

2
(V –V0)2 (32)

With V the current volume and V0 the initial volume. This way, if the
penalty parameter p is set sufficiently high, the final value of V will have to be
very close to the original volume V0. To compute the volume at each iteration,
the divergence theorem is applied:

V =

∫
V

dV =

∫
V

1

3
∇(r) dv =

1

3

∫
S

r · n dS (33)

With r the position vector for boundary S, and n the normal vector of the
volume boundary.

2.8 2D model

The FEM geometry and mesh of the experiment was built using GiD software
(10). According to its web page, GiD is ”a universal, adaptive and user-friendly
pre and post processor for numerical simulations in science and engineering”. It
allows to define the geometry of the model, and generate its mesh. Coupling the
GiD model with a particular problem type, the different materials and conditions
can be introduced to generate the final file that the solver needs.
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2.8.1 Geometry

The model was built aiming to simulate the experimental setup over one single
cell, instead of the whole culture. Considering every solid as homogeneous,
cylindrical symmetry can be applied and work with a 2D problem. The elements
included are the cell, the gel slide and the glass slide. As the size of the model can
be modified later, every dimension is related to the cell’s diameters. A general
view on the model final geometry can be observed in figure 5, representing the
meshed model. It can be observed that the relative size of the modelled gel
with respect to the cell is huge. In the real experiment, the gel is around 100
times higher and 1 million times wider than cells. In our geometry, the gel is
big enough to reproduce the effects of an infinite gel, but small enough to be
efficiently modelled.

• The attached cell is modelled like a solid semicircle of 1 unit of diameter.

• The gel is model as rectangle of 100 units wide per 39 units high.

• The glass slide was represented as a rigid line with 120 units of length.

2.8.2 Mesh

The geometrical model was meshed with quadratic 9 node quadrilaterals, a re-
quirement for available implementation of contact with Master-Slave. In this
case, the gel was considered the master while the cell was the slave. The shape of
the elements are quadrilaterals for the own nature of the modelled, as triangular
elements can give problem in terms of non-deformability. Because there were
no apparent restrictions in terms of mesh size, it was meshed with a fine dis-
cretisation. Figure 5 shows the final mesh, along with some information about
its size. Figure 6 shows a close up of the meshed cell, as the model size makes
it impossible to see the cell in detail in the previously commented figure.

17



Figure 5: Meshed 2d model. The final model has 16615 nodes and 4151
quadratic elements. The big rectangle represents the gel, the bottom line the
glass slide, and the black dots in the middle of them is the cell.

Figure 6: Closeup of meshed cell. The cell is built using 300 elements, repre-
senting only a 7.22% of the total mesh.
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2.9 Simulations

2.9.1 Solver routine

The solver used in the simulations was Embryo, a FEM solver developed by UPC
professor Jose Javier Muñoz, specially design for biophysical and biomechanical
analysis. It was coupled with MatLab(2016b version, The Mathworks Inc) to
generate an automatic iterative routine to start the computations and narrow
the search for the cell’s stiffness. The approach follows the bisection method
used to determine roots of a function. The function (in this case the model)
is evaluated at the desired points (cell’s stiffness). If a root (calculated final
diameter = searched final diameter) is found, the process ends. If it is between
two considered points, the next search interval takes those as extreme points
and starts again, evaluating the function inside the updated search interval.

The files involved in this process are the data files, and the results files. The
data files contain information about the solving process (like number of steps,
tolerance of the results or integration method) and information about the model
(material information, nodes coordinates and connectivity matrix, constraints
and conditions imposed). The result files contain the displacements and stresses
per node and step.

For any gel stiffness the routine followed is the same:

1. The geometrical data of the generic model is scaled according to the initial
cell’s size. The gel material properties are also changed to that of the test.

2. The modified data file is copied as many times as cell’s stiffness are going
to be tried in this step. For each one of them, the cell’s stiffness is changed
according to the tested value.

3. FEM computations are performed and the final diameters are read.

• If the final diameter is within tolerance, the search for this diameter
ends

4. The search interval for cell’s stiffness is updated with the values the ob-
jective diameter is in. Go back to 2

Figure 7 shows an example scheme of this process for any given diameter
and gel stiffness and 3 different cell’s stiffness per iteration.
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Figure 7: Flux diagram of the solver routine, set for the minimum number of
cell’s stiffness. In this case, we only perform 1 new analysis per iteration, for
the stiffness in the middle of the updated interval [Ec1 Ec3]

2.9.2 Configuration

The model was simulated with 7 different values of gel stiffness: 1 kPa, 5 kPa,
10 kPa, 15 kPa, 20 kPa, 25 kPa and 30 kPa.

