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Abstractin this paper the problem of robust fault detectimmg an interval observer for dynamic
systems characterized by LPV (Linear Parameter Varying)eisois presented. The observer face the
robustness problem using two complementary strategieantedric modeling uncertainties are consid-
ered unknown but bounded by intervals. Their effect is asklrd using an interval state observation
method based on zonotope representation of the set of postites. The observer gain is designed via
pole placement using LMI (Linear Matrix Inequalities) fautation. The method is applied to a LPV
representation of a Twin Rotor MIMO System.
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1. INTRODUCTION argued that model uncertainty alone can not explain thduasi
and therefore a fault must have occurred. This approacthlas t

Model-based fault detection methods are based on the used{)?WbaCk that faults that produce a residual deviation lemal

the mathematical models of the monitored system to explotﬁan the residual uncertainty due to parameter u_ncertmmity
analytical redundancyMany model-based fault detection tech—nOt be_ detected. A_nother ap proach to the passive robust faul
niques, mostly based on linear models, have been inveemigafjetecnon problem is to explicitly calculate the set ofstahat

and developed in the literature over the last few years. T%e consistent with the measurements. When a measurement

use of FDI linear-based methods has been extended to n —fﬁ;\?g (t)% ctl)ﬁ rg:jcozz'sgﬁné)\?ggt] :@sresseethgggﬁlt O'fs tﬁzsgglegf
linear systems using linearization around an operatingtpoi : P

- . tates consistent with the measurements is hard to caculat
Chen and Patton, 1999). However, for systems with high noR. . > -
I(inearity and a wide ope)rating range th)e/ linearized ag 0aapproxmatlng sets that provide outer bounds are often used

fails to give satisfactory results. To tackle this probleewn instead. In the literature several approximating sets woss

fault detection methods based on non-linear models havwe b ! gosg)t O; E?aiselbéztisr;a;tecfr hb?seegeoer? g;%ﬁ):ssiﬁd. twevgg(tzzjé(s(ta;tae
developed. Methods range from the direct use of non-line ' 9

models to the use of neural networks, TS fuzzy systems a d the smallest ellipsoid is proposed following the alduris

neuro-fuzzy systems (Chen and Patton, 1999). Alternattivelproposecj by Maksarov and Norton (1996). However, in this

. : approach only additive uncertainty is considered, but het t
Linear Parameter Varying (LPV) models have recently atitidc A . : !
the attention of the FDI research community. Such mode[gultlphcatlve one introduced by modeling uncertaintydted

can be used efficiently to represent some nonlinear systelln the parameters. In this paper, both types of uncertaintie

(Shamma and Cloutier, 1993, Andrés and Balas, 2004). Th@ e considered as in Rinner and U. Weiss (2004), but there

has motivated some researchers from the FDI community ly Syl'Sten:. trajectories detalr:jed from _the tﬁ”ﬁgtam patam
develop model-based methods using LPV models (see BoK Fervat Vﬁr :ges are considered, assuming that the mormtp

et al. (2002), among others). But even with the use of LPV mo Yroperty holds.

els, modeling errors and disturbances are inevitable irpbexn The main contribution of this paper is to develop a passive ro
engineering systems. So, in order to increase reliability a bust fault method for LPV systems that uses a interval oleserv
performance of model-based fault detection the developmeapproach based on enclosing the set of states by zonotopes.
of robust fault detection algorithms should be addressée. TThe proposed state-estimator applied to fault detectitbovis
robustness of a fault detection system means that it must heconsistency based approach that is based on determiming th
only sensitive to faults, even in the presence of modeityeal set of states that are consistent with parameter and measnte
differences (Chen and Patton, 1999). One of the approachesimcertainty.

