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Abstract

After a brief overview of the task-based OmpSs programming model and the related literature, this document
aims to show the process of extending the current infrastructure of this model in order to support reductions.
The �rst step towards supporting reductions inOmpSs was the design and implementation of the concurrent
clause, used to annotate tasks that access concurrently for updating some shared data, and thus providing
a user-driven mechanism to compute reductions. Then, the underlying idea behind this mechanism was
extended into a �rst implementation of the reduction clause based on a task privatization strategy. Next,
a di�erent approach for the clause based on task-and-CPU privatization was developed. Finally, both
strategies were evaluated for a set of di�erent architectures by subjecting them to the n-queens, dot product
and unbalanced tree search benchmarks.

Resum

Després d'una breu descripció del model de programació basat en tasques OmpSs i altres estudis relacionats,
aquest document té per objectiu mostrar el procés d'extensió de la infraestructura d'aquest model per tal
d'oferir suport a les reduccions. El primer pas en aquesta direcció va ser el disseny i implementació de
la clàusula concurrent, utilitzada per anotar tasques que accedeixen concurrentment a certes dades per
actualitzar-les i, per tant, proveint un mecanisme a nivell d'usuari per poder computar reduccions. A con-
tinuació, la idea subjacent rere aquest mecanisme es va estendre cap a una primera implementació de la
clàusula reduction basada en una estratègia de privatització per tasca. Més endavant es va considerar un
enfocament diferent pel desenvolupament de la clàusula basat en una privatització per tasca i CPU. Final-
ment, ambdues estratègies es van comparar per un conjunt d'arquitectures diverses per mitjà de sotmetre-les
a un joc de proves format per els benchmarks n-queens, dot product i unbalanced tree search.

Resumen

Después de una breve descripción del modelo de programación basado en tareas OmpSs y otros estudios
relacionados, este documento tiene por objeto mostrar el proceso de extensión de la infraestructura de
este modelo con tal de ofrecer soporte a las reducciones. El primer paso en ésta dirección fue el diseño y
implementación de la cláusula concurrent, utilizada para anotar tareas que acceden concurrentemente a
ciertos datos para actualizarlos y, por lo tanto, proveyendo un mecanismo a nivel de usuario para poder
computar reducciones. A continuación, la idea subyacente a este mecanismo se extendió hacia una primera
implementación de la cláusula reduction, basada en una estrategia de privatización por tarea. Más adelante
se consideró un enfoque distinto para el desarrollo de la cláusula basado en una privatización por tarea y
CPU. Finalmente, ambas estrategias se compararon por un conjunto de arquitecturas diversas por medio
de someterlas a un juego de pruebas formado por los benchmarks n-queens, dot product y unbalanced tree

search.

ii



Contents

1 Introduction 1
1.1 OmpSs programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Mercurium compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Nanos6 runtime library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 This project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Problem description and goals 5
2.1 Project objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Design or implementation errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Unconnected errors that a�ect our implementation . . . . . . . . . . . . . . . . . . . . 7
2.3.3 Unavailability of machines for testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Contextualization 9
3.1 Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Main developer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Directors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 Bene�ciaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 OpenMP reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Intel Cilk Plus reducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Methodology 12
4.1 Work method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Tracking tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Validation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Planning 13
5.1 Task speci�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1.1 Project management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1.2 Study and familiarization with the model . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1.3 Analysis and design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.4 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.5 Final stage and defense preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2 Task duration estimation and assigned roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Dependences between tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Deviations from planning and action plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.5.1 Hardware resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5.2 Software resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5.3 Human resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Budget 20
6.1 Costs speci�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.1.1 Software costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1.2 Hardware costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1.3 Human resources costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1.4 Indirect costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1.5 Taxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



6.2 Deviations from budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3 Expense control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Project sustainability 24
7.1 Economic aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2 Social aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.3 Environmental aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8 Project base 26
8.1 Mercurium compiler internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.2 Nanos6 runtime library internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

9 Towards supporting reductions in OmpSs 30
9.1 Implementing the concurrent clause in the OmpSs infrastructure . . . . . . . . . . . . . . . 30

9.1.1 Introduction to the concurrent clause in OmpSs . . . . . . . . . . . . . . . . . . . . . 30
9.1.1.1 Manual reductions using the concurrent clause . . . . . . . . . . . . . . . . 32

9.1.2 Implementation of the concurrent clause . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.1.2.1 Internal details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9.2 Implementing the reduction clause in the OmpSs infrastructure . . . . . . . . . . . . . . . . 35
9.2.1 Introduction to the reduction clause in OmpSs . . . . . . . . . . . . . . . . . . . . . 35

9.2.1.1 Supported operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.2.2 First implementation of the reduction clause: Task privatization strategy . . . . . . 37

9.2.2.1 Internal details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.2.3 Second implementation of the reduction clause: CPU-and-task privatization strategy 39

9.2.3.1 Internal details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.2.3.2 Debugging the implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10 Evaluation and results 47
10.1 Benchmark methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.2 Machines description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

10.2.1 MareNostrum III supercomputer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.2.2 KNL cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
10.2.3 Power8 cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.2.4 ThunderX cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10.3 Benchmarks description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.3.1 N-queens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.3.2 Unbalanced tree search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.3.3 Dot product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

10.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.4.1 Results in MareNostrum III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.4.2 Results in Knights Landing (KNL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.4.3 Results in Power8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.4.4 Results in ThunderX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

11 Conclusions 62

12 Future work 63

13 Project revision 64
13.1 Task speci�cation revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
13.2 Obstacles revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
13.3 Work-plan revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
13.4 Costs revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.5 Methodology revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.6 Applicable laws and regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

iv



14 References 68

A Additional results 70

B Machine node topologies 71

v



List of Figures

1 Task dependences in OmpSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Reduction pattern examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Current dependence graph for reduction pattern in the current OmpSs infrastructure . . . . . 6
4 Desired dependence graph for reduction pattern in OmpSs infrastructure . . . . . . . . . . . . 6
5 Gantt chart, showing dependences and ordering between tasks . . . . . . . . . . . . . . . . . . 17
6 DataAccessSequence example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7 Data access sequence example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8 Nested data access sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9 Concurrent accesses seen as a cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
10 Concurrent access example graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11 Early beginning optimization: task-privatization . . . . . . . . . . . . . . . . . . . . . . . . . 40
12 Early beginning optimization: task-and-cpu privatization . . . . . . . . . . . . . . . . . . . . 40
13 Reduction slots memory space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
14 Reduction slots management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
15 Reduction slots assignation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
16 Reduction slots freeing process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
17 Reduction slots structure with multiple blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
18 Nanos6 graph output example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
19 Nanos6 verbose output example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
20 One of the 92 solutions for the 8 queens problem . . . . . . . . . . . . . . . . . . . . . . . . . 50
21 Unbalanced n-queens solution tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
22 Stochastically branched unbalanced tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
23 Dot product tasking scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
24 N-queens OmpSs in MareNostrum III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
25 unbalanced tree search (UTS) OmpSs in MareNostrum III . . . . . . . . . . . . . . . . . . . 55
26 Dot product OmpSs in MareNostrum III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
27 UTS granularity study in MareNostrum III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
28 Execution trace of UTS in MareNostrum III with granularity 10 . . . . . . . . . . . . . . . . 56
29 Execution trace of UTS in MareNostrum III with granularity 100 . . . . . . . . . . . . . . . . 56
30 OmpSs vs. OpenMP in MareNostrum III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
31 N-queens OmpSs in KNL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
32 Dot product OmpSs in KNL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
33 UTS OmpSs in KNL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
34 OmpSs vs. OpenMP in KNL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
35 N-queens OmpSs in Power8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
36 Dot product OmpSs in Power8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
37 UTS OmpSs in Power8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
38 OmpSs vs. OpenMP in Power8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
39 N-queens OmpSs in ThunderX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
40 Dot product OmpSs in ThunderX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
41 UTS OmpSs in ThunderX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
42 OmpSs vs. OpenMP in ThunderX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
43 Revised Gantt chart, showing dependences and ordering between tasks . . . . . . . . . . . . . 66
44 UTS granularity study in KNL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
45 UTS granularity study in Power8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
46 UTS granularity study in ThunderX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
47 KNL node topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
48 Power8 node topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
49 ThunderX node topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
50 MareNostrum III node topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vi



List of Tables

1 Task duration estimation and roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Hardware costs estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Human resources costs estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Taxes estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 Project costs summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Sustainability matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7 Supported reduction operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8 Used Nanos6 execution modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9 MareNostrum III node summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
10 KNL node summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
11 Power8 node summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
12 ThunderX node summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
13 Human resources additional costs estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Listings

1 Data �ow example in OmpSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Nested dependences in OmpSs example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3 Dependences in OpenMP example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4 Reductions in the current OmpSs infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 OpenMP reduction clause example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6 OpenMP reduction example with tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7 Cilk Plus example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8 Cilk Plus reduction example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
9 Example sequence of tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
10 Concurrent access example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11 Manual reduction using concurrent clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12 Manual reduction using concurrent clause with privatization . . . . . . . . . . . . . . . . . . 33
13 OmpSs reduction clause example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
14 taskwait within reduction task example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
15 Task privatization: original code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
16 Task privatization: transformed code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
17 Nesting in task privatization: original code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
18 Nesting in task privatization: transformed code . . . . . . . . . . . . . . . . . . . . . . . . . . 38
19 Privatization moved into the args_block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
20 Central Processing Unit (CPU)-and-task privatization: original code . . . . . . . . . . . . . . 41
21 CPU-and-task privatization: transformed code . . . . . . . . . . . . . . . . . . . . . . . . . . 41
22 Nested reduction with taskwait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
23 Nested reduction without taskwait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



Acronyms

API Application Programming Interface. 1, 3, 6, 34, 37, 39�41, 44

BOE Boletín O�cial del Estado. 20

BSC-CNS Barcelona Supercomputing Center - Centro Nacional de Supercomputación. 1, 3, 18, 21, 22, 64,
67

CCPI Cavium Coherent Processor Interconnect. 50

CPU Central Processing Unit. vii, 1, 30, 39�44, 62, 65

DDR4 Double Data Rate type 4 Synchronous Dynamic Random-Access Memory (DRAM). 48

DIMM Dual-Inline Memory Modules. 48

DRAM Dynamic Random-Access Memory. viii, 48

ECTS European Credit Transfer and Accumulation System. 13

FIB Barcelona Schools of Informatics. 1, 3, 13

FPGA Field-Programmable Gate Array. 1

GCC GNU Not Unix (GNU) Compiler Collection. 18, 49, 50, 58, 60

GEP Project Management Course. 13

GNU GNU Not Unix. viii, 18, 19, 67

GNU GPLv3 GNU General Public License version 3. 67

GPFS General Parallel File System. 64

GPU Graphics Processor Unit. 1

HPC High-Performance Computing. i, 1, 20

KNL Knights Landing. iv, vi, vii, 48, 49, 56�58, 60, 70, 72

LSF Platform Load Sharing Facility. 47

MCDRAM Multi-Channel DRAM. 48

MIC Many Integrated Core. 48

NUMA Non-Uniform Memory Access. 42, 47, 49, 54, 56, 60

SHA-1 Secure Hash Algorithm 1. 53, 70

SLURM Simple Linux Utility for Resource Management. 47

SoC System on Chip. 49, 50

SSH Secure SHell. 14, 19

UDR User-de�ned Reduction. 40, 62, 63

UPC Polytechnic University of Catalonia. 1

UTS unbalanced tree search. vi, 52, 54�61, 70, 71

VPN Virtual Private Network. 14

viii



1 Introduction

Today, multiprocessors are present in most modern computer systems. From the most powerful supercom-
puters, where good performance is imperative, to embedded systems like mobile phones, designed for purely
entertainment, having more than one CPU has become a very common trait.

The increase in multiprocessor systems has entailed an equally-proportionate rise in the amount of soft-
ware willing to take advantage of them, by means of parallel programming. When it comes to HPC and
scienti�c research, the need to create optimized software for those architectures is even greater. Moreover,
if these multiprocessor systems are enhanced by including powerful accelerators like graphic cards, copro-
cessors or Field-Programmable Gate Arrays (FPGAs), the performance can be vastly increased in many
situations.

On the downside, programming for those heterogeneous systems can sometimes be tiresome and complicated.
It requires not only precise knowledge of the system but also having to produce speci�c code for each of
the devices that are to be supported, having to maintain many di�erent versions of the code and therefore
having to develop, test and optimize every new feature for all of them.

Having these limitations in mind, some programming models like OmpSs were created to take advantage
of the bene�ts these heterogeneous systems o�er while providing the developer user-friendly abstractions to
deal with them.

1.1 OmpSs programming model

OmpSs is a task-based programming model composed of a set of directives and library routines that can be
used in conjunction with a high-level programming language in order to develop concurrent applications.7

This model is being actively developed by the Programming Models group of the Computer Sciences depart-
ment of the BSC-CNS.

The goal of OmpSs is to provide a productive environment to develop applications for modern HPC systems.
In particular, OmpSs aims to extend OpenMP with new features related to asynchronous parallelism and
device heterogeneity (like Graphics Processor Units (GPUs)).7,9 OpenMP is a well-known programming
model for shared memory parallel programming, almost a standard for the such paradigm in the world of
HPC. OpenMP consists of a set of compiler directives and library routines that implement a multi-platform
Application Programming Interface (API) for C/C++ and Fortran.3

Some of the contributions of the OmpSs programming model that are already part of the OpenMP standard
include:

• Task dependences (included in OpenMP 4.0)

• OpenMP SIMD extensions (included in OpenMP 4.0)

• Task priorities (included in OpenMP 4.5)

Tasks are the mechanism used to provide asynchronous parallelism in OmpSs and can be de�ned as its
elementary unit of work: A task represents a speci�c instance of an executable code. The users specify tasks
in their source code by using the pragma oss directive. In addition, they are encouraged to annotate what
data is going to be accessed by a task and how these accesses will be by using the in, out and inout clauses
(standing for input, output and input/output respectively). This information can be used at run-time to
determine the dependences between those tasks and schedule their execution accordingly to avoid data races.
This concept is known as data �ow.

In the code listing 1 we can see an example of a taski�ed code in OmpSs where the data accesses have been
annotated. The corresponding generated dependence graph can be seen in �gure 1. For our example, tasks
T2 and T3 could run in parallel provided enough resources are available.
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The taskwait clause is used in OmpSs to specify a task synchronization point, every created task up to
that point needs to �nish before being able to continue with the execution.

Listing 1: Data �ow example in OmpSs

int a, b = 0;
int tmp;

#pragma oss task inout(a, b) label(T1)
{

b += compute_value(...);
a += compute_value(...);

}

#pragma oss task in(a) out(tmp) label(T2)
tmp = a + compute_value(...);

#pragma oss task in(a) label(T3)
print(a);

#pragma oss task in(b, tmp) label(T4)
print(b*tmp);

#pragma oss task inout(a, b) label(T5)
{

b *= compute_value(...);
a *= compute_value(...);

}

#pragma oss taskwait

T1

T2T3

T4

T5

Taskwait

Figure 1: Task dependences in OmpSs

One of the main di�erences between dependences in OmpSs and OpenMP is that the OmpSs speci�ca-
tion requires keeping track of the dependences between child tasks while the OpenMP speci�cations does
not.