The 1 kPa simulation served as a reference to calculate the initial cell’s
stiffness. This value can be used to build Deformation - Gel stiffness curves for
the preliminary value, and check if that stiffness remains constant. The rest of
the tests supplied enough data to create a Deformation - Cell stiffness chart to
provide fast estimation of the cell’s stiffness. Having 6 different values of gel
stiffness allows us to map the space Gel stiffness - Deformation - Cell stiffness
with enough precision.

Considering the initial diameter, the expression of the deformation was done
using a parameter λ, such as Df = λD0. In order to provide an example of
the solutions for a constant value of cell stiffness, the final diameter included in
the reference simulation does not correspond to any real cell. Nevertheless, the
value of the calcualted in that simulation can be used to establish the trend.
For this project, it was λ = 1.25, meaning that the reference stiffness was that
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one corresponding to a final diameter 25% bigger than the original. The values
of λ used in the other simulations were 1.500, 1.625, 1.750, 1.875 and 2.000.

The input data left to define is the penalty parameter p and the Poisson’s
ratio ν. After some preliminary simulations with p ranging from 0.0001 to 1000,
it was observed that results weren’t particularly affected by p . For convergence
reasons, it was set to 0.0001. Although the first version of the model considered
ν = 0.3, the cells were not able to deform as much as it was expected. The final
chosen value of ν for all materials was 0.49.
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3 Results

3.1 Convergence

Some tested values of cell’s stiffness led to convergence problems. Nevertheless,
the general trend of the results was not affected by this fact, allowing us to
predict the deformation for every simulated gel.

3.2 Model behaviour

GiD postprocessor was used to check if the model behaved properly. Figure
8 shows the initial and the final configuration of the whole model. When the
simulation ends, the gel surrounds and squeezes the cell under it. As we move
far from the cell’s position, the gel eventually touches the glass slide (the rigid
line in the model). In figure 9 we can see the vertical displacement for a gel of
5 kPa under a cell of (approximately) 1.5 kPa. The area of effect of the cell is
concentrated in the contact zone. As we move upwards, the influence becomes
smaller. At the top layers is almost unnoticed.

Figure 8: Comparison between initial and final configuration
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Figure 9: Vertical deformation for a gel of 5 kPa over a cell of 1.5 kPa

Figure 10 shows a close up on the cell. We can see that the gel does not
cover all the external surface, leaving a gap. Eventually, and because the gel
was set sufficiently wide, the gel touches the glass slide.

Figure 10: Close up picture of the deformed configuration

3.3 Cell final diameter vs gel stiffness

The different tests showed similar stiffness - deformation trends for every value
of gel’s stiffness. They can be found in figure 11. Figure 12 shows the predicted
final diameters for the standard stiffness.

Figure 11 can be used as an abacus for experimentalists to find differences
in the compliance between healthy cells and their diseased counterpart, such as
normal and cancer cells for instance. Using the data extracted from experiment-
ing with the dynamic cell confiner, they could easily extract an approximation
of the stiffness. For example, if a 30 kPa test was performed over attached cells
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and their final horizontal diameter was 80% greater than the initial one, looking
at the chart would yield a value of around 2.1 kPa for its stiffness.

Figure 11: Relationship between cell’s stiffness (Pa) and deformation (adimen-
sional value) for every simulated gel.

It can be observed, that for a given value of cell’s stiffness, the higher the
stiffness of the gel, the higher the deformation of the cell. At the same time this
means that in order to achieve the same deformations in cells, the cell’s stiffness
has to increase as the gel stiffness increases. The reason is the share of the total
pressure imposed over the gel. If both gel and cell have similar stiffness, the
deformation is more equally divided between them. But, as the gel becomes
stiffer, it starts to behave more and more like a rigid body with respect to the
cell. The cell experiences more pressure, and thus, is more deformed.