robustness, known gmssiveis based on enhancing the robust-

ness of the fault detection system at the decision-makamgest T;siesr;rgctt#;? Sgégisapﬁt)grrvi:l OLrlg\a/ni)ztfsfje?vsel;oi”smihr/]stfo-mec: dP\i{"n
The aim with the passive approach is usually to determing’>"" i~ . . ;
P P y ction 2. Additionally, a solution for the design of an mtd

given a set of models, if there is a member in the set that c V ob . e ol t using li trix i |
explain the measurements. A common approach to this probl Observer via pole placement using finear matrix inequa
(LMI) formulation is proposed. Section 3 explain the ftau

is to propagate the model uncertainty to the alarm limit$ef t ' . S .
residﬂalg \?Vhen the residuals are out){side of the alarndiiii detection test using interval LPV observers. In Sectionel th



implementation of interval LPV observers using zonotope afhere are several ways of implementing (3) depending on how
proach is presented. Finally in Section 5, an illustratikeeple «’(p,) functions are defined (Murray-Smith and Johansen,
based on the Twin-Rotor MIMO System (TRMS) is used td997). Here the approach used in Baranyi et al. (2003) is

assess the validity of the results derived in the paper. proposed:
2. INTERVAL OBSERVERS FOR LPV SYSTEMS A1) Bs) ®)
C(0k) D(Vk)

2.1 System set-up

N 2 2 v
- . A;j(97) Bj(¥7)
Let us consider that the nonlinear system to be monitored can — Z Z Z H pmim (P (K)) <Cj () Dj (19]))
be described by its LPV representation as follows: Izt hemimH
x(k+1) = AWy)z(k) + B(Wx)u(k) @) o (p)
y(@ - C(ﬂwx(_k) + D(ﬁ’“)u(k)_ With i, 1 = (pm_(ki)_p—m) andjim o = 1 — i 1 wherepl, and
whereu(t) € R is the system inpuy(t) € R™v is the system ’ (pg”_pg") ’ ’

output andz(t) € R"= is the state-space vectat, := ¥(k) , .
is a vector of time-varying parameters of dimensiopthat Pm reépresent the upper and lower boundgpf respectively

changes with the operating point scheduled by some measufslv is the number of scheduling variables.
system variablegy, (pr := p(k)) that can be estimated using
some known functiond,, = f(px). However, some uncertainty
in the estimated parameter values is considered to be bdun
by the following set:

d?ez Interval observer

" — The system described by (1) is monitored using a linear ob-
I = {0 € R™ | Uk <0k < Ui} (2)  server with Luenberger structure considering parametegmn

This set represents the Uncertainty about the exact kngW|QQainty given byrﬂ] c [&7 E] In the f0||owing, we consider

of real system parametets,. The interval for uncertain pa- only strictly proper systems such that = 0. Consequently,

rameters can be inferred from real data using set-memlperstie interval LPV observer can be written as:

parameter estimation algorithms (Milanese et al., 1996). N

System (1) describes a model parametrized by a scheduling®® *1) = D @) [Ao(9)i(k) + By (#)u(k) + Lyy(k)]
variable denoted byy. In this paper, the kind of LPV sys- J=1

tem considered are those whose parameters vary affinely in a N ,

polytope (Apkarian et al., 1995). In particular the statece 9(k) = Zoﬂ(pk) [C ()i (k)] @
matrices range in a polytope of matrices defined as the convex j=1

hull of a finite number)V, of matrices. That is,

i , whereAg ;(97) = A;(¥7) — L;C;(97), u(k) is the measured
<{1(19k) B(d) > cCo { (Aj(ﬂj,) B;(¥) > } system input vector (k) is the estimated system state vector,
C(¥r) D(9) C; () D7) )’ y(k) is the estimated system output vector ahd is the

N , . observer gain that has to be designed in order to stabilize th
i= Zaj( ) A;j(97) B;(v7) (3) observer given by (7) for att’ ¢ [/ W]
= PRI\ ¢j9) D7) ) g y -

_ . NJ_ . , o Definition 1. Consider the state estimator given by (7), an
with o/ (pr) > 0, 35—, o/ (pe) = 1 andd¥’ = f(p’) is the jnitial compact setX, and a sequence of measured inputs
vector of uncertain parameters ¢f* model where each‘" (u;)E~* and outputs(y; )¢~ *. Theexact uncertain estimated
model is called vertex system and it is assumed according $eate sett time k is expressed by

property (2) thaty/ e [97, 97]. . . R -
: ] Xy = {Iﬂk 2 (T = A(Wi—1)Tim1 + B(Wi—1)ui—a
Consequently, the LPV system (1) can be expressed as follows . . . R - R ) 8
+L(y,t-_1 = Ji-1))i=1, (?/z‘—l = ka—l)xiﬂ)iﬂ (8)