To illustrate this point consider the example in the code listing 2. The expected value of the a variable after
the program is executed is 1.

Keeping in mind the di�erences between both models, in order to generate an equivalent code in OpenMP a
synchronization point (i.e. taskwait or taskgroup) is required inside the task labeled W1. The reason of
this necessary taskwait is that the OpenMP speci�cation does not specify that any dependence should be
registered between the tasks W2 and R for being in a di�erent task nesting level. The complete equivalent
code for the OpenMP model can be seen in the code list 3.

Listing 2: Nested dependences in OmpSs exam-
ple

int a = 0;

#pragma oss task inout(a) label(W1)
{

#pragma oss task inout(a) label(W2)
a++;

}

#pragma oss task in(a) label(R)
printf("A: %d\n", a);

#pragma oss taskwait

Listing 3: Dependences in OpenMP example

int a = 0;

#pragma omp task depend(inout:a) shared(a)
{

#pragma omp task shared(a)
a++;

#pragma omp taskwait
}

#pragma omp task depend(inout:a) shared(a)
printf("A: %d\n", a);

#pragma omp taskwait
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The reference implementation of the OmpSs speci�cation developed at BSC-CNS is composed of the Mer-

curium compiler and the Nanos6 runtime library.

1.1.1 Mercurium compiler

The Mercurium compiler is a source-to-source compiler developed by the Programming Models group of the
Computer Sciences department of the BSC-CNS for C, C++ and Fortran.8

Mercurium can be used to transform the OmpSs annotations included in the input source code into standard
C, C++ and Fortran: new routines and calls to a runtime library. Then, it can handle the control to the
native compiler so it is possible to generate the �nal executable binary.

While its main task is to perform the previous transformation, it is also capable of detecting and applying
some compiler optimizations, resulting in a more e�cient code.

1.1.2 Nanos6 runtime library

Nanos6 is the name of the reference library that provides runtime support for the OmpSs programming
model. It is the software piece responsible for implementing the API calls de�ned by the model standard.
It keeps track of the created tasks, computes data dependences between them and provides a threading
paradigm.

A range of operation modes exists to be able to tune the runtime execution. In particular, we can �nd
instrumentation modes that register the program activity during its execution and generate traces for later
analysis. Those traces can be very helpful to reason about the correctness of the code and for performance
evaluation.

1.2 This project

The project described in this document corresponds to a Bachelor's thesis of the Informatics Engineering de-
gree, Computer Engineering specialization, by the FIB developed in collaboration with the BSC-CNS.

This project is entirely contained within the OmpSs project and there resides its complete utility. As a
result, it shares with it the �nal goal of providing a user-friendly environment for the development of high-
performance parallel applications.

In particular, the aim of this project is to extend the OmpSs infrastructure with a new feature: Task
reductions. Speci�cally, the work will be centered in scalar values, leaving reductions on arrays and other
structures for future research.

In order to provide a complete implementation of task reductions for scalars, both the Mercurium compiler
and the Nanos runtime library will need to be extended.

It is worth pointing out that this project will be extending the next release of the Nanos runtime, code-named
Nanos6 . Nanos6 has been redesigned and written completely from scratch, thus having no other relation
with the current production version of Nanos than its function.

In short, the work of the project can be divided into four di�erent parts: The �rst one is basically extending
the OmpSs infrastructure from a theoretical point of view. The second and third sections focus on imple-
menting task reductions on scalars for both the Mercurium compiler and the Nanos6 runtime. Finally, the
last section presents the evaluation of this new feature in di�erent computer architectures.
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1.3 Document structure

This document serves the purpose of giving the reader a broad view of the project topic and a more detailed
description of the project itself.

The document is divided into three di�erentiated parts. The �rst part focuses on the management aspects
of the project itself, including but not limited to the project context and its reason to be, the methodology
to follow and a planning and budget estimation.

The second part is about the work done in the development and implementation phases of the project,
explained from a technical point of view. After, the evaluation and results are presented, concluding the
part with the conclusions and a short section about future work.

Finally, the third and last part of the document aims to perform an objective revision on the planning and
budget estimations shown in the project management part in order to show what the reality has been.

In addition, references and appendixes are compiled in attached sections so that the reader can verify the
information sources or delve into the project work if interested.
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2 Problem description and goals

Reductions are a common algorithmic pattern found in many scienti�c applications11. In a reduction, a col-
lection of objects are reduced to a single object by combining them pairwise with a binary operator.21,22

A reduction is an iterative update of a variable, de�ned as:

var := op(var, expr)

Where var is the variable where to combine the objects, op is the binary operator and expr is an expression
that does not modify the value of var.

While reductions do not enforce that the operator satis�es the associative and commutative properties by
de�nition, most times it does. When assuming this, parallel implementations of the pattern are possible,
and considerable speedup can be obtained accordingly.

Special care must be taken when dealing with �oating point arithmetic, as it is only approximately associative.
In other words, di�erent order in the operands can give di�erent results due to round-o� errors.29

Reductions are characterized for having non-atomic updates involving an accumulator variable and an ex-
pression, requiring exclusive access to ensure data consistency and making their execution computationally
expensive and parallelization challenging.11

In �gure 2 we can see a reduction pattern for max and add operators.

(a) Reduction pattern for max operator (b) Reduction pattern for add operator

Figure 2: Reduction pattern examples

In the current OmpSs infrastructure and data �ow model, the reduction pattern would be taski�ed using
inout clauses as shown in the code listing 4. However, the dependence graph that corresponds to this scheme
in �gure 3 shows how those dependences would serialize the execution and thus a poor performance would
be obtained.
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Listing 4: Reductions in the current OmpSs infras-
tructure

int result = 0;
int *values = allocate(N);

#pragma oss task inout(values[0:N-1])
initialize(values, N);

for (int i = 0; i < N; ++i)
{

#pragma oss task in(values[i]) inout(result)
{

result += function(values[i]);
}

}

#pragma oss taskwait

Figure 3: Current dependence graph for reduc-
tion pattern in the current OmpSs infrastructure

T1

T2

T3

...

Tn

Taskwait

That being said, the reduction pattern itself does not enforce such a rigid scheduling and, considering the as-
sociative and commutative properties are satis�ed, a greater degree of concurrence can be attained. In detail,
tasks participating in the reduction have an output dependence on the reduction variable for the accumula-
tion of the partial computed result. In this sense, if we are able to postpone or handle these dependencies
without causing data hazards, the resulting dependence graph should become similar to �gure 4.

T1

T4T3T2 · · · Tn

Taskwait

Figure 4: Desired dependence graph for reduction pattern in OmpSs infrastructure

Our work in this project is to study how this transformation can be better done.

2.1 Project objectives

The project objectives are listed as follows:

1. Extension of the OmpSs parallel programming model infrastructure to include the task reductions
feature.

(a) Theoretical analysis and API speci�cation.

(b) Extension of the Mercurium compiler.

(c) Extension of the Nanos6 runtime.

2. Evaluation of the task reductions feature.

(a) Determination of appropriate metrics for an objective comparison.

(b) Design of test sets that allow gathering relevant execution traces.

(c) Comparison of di�erent implementations on di�erent computer architectures.
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2.2 Scope

The purpose of this section is to reason about what belongs to this project and what, being the reason either
time limitations or di�erences in the subject, does not.

In the �rst place, it should be recalled how this project is fully contained within its parent project OmpSs.
Therefore, it is not intended in any way that this project goes beyond the scope of the OmpSs project.
Considering this, the extent of this project is clearly limited to the analysis, implementation, comparison
and testing of scalar-value reductions within the OmpSs task-driven parallel programming model.

Due to lack of time and the extra complexity involved, reductions of arrays and structures other than scalars
themselves remain outside the scope of this work.

When it comes to computation and management of dependences between tasks, two distinct approaches
are to be considered: On the one hand, discrete dependences, where an address (or lvalue25,12 in general)
is considered to represent the dependence. On the other hand, fragmented linear regions dependences,
where more complex structures are used to represent all memory positions involved in the dependence.

As far as this project is concerned, a complete version of task reductions based on discrete dependences
will be preferred over an incomplete version supporting both discrete and region-based dependences. In this
sense, an implementation involving task reductions based on the region-based dependence system will only
be considered if the version based on discrete dependences is complete and there is still time left to �t it in
this project duration.

Finally, it should be noted that the project is also limited to the current OmpSs infrastructure under develop-
ment, composed by Mercurium and Nanos6 , and has no intention of going beyond those components.

2.3 Obstacles

When it comes to the project de�nition and its scope, it is important to have a mindful study of the obstacles
one may encounter during its course.

Having consciousness of the possible hindrances when carrying the project out may help us avoiding them,
staying focused on the development and averting unforeseen work.

2.3.1 Design or implementation errors

Design errors in the initial stages of the project can lead to incorrect implementations and poor overall
performance. De�ning an adequate methodology with short cycles and feedback sessions can result in
shorter reaction time and the subsequent reorientation to the desired direction.

Unnoticed errors introduced while developing the feature may be a problem in later stages of the project,
inducing wrong results or longer execution times. To minimize their impact on the developing time, devel-
opment should be interlaced with exhaustive testing, with the intention of detecting and solving them as
soon as possible.

2.3.2 Unconnected errors that a�ect our implementation

It can be the case that some errors have been introduced in other parts of the involved projects but have not
shown up for the moment. These errors can have a negative impact on the performance of the new feature,
to the point of driving the execution to incorrect results in some situations. This must be minimized to the
possible extent by detecting and reporting them to the responsible at the earliest opportunity. As in the
previous obstacle, testing has an important role in preventing this situation.
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2.3.3 Unavailability of machines for testing

Regarding the parallel requirements of the requested feature, it will be necessary to test its implementation
on a range of di�erent multiprocessor architectures. It is possible that, given external factors, some of the
computation clusters are under high load or not available at all over a period of time.

While it is improbable that this situation has an extended duration, it will be convenient to interlace
developing and testing phases, distributing the testing phase over a long period of time in order to minimize
the risk of facing high loads during a testing session.

This strategy also allows a proper rescheduling of tasks if such situation is detected.
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3 Contextualization

3.1 Actors

In the project context, we �nd a set of people that are a�ected either in a direct or indirect way. Details of
who they are and what their role within the project is are listed in this section.

3.1.1 Main developer

The developer is the �nal responsible for the project outcome. Its job consists in not only developing the
project in its entirety but it is also responsible for its management, documentation and testing process. Its
work needs to ensure being able to meet the project deadlines and budget.

3.1.2 Directors

The directors of this project are Eduard Ayguadé Parra and Vicenç Beltran Querol. Their job consists in
supervising the project and guiding it towards the desired direction, verifying that the work has the expected
quality and that the objectives are accomplished. In addition, the directors can also assist the developer in
both technical and academic matters in case of necessity.

3.1.3 Bene�ciaries

• Direct bene�ciaries The direct bene�ciaries of this project are the developers whose software relies on
the OmpSs programming model to deliver a good performance. The new feature will allow them to
use reductions in a straightforward way, cutting on development time while avoiding implementation
errors and providing optimized code.

• Indirect bene�ciaries The indirect bene�ciaries are the �nal users of the scienti�c applications or gen-
eral software which uses the OmpSs programming model. Although they need not know about the
existence of this project nor the OmpSs programming model, they will experience shorter execution
times resulting in a better overall experience.

3.2 State of the art

This section intends to review the current literature on the topic in question: reductions in parallel program-
ming models. Previous studies and similar approaches to the problem are discussed, explaining similarities
and di�erences.

3.2.1 OpenMP reductions

The OpenMP speci�cation currently includes a mechanism to perform reductions: the reduction clause.
This clause can be found in a parallel construct or a for work-sharing construct.2

The syntax of the reduction clause in OpenMP is the following:

reduction(reduction-identifier : list)

The reduction clause takes as arguments a reduction-identi�er used to identify the reduction operation
and a list of items to be reduced.

9



All valid OpenMP implementations should support a range of implicit reduction-identi�ers for the most
common operations (arithmetical, logical, bitwise, etc.). These identi�ers include but are not limited to: +
(addition), * (product), && (logical and), max (maximum), etc. Moreover, OpenMP o�ers a mechanism so
that the user can de�ne its own reduction identi�ers.

The OpenMP speci�cation states that, for each item, a private copy is created in each implicit task, and
is initialized with the initializer value of the reduction-identi�er. After the end of the region, each list
item is updated with the combination of the private copies by the combiner operation associated with the
reduction-identi�er.2

In the code listing 5 we can see how the reduction clause can be used within a for work-sharing construct
in order to parallelize the dot product between two vectors.

Listing 5: OpenMP reduction clause example

float dot_product(const float *A, const float *B, unsigned int length)
{

float result = 0;

#pragma omp parallel for reduction(+: result)
for (unsigned int i = 0; i < length; i++)
{

result += A[i]*B[i];
}

return result;
}

In addition to the described reduction clause for the parallel and the for constructs, extended support
for the OpenMP tasking model is expected for the next release of the model, as seen in the OpenMP 5.0
technical preview.4

In detail, the new clauses task_reduction and in_reduction will be added to the model. The �rst will
be used as a reduction scoping clause, used to delimit the domain of the reduction. The latter is de�ned as
a reduction participating clause, used within the reduction domain to annotate a task participating in that
reduction. The syntax of the clauses is the following:

task_reduction(reduction-identifier : list)
in_reduction(reduction-identifier : list)

In the code listing 6 we can see how the dot product example could be implemented using these new
clauses.

Listing 6: OpenMP reduction example with tasks

float dot_product(const float *A, const float *B, unsigned int length)
{

float result = 0;

#pragma omp taskgroup task_reduction(+: result)
for (unsigned int i = 0; i < length; i++)
{

#pragma omp task in_reduction(+: result)
result += A[i]*B[i];

}

return result;
}

As opposed to the reduction clause, which is explicitly de�ned to use private copies for each thread in the
reduction domain, the new task-based reduction clauses are de�ned in more vague terms, specifying only
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what the result should be after the reduction domain, and therefore allowing a greater degree of freedom to
the implementations that comply with the standard.

3.2.2 Intel Cilk Plus reducers

Cilk Plus is an extension to the C and C++ languages that provides extra support to data and task
parallelism.18. Cilk Plus can be di�erentiated from programming models like OpenMP or OmpSs in that
Cilk Plus does not use pragma compiler directives but directly extends the language instead, by adding new
keywords.

The base concept of the Cilk Plus extensions is the strand : A strand is a sequence of instructions that starts
or ends on a statement which will change the parallelism. A strand is delimited by one of the following Cilk
Plus keywords: cilk_spawn, cilk_sync (including the implied cilk_sync at the end of a function), or
cilk_for.20

An example of parallelization with Cilk Plus can be seen in the code listing 7, where the n-th position in
the Fibbonacci sequence is computed.