GiD allows us to observe this phenomenon in our simulations. Figure 13
provides a comparison between different gel stiffness. Looking at the results
for a constant value of cell’s stiffness, we can see how cells get more and more
flattened in their contact surface, being more squeezed and thus achieving higher
deformations.
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Figure 12: Prediction of cell’s final diameters (adimensional values) under dif-
ferent gel stiffness (Pa) for a constant value of cell’s stiffness. The 1133.3 Pa
value was the stiffness retrieved from the reference simulation
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Figure 13: Deformed configuration for cells of 1.5 kPa with gels of 5, 20 and 30
kPa respectively. The colors represent the lateral displacements of the nodes.
We can see how, as gel stiffness increases, cells are more deformed.
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4 Discussion and further steps

4.1 Discussion

The objectives of the project were successfully achieved. The modelled cells be-
haved as it was expected, and the experiment could be reproduced. The results
allowed us to map the Deformation - Gel stiffness - Cell stiffness space, and
build charts for fast identification of cell parameters. At the same time, this
charts can be used to predict the cell’s response under different gel stiffness, and
see if there is some change in their material parameters over time, a useful tool
for disease research. If the predicted deformation is progressively underestimat-
ing the experimental data, this would mean that the cell is becoming softer as
the environment (in this case, the gel) becomes stiffer. If it overestimates the
experimental data, the cell is adapting itself, and hardening. From a biological
point of view, this could help us to study two phenomena:

• Changes in the stiffness of cells affect their deformability. Several research
have concluded that cancer cells are softer that healthy cells [1,2,4]. This
softening would make it easier for them to migrate throughout the body,
expanding the cancer and producing metastasis.

• In order to balance changes produced in their environment, cells would
have to modify their stiffness accordingly. As cancer develops, the tissue
surrounding the tumour becomes stiffer. In this direction, breast cancer
cells (2) were found to adapt better than healthy cells under very stiff
environments.

In conclusion, the method can be used to study the evolution of cell’s parame-
ters, as well as study the differences between different sets of cells, like cancerous
and healthy cells, for instance. At the same time, once they are fully character-
ized with this method, it would allow researchers to classify them according to
the deformation.

About the accuracy of the results, it must be said that the obtained results
are as accurate as our assumptions. Discrepancies between the real stiffness and
the calculated values may come from:

• The definition of the material: Although Neo-Hookean material is com-
monly used for modelling rubber-like materials, there are other possible
choices for materials that undergo very large deformations, like Monley-
Rivin or Ogden [18].

• Spatial distribution of cellular structures: The calculated stiffness is not
the stiffness of cellular tissue, but the stiffness they would have if they
were isotropic, homogeneous solids. They represent, under the assumed
circumstances, apparent macroscopic values.

• Viscosity: The immediate response of the cell during the experiment was
the basis on the elastic modelling of the cell. If the time-scale of the viscous

27



behavior was small enough to influence the results, a more complex model
would be necessary.

4.2 Further steps

The model presented in this thesis is simple. It can be considered as a first
version, and use the obtained results to improve it and develop a more complex
model that reproduces better cellular mechanics. Below, is a list of proposed
changes:

• Modelling of suspended cells: The only change in the current model would
be the cell geometry, which would be spherical (or a complete circle, given
the 2 dimensions of the model)

• Extension of model from 2D homogeneous semicircle to 3D homogeneous
semi-sphere: Maintaining the assumptions of homogeneity and isotropy,
the 3D model is perhaps the obvious evolution. It would also allow us to
evaluate the accuracy of the 2D assumption comparing the results between
both models

• Change the cell material definition to Ogden material: It was observed
that the cell was very deformed at the end of the simulations. Although
Neo-Hookean materials, as assumed, are generally suitable for rubber ma-
terials undergoing large deformations, the Ogden material was developed
for rubber materials at even higher strains [16]. For incompressible mate-
rials [17], the strain energy density is

Ψ =

N∑
p=1

µp
αp

(λ
αp

1 + λ
αp

2 + λ
αp

3 − 3) (34)

Where N, µp and αp are material parameters. To find these values it is
necessary to perform assays and fit the data through statistical analysis.

• Change of model from elastic solid to visco-elastic shell: This new model
would consider the cell interior as an incompressible viscous fluid, and the
actin cortex and the membrane as an elastic shell. With respect to the vis-
cosity behaviour, the stress defined in the Numerical Model section should
be modified to add an extra term, dependent on the rate of deformation
F [12]. Also, to model it properly, it is required data about the thickness
of the external layer and about the temporal evolution of cell’s response,
so as to define the geometry and the viscosity parameter respectively.
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