N
w(k+1) = Zaj(pk) [A; () (k) + B;(97 )u(k)] | doeXo, (Wi ell)i,}
N (4)  wherel = S o (pr) Ly

N
_ j (9 (9
y(k) = Z;O‘ (i) [C5(9 (k) + D; (0 )u(k) The uncertain state set described Definition 1 at time &
= . ._can be computed approximately by admitting the rupture of
Her‘ifj » Bj, C; and D; are the state space matrices def'”eawe existing relations between variables of consecutive i
for j** model. Notice that, the state space matrices of systefistants! This makes possible to compute an approximation
(1) is equivalent to the interpolation between LTI modets, f of this set from the approximate uncertain state set at kirhe

A SN (99
example:A(dy) = 3.j=1 o (pr) 4 (7). Definition 2. Consider the state estimator given by (7), the set
The polytopic system is scheduled through functieh@;,), Vj € of uncertain states at time k-X;_1 _and the mput/oup_utvalues
[1,...,N]that lie in a convex set: (uk—1,yx—1)- Then, the set of estimated states at time k based
; T on the measurements up to time k-1 is defined as:
U = {oﬂ(pk) e RN a(p) = [al(pk),...,aN(pk)} P

)
) N ) 1 However, the problem of uncertainty propagation (wrappafigct) could
o (px) >0, ¥y, Z o (pg) = 1} . (5) appear when this set is approximated in this way becauseeafdbumulation
j=1 of overestimation along the time and deriving in an explogibuncertainty.




Xi = {:ﬁk t A(Ogp—1)Ek—1 + B(Or-1)ur—1 time (origin-centered unitary disk) systems are assotiatéhe
N _ ) matrices
+L(Yk—1 = Jk-1), k-1 = C(Ig—1)3k1 ro |01 R |10 (14)
| Zr-1 € Xp—1,Up—1 € Ok} ° Lo 7 01
Analogously, considering measurement equation in (7), t

approximated set of estimated outptitscan be determined. qﬁ particular, let consider a disk LMI region callgd defined

by centerc (in this casec = ¢; ande, = 0) and a radius
Since the set of estimated stat&$ is difficult to compute, such that(c + r) < 1. The two scalarg andr are used to
one way is to bound it using some geometric regions easy tetermine a specific region included in the unit circle where
compute as for example: a box (interval hull) as in Puig et athe observer eigenvalues will be placed. Therefore, thisikir
(2002), an ellipsoid as in Maksarov and Norton (1996) or gegion puts a lower bound on both the exponential decay rate
zonotope as in Alamo et al. (2005). and the damping ratio of the closed-loop response. The wesig
: : of the interval LPV observer (7) such that the observer poles
Here, the set of estimated staf€$ (or outputsyy) introduced 0 hjaced in this LMI region(re)quires to find for each veprtex
in Definition 2 will be approximated iteratively using zono- 4" (with j € [1,...,N]) the observer gait; and unknown

topes. From these zonotopes, an interval for each statebl@ri ; ; o L .
can also be obtained by computing the interval hull of theozon E{ﬂr?.metrlc matrixX; = X > 0 thats satisfies the following

tope. The sequence of interval hullX; with £ € [0, N] will -
be called thénterval LPV observer estimatiowf the system ( Xy X (Ao (97)7XG) ) <0, (15)
given by (7). Analogously, the sequence of interval il (c+ Ao (¥)")X; —rX; ’

can be obtained. Following the previous idé@dgorithm 1is for 97 € [99, 7], that corresponds to Eq. (10) in Chilali and

pro_posed to determine an approximationset of uncertain Gahinet (1996) with matrixd being transpose of the observer
estimated states