Listing 7: Cilk Plus example

int fib (int n)
{

if (n < 2) return n;
else
{

int x, y;

x = cilk_spawn fib (n - 1);
y = cilk_spawn fib (n - 2);

cilk_sync;
return (x + y);

}
}

Cilk Plus describes a special mechanism for reductions called the Cilk Plus reducers. The reducers are special
variables of the Cilk Plus framework that have the following properties:13,19

• Each strand has a private view of the reducer, so we do not need to use mutual exclusive regions
to serialize access to the reducer. The views are combined by the Cilk Plus runtime by calling the
reduce() function of the reducer's operation and type when views sync.

• The reduce() function is called so that the strands are combined in the order that would have occurred
if the program were run with one worker.

In the code listing 8 we can see an implementation of the aforementioned dot product reduction by using
the Cilk Plus extensions.

Listing 8: Cilk Plus reduction example

float dot_product(const float *A, const float *B, unsigned int length)
{

cilk::reducer< cilk::op_add<float> > result(0);

cilk_for (unsigned int i = 0; i < length; i++)
{

*result += A[i]*B[i];
}

return result.get_value();
}
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4 Methodology

Before starting the development of the described objectives right away, it is best to �rst describe the appro-
priate methods which help us dealing with the project work and achieving those objectives.

4.1 Work method

The project work is divided in analysis, development and testing stages:

First of all, we will perform an in-depth analysis of the reduction operation and how it should be integrated
into the current OmpSs programming model from a theoretical point of view.

Then, we will be required to understand the existing projects' environment in detail, becoming acquainted not
only with the components that form them but also the software architecture of the projects themselves.

After having a complete knowledge of their current situation, the development of the �rst implementation
stages of our project may begin. Both the Mercurium compiler and the Nanos6 runtime should be extended
concurrently so they are found in the same development stage at all times.

The well-known Agile iterative development approach eXtreme Programming with one-week long iterations
will be used to ensure the project advances towards the proper direction.

4.2 Tracking tools

In order to ensure that the project is on the right track at all times and that the work is complete within
the scheduled time frame, project tracking methods are required.

On one hand, weekly meetings with the directors will be a good opportunity to assess the project status. On
the other hand, an exhaustive tracking of all processes and the time invested in each will allow comparing
them to the estimated times as described in the schedule, thus being able to react as soon as possible in case
of deviating from the original planning.

Git14 is the tool chosen for the project tracking. It allows not only to track changes in a �ne granularity but
also to document them in an organised fashion.

4.3 Validation method

It is important to provide an objective validation method that checks whether the developed software is
working as expected and generates correct results. For this matter, automated testing techniques may be
appropriate.

Exhaustive sets of tests will be developed for both the compiler and the runtime projects in order to test
each added feature. Tests will not be limited to common use cases and will try to evaluate corner cases as
well. The current test base for those projects it is also to be considered when it comes to veri�cation, as it
guarantees that existent features still work after the new changes.

These testing mechanisms can also be automated so that they run on a set of di�erent systems on every new
version of the software. This can help us evaluate the software for di�erent computer architectures without
extra e�ort, providing extensive testing.
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5 Planning

The amount of work that this project supposes is quanti�ed to be at least 15 European Credit Transfer
and Accumulation System (ECTS) credits for being a Bachelor's Thesis, as de�ned by the Bachelor's Thesis
regulation document approved by FIB.1 For each ECTS credit, the student is expected to devote it from
25 to 30 hours, summing up to a total development time ranging from 375 to 450 hours for the whole
project.

To this amount, we still need to add the work that corresponds to the Project Management Course (GEP).
This course takes place at the beginning of the semester, during the �rst stage of the project, and the work
it supposes is quanti�ed as 3 more ECTS credits. Accounting the GEP, the total workload ranges from 450
to 540 hours.

The starting date of the project corresponds to the �rst day of the semester, September 12th, 2016. The
deadline to deliver the Bachelor's thesis report is the 17th of January next year.

The temporal planning of the project is detailed in this section. To have a �ne-grain control over the work
and the time spent on it, the project work is decomposed into speci�c tasks and dependences between
those.

5.1 Task speci�cation

This section gives a concise but clear description of each task and what resources are required for it to be
carried on.

Moreover, consider the laptop computer, the text editor and the LATEXcompiler separately, as those are
basic resources required for every single task and there is no point in repeating them for each task meaning-
lessly.

5.1.1 Project management

These �rst tasks are about the management of the project itself. A proper analysis of this project, how it
will be organized and a viability study are to be done.

Those tasks correspond to the GEP. The detailed steps to follow are listed below:

1. Context and scope of the project

2. Planning

3. Budget and sustainability

4. Preliminary oral presentation

5. Condition speci�cation

6. Final document and oral presentation

Aside from the aforementioned basic resources, a video camera will be required to record the preliminary
oral presentation.

5.1.2 Study and familiarization with the model

It is important to have a complete knowledge of the current project before starting the implementation of a
new feature that runs on it. Understanding the OmpSs model as a whole and the Mercurium and Nanos6

projects that compose it gives us a broader view that will lead to a design of the new feature that �ts with
the project.
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Reading of the model speci�cation, detailed technical documents and e�ective learning with by programming
and analysing test programs will be key actions in this task.

5.1.3 Analysis and design

Before considering the implementation details, it is a good idea to have a purely theoretical analysis of the
reduction scheme and the possible designs considering a task paradigm.

A thoughtful analysis of how this new feature should be integrated into the current model is necessary to
ensure its utility and avoid future implementation problems.

Then, a complete design of how the feature will behave and what use-cases should be supported will mandate
the upcoming implementation.

This task will also be responsible for giving a detailed description of which particular parts of the software
need to be extended to support the new feature.

5.1.4 Development

In short, the purpose of this group of tasks involves the speci�c implementation of the previous design,
testing, and evaluation of the obtained results.

Regarding the required resources for the development tasks, the MareNostrum III supercomputer as well
as some additional clusters yet to be determined will be used for testing and performance analysis pur-
poses.

The details for the involved tasks are listed as follows:

Preparation of the work environment

Spending time in the proper preparation of the work environment is essential to for productive development
phase. Downloading, compiling, installing and setting up the necessary tools will be done in this task.

In particular, it is important to set up the working environment for theMareNostrum III supercomputer and
any other machine to be used. Additionally, this includes setting up the remote connection system (Secure
SHell (SSH), Virtual Private Network (VPN), etc.) as well as learning how to use the execution queuing
system in use.

Getting to know the speci�c con�guration �ags and setting up a remote Git repository to track the devel-
opment is also to be done.

ExtendingMercurium to support task reductions for point-based dependence model

Implementation of the task-reduction feature in the Mercurium compiler, considering only point depen-
dences.

Whilst this implementation considers only the simplest dependence model, the developer will have to deal
with every other aspect of the implementation. Future tasks will be using most of this work, while focusing
only on extended dependence models.
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Extending Nanos6 to support task reductions for point-based dependence model

Implementation of the task-reduction feature in the Nanos6 runtime library, considering only point depen-
dences.

The reasoning about the dependence models in the previous tasks also applies for the runtime library.

ExtendingMercurium to support task reductions for region-based dependence model

Implementation of the necessary modi�cations in order to support region-based dependences in the Mer-

curium compiler, where a possibly non-contiguous set of addresses is to be considered as a dependence.

Extending Nanos6 to support task reductions for region-based dependence model

Implementation of the necessary modi�cations in order to support region-based dependences in the Nanos6
runtime library, where a possibly non-contiguous set of addresses is to be considered as a dependence.

Result documentation, comparison and conclusions

When the implementation is complete its time to test the new feature, evaluate the results and reason about
them.

In short, we are interested in testing how the feature performs for di�erent problems and in di�erent setups,
while comparing it to other reference implementations. For more details in the validation method please
refer to the methodology section of this project. 4.3

5.1.5 Final stage and defense preparation

While every task described up to the point considers its applicable documentation, some time needs to be
done to �nalise the documentation as a whole.

Moreover, a reasonable amount of time is needed when it comes to the preparation of the presentation
support material and the defense itself.
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5.2 Task duration estimation and assigned roles

Table 1 shows an estimation of the duration of the described tasks and the part it supposes to the total.
The table also shows which role is assigned to that particular task.

Task Duration (part) Duration (time) Assigned role

Project management 14% 75h Project manager
Study and familiarization 4% 25h Analyst, programmer
Analysis and design 18% 100h Analyst
Environment preparation 2% 10h Programmer
Extending OmpSs 44% 240h Analyst, programmer, tester
Result evaluation 11% 60h Analyst, programmer, tester
Final stage and defense 7% 40h Project manager

Total 100% 550h -

Table 1: Task duration estimation and roles

5.3 Dependences between tasks

Figure 5 shows a Gantt diagram where explicit dependences and ordering between tasks are shown in a clear
way.
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2016 2017

September October November December January

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10Week 11Week 12Week 13Week 14Week 15Week 16Week 17Week 18Week 19

Project management

Context and scope of the project

Planning

Budget and sustainability

Preliminary oral presentation

Condition speci�cation

Final document and presentation

Initial assessment

Study and familiarization

Analysis and design

Development

Work environment setup

Extend compiler point dep.

Extend runtime point dep.

Extend compiler region dep.

Extend runtime region dep.

Follow-up assessment

Result evaluation

Final stage and defense

Final project deadline

Project defense

Figure 5: Gantt chart, showing dependences and ordering between tasks
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5.4 Deviations from planning and action plan

Even if a planning is accurate and well-done, deviations can still happen. The reason of this is the uncertainty
of the future. One can make predictions about how much time expects a particular task to take or try to
foresee any complication, but still will not be assured until that point.

Taking this into consideration, a reasonable margin of time of two weeks is left in the planning in case any
task takes longer than was originally expected. Even with this margin, it may be the case that a deviation
is big enough to require even more time. Then, the developer will need to increase its workday in order to
cope with the increased workload.

Finally, in the undesirable case where the planning is considerably mistaken, resulting in a major deviation,
drastic actions will need to be taken. In particular, the planning will be discussed with the project directors,
deciding which tasks are preferential for the project and which can be put aside given the situation.

When it comes to deviations, having a short reaction time is as important as the subsequent decision, if
not more. In this matter, the short development cycles and the weekly meetings policies described in the
methodology section 4 can help detecting and correcting the deviation as at the earliest opportunity.

At last, it is convenient to try to anticipate any deviations by having the possible obstacles in mind. As
detailed in the obstacles section 2.3 the development phase is the most prone to encounter obstacles, like
unnoticed errors unavailability of testing machines to verify whether the implementation is correct.

5.5 Resources

In this section, we describe the necessary resources to carry on the tasks speci�ed in the previous section.
Economic resources are treated separately in the budget section 6, describing the project costs in detail.

5.5.1 Hardware resources

Following we can �nd the necessary hardware for this project.

• Laptop computers: Main development tool. Two laptop computers will be used for the development.
On the one hand, a Dell Latitude E7450 provided by the BSC-CNS. On the other hand, a Dell XPS13
9343 that belongs to the developer of the project.

• MareNostrum III supercomputer: To be used for testing and performance assessment, operated
remotely using the laptop.

• Additional clusters: Set of machines with di�erent hardware architectures yet to be determined
depending on availability. To be used for testing and performance assessment for those particular
architectures being operated remotely using the laptop.

• Video camera: Either the laptop integrated web-cam, mobile phone camera or conventional camera
can be used.

5.5.2 Software resources

In addition to hardware resources, some software the following software resources are necessary to accomplish
the described tasks. They are listed as follows. Note how all of them are open-source software.

• Arch Linux: Operating system installed in the personal laptop computer.

• Autotools: Automated build system.

• Debian Linux: Operating system installed in the laptop computer provided by the BSC-CNS.

• GNU Compiler Collection (GCC): GNU compilers for C, C++ and Fortran among others.
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• Git: Robust yet e�cient control version system.

• Gitlab: Git repository manager.

• Gprof: GNU pro�ling tool.

• LATEXcompiler: Text composition system widely used for scienti�c reports.

• Mercurium compiler: OmpSs reference compiler for C, C++ and Fortran.

• OpenSSH SSH client: Required to remotely connect to the MareNostrum III supercomputer and
the other computing clusters.

• Opro�le: Pro�ling tool for Linux that supports reading hardware counters.

• Vim editor: Simple, highly-con�gurable, command-line editor.

5.5.3 Human resources

Human resources have the most important role in the development of the project.

The author and main developer of the project stand out for investing the most time, he is also responsible
for the proper functioning of the feature, as he will test it.

It is also very important to consider the time invested by the directors and support research engineers in
supervising the project and guiding the developer to achieve the objectives.
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6 Budget

In this section, we describe the economic needs of the project and a detailed budget is presented. Meeting
the budget is essential to guarantee the project's economic viability.

6.1 Costs speci�cation

According to Boletín O�cial del Estado (BOE)5, the expected annual working time is 1.826 e�ective hours.
Considering this, the following formulas can be used to describe the required calculation to compute the
amortization of the resources imputed to this project.

cost/houre�ective(e/hour) =
acquisition price (e)

useful life (years)
× 1 annual working time

1.826 hours
(1)

imputed cost(e) = units× usage (hours)× cost/houre�ective (2)

Where usage is calculated according to the duration of the tasks on which the resource is used, as seen in
the planning section 5.

6.1.1 Software costs

Costs involving the acquisition and usage of the required software resources to carry the project out. All
software resources used in this project are released under an Open-Source license, i.e. no software costs are
to be imputed to this project.

6.1.2 Hardware costs

Costs attributed to the hardware resources necessary for the project. In order to calculate these costs
accurately, it is important to consider their amortization period. In Spain, the tax o�ce states that the
maximum amortization period for a computer system is up to eight years28. Nevertheless, considering the
nature of the HPC �eld, the hardware amortization period can be no more than four years. After this period,
the hardware is considered obsolete.

Table 2 shows the breakdown of the hardware-related costs.

Resource Units
Cost/unit Useful life Usage Imputed

(e) (years) (hours) cost (e)

Dell XPS13 9343 laptop 1 1.469 4 140.0 28
Dell Latitude E7450 laptop 1 2.529 4 400.0 139
Video camera 1 0* 4 1.5 0
MareNostrum III supercomputer 1 -* - 20.0 -*
Additional clusters - -* - (each) 20.0 -*

Total - 3.998 - - 167

Table 2: Hardware costs estimation

When computing the hardware costs it is important to note some special cases (marked with an asterisk
symbol in the table).
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In the �rst place, the imputed cost of the MareNostrum III supercomputer could not be calculated. The
reason for this being the lack of information regarding its complete cost, maintenance cost, useful life and
amortization period.

On the other hand, if we use the laptop integrated web-cam as a video camera, no extra cost is to be
recorded.

As a side note, the cost of the Dell Latitude E7450 laptop is fully covered by the BSC-CNS.

6.1.3 Human resources costs

The project will be carried out as a whole by one developer, who will have four di�erent roles based on the
task to execute: Project manager, analyst, programmer and tester.