matrix Ag ;.
Algorithm 1 Interval LPV Observer using Set Computations Note that expression (15) is a Bilinear Matrix InequalitMB
L k1 which cannot be solved with LMI classical tools. But sulostit
2: while k < N do ingW; = LTX; itis possible to transform it into:
3:  Obtain and store input-output datas—1, yx—1} !
4:  Compute the approximated set of estimated outpifs, . T*T’Xj P
5. Compute the interval hull of the approximated set of | (¢ + A;(¥/)")X; — C;(¥7)" W; -
1 e _ = . .
estimated outputs)Y¢ = {gkwk} cX;+ XJ,TAj (97) — WJ,ch (97) <0, (16)
6: k«<—k+1 —rX;
7: end while . . .
Then, the design procedure boils down to solving the LMI (16)
) and then determining; = (Wij_l)T. Finally, the observer
2.3 Observer design gainsL; will be interpolated to obtain the interval LPV ob-

server (7).
The design of the interval LPV observer (7) can be solved with
the LMI pole placement technique (Chilali and Gahinet, 1996
that allows to locate the poles of the observer in a subregfion
the left half-plane using a LMI region.

3. FAULT DETECTION USING LPV OBSERVERS

3.1 Input-output form
Consider a givedd x 2d Hermitian matrix defined as

Roo Rio o2 i The system (1) can be expressed in input-output form using
R= [ . Ru} €eC** R €C™ >0 (10)  the shift operatoy~! and assuming zero initial conditions as
o ) ) follows:
and the feasibility set of an associated LMI defined as y(k) = Gulq~L, Op)u(k) (17)

D= {s € C: Roo + (Rios)™ + Ryys*s < 0} (11)  where:

—1 _ —1
where(R10s)" denotes the Hermitian transposeRyfys. Sets Gulq™,Ur) = CIk)(gI=A(r)) " B(0k) + D(Vr) (18)
defined according (10)-(11) are callézdregions (Chilali and The effect of the uncertain parametets on the observer
Gahinet, 1996). Moreover, the intersection Dfregions is temporal responsg(k, ¥;) will be bounded using an interval
a D-region, allowing to characterize some multiple temporadatisfying? :
specifications. For example, for the vertical left halfyda G(k) € @(k) E(k)] (19)

characterized by < ), the associated matrik is .
in a non-faulty case.

-2\ 1
R= [ 1 o] (12)  The application of observers to fault detection consistedt-
while for an open disk with center— ¢, + cyi and radius: is ing whether the measurgd output is consistent with_ the one
s ) ! 2 given t_Jy an observer using a faultless model. If an inconsis-
R= [01 +cy =17 —c1 + 022} (13) tency is detected, the existence of a fault is proved. In case
—C1 — Cot 1 of modeling a dynamic system using an interval model, the

Using these formulas, it is easy to verify that the classital 2 in the remainder of the paper, interval bounds for vectoiaes should be
bility regions for continuous-time (left half-plane) andcrete- considered component wise.



predicted output is described by a set that can be boundeg usDefinition 4. Given a center vectorr € £™ and a matrixH
an interval. Then, the fault detection test can be stated as: € R"*™ the Minkowski sum of the segments defined by the
y(k) ¢ OY¢ (20) columns of matrixH, is called azonotopeof order m (see

. . . Fig.1). Thi is represen :
whereY? is the set of predicted outputs that can be obtamedg ) s setis represented as

usingAlgorithm 1andoY§ = [y, 7,] x -+ x [y, 7, ]- X=r@Hp" ={r+Hz:z€p"}
! where 5™ is a unitary box, composed oy unitary intervals.

Algorithm 2 implements fault detection using interval LPV ) ] ]
observers and the fault detection test presented in (20). Then, a zonotop¥ of ordermcan be viewed as the Minkowski

sum ofm segments. The order is a measure for the geomet-
Algorithm 2 Fault Detection using Interval LPV Observers  rical complexity of the zonotopes.
1. fault — FALSE
22 k<0
3: Xi < Xy
4. while fault = FALSFE do

5. Obtain input-output datéuy, yx }
6: Compute the set of estimated outpu¥s, using Algo- L
rithm 1 . I 4
7. if y(k) ¢ OY§ then i e 4
8: fault — TRUE (Fault detection test (20)) e
9: endif
1(1) enlfti (v_vhﬁe+ 1 Figure 1. Zonotope of order m=14
3.2 Residual form Definition 5. Theinterval hull OX of a closed seK is the

smallest interval box that contai&

Alternatively, a fault detection based on generating adtedli  Given a zonotope&X = = @ HB™, its interval hull can be
can be used. The residual is generated by comparing the megsily computed by evaluating & H3™, for all i = 1..n:
surements of physical variablggt) of the process with their ox = {4 : |2, — m;| < || H,||,} whereH, is i**-row of H, and
estimationj(k) provided by the associated system model: x; andr; arei’® components of andr, respectively.

r(k) = y(k) — (k) (21)

wherer(k) € R is the residual set anglk) is the prediction 4 2 |mplementation of interval LPV observers using zonesop
obtained using the nominal LPV model.

When considering model uncertainty located in paramettees, To implement interval LPV observers using zonotopes, it
residual generated by (21) will not be zero, even in a norshould be noticed that using (7) as the expression of the esti
faulty scenario. To cope with the parameter uncertaintgatff mator model, it can be viewed as a discrete-time system with
a passive robust approach based on adaptive thresholding cae input that can be reorganized as:

be used (Horak, 1988). ThL_JS, L!sing this _passive appr_oaeh, th Rit1 = Ao(93)dx + Bo(9)ul (24)
effect of parameter uncertainty in the residu@) (associated
to each system outpy(k)) is bounded by the interval:

r(k) € [e(k), T(k)] (22)

where: . . R R
Ao(9) = A(Wy) — LC(Vy), Bo(9y) = [B(@Wy) 0 L] and
ud = [k Yrt1 yk]T-
5 - (1) — 7 - Then, the problem of interval observation can be formulated
k) =g(k) — g(k) and7(k) = g(k) — 9(k 23 y

r(k) _g( ) =9k r(k) = §(k) = §(k) (23) a problem of interval simulation and requires characteghe
beingy(k) andy (k) the bounds of the predicted output (19) thaketX¢. This set can be viewed as thigect imageevaluation of
can be obtained using observer (Rjgorithm 1andOY; = (24) and can be implemented using zonotopes.

[ﬂlayl]x"'x[y 7yny]'

=Ny

where:

According toAlgorithm 1, interval LPV observers involves a

Then, a fault is indicated if the residuals do not satisfy thBounding operation applied to the set of estimated st&fes
relation given by (22). Note that the fault detection teshlgo-
rithm 2 can be implemented using (22), instead of using (20).4 3 Implementation of prediction set step

4. IMPLEMENTATION USING ZONOTOPES The prediction set step requires characterizing th&gefhis
_ set can be viewed as tdé@ect imageevaluation off (zx, ¥x) =
4.1 Introduction Ao (k)21 + B, (V1 )ug. There are different algorithms to bound

such an image using ellipsoids (see Maksarov and Norton
In this paper, zonotopes are used to bound the set of untertél996)) or zonotopes (see Kuhn (1998)). To bound such image
estimated sets. Let us introduce zonotopes. using zonotopes the following result is used:

Definition 3. The Minkowski sum of two séfsandY is defined Theorem 1."Zonotope Inclusion” (see Alamo et al. (2005)).
byXeY={zs+y:zeXyec Y} Consider a family of zonotopes representeby: © ¢ M ™



wherer € R" is a real vector andV/ € I"*™ is an interval
matrix. A zonotope inclusionX) is defined by:

o(X) =7 @ [mid(M G)] [g:

whereG € R"*™ is a diagonal matrix that satisfies¥;; =

:| :’/T@Jﬁerm

> %,z = 1,2...n. with mid denotes the center and

Jj=1

diam the diameter of the interval according to Moore (1966).

Under this definitionX C o(X).