In table 3 we can see the global cost attributed to each of those roles, based on the corresponding salary and
the dedication. In turn, the dedicated time is calculated according to the duration of the tasks where the
role takes part, as seen in the task description section. 5.1

Role
Salary Dedication

Cost (e)
(e/hour) (hours)

Project manager 50 115.0 5.750
Analyst 35 212.5 7.438
Programmer 30 122.5 3.675
Tester 20 100.0 2.000

Total - 550.0 18.863

Table 3: Human resources costs estimation

6.1.4 Indirect costs

In addition to the costs related to the explicitly required resources speci�ed up to this point, we need to
consider other costs that a�ect to the project budget in an indirect way.

Speci�cally, we should take into account the cost of electricity, internet access and o�ce rent, among other
general expenses. However, as the project will be developed in its totality in the BSC-CNS, it is not possible
for us to specify the cost of these services, being this information private and out of our hands.

6.1.5 Taxes

This project development will take place in the BSC-CNS, in Barcelona. For this reason, the project budget
will be subject to the Spanish taxing laws. In particular, we need to consider value-added taxes (VAT) and
the electricity tax.

Table 4 shows the expenses related to the aforementioned taxes.

Note that some of the taxes could not be calculated as the base cost is unknown, they are shown in the
table for the sake of completeness. Above all, note that the tax rate for the electricity tax is unknown as it
depends on the speci�c consumption and power.
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Concept Base cost Tax rate Cost(e)

Software 0 21 0
Hardware 167 21 35
Human resources 18.863 21 3.961
Internet access* - 21 -
Electricity (VAT)* - 21 -
Electricity tax* - - -

Total 3.996

Table 4: Taxes estimation

6.1.6 Summary

To sum up, the project costs have been gathered in table 5.

Concept Cost(e)

Software 0
Hardware 167
Human resources 18.863
Indirect costs -
Taxes 3.996

Total 23.026

Table 5: Project costs summary

Due to the environment where this project takes place it has been impossible to determine some of the costs
that rely on private information from the BSC-CNS. For this reason, the total sum presented should be
taken as a lower bound of the project cost and not a reliable estimation.

6.2 Deviations from budget

Deviations from budget will mostly be related to one or more risks listed in the planning section of this
document. 5.4

In this case, any deviation from the budget will be caused by an increment in the accounted dedicated hours
for a given task. In particular, we will need to face the overrun caused by the extra fees that correspond to
the salary of the roles involved in the deviated task. Moreover, the resources amortization will need to be
readjusted in terms of the new use time.

As stated in the planning section, we are not expecting major deviations from the original plan. In case
of minor deviations, from an hour to 24 hours work-time, the extra cost can be covered by the deviations
budget item created for that matter. This item extends the budget by a 6% and will be used to solve any
of the deviations described in this section. With the costs computed in this document, the deviation budget
item will consist of 1.381e. This amount should not be spent unless a deviation occurs and it is expected to
cover any unforeseen cost.

In the worst-case scenario, a 24 hours deviation corresponding to the project manager role will result in an
overrun cost of 1.200e, which can be fully covered by the deviations budget item.
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6.3 Expense control

Monitoring of the resources used for each task takes an important part in the expense control. To ensure
this is done properly, a weekly report can be written to track down the resources that have been used during
that period and the dedicated time. This way, not only the budget can be controlled but also deviations
from the project planning can be discovered within a short time.

23



7 Project sustainability

In this section we evaluate the project sustainability and its compromise with the society. This evaluation
considers the project's environmental, economic and social aspects, which are assessed separately.

The evaluation method consists in answering a set of questions related to each of the aspects. Each question
grants a positive or negative amount of points which are recorded in the aspect score and are then used for
the �nal sustainability evaluation.

The sustainability matrix 6 shown below shows the obtained score for each aspect as well as the �nal
sustainability score.

Aspect Project development Exploitation Risks

Environmental
Consumption design Ecological footprint Environmental risks

5/10 18/20 -2/-20

Economic
Project bill Viability plan Economic risks

9/10 18/20 -5/-20

Social
Personal impact Social impact Social risks

8/10 15/20 -2/-20

Sustainability 22/30 51/60 -9/-60
range 64/90

Table 6: Sustainability matrix

7.1 Economic aspect

Several points in this document support the score for the economic aspect shown in the sustainability
analysis.

On the one hand, there is a detailed cost evaluation that includes not only direct costs attributed to necessary
material resources but also human resources, as well as indirect costs. Then, contingency and unexpected
costs are also considered in the project budget, ensuring that the project is economically viable in any
case.

On the other hand, the resources described in this document are minimal and well-justi�ed for carrying the
project out: these are basically development and testing tools, as well as the human resources in charge of
the development itself.

Being a research project, it is important to keep in mind that its economic viability does not require devel-
oping a project competitive in a commercial sense. In addition, the feature developed in this project will be
included in the OmpSs programming model, which is distributed openly and free of cost to everyone.

7.2 Social aspect

In the �rst place, this project has a great implication in a personal level. Not only is this the �rst project of
this magnitude the developer carries out but it also di�ers from previous projects in terms of how important
its proper organization is. The experience is both enriching and challenging.

Although one may think there is not direct social compromise involved in this project, it can be shown how
it can bene�t the society both directly but, above all, indirectly.

For the user of the OmpSs programming model, it will allow a hassle-free programming of the tedious
reduction schemes, increasing the model ease of use while avoiding programming errors and simplifying the
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overall code being developed. Additionally resulting in a shorter development time and ensuring an optimized
execution. Eventually, this will make the model user not only more e�cient and focused on its real job but
also happier, which is the objective we are after.

Regarding indirect bene�ts to society, one can think of mostly anything. For example, consider an appli-
cation that takes advantage of the features o�ered by the OmpSs programming model. With an optimized
implementation of the reductions scheme, the application will reduce its execution time, providing the result
to the �nal user quicker while consuming fewer resources to do the job. The user does not need to know
about the existence of this project to bene�t from it.

Risks originated from a malfunction in the developed feature are not a major issue, the user can always
decide not to use this feature and continue using its implementation of the reduction scheme.

7.3 Environmental aspect

The project in question is almost completely environment-friendly. As far as the �nal product is concerned,
being a software application means that no product will be manufactured and, therefore, no natural resources
will be consumed in that matter. Moreover, any optimization applied during the development of the feature
will reduce the computing time and maximise the parallel usage of computer resources, eventually minimizing
the resource consumption in time and the electricity bill.

This being said, the only environmental impact can be caused during the development stages of the project.
Even if this is the case, caution has been taken to account for all the required resources and any possible
deviation in their usage. Furthermore, as seen in the resources description section, little hardware will be
used in this project.

As a particular case, the MareNostrum III supercomputer is a very powerful machine and has a signi�cant
environmental impact as a result of its building process and electrical consumption. However, we will be
only using some of its nodes and for a short period of time, resulting in an almost negligible environmental
impact attributable to this project.

All in all, the project has de�nitely a small ecological footprint.
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8 Project base

This project is based in the existing OmpSs infrastructure presented in section 1.1 that will be extended
during the development phase. In this section we aim to give a more detailed description of the base project
components internal functioning required to be able to understand how our work applies on top.

8.1 Mercurium compiler internals

The Mercurium compiler design is characterized by a set of successive phases that create a tree structure
and subsequently enrich it by adding information onto its nodes as well as creating new ones.

For the processing of OmpSs pragmas, the compiler uses di�erent node types to represent their information in
the tree depending on the compiler phase. After the completion of the front end phase, the OmpSs pragmas
are represented in the tree as generic pragma nodes storing their information as text. In this point, the
nodes are handed to a generic OmpSs phase, where the pragma nodes that correspond to OmpSs pragmas

are analysed and any restrictions imposed by the models are checked. If no problems have been found, the
generic pragma nodes are replaced by speci�c OmpSs nodes.

After the OmpSs phase, the node tree can be passed onto a posterior, Nanos6 -speci�c lowering phase
which is responsible for elaborating or lowering the OmpSs nodes into meaningful nodes of the underlying
language.

When this process is over, the completed tree can be passed onto the code-generation phase to generate the
output C, C++ or Fortran code. Finally, the native compiler can be called to transform this code into an
executable binary.

For this project, our extensions in theMercurium compiler will be limited to theNanos6 lowering phase.

As mentioned above, in this phase we are going to receive an enriched tree structure with nodes representing
OmpSs pragmas, and our task will consist in traversing the tree gathering the necessary information in
order to be able to replace these OmpSs pragma nodes in favour of new nodes and symbolic information
corresponding to meaningful statements of the underlying language, according to what our speci�c purpose
is.

Generic utility classes such as visitors are provided in Mercurium to ease the job of e�ciently traversing the
tree structure looking for the nodes we need to treat.

8.2 Nanos6 runtime library internals

As explained in section 1.1, OmpSs is a model completely based in the data�ow. Nanos6 , being the reference
runtime implementation, needs to be fully conscious and e�cient in handling dependences between data
accesses.

The capability of the Nanos6 runtime library of e�ectively recognizing dependences between tasks of di�erent
nesting levels comes from its particular dependence management design:

The Nanos6 runtime keeps track of the dependences between tasks by considering their data accesses sepa-
rately.

A data access is de�ned as any access annotated in the task by the existence of any dependence-annotating
clauses (such as in, out, inout, etc.). A data access can refer to either a variable or memory position.

In the Nanos6 runtime, a task is satis�ed and ready to be executed only when all its data accesses are
satis�ed.

When a new task is created, each of its data accesses is registered in a chain containing all data accesses
referring to the same variable or memory position. This structure is called DataAccessSequence. When a
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task is �nished, its data accesses are removed from the corresponding DataAccessSequences. This concept
is illustrated by showing a representation of the DataAccessSequence generated from the code listing 9 in
�gure 6.

Listing 9: Example sequence of tasks

int a;

#pragma oss task out(a)
{

a = initialize();
}

for (int i = 0; i < 3; i++)
{

#pragma oss task in(a)
{

display_value(a);
}

}

#pragma oss task inout(a) label(R)
{

a++;
}

#pragma oss taskwait

Figure 6: DataAccessSequence example

W

R

R

R

RW

Each DataAccessSequence is responsible for managing the data accesses to a single variable or memory
position, determining when an access is satis�ed and executing its originating task or holding it when there
is a pending dependence with a previous data access.

Figure 7 shows an example of how a DataAccessSequence could evolve over time:

1. In the �rst time step, there is a satis�ed write access ready to be performed. In order to avoid any
data hazards, the tasks that originate the other accesses are held (not satis�ed).

2. In the second step, the write access is over and all read access become satis�ed. Note how the satis-
�ability is propagated between accesses of type read as they can be performed concurrently over the
same variable or memory position. The last (read-write) access remains unsatis�ed.

3. In the third step, two of the three read accesses are done. Note how a dependence between the
remaining read access and the subsequent read-write access is created.

4. In the last step, all read accesses are �nished and the satis�ability is propagated towards the read-write
access.
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Figure 7: Data access sequence example

When a task creates nested tasks that have data accesses referring the same items, those data accesses are
placed in a DataAccessSequence contained within the parent data access. This way, when the parent task
has �nished, those data accesses can be rose one level and merged into the DataAccessSequence where the
parent data access was found.

Figure 8 shows an example of this procedure, representing the accesses originated by nested tasks in the
parent access' private DataAccessSequence. Note that the steps presented here correspond to an arbitrary
execution ordering chosen to illustrate this interesting scenario, the ordering could change from an execution
to another:

1. In the �rst time step, there is a satis�ed write access ready to be performed. The other accesses are
held (not satis�ed).

2. In the second step, the write access is over and all read access become satis�ed. Note how the satis�a-
bility is also propagated towards inner nesting levels. The last (read-write) access remains unsatis�ed.

3. In the third step, the nested task originating the last read access has �nished its execution and the
access is deleted.

4. In the last step, the parent task originating the read access has �nished, the access is deleted and
the accesses in its private DataAccessSequence are merged up at the position where the access was,
creating an explicit dependence with the previous and posterior accesses.
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Figure 8: Nested data access sequences

29



9 Towards supporting reductions in OmpSs

In the following sections we aim to guide the reader through the di�erent stages undergone during the
development of this project.

The �rst step in the process was the development of the concurrent clause, which can be used to write user
programs that compute reductions. This is the most low-level approach, where the user has to handle the
reduction process.

The second step is about the task privatization approach for the development of the reduction clause. This
approach supersedes the use of the concurrent clause for reductions in all situations by abstracting the
process and adding functionality without compromising the performance in any case.

Finally, an alternative approach that includes privatization per CPU with support from the Nanos6 runtime
library is presented.

9.1 Implementing the concurrent clause in the OmpSs infrastructure

In this �rst section we are going to give a detailed explanation of the design and implementation of the
concurrent clause. First, we are going to introduce the concurrent clause, showing its usage and how
the OmpSs model de�nes it. Then, describe the decisions and considerations taken to design the feature
in a generic manner and �nally we will reveal the corresponding implementation details of the OmpSs

infrastructure including the Mercurium compiler and the Nanos6 runtime support library.

9.1.1 Introduction to the concurrent clause in OmpSs

The aim of the concurrent clause is to provide a new data access type for tasks that allows a greater
freedom on the scheduling of their execution. In particular, the idea is to allow all tasks sharing a concurrent
access on the same variable to run concurrently and in any order once the previous non-concurrent accesses
are satis�ed, being the user's responsibility to protect any write access to the accessed variable.

To clarify, the generic usage of concurrent accesses can be seen as having a cloud of tasks that have
dependences with previous and posterior accesses but having no dependences between accesses in the cloud
itself, as illustrated in �gure 9.

Figure 9: Concurrent accesses seen as a cloud
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The concurrent data access type is very similar to the in data access type in the sense that, when the �rst
access becomes satis�ed, the consecutive accesses of the type also become satis�ed. That being said, the
justi�cations of implementing a new access type are clear:

On the one hand, there is an intrinsic semantic di�erence between an in access type and a concurrent
access type. An in access type is only valid for reading the data but not modifying while the concurrent
clause allows reading and modifying the data indistinctly. Using the in clause for both cases would be
semantically incorrect.

In addition, separating the concurrent clause from the in clause gives us an extra degree of freedom by
being able to specify a dependence between a group of reading tasks (annotated with in) and a group of
concurrently writing tasks (annotated with concurrent). If both clauses were uni�ed, a task synchronization
point would be required between the groups. The only way to avoid the performance implications of having
the task synchronization point in such situation is to implement the concurrent data access and describe
the interaction (dependences) between it and the other access types.

For the time being, the behaviour of the concurrent accesses when either preceding or following an access of
any type other than concurrent itself is to block the posterior access until the task originating the anterior
access is over.

The design is open to allow di�erent interactions with any new data access types to be added into the OmpSs
model.

As the concurrent clause is provided to annotate concurrent accesses, its syntax is determined by the set of
clauses used to annotate data accesses like the clauses in, out or inout. The speci�c syntax of the clause is
as follows:

#pragma oss task concurrent(list)

Where list is the list of items which will be accessed by the task under the de�ned concurrent access
terms.

In the code listing 10 we can see an example of how the concurrent clause could be used in a real program.
The code de�nes two distinct concurrent regions where tasks that can be executed concurrently: The �rst
region is composed of the tasks C1 and C2, while the second is composed of the tasks C3 and C4. The
resulting task dependence graph derived from the code can be seen in �gure 10.

31



Listing 10: Concurrent access example

int var;

#pragma oss task out(var) label(W)
var = initialize();

#pragma oss task concurrent(var) label(C1)
atomic_add(var, compute_value());

#pragma oss task concurrent(var) label(C2)
atomic_add(var, compute_value());

#pragma oss task inout(var) label(RW)
var = normalize(var);

#pragma oss task concurrent(var) label(C3)
atomic_product(var, compute_factor());

#pragma oss task concurrent(var) label(C4)
atomic_product(var, compute_factor());

#pragma oss task in(var) label(R1)
printf("Var: %d\n", var);

#pragma oss task in(var) label(R2)
update_database(var);

#pragma oss taskwait

W

C1 C2

RW

C3 C4

R1 R2

Taskwait

Figure 10: Concurrent access example graph

9.1.1.1 Manual reductions using the concurrent clause

A manual implementation of the reduction pattern can be achieved by the user by using the concurrent
clause and carrying out the synchronization manually. While this is a powerful mechanism to implement
reductions, it is important to note that it has clear drawbacks in functionality, as the reduction has to be
completely managed by the user.

For this manual implementation, the user will need to ensure that every access to the original variable is
protected by means of surrounding it with a synchronization mechanism in order to avoid data races. For
a better performance, atomic operations should be used in place of locking synchronization strategies when
possible. The code listing 11 shows an example of a manual reduction of N tasks over the result variable
using the concurrent clause.

Listing 11: Manual reduction using concurrent clause

int result = 0;
for (int i = 0; i < N; ++i)
{

#pragma oss task concurrent(result)
{

mutex_lock();
result += compute_value();
mutex_unlock();

...
mutex_lock();
result += compute_other_value();
mutex_unlock();

}
}

#pragma oss taskwait

return result;
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In addition to this, the user is also capable of developing a more sophisticate reduction strategy using the
concurrent clause. This strategy consists in declaring a local variable in the beginning of the task, and
replacing all appearances of the original variable for it. Right after �nishing the meaningful computation of
the task related to the reduction, the local variable should be combined into the original variable by means
of the desired operator. With this changes, we will only have to protect the single access to the original
variable, the combination statement, reducing considerably the amount of synchronization required. This
strategy is commonly known as privatization, and its application can be seen in the code listing 12

Listing 12: Manual reduction using concurrent clause with privatization

int result = 0;

for (int i = 0; i < N; ++i)
{

#pragma oss task concurrent(result)
{

int result_local;

result_local = compute_value();

...

result_local += compute_other_value();

mutex_lock();
result += result_local;
mutex_unlock();

}
}

#pragma oss taskwait

return result;

9.1.2 Implementation of the concurrent clause

The design of the concurrent clause can be directly derived from the model speci�cation.

A new access type needs to be introduced in the runtime task scheduler so that it ful�ls the described
behaviour:

• Holding the execution any tasks willing to perform a concurrent access when there are previous non-
concurrent accesses pending.

• Allowing the concurrent execution of all tasks willing to perform a concurrent access on the same data
once all previous tasks performing non-concurrent accesses are �nished.

• Holding the execution of all tasks willing to perform a non-concurrent access when there are previous
concurrent accesses pending.

9.1.2.1 Internal details

The simplest valid implementation of the concurrent clause is the pure serialization of the tasks as in an
inout clause. However, this implementation is also the most (unnecessarily) constraint and, as we want to
take advantage of the parallelism the clause o�ers, we are going to provide an optimized implementation and
keep the serialization only as a fall-back implementation.

The modi�cations in the Mercurium compiler to support the new concurrent clause are minimal. First,
we need to replace the concurrent clause with a shared clause over the same items, then, we need to place
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an API call to the Nanos6 runtime to register the concurrent access for each of those items. The API calls
are placed in the task creation routines.

The extensions required for the Nanos6 runtime are also deduced from the design: First, the API needs to be
extended accordingly to the Mercurium compiler calls. Then, a new concurrent data access type needs to
be introduced in the dependence management system based on the data access sequences, specifying under
which conditions a concurrent access should be satis�ed and under which held (materialize a simple logic
from the designed behaviour).
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9.2 Implementing the reduction clause in the OmpSs infrastructure

The reduction clause is the fundamental mechanism for computing reductions in OmpSs.

Being the main feature to be developed in this project, special care has been taken in the design and
implementation phases of the reduction clause. Multiple versions have been designed, all having di�erent
implementation complexity and di�erent strengths and weaknesses. In the following sections we describe
two di�erent approaches and propose an implementation.

9.2.1 Introduction to the reduction clause in OmpSs

As opposed to OpenMP , the OmpSs programming model is purely based on tasks. For this reason, any
mechanism in OmpSs is designed on top of tasks. The reduction clause is no exception.

The speci�c syntax of the clause is as follows:

#pragma oss task reduction(reduction-identifier: list)

Even though the similarities between the syntax of the reduction clauses in OmpSs and OpenMP may
induce us to think both clauses are equivalent, they are very di�erent in terms of the semantics. In fact, the
reduction clause in OmpSs is much closer in meaning to the in_reduction clause than to the reduction
clause in OpenMP .

The reduction clause speci�es a reduction-identi�er and one or more list items. Each list item corresponds
to a variable or memory position. From the user point of view, each of those list items can be accessed within
the task scope as if it were a private variable initialized to the neutral element. It is important to remark that
the model wants to remain open to any implementation that computes the result of the reduction into the
original list item, for this reason, the number of copies is unspeci�ed and implementation-dependant.

The reduction domain is de�ned to be the region starting where the reduction is �rstly de�ned and is extended
until the subsequent task synchronization point, being it a dependence or a taskwait in the precise nesting
level. After the end of the region, the original list item is guaranteed to contain the updated value, computed
by applying the operator associated with the reduction-identi�er to each private copy, if any.

The code listing 13 shows a real example of how the reduction clause can be used. In the example, the dot
product of two arrays is computed concurrently. The arrays are broken up into blocks and, for each pair of
blocks, an OmpSs task is instantiated: Each of those tasks is responsible for computing the dot product of
its blocks. The tasks are annotated with a reduction clause specifying the result reduction variable and
the addition (+) reduction identi�er. Within each task, result can be seen as a local copy of the original
result variable. For each pair of corresponding elements in the blocks, its product is accumulated in the
result local copy as explicitly stated in the code. Finally, all local copies are combined into the original
result variable once the taskwait is reached.
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Listing 13: OmpSs reduction clause example

float dot_product(const float *A, const float *B, unsigned int length)
{

float result = 0;

for (unsigned int i = 0; i < length; i += BLOCK_SIZE)
{

unsigned int bound = MIN(i + BLOCK_SIZE, length);

#pragma oss task firstprivate(i) in(A[i:bound - 1], B[i:bound - 1]) reduction(+: result)
{

for (unsigned int j = i; j < bound; j++)
{

result += A[j]*B[j];
}

}
}

#pragma oss taskwait

return result;
}

Only a taskwait or a data dependence on the same nesting level where the reduction was declared should
trigger the reduction �nalization.

The previous statement is important in the sense that it is allowed by the model to have nested tasks within
a reduction task and task synchronization points like taskwait s that do not �nish the reduction. The code
listing 14 shows an example where this happens. In the example we can see how a reduction task creates
two nested tasks to compute some factors, those tasks are waited for and the local copy result is set to the
product of those factors. The combination of the reduction task with its counterparts is not produced in
the nested taskwait where the nested tasks are waited for.

Listing 14: taskwait within reduction task example

#pragma oss task reduction(+: result)
{

int a, b;

#pragma oss task
a = compute_value(...);

#pragma oss task
b = compute_value(...);

#pragma oss taskwait

result = a*b;
}

#pragma oss taskwait // At this point we compute the reduction

9.2.1.1 Supported operations

This section describes the supported reduction operators and their identi�er symbol. Table 7 shows the
supported reduction identi�ers and their initializer and combiner functions.
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Identi�er Initializer Combiner

+ oss_out = 0 oss_out += oss_in
* oss_out = 1 oss_out *= oss_in
- oss_out = 0 oss_out += oss_in
& oss_out = ˜0 oss_out &= oss_in
| oss_out = 0 oss_out |= oss_in
ˆ oss_out = 0 oss_out ˆ= oss_in
&& oss_out = 1 oss_out = oss_in && oss_out
|| oss_out = 0 oss_out = oss_in || oss_out
max oss_out = least representable oss_out = oss_in > oss_out ?

number in the type oss_in : oss_out
min oss_out = largest representable oss_out = oss_in < oss_out ?

number in the type oss_in : oss_out

Table 7: Supported reduction operators

9.2.2 First implementation of the reduction clause: Task privatization strategy

In this very �rst section, the task privatization reduction strategy is exposed.

For this reduction strategy we are looking for a task-level privatization or, in other words, for each instanti-
ation of the reduction task, a di�erent private variable will be used replacing each appearance of the original
variable within the task. When the computation of the task is over, the partial result computed in this
private copy will be combined into the original variable by means of the combining operator.

9.2.2.1 Internal details

This version is mostly implemented in the compiler, requiring the runtime support library only when ex-
tending the support to nested reductions.

First, the Mercurium compiler needs to declare a local copy for each list item speci�ed in the reduction
clause and initialize them to the neutral element of the reduction as shown in the previous table 7.

Then, the compiler needs to parse the task code and replace each appearance of the reduction item for the
local copy.

The last step required for the privatization to be completed is placing a combining statement as the last
statement of the task code. This statement will combine the local copy into the original variable, accumu-
lating the computation done for the task. This statement is the only point where the task will access the
original variable directly and therefore the access needs to be synchronous with any other tasks trying to
achieve the same.

While placing the access in a mutual exclusion region is a valid synchronization mechanism, the project is
centered in scalars and using atomic operations to perform the combination will always lead to a better
performance if supported by the underlining architecture.

Finally, for each list item item speci�ed in the reduction we register a dependence of the concurrent type
by the corresponding API call.

By automatizing the described compile-time transformations, all reductions that do not require nesting
should be supported.

The code listings 15 16 show an example code and how the code could be transformed after having applied
the task privatization transformations.
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Listing 15: Task privatization: original code

...

unsigned int bound = MIN(i + BLOCK_SIZE, length);

#pragma oss task in(A[i:bound-1], B[i:bound-1])
reduction(+: result)
{

for (unsigned int j = i; j < bound; j++)
{

result += A[j]*B[j];
}

}

Listing 16: Task privatization: transformed code

...

unsigned int bound = MIN(i + BLOCK_SIZE, length);

#pragma oss task in(A[i:bound-1], B[i:bound-1])
concurrent(result)
{

int result_local = 0L;
for (unsigned int j = i; j < bound; j++)
{

result_local += A[j]*B[j];
}

atomic_add(result, result_local);
}

Support for nested reductions

With only the transformations stated up to this moment, not all nested reduction patterns are directly
supported. Let us �rst consider the supported code listing 17 and its transformation 18 as explained up to
this point.

Listing 17: Nesting in task privatization: original
code

#pragma oss task reduction(+: result)
{

#pragma oss task reduction(+: result)
{

result++;
}

result++;

#pragma oss taskwait
}

Listing 18: Nesting in task privatization: trans-
formed code

#pragma oss task concurrent(result)
{

int result_local_1 = 0L;

#pragma oss task concurrent(result_local_1)
{

int result_local_0 = 0L;
result_local_0++;

atomic_add(result_local_1, result_local_0);
}

result_local_1++;

#pragma oss taskwait

atomic_add(result, result_local_1);
}

We can see how the task privatization has been systematically applied to each of the tasks, from innermost
to outermost (note the _0 and _1 su�xes). If we analyse the result in more detail, we can see how the
transformation has introduced a data race between the parent and the nested task over the result_local_1
variable: only the child is accessing it atomically.

This behaviour is unacceptable, but even if this scenario was not supported by the model, problems would
arise when removing the taskwait construct placed before the outer task performs its combination. If the
outer task happened to �nish before than its child, the child would be accessing the �nished parent's stack,
resulting not only in an invalid memory access but also losing the child contribution in the reduction.

In order to overcome this problem, we need to create a mechanism in the Nanos6 runtime that allows us to
know when a reduction is registered over a local copy and what original variable corresponds to that copy
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so that the task accesses can be properly updated: A map containing the relation between those objects in
every task should be enough.

In fact, a slightly di�erent approach was used in the development of the Nanos6 runtime to avoid introducing
overhead to every task with this new structure. For our implementation, the declaration of the local copies
was moved from the beginning of the task into the args_block, the structure used to maintain the task
execution arguments. In detail, each local copy is placed just next to its corresponding original variable
pointer in the args_block. After this modi�cation, when a task creates a nested task that de�nes a
reduction over the same variable, proceeds to register its data accesses as usual and calls an additional
Nanos6 API function.

This function is responsible for checking if the reduction variable is pointing an address compressed within
the parent's args_block (meaning it will be pointing a local copy) and, in this case, update it into the
original variable by using pointer arithmetics.

The listing 19 aims to clarify this process, which happens entirely in the Nanos6 runtime.

Listing 19: Privatization moved into the args_block
// args_block structure of the parent task
struct nanos_task_args_parent
{

int x_local; // local copy moved into the args_block
int *x; // points to the original x variable

};

// args_block structure of the child task
struct nanos_task_args_child
{

int *x; // originally pointing &task_parent->x_local, to be updated to *task_parent->x
};

9.2.3 Second implementation of the reduction clause: CPU-and-task privatization
strategy

Another version considered during the design stage intended to continue decreasing the thread synchroniza-
tion cost within the reduction by taking a step further in the privatization process. After having privatized
the reduction variable in the task scope, as seen in the previous design, the next level was to privatize the
variable for each CPU participating in the reduction.

The idea is to have a private space for each reduction and CPU for it to store its contribution to that
reduction, being able to accumulate the values computed on every task executed by that CPU without
requiring any synchronization mechanism (each CPU will access a di�erent memory position).

Be aware that, in this version, we will still be applying the task privatization as shown in section 9.2.2. The
main di�erence with that implementation is that, instead of accumulating the local copy into the original
variable at the end of the task, we are accumulating in into another private copy per CPU, avoiding any
kind of synchronization.

We have no way to implement this mechanism with the information known at compile time and hence we
need to implement it inside the runtime support library. In detail, we will at least need a mechanism to
register and maintain information related to every reduction into the runtime and a way to retrieve the
internal private copy memory address for a given CPU and reduction in order to be able to accumulate the
task contribution into it.

It is important to remark that, for scalars, the CPU-and-task privatization strategy can not possibly out-
perform the previous task-privatization strategy in a platform where the combination of the private copy
per task is done via atomic operations. The reasoning behind this claim is that, if the amount of reduction
tasks on the same element were so big that collisions in the combination statement were signi�cant, the mu-
tual exclusion regions found within the Nanos6 runtime for accessing the internal structures and scheduling
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queues would already su�er from such contention in both scenarios that the cost of the atomic operations
would not even be noticeable.