This prediction step aims at computing the zonotfe, that
bounds the trajectory of the system at instlmi, from the
previous approximating zonotope at time instenKy, using

Calculating the supporting hyperplane constanend ¢, the
intersection is empty if and only if:

qu<y—k—1orqd>y—k+1 (30)
g g

This condition of inconsistency for a SISO model was repbrte

in Vicino and Zappa (1996).

5. CASE STUDY

5.1 Description of Twin-Rotor MIMO System

the natural interval extension ¢24) as suggested by Moore The twin-rotor MIMO system (TRMS) is a laboratory setup
(1966) and the zonotope inclusion operator, as a genetiatiza developed by Feedback Instruments Limited for control expe

of Kithn’s method (see Kuhn (1998)):
Xii1 = Ty1 © Hyp1 7 (25)
where:
i1 = MId(A, (9%)) T + mid( B, (V5 ))usp,
and
Hyp1 =[J1 J2 J3]

Jl = O(Ao(ﬂk)Hk)
Jo =Ty <7dlan‘(éo(ﬂk))>
s (BB

J1 is calculated using the zonotope inclusion operator.

It is important to notice that the set of estimated statesdmas

increasing number of segments generating the zonafgpe

using this method. In order to control the domain complexity
a reduction step is thus implemented. Here we use the method
proposed in Combastel (2003) to reduce the zonotope complex

ity.

4.4 Checking for intersection emptiness

iments. The system is perceived as a challenging engirgeerin
problem due to its high non-linearity, cross-coupling besw

its two axes, and inaccessibility of some of its states thhou
measurements. The TRMS mechanical unit has two rotors
placed on a beam together with a counterbalance whose arm
with a weight at its end is fixed to the beam at the pivot and
it determines a stable equilibrium position (Fig. 2). TheM®
consists of a beam pivoted on its base in such a way that it
can rotate freely both in the horizontal and vertical pladgs
both ends of the beam there are rotors (the main and tailg)otor
driven by DC motors.

DC-motor + ,’
tachometer _1"\’

DC-motor +

tachometer
Counterbalance ——

The step 7 ofAlgorithm 2requires to check if the intersection Figure 2.Components of the Twin Rotor MIMO System
of [yx] N Y%, is not the empty set, before introducing such

operation, an additional definition is introduced.

Definition 6. Given the zonotop&', = = & H[3", the strip
[yr] = {z € R*|cIx-d < o}, a hyperplaneS = {z :
cT'z = ¢} is a supporting hyperplane of a zonotdpgif either
Tz < q,Vo € Y¢ orelsec’z > ¢,Vx € Y§ with equality
occurring for somex € Yj;. The two constantg, and gq
characterizing the supporting hyperplanes are easilytztx
as:

(26)

(27)

gu ="+ 7

s = E"n 7]

The system input vector i8 = [us, u,,]7 wherew, is the
input voltage of the tail motor and,, is the input voltage

of the main motor. On the other hand, the system states are
r = [0n, U, wi, 0y, Qu, wn]? whereQy, is the angular
velocity around the vertical axi®), is the azimuth angle of
beam (horizontal plane);, is the rotational velocity of the tail
rotor, <2, is the angular velocity around the horizontal a®isis

the pitch angle of beam (vertical plane) ang is the rotational
velocity of the main rotor.

where||.||; is the 1-norm of a vector. Then the intersection
check is very easy to perform considering that each new me&2 Non linear Model of Twin-Rotor MIMO System

surement defines a set of consistent states defined by
Fk:{:ckeﬂ?":fogykfc*xkga} (28)

The mathematical model is developed assuming that the dy-

whereFy is the region between two hyperplanes and the outpgigmics of the propeller subsystem can be described by first
yx is considered component-wise. The normalized form of thigrder differential equations. Further, it is assumed thiatién

strip is written as

Fk:{mke%”ﬂ%—gmﬂgl} (29)

in the system is of the viscous type. Thus, the mathematical
model of the TRMS becomes a set of the following nonlinear
differential equations (Fee (1998)):