That being said, the CPU-and-task privatization strategy would then be a preferable alternative if the
architecture did not provide native support for atomic operations and mutual exclusive regions were required.
In addition, if a reduction were to be combined into a variable for which a previous long computation
has to be done, this strategy could be optimized to schedule the computation of the reduction instantly,
without waiting for the previous value to be computed. Then, as soon as the previous data had �nished its
computation, the combination of the reduction copies per CPU would take place. This scenario is shown in
the simulated traces of �gures 11 and 12, where the red chuck represents the previous data computation, the
orange part represents the computation of the reduction tasks and �nally the yellow region corresponds to
the combination of the reduction.

Figure 11: Early beginning optimization: task-privatization

Figure 12: Early beginning optimization: task-and-cpu privatization

Finally, the CPU-and-task privatization strategy would also be favourable when extending the implemen-
tations for array regions or structs (via User-de�ned Reduction (UDR)), where no atomic operations to
combine the whole object are possible.

9.2.3.1 Internal details

Despite being based on it, the implementation of the Mercurium compiler di�ers from the previous task
privatization implementation in some aspects.

First, instead of registering the reduction access as a concurrent access, a new API call should be used to
register the reduction within the task, specifying the address of the initialization and combination functions
to be called from inside the runtime. It is the responsibility of the compiler to generate this functions based
on the reduction identi�er as seen in the table shown in the section 9.2.1.1. The speci�c prototype of those
functions is the following:

void nanos_reduction_initialize(void *element)
void nanos_reduction_combine(void *accumulator, void *element)

Finally, in the last step of the user code transformation, instead of placing a combination statement accumu-
lating into the original variable, it should be replaced to accumulate into the CPU copy, in conjunction with
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placing an API call before it to obtain its address. This statement does not require synchronization.

The code listings 20 21 show an example code and how the code could be transformed after having applied
the CPU-and-task privatization compiler transformations.

Listing 20: CPU-and-task privatization: original
code

...

unsigned int bound = MIN(i + BLOCK_SIZE, length);

#pragma oss task in(A[i:bound-1], B[i:bound-1])
reduction(+: result)
{

for (unsigned int j = i; j < bound; j++)
{

result += A[j]*B[j];
}

}

Listing 21: CPU-and-task privatization: trans-
formed code

void nanos_red_sum_init(double *oss_out)
{

*oss_out = 0;
}
void nanos_red_sum_comb(double *oss_out, double *oss_in)
{

*oss_out += *oss_in;
}

...

nanos_register_task_dependences(...)
{

nanos_register_reduction_access(...,
nanos_red_sum_init, nanos_red_sum_comb);

}

unsigned int bound = MIN(i + BLOCK_SIZE, length);

nanos_unpack_task(int *result_local, int *result)
{

// (recall local variable is moved to args_block)

for (unsigned int j = i; j < bound; j++)
{

result_local += A[j]*B[j];
}

int *cpu_storage;
nanos_get_reduction_storage(

(void*)&result, (void**)&cpu_storage);
*cpu_storage += result_local;

}

As far as the runtime support is concerned, the following sections show how the management of the ongoing
reductions has been implemented in the Nanos6 runtime.

Memory management

First, during the initialization of the runtime itself, a �xed-size memory block is allocated for each CPU to
be used to hold its private copies that store the contributions to every running reduction. The total allocated
space can be calculated as shown in the equation 3.

total allocated space = #reduction slots ·#CPUs · element size (3)

Here, a reduction slot identi�es a system-wide reduction. Figure 13 shows how the reduction slots memory
space is organized.

Note how indexing the memory space by reduction slot �rst and then by CPU allows not having to add
padding in order to avoid the false-sharing performance-degrading pattern.

41



Moreover, if we set the product #reductionslots · elementsize to be exactly the system page size (4KB in
most systems), every CPU will have its private copies in a separate memory page and the Non-Uniform
Memory Access (NUMA) e�ect should be minimized.

Figure 13: Reduction slots memory space

Every time a new task with a reduction clause is registered in the system, the runtime checks whether
it corresponds to an already registered reduction or to a new one instead. If it corresponds to an existing
reduction, the task will be assigned the speci�c reduction slot id, whereas in the opposite situation a new
reduction will be registered and a new reduction slot id will be assigned.

It is required to have a data structure responsible for keeping track of which reduction slots are free and
available to be assigned to new reductions and which are being used instead. For our implementation, a
stack-like data structure is overlapped in the very same memory space of the CPU 0 reduction slots.

Going into detail, we have a next slot pointer that points to a free slot, or to nullptr if there are no slots
left. Every free slot points at its time to the next free slot, up to the last slot that points to nulllptr. This
structure is initialized during the initialization phase of the Nanos6 runtime. Figure 14 shows the described
structure.

Figure 14: Reduction slots management

When a slot is to be assigned to a new reduction, its address is taken directly from the next slot pointer.
Then, the next slot pointer is updated to the value found in the assigned slot as shown in �gure 15.

Figure 15: Reduction slots assignation process

When an ongoing reduction is over, the runtime proceeds to free the used slot and push it in the top of
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the structure. First, the freed slot is set to the address pointed by the next slot �eld, then the next slot is
set to point to the freed slot, placing it in the �rst position of the structure. The process can be seen in
�gure 16.

Figure 16: Reduction slots freeing process

Finally, when assigning a slot to a new reduction, it can be the case that there are no more slots available,
as the number of allocated reduction slots is �xed. In this case, a whole new reduction slots block will be
allocated and initialized. Then, linking the newly allocated block with the previous existing one is as simple
as making the next slot �eld point to the new memory space. The described assign/free mechanism will keep
the structure properly linked and consistent.

Figure 17 shows how two di�erent reduction slots blocks would be linked after a slot is freed in the original
block. For the sake of simplicity, the �gure considers there are only four reduction slots in every block.

Figure 17: Reduction slots structure with multiple blocks

Note that with this procedure as many blocks as needed can be allocated at runtime.

After the reduction slot id is assigned, the task code can be executed normally over a task-local variable.
When the user code is �nished, the address of the CPU private copy is retrieved in order to accumulate the
performed computation.

Initialization of the private copies

When a new reduction is registered, after having assigned it an identi�er and a slot as explained in the
previous sections, the runtime will initialize the internal private copies that correspond to that slot with the
reduction neutral value.

In detail, the runtime will be calling the initialization function generated by the compiler for every private
copy. This function is accessible from the runtime since it was provided when the reduction was regis-
tered.

Once the initialization is complete, the reduction tasks can be scheduled and ultimately executed.
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Combination of the private copies

Recalling how the reductions are de�ned in the OmpSs model, the value of the original variable or memory
position should be updated by the end of the reduction domain, delimited by either a dependence or a
taskwait in the precise nesting level.

A single mechanism was designed so that both scenarios were supported. The logic behind the mechanism can
be summarised in triggering the reduction combination when one of the following conditions is met:

• A reduction task �nishes its execution, there are no previous accesses in the access sequence and there
are posterior accesses of a type other than reduction. If the posterior access is of type reduction but it
corresponds to a distinct reduction, the combination should also be triggered.

• A reduction task �nishes its execution, there are no previous nor posterior accesses in the access
sequence and the access sequence is marked to have reached a taskwait.

• A new access is registered, there are no previous accesses in the access sequence and there is a pending
reduction annotated in the access sequence. If the new access is of type reduction, the combination
should be triggered only if the annotated reduction and the new access reduction are distinct.

• A taskwait is reached and there are empty access sequences with a pending reduction annotated.

Note how the logic is distributed into three di�erent points: the registration of data accesses, the termination
of data accesses and the taskwait synchronization point.

For the mechanism to work it is required that we modify some existing data structures and add a new
one.

First, a �eld needs to be added in the access sequences so that the last pending reduction can be annotated
in it. This information is used by the third and fourth points in the described logic. This �eld should be
updated every time a new access (of any type) is registered.

Secondly, a new data structure is required to keep track of access sequences have an ongoing (uncombined)
reduction. New accesses need to ensure the sequence where they belong is present in the container and
combining the reductions corresponding to those sequences will invalidate them in the container. For our
implementation, an intrusive (with hooks within the objects) doubly linked list makes these operations
possible in constant time. This container will be traversed when a taskwait is reaching, either combining
the access sequence if empty as stated in the fourth point or �agging them to be combined when empty by
the second point.

Finally, it is important to clarify that when the combination of a reduction is cleared, the runtime is the one
responsible for performing the accumulation onto the original variable by calling the function generated by
the compiler provided when registering the reduction via the API call.

Implementation considerations and limitations

The following assumptions were made when implementing this reduction strategy:

• All CPU participate in every reduction, if the reduction computation is too small and the number of
CPUs is big, we could notice the overhead of creating and initializing the private copies for each CPU.
Another implementation keeping track of which CPUs have participated in the reduction could be
bene�cial in those situations, in exchange for making the scenario where all of them participate slower.

• Reduction slots are �xed-size. The internal runtime structures will hold �xed-size copies (say 8 Bytes)
regardless of the real size of the original reduction variable. However, if the size of the variable is
smaller, the implementation will still work.
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9.2.3.2 Debugging the implementation

Debugging a parallel application is never easy, di�erent thread schedulings and timings can hide potential
data races and other issues, exposing them once every many executions and thus complicating the detection
and debugging process. Moreover, using a debugger or memory-sanity tool like Valgrind may slow down the
execution, and problems that show up during normal execution could be covered up here.

Debugging a runtime library like Nanos6 is no di�erent. This section shows what measures have been taken
in order to ease the process of detection, identi�cation and repair of programming errors.

The Nanos6 runtime has di�erent execution modes to be selected at load time. The default mode is optimized
to provide a good performance, but alternative modes are available for other purposes.

The modes described in table 8 have been of high utility to discover what was really happening inside the
runtime.

Execution mode Description

optimized Default value, optimized for good performance
debug Enables assertions and produces debugging symbols
extrae Instrumented to register Extrae events and generate a Paraver execution trace
pro�le Instrumented to produce a function and source code execution pro�le
stats Instrumented to produce a summary of execution metrics (number of tasks, etc.)

Table 8: Used Nanos6 execution modes

Besides the described execution modes, two additional modes were explicitly extended to provide detailed
information of how reductions where being internally managed.

On the one hand, the graph execution mode, used to display in a graphical way the data accesses, the
dependences between those, and how they evolve in the system. The graph mode was extended to support
both concurrent and reduction data accesses, labeling them properly and annotating their status changes.
Figure 18 shows a sample of the generated steps for a simple execution of seven tasks.

On the other hand, the verbose execution mode, used to display text-based information of occurring events
and actions taken inside the runtime. The verbose execution mode was updated to inform about the following
reduction-related events:

• When a new reduction slots block is added to the system (showing the total number of allocated slots).

• When a new reduction access is registered over an address

• When a reduction is combined and in which of the four possible situations described in section 9.2.3.1
the combination happens.

• When a reduction chain is �agged to be combined.

• When a reduction is annotated onto an access sequence.

Figure 19 shows an example output of the text-based information shown by using the verbose execution
mode. Note that the text original: 1010 is the program regular output.
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Figure 18: Nanos6 graph output example

Figure 19: Nanos6 verbose output example
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10 Evaluation and results

In this section we provide a description of the methodology used to evaluate our contribution as well as the
obtained results.

10.1 Benchmark methodology

In order to have a fair and e�cient benchmarking some were taken.

All tests were executed with exclusiveness of the node. Node resources were not shared with other processes
during the performance measures. To achieve this, the Platform Load Sharing Facility (LSF) and Simple
Linux Utility for Resource Management (SLURM) workload management systems and their queuing system
were used.

Five repetitions were run for each con�guration in the benchmark. Then, the measured times for each
of the �ve executions were averaged in order to minimize the e�ect of the measure variability between
executions.

10.2 Machines description

In this section we give an insight of the architecture of the machines used for testing and benchmarking.

It is important to note that our benchmarks will focus on shared-memory architectures, which are the main
target of the OmpSs programming model. For this reason, all executions will be contained within a single
cluster node for all machines.

10.2.1 MareNostrum III supercomputer

This machine has been considered as the most reliable platform where to benchmark our implementation.
The MareNostrum III supercomputer is a member of the PRACE network24 and, as such, is relied on by
many researchers performing their experiments.

Each compute node of theMareNostrum III supercomputer is composed of two Intel Xeon E5-2670 processors
with 8 cores each and 32GB of RAM. As far as the memory hierarchy is concerned, each socket forms a
NUMA node and all the cores that belong to the socket share the L3 cache. The other cache levels are
private for each core. Both processors are connected by using a QPI 17 connection, forming a NUMA shared
memory node.

Even though these processors support HyperThreading, it is disabled in this machine, and therefore there is
only one thread per core.

Finally, the compiler used in this platform is Intel icc 17.0.1.

Details of this cluster node are shown in table 9. Further information about the cluster node topology can
be found in the appendix B.
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#NUMA nodes 2
Memory/NUMA node 16GB

#Sockets 2
#Cores/socket 8
#Threads/core 1
#Total threads 16

L3 size 20MB
L2 size 256KB
L1d size 32KB
L1i size 32KB

L3 shared amongst socket
L2 shared amongst core

Table 9: MareNostrum III node summary

10.2.2 KNL cluster

The KNL cluster gets its name from its processors: the second generation of the Intel Xeon Phi products,
codenamed Knights Landing. The underlaying architecture of the Xeon Phi processors and coprocessors
is known as the Intel Many Integrated Core (MIC) architecture. As opposed to the MareNostrum III

supercomputer, the KNL cluster is a much smaller machine (4 nodes) currently used for research in the �eld
of computer architecture.

Each compute node of the KNL cluster is composed by a KNL Xeon Phi processor of 68 cores and 4 threads
per core. Every node has a total of 94GB of RAM.

This nodes have the special characteristic that they use an additional memory of type Multi-Channel DRAM
(MCDRAM). This memory type stands out for physically sitting atop the processor, providing higher band-
width and lower latencies when compared to the conventional Dual-Inline Memory Moduless (DIMMs)6. For
running our benchmarks, this memory has been con�gured to cache the accesses to the main Double Data
Rate type 4 Synchronous DRAM (DDR4) memory.

A peculiarity from this machine with respect to the others is that the L2 level of cache is shared between
every two cores.

Finally, the compiler used in this platform is Intel icc 17.0.0.

Details of this cluster node are shown in table 10. Further information about the cluster node topology can
be found in the appendix B.
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#NUMA nodes 1
Memory/NUMA node 94GB

#Sockets 1
#Cores/socket 68
#Threads/core 4
#Total threads 272

L3 size -
L2 size 1MB
L1d size 32KB
L1i size 32KB

L3 shared amongst -
L2 shared amongst every two cores

Table 10: KNL node summary

10.2.3 Power8 cluster

As the KNL machine, the Power8 cluster is a 4-node machine mainly used for research about computer
architecture.

Each compute node of the Power8 cluster is a S822LC system16, composed of 2 Power8 processors of 10
cores each and 256GB of RAM. Each core has 8 threads and both processors are interconnected forming a
NUMA shared-memory machine.

Finally, the compiler used in this platform is GCC 4.9.3.

Details of this cluster node are shown in table 11. Further information about the cluster node topology can
be found in the appendix B.

#NUMA nodes 4
Memory/NUMA node 128GB

#Sockets 2
#Cores/socket 10
#Threads/core 8
#Total threads 160

L3 size 8MB
L2 size 512KB
L1d size 64KB
L1i size 32KB

L3 shared amongst core
L2 shared amongst core

Table 11: Power8 node summary

10.2.4 ThunderX cluster

The ThunderX cluster di�ers from the other clusters by using based in the ThunderX System on Chip (SoC)
developed by Cavium, which is based in the ARMv8 architecture.

Each compute node of the ThunderX cluster is composed of 2 SoC of 48 cores each and 128GB of RAM.
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The ThunderX SoC is the �rst ARM based SoC that is fully cache coherent across dual sockets. To
achieve this, Cavium developed its own proprietary protocol called Cavium Coherent Processor Interconnect
(CCPI).10

Finally, the compiler used in this platform is GCC 6.1.0.

Details of this cluster node are shown in table 12. Further information about the cluster node topology can
be found in the appendix B.

#NUMA nodes 2
Memory/NUMA node 64GB

#Sockets 2
#Cores/socket 48
#Threads/core 1
#Total threads 96

L3 size -
L2 size 16MB
L1d size 78KB
L1i size 32KB

L3 shared amongst -
L2 shared amongst socket

Table 12: ThunderX node summary

10.3 Benchmarks description

10.3.1 N-queens

The n-queens problem is the generalization of the 8 queens puzzle, where 8 chess queens need to be placed
in an 8×8 chessboard so that no two queens threaten each other31. In the generalized version n queens need
to be placed in an n× n chessboard for a given natural n.

Figure 20: One of the 92 solutions for the 8 queens problem

While �nding a single solution to the problem for a given n can be done e�ciently in polynomial time26,
�nding every possible solution requires an exhaustive search and has an exponential cost.
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The proposed solution of the problem is based in a recursive depth-�rst search, where the board is traversed
either row-wise or column-wise (it does not matter since the board is square) while placing a queen in a safe
square at each step.

If a partial solution to the problem is expressed as a linked list of positions where a queen is placed, the
remaining solution tree can be explored in parallel. In particular, after the placement of a queen, a new
task is created for every safe position in the adjacent column to count for all possible solutions sharing the
positioning up to that point.

The reduction pattern can be found in the counting for the number of solutions to the problem. Each task
will be either accumulating a found solution to the global counter if it represents a leaf node or forward the
reduction by creating more tasks that will possibly do so at some point (either them or their descendants).
This process de�nes a single reduction across the whole solution tree where all tasks participate.

It is important to note how the de�ned reduction is recursive, and therefore this problem is not only a real
problem where nested reductions are required but also will provide a valid benchmark to evaluate the e�ect
of having a taskwait clause in each nesting level.

By using the described strategy the number of created tasks will grow exponentially to the size of the problem,
making the overhead of managing such a big amount of tasks disproportionate to the bene�ts the parallel
execution could bring. To stop the creation of tasks once reached a certain level of parallelism the final
clause will be used. The depth speci�ed in the final clause will determine how many levels of recursion
(or rows/columns in the chessboard) will be explored until no more tasks are instantiated. Once a thread
enters in �nal mode, it will �nish exploring its local branch of solutions until there are no combinations left
to try.

It should be taken into consideration how the depth value passed to the final clause determines a trade-o�
between the amount of tasks in the system and their granularity: The bigger the value, a greater number
of �nner tasks and vice-versa. Having a small number of coarse tasks can reduce overheads but it can also
unbalance the amount of work to be done for each thread, increasing the execution if the solution tree is not
balanced (which is not).

In �gure 21 we see a binary solution tree that exempli�es this last point by showing how setting a �nal depth
too small would result in an unbalance the threads workload. See how under the �nal threshold there is not a
fair distribution of the workload among the threads (illustrated in the �gure by using di�erent colors).

· · ·

�nal depth

Figure 21: Unbalanced n-queens solution tree

For this benchmark, the impact of the taskwait clause will be evaluated by comparing the results of the same
con�gurations obtaining by placing or removing the taskwait clause in each nesting level of the reduction,
as shown in �gures 22 and 23.
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Listing 22: Nested reduction with taskwait
int x = 0;
#pragma oss task reduction(+: x)
{

#pragma oss task reduction(+: x)
x += ...

#pragma oss task reduction(+: x)
x += ...

#pragma oss taskwait
}

Listing 23: Nested reduction without taskwait
int x = 0;
#pragma oss task reduction(+: x)
{

#pragma oss task reduction(+: x)
x += ...

#pragma oss task reduction(+: x)
x += ...

}

10.3.2 Unbalanced tree search

The next problem we consider in our benchmark is the UTS. As stated by its name, this problem is charac-
terized by completely traversing an unbalanced tree while doing some computation for each node.

Like in the n-queens problem, our algorithm is based in a recursive depth-�rst search. However, there are
meaningful singularities in the shape and growth of the recursion tree that make them completely di�erent
problems.

For our benchmark, of the generation of the tree will occur dynamically during runtime by means of the
Galton-Watson branching stochastic process30. Speci�cally, the algorithm will decide whether the node is
traversing will instantiate children or will become a leaf node otherwise.

The branching factor at all nodes except the root follows an identical binomial distribution. A node has m
children with probability q, or no children (becoming a leaf) with probability (1−q). The expected branching
factor is then q ·m. The number of children for the root node is explicitly de�ned as part of the execution
input.

Figure 22 shows an example of such trees where the root branching factor is 5, all non-root nodes have 2
children with a probability of 0.49 and therefore the expected branching factor for all non-root nodes is 0.98
(cropped at depth 8).

Figure 22: Stochastically branched unbalanced tree
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Considering the unbalanced shape and growth mechanism of the generated trees, it is impossible to determine
a reasonable cut-o� depth to use in combination with the final clause, making it useless for this problem.
For this reason, the runtime support library will have to deal with the overhead of creating a task for every
node of the tree.

In our benchmark, the computation to be done for each node consists in a number of Secure Hash Algorithm
1 (SHA-1) operations. The number of SHA-1 operations to be done is determined by an input parameter,
allowing the comparison of di�erent task granularities.

In this case, the reduction pattern can be found in the counting for the number of nodes of the unbalanced
tree (remember how the trees are dynamically generated). As opposed to the n-queens problem, each task
will be accumulating the node count to the global counter and not just the leaf nodes. Again, a single
recursive reduction is de�ned across the whole tree where all tasks participate.

By including a recursive reduction, the problem is also useful to further evaluate the e�ect of having a
taskwait clause in each nesting level and the described strategy is the previous section will also be used for
evaluating its impact on this benchmark.

10.3.3 Dot product

The dot product or scalar product is an algebraic operation that takes two vectors of numbers and returns
a single number. The result is computed the sum of the products of each corresponding position of the two
vectors.32

As expected, this benchmark computes the dot product between two vectors.

The dot product de�nition above leads us straight into the reduction pattern, which is to combine each of
those products into a single number by adding them.

As opposed to the previous benchmarks that follow a recursive reduction scheme, the dot product follows a
�at reduction scheme. The input vectors are broken into �xed-size blocks and a task is instantiated for each
pair of corresponding blocks, reducing the product of each pair of elements within the blocks into the global
result. This tasking scheme can be seen in �gure 23, where the product of two given A and B vectors wants
to be computed.

Figure 23: Dot product tasking scheme

This problem is also highly memory-bound and vectorizable, meaning that very little computation is done
for every memory access.

The algorithm we consider for our benchmark is based in having one thread instantiating initialization
tasks for each block of the vectors followed by instantiating the computation tasks for those blocks with
dependences on the initialization tasks. The aim of doing this is for facilitating it for the scheduler to
schedule the computation task for some blocks on the same thread the initialization of those blocks was
executed. This way, we can take advantage of reusing those memory pages as much as possible memory,
avoiding having to access di�erent pages and maximizing the use of the memory hierarchy. This scheduling
strategy is called immediate successor.
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10.4 Results

In this section we present the results obtained for our implementations of the OmpSs reduction clause when
executing the benchmarks described in section ?? on the di�erent platforms presented in section 10.2.

In order to provide fair conditions to evaluate the strong scalability of our implementations, we have tunned
the benchmarks' input parameters with the intention to �nd a �xed problem size for each benchmark
that is suitable for every platform. For the sake of reproducibility, those settings are displayed in the
appendix A.

The strong scalability test consists in �xing the problem size and gradually increasing the number of execution
resources to see if the obtained bene�t is equally proportionate to the increment. This experiment is useful
to �nd the optimal execution con�guration for a given problem size and can show how in some situations
incrementing the execution resources does not imply an increment in performance.

In addition, we present a comparison of our implementation against OpenMP using the best-performing
con�gurations. As far as the OpenMP implementation of the reductions is concerned, a user-driven thread-
privatization have been used by declaring thread-private copies to be used within the tasks and combining
them in the end of the parallel region by using the OpenMP reduction clause.

As a general comment, in this section we present the results for OmpSs without doing any distinction among
versions. The reason of this decision is that the proposed implementations are equivalent performance-wise
in this context, as detailed in section 9.2.3.

10.4.1 Results in MareNostrum III

In this section the results obtained for the MareNostrum III supercomputer are presented.

For this platform we will discuss the scalability of our implementations based on the results of executing the
benchmarks using from 1 to 16 threads, doubling the number of threads in each step.

The results obtained for strong scalability in the n-queens and UTS benchmarks are shown in �gures 24
and 25 respectively. We can see how in this platform both problems scale almost perfectly in the number of
threads.

For the n-queens benchmark, no di�erences in time have been found in any machine between executions
having a taskwait clause in each recursion level and those not having it. The reason of this is that the
final clause greatly reduces the number of tasks and consequently the e�ect of the taskwait.

In MareNostrum III in particular, the taskwait has not a�ected the execution time of the UTS benchmark
either, possibly due to having only 16 cores.

When it comes to the dot product, �gure 26 shows a worse scaling if compared to the previous benchmarks,
this is expected due to the memory-bound nature of the benchmark. In addition, we can see how doubling
the number of threads in the last step (from 8 to 16) does actually slow down the execution. The reason of
this is that when we go from a single NUMA node to two, the slow-down that supposes having some threads
accessing to the memory of the other node outweighs any advantage given by the increment in the number
of computing resources.

It is worth commenting the peculiar situation found while adjusting the compute granularity for the UTS
problem seen in �gure 27. The displayed chart shows how while a x10 increase (from 10 to 100) in the
computation weight (amount of work to be computed) for each task does not seem to cause any increment in
the �nal execution time but a drop instead. The explanation for this behaviour is that in the �rst scenario
our runtime has a really poor performance due to having a lot of contention in the scheduling queue, but
very little computation to perform. In the second scenario, however, the tasks have already a weight large
enough to make the threads spend more time computing useful work rather than frenzy asking for tasks
to execute. Figures 28 and 29 show an execution trace for the �rst and second situations respectively. In
the traces, the time spent in the runtime creating the tasks, registering their accesses, etc. is shown in
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Figure 24: N-queens OmpSs in MareNostrum III Figure 25: UTS OmpSs in MareNostrum III

Figure 26: Dot product OmpSs in MareNostrum III Figure 27: UTS granularity study inMareNostrum III

pink, while the execution of the proper task code is painted yellow. In the upper �gure we can see a lot of
time is spent in the creation of the tasks, speci�cally, we can see a lot of synchronization between threads
(painted in red in the �rst thread). On the other hand, in the lower �gure we can see how the creation time
and synchronization has been cut down and the execution of the proper task code has incremented (due to
the increase in the computation weight). However, the total cost for creation plus compute is still smaller
in the second scenario. This situation happens for every platform, the speci�c results can be seen in the
appendix A.

Finally, �gure 30 shows the comparison of the best scenario in the previous �gures (16 threads for n-queens
and UTS, 8 for the dot product) against Intel OpenMP .

In the �gure we see how both parts have a similar behaviour for the UTS and dot product benchmarks,
whereas OmpSs is much faster than OpenMP when running n-queens. That being said, the underlying
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Figure 28: Execution trace of UTS in MareNostrum III with granularity 10

Figure 29: Execution trace of UTS in MareNostrum III with granularity 100

Figure 30: OmpSs vs. OpenMP in MareNostrum III

reason of such di�erence is mainly due to the optimizations done for the final clause in OmpSs and have
little to do with our implementation of the reduction clause.

10.4.2 Results in KNL

In the KNL cluster there are a total of 272 threads distributed in 68 cores arranged in a single socket (a
NUMA node itself). For this architecture, our scalability tests consist in executing the benchmarks on the
whole node starting by using a thread for each core (68 in total), and increasing by one the number of threads
per core in each step until all resources are used (272 in total).

The strong scalability results for the n-queens and the dot product can be found in �gures 31 and 32
respectively. The �rst conclusion we draw from the �rst �gure is that this machine has a good scalability
up to having one thread per core, from this point onwards, incrementing the number of threads in the cores
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brings a much smaller speed-up.

If we focus on the dot product, the problem has an extremely bad scalability. Be that as it may, the
comparison against Intel OpenMP below shows that this problem does not suit the KNL architecture at
all.

Figure 31: N-queens OmpSs in KNL Figure 32: Dot product OmpSs in KNL

Regarding the results obtained for UTS in �gure 33, we can see the e�ect of the contention caused by having
a big number of threads trying to access the task queue structure either for adding new tasks (an e�ect of the
recursive algorithm) or for retrieving tasks to execute. In addition, we can see how an important speed-up
could be obtained from avoiding the taskwait synchronization in each recursion level when compared to
the version having it. As opposed to the n-queens benchmark, the UTS instantiates a big number of tasks
that have to be waited for when a taskwait clause is encountered, producing an important overhead.

Figure 33: UTS OmpSs in KNL

Finally, �gure 34 shows the comparison of the best found scenario as seen in the previous �gures against
Intel OpenMP . Similarly to what happens in MareNostrum III , a great speed-up is achieved in n-queens in
OmpSs due to the optimizations in the final clause.
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Figure 34: OmpSs vs. OpenMP in KNL

10.4.3 Results in Power8

In the Power8 cluster, the cores are arranged in 2 sockets of 10 cores each, and for each core there are 8
threads. For this architecture, our scalability tests consist in executing the benchmarks on the whole node
starting by using a thread for each core (20 in total), and doubling the number of threads per core in each
step until all resources are used (160 in total).

The strong scalability results for the n-queens and the dot product can be found in �gures 35 and 36
respectively. At �rst sight we see good scalability for n-queens up to having one thread per core (�rst step)
and still a decent speed-up when increasing the number of threads per core to 2 or even 4, specially if we
compare it with the KNL cluster.

For the dot product, while slightly better than KNL, the problem does not scale for this platform either.
The best con�guration for this problem is having only a thread per core, this makes sense if we consider the
memory bound nature of the problem and the fact that in Power8 the cache memories are shared among all
threads in a core: Adding more execution resources for the same memory hierarchy causes more disturbances
among than bene�t to the system.

Then, the results obtained for strong scalability of the UTS in �gure 37 show a considerable divergence
if we consider the impact of having a taskwait at each recursion level. The underlying reasoning is the
same exposed above for the KNL machine. Again, this is a good example to justify our e�ort for avoiding
synchronization restrictions in the OmpSs model whenever possible.

Finally, Intel OpenMP is not available in this machine, consequently the GCC implementation of the model
has been used for the comparison in �gure 38. In this architecture the models compare much di�erently
than what was seen in MareNostrum III and KNL. First we see how OpenMP outperforms OmpSs in the
n-queens problem. While the most probable explanation of this result is that the compiler is applying some
optimization that Mercurium is incapable to apply, we have not had the opportunity to further investigate
on this issue, leaving it for future work of optimizing OmpSs for this architecture. On the other hand, a
speed-up in favour of OmpSs is found for the UTS benchmark, trait that did not show up in the previous
architectures.
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Figure 35: N-queens OmpSs in Power8 Figure 36: Dot product OmpSs in Power8

Figure 37: UTS OmpSs in Power8

Figure 38: OmpSs vs. OpenMP in Power8
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10.4.4 Results in ThunderX

Finally, for the ThunderX cluster, all 96 cores are arranged in 2 sockets of 48 cores each, there is only one
thread in each core. For this architecture, our scalability tests consist in executing the benchmarks in a
single core, a whole NUMA node (48 threads) and �nally the whole machine.

In addition to those con�gurations, for this machine we also consider the con�guration using half the total
cores but distributed among the two NUMA nodes. On the one hand, this can be bene�cial in the sense that
both L2 caches will be shared only among half the cores. On the other hand, this con�guration could be
a�ected by the NUMA e�ect of accessing memory positions from the other NUMA node. This con�guration
is labeled as "48:2" in the �gures, as opposed to using only one node, which is labeled as "48:1".

The strong scalability results for the n-queens and the UTS can be found in �gures 39 and 41 respectively. As
for this architecture the cores are not multi-threaded, both benchmarks show a scalability almost perfectly
in the number of threads.

Figure 39: N-queens OmpSs in ThunderX Figure 40: Dot product OmpSs in ThunderX

For the dot product, while de�nitely better than KNL and Power8 , the benchmark struggles to scale in this
platform as well. The best con�guration for this problem is remaining within a single NUMA node. When
it comes to the alternative con�guration involving half the cores distributed among both sockets, we �nd
that the better use of the memory hierarchy can not be compared to the cost of accessing memory positions
from the foreign NUMA node.

Finally, as in Power8 , Intel OpenMP is not available in this machine either and again the GCC implemen-
tation of the model has been used. The comparison can be found in �gure 42. In this architecture OmpSs
outperforms OpenMP in both n-queens and UTS, while both models have a considerably greater speed-up
in the dot product benchmark as compared to other platforms. The reasoning behind this speed-up in the
dot product is that each of the ARM processors in this machine have considerably lower computing power
and more cores are required to reach the memory bound, thus showing better scalability until its reached.
For the other machines, the memory bound is reached with far less computing resources.
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Figure 41: UTS OmpSs in ThunderX

Figure 42: OmpSs vs. OpenMP in ThunderX
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11 Conclusions

The work accomplished during the course of this project is an e�ort to make it easier for the OmpSs users
to include reduction patterns in their parallel applications. The proposed way to achieve this purpose has
been extending the current OmpSs infrastructure to support the reduction clause, a functional clause that
lets the user specify the reduction pattern in a convenient, clean and pleasant way. This extension will help
reducing the e�ort required to design parallel programs with this pattern, drastically reducing the probability
of writing erroneous code and hence reducing the overall development time for the user.

The �rst step in this direction involved adding support to the concurrent clause, giving a greater degree
of freedom to the users by providing them of a new way to access the data within the data�ow model and
bringing room for new optimizations.

As far as the reduction clause is concerned, two strategies have been developed: The �rst one, based
on a task-level privatization, consists mostly in compile-time transformations performed by the Mercurium

compiler while the accesses are handled as regular concurrent accesses by the Nanos6 runtime. In the
second one, based on both task-level and CPU privatization, the reductions are registered into the runtime,
which is responsible for managing the private copies and handling the combination processes.

While for scalar reductions in architectures that support atomic operations both strategies are equivalent
in terms of performance, for arrays and User-de�ned Reductions only the latter would be competitive. In
addition, by handling the control to Nanos6 , run-time optimizations like early beginning of reduction tasks
could be implemented.

Such feature would not be of much utility if the provided implementation were not competitive performance-
wise. After all, the �nal goal of the OmpSs programming model is to facilitate ease programming for parallel
architectures without compromising the performance.

In order to evaluate the performance of our implementation three distinct benchmarks have been designed.
These benchmarks have been executed in four di�erent architectures in order to study how the implementa-
tion performs on distinct scenarios, providing a complete evaluation on the feature.

The results obtained from each benchmark justify our work and support our e�orts for eliminating the
necessity of placing synchronization constructs within nested reductions.

To conclude, the initial goals of the project described in section 2.1 have been ful�lled and a well-performing
mechanism to simplify the computation of reductions has been developed and evaluated on a range of di�erent
machines and applications.
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12 Future work

Even though the project has ful�lled its initial goals and the obtained results are satisfactory, there are still
many aspects related to the task reductions left to be dealt with.

The �rst and most natural extension of this project would be to extend its implementation to the Nanos6
region-based dependence system. This would allow supporting array reductions, which is very convenient
for some applications. Simple as it may seem at �rst, the generalization of the mechanism proposed in this
project is not trivial and special care needs to be taken in recursive schemes, where the privatization of
array regions could easily become unsustainable. We should certainly expect to see an implementation of
the reduction scheme for regions in the upcoming years.

Closely related to the last point, it could be interesting to develop the new clauses weakconcurrent and
weakreduction. Analogous to the already existing weakin, weakout and weakinout clauses, the proposed
new clauses would be useful to declare tasks that do not directly access the data but instead create nested
tasks annotated with a concurrent clause or a reduction clause respectively that do access those data.
By annotating such tasks using the weak clauses as opposed to their regular counterparts would provide this
extra piece of information that could led to further run-time optimizations. For region-based reductions,
this could suppose avoiding the privatization of a whole array when not necessary.

An additional aspect to consider in future projects would be to support UDRs. The UDR is a mechanism
that allows the user to de�ne new reduction operators. This feature could be used not only for better ad-hoc
solutions but also to support reductions in structs. UDRs are part of the OpenMP standard since the
OpenMP 4.0 revision.

As a �nal note, further investigation on the behaviour of some benchmarks under some platforms, like for
instance n-queens in Power8 , could be useful to increase the understanding of how the runtime performs in
those architectures and what could be done to optimize it.
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13 Project revision

This section describes how the approach taken for this project has changed during its process, focusing in
the work-plan but revising other main aspects de�ned during the initial assessment as well. Each of the
following points focus on one of those aspects.

13.1 Task speci�cation revision

While there have not been major changes in terms of the project objectives or the initially proposed schedule,
some stages have been adjusted or adapted for better �tting the needs of the project.

In the �rst place, in an early meeting with the directors, the initially-proposed extension of scalar reductions
for a region-based dependence system was thoughtfully discussed. It was pointed out that the natural
extension of the project for the region-based dependence system was the development of array reductions
over just scalar reductions support. Whilst the �rst is not yet implemented, an application requiring scalar
reductions could as well be adapted to use the discrete-dependence system.

Extending the region-based dependence system with scalar reductions is a very logical step for setting up
the bases and further extending them into array reductions. In this sense, before being able to provide an
extendible implementation for scalar reductions in such system it is important to �rst deeply analyse and
have a complete scheme of how array reductions will be implemented. Under that reasoning, and considering
the e�ort that it would require to adapt our implementation to the region-based dependence system given the
little utility of the result, it was agreed to �nally consider this phase out of the scope of the project.

Conversely, the OmpSs concurrent clause that was not considered during the initial assessment of the
project was completely implemented and tested for point dependences. The concurrent clause allows
instantiating a set of tasks having dependences with both previous and posterior tasks, but no dependences
between the tasks in the set, allowing their concurrent execution. The clause was developed as a �rst logical
step in the process of developing task reductions for OmpSs, as shown in section 9.1.

Another development process that was not initially considered was the adaptation required for the applica-
tions to be run in the OmpSs runtime. For some applications, no adaptation was necessary besides using
the reduction pragma, whereas in others, the original source code had to be redesigned to remove otherwise
necessary taskwait s and synchronization points.

As far as time deviations are concerned, we could almost �t the described changes in the work-plan by using
the time reserved for the extension of scalar reductions on the region-based dependence system.

13.2 Obstacles revision

During the project we have inevitably faced some of the obstacles foreseen during the initial assessment in
the obstacles section 2.3.

On the one hand, the BSC-CNS machines MareNostrum III and Power8 , which this project relies on for the
execution of some tests, underwent some maintenance tasks, including the upgrade of the General Parallel
File System (GPFS) in the case of MareNostrum III . This happened 12th December from midnight until
20.00h the same day. During this period, both machines were unavailable for the users. While it was planned
to use the machines for testing during that day, those tasks could be rescheduled and advance further in the
implementation stages instead, resulting with no time deviation for the global project schedule.

On the other hand, at some point during October, an unconnected error or bug was introduced in the runtime
by some people working on other projects related with OmpSs. This error a�ected the main runtime scheduler
in particular and, being a critical part of the runtime, caused the overall runtime performance to degrade
considerably. In more detail, the error was responsible for some threads being incorrectly pinned to the
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CPUs they had previously been attached to, resulting with more than one thread pinned to the same CPU
at the same time and causing major problems in mutual exclusion regions.

This issue forced us to repeat all the testing and benchmarks done up to the point, as the measured perfor-
mance was not valid. In consequence, the testing withing the development phase was prolonged a bit more
that it would have been desirable.

13.3 Work-plan revision

Everything added up resulted in a deviation of around 15 hours, resulting in an expected amount of 565
hours for the whole project. The extra required time was �tted in the schedule by taking advantage of the
reserved time-frame for deviations and increasing the developer workday.

Figure 43 shows a revised version of the original Gantt diagram where the up-to-date status of the project
is shown in a clear way. Speci�cally, we can visualize the situation of the follow-up meeting in the project
schedule, having a clear picture of which tasks are over and which are yet to be done.
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2016 2017

September October November December January

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10Week 11Week 12Week 13Week 14Week 15Week 16Week 17Week 18Week 19

Project management

Context and scope of the project

Planning

Budget and sustainability

Preliminary oral presentation

Condition speci�cation

Final document and presentation

Initial assessment

Study and familiarization

Analysis and design

Development

Work environment setup

Concurrent clause compiler

Concurrent clause runtime

Extend compiler point dep.

Extend runtime point dep.

Application adaptation

Follow-up assessment

Result evaluation

Final stage and defense

Final project deadline

Project defense

Figure 43: Revised Gantt chart, showing dependences and ordering between tasks
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13.4 Costs revision

The increment of 15 hours of development time are distributed among the described roles as shown in
table 13.

Role
Salary Dedication

Cost (e)
(e/hour) (hours)

Project manager 50 1.0 50
Analyst 35 3.5 122
Programmer 30 7.0 210
Tester 20 3.5 70

Total - 15 453

Table 13: Human resources additional costs estimation

When it comes to other resources like computers or software, as they where already being used in overlapping
phases, no extra cost is to be accounted for.

The total deviation can be covered by the budget item reserved for situations such as this. The amount of
money available in this concept consist of 1.382e, fully covering our deviation of 453e.

No further deviations from the budget are expected.

13.5 Methodology revision

The Agile iterative development approach eXtreme Programming was chosen during the initial assessment
of the project.

Throughout the course of the project, weekly meetings have been arranged with the project supervisors,
ful�lling the initial plan of having one-week long development iterations. This has proven to be a good
measure in order to have the project properly oriented at every moment.

In particular, it has helped detecting the described deviations at the soonest, minimizing them as much as
possible while keeping in mind the �nal goals.

Having a cyclic methodology also took an important paper when we faced the maintenance tasks for some
of the machines. If we had used a linear non-Agile methodology, we could not have rescheduled our tasks at
that point, making the deviation much more worrying.

Test-driven development and code-revision sessions helped us ensure no errors where introduced while de-
veloping our features, and therefore avoid having to face more deviations for that reason.

All in all, the chosen methodology has proven to be adequate to this project.

13.6 Applicable laws and regulations

The only regulations that apply to a project like ours are the ones related to the intellectual property of the
product being developed. OmpSs itself is an open standard freely available to use and edit. In particular,
the Mercurium compiler is released under the GNU General Public License version 3 (GNU GPLv3).15

Regarding the Nanos6 runtime support library, it is not yet decided under which license it will be released,
being the project still in its development phase.

In any case, and as far as this project is concerned, anything developed for it fully belongs to the BSC-CNS
organization, and the developer of the project renounces any further rights over the intellectual property of
the developed product.
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A Additional results

In this section we can �nd the additional results mentioned in section 10.4.

If not explicitly shown otherwise in the �gures, the parametrization for the execution of the benchmarks is
the following:

• n-queens: N = 16, �nal depth = 2, 2500 tasks

• UTS: Non-leaf probability = 0.499, computation granularity (task weight) = 1000 SHA-1 operations
per tree node, 1.300.000 tasks

• dot product: N = 220 Kelements, block size = 211 Kelements, 512 tasks

Figure 44: UTS granularity study in KNL

Figure 45: UTS granularity study in Power8
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Figure 46: UTS granularity study in ThunderX

B Machine node topologies

This section shows the topology diagrams of the machine nodes used in the benchmark. The diagrams were
extracted directly from the exact nodes by using the tool lstopo from the hwloc software suite.

Figures 47 48 50 49 show the extracted diagrams.

Note that no information about the caches is given in the ThunderX cluster node. This is due to a recogni-
tion/labeling error at the operating system level.
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Figure 47: KNL node topology
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Figure 48: Power8 node topology
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Figure 49: ThunderX node topology

7
4



Machine (32GB)

NUMANode P#0 (16GB)

Socket P#0

L3 (20MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#5

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#6

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#7

PCI 15b3:1003

ib0 ib1

mlx4_0

PCI 8086:1516

eth0

PCI 8086:1516

eth1

PCI 8086:1521

eth2

PCI 8086:1521

eth3

PCI 102b:0534

PCI 8086:1d02

sda

NUMANode P#1 (16GB)

Socket P#1

L3 (20MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#8

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#9

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#10

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#11

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#12

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#13

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#14

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#15

Host: login3

Indexes: physical

Date: Wed 28 Dec 2016 06:44:57 PM CET

Figure 50: MareNostrum III node topology
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