Jr Wi €080, such as state transformation, function substitution anthme

On = Qp = Sp + A ods using Jacobian linearization (Shamma and Cloutier3)199
. leFr(wi)cosBy, — Qpkp Other methods use multi-model identification that condists
Sh = 7 two-step procedure. First LTI models are identified at défe
. Wy equilibrium points by classical methods, then a global mult
Oy =Qy = 5y + (31) ' modelis obtained by interpolating among the local LTI madel
. I Fy (win) + gv((a — b)cosb, — csinb,) (Murray-Smith and Johansen, 1997, Baranyi et al., 2003. Th
Sy = 7, multiple model approach obtained by physical laws or identi
Quky — 0.5Q2% (a + b+ ¢)sin20, cation can be viewed as a single linear parameter varyingLP

- T global model. Another technique is the LPV identificatioatth
Y represents an extension of the classical identificatioredli

where(2,, and 2, are the angular velocities around the hor- ; ; P
izontal ;;nd the vertical axis, respectively, and.S;, are the regression, subspace) methods (Bamieh and Giarre, 2002).

angular momentum in vertical and horizontal plane of therbea In this case, the multiple linear model identification is dise

respectively.F, (wy,,) and Fj(w;) are the dependence of thearound five different points (see Table 1) with a samplingetim

propulsive force on DC-motor rotational speeds: T, = 0.025s. The system has been identified using the input
Fo(wm) = —3- 10107 — 1,595 - 10~ e 4 2,511 - 10~ 7w u = [ug, u,)7 and the outpuy = [0y, 6,]7. Then the discrete

. s state space (7) is composed of the following matrices:
—1.808 - 10~ %w? 4 0.0801wy

Fi(wt) = —3.48 - 1071205, +1.09 - 107 %w? 4+ 4.123 - 10763, r1 0025 0 0 0 0.0142 T
3 . 4 9 . s 0 0.9905 0 0 0.09?5 —0.0054
1.632 - 10 Wy, + 9.544 - 10™ “wm A = 0 0 1 0.025 0.0732 0
) o ) ' ]o 0 —0.0862 0.9976 —0.0071 0.0078 |’
Ji and J,,, are the moments of inertia in DC-motor tail and 0 0 0 0 0.9349 0
main propeller subsystem, respectively. The moment ofimer Lo 0 0 0 0 0.9825
relative to vertical axis ig, = 0.055846 and horizontal axis is: ri 0.025 —0.0005 0 0 0.0141
.92 2 0 0.9906 0.0002 0 0.0991 —0.0053
Jn = dsin®0, + ecos™0, + f |0 o 1 0.025 0.0732 0
2= 0 0 —0.0862 0.9976 —0.0071 0.0102 ’
my 0 0 0 0 0.9349 0
a= (7 4+ myy + mts) Iy, Lo o0 0 0 0 0.9825
m ri1 0.025 —0.0010 0 0 0.0137 1
b= <_m + My + mms) L, 0 0.9908 0.0004 0  0.0985 —0.0050
2 A 0 0 1 0.025 0.0732 0
o mbl I 3= 0 0 —0.0862 0.9976 —0.0071 0.0207 ’
c= o + Mepleb, ) 0 0 0.9349 0
LO 0 0 0 0 0.9825
M, 2 my 2
e= (—3 + Mo + M)y, + (? + My + sl 1 0.025 —0.0015 0 0 0.0131 A
mp 0 0.9912 0.0005 0 0.0973 —0.0046
d=—1F + mapl?, A _]o o 1 002 00732 0
3 4 0 0 —0.0862 0.9976 —0.0071 0.0375 ’
m
o 2 ts 2 0 0 0 0 0.9349 0
[ =mpsrr, s + 9 Tts Lo o 0 0 0 0.9825
wherem,,, andm, are the masses of the main and tail shields. 'é 0‘)35158 *006%%20 8 o 0%53 06001320 T
m,, andm; are the masses of the main and the tail parts of the o o 1 0025 00732 0
beam, respectivelyn,,,,, andm,, are the masses of the main A5=10 0 —0.0860 0.9976 —0.0071 0.0575 |’
and the tail DC-motor with main and tail rotor,respectivety, 0 0 0 0 0.9349 0
andl, are the mass and the length of the counter-weight beam. Lo 0 0 0 0 0.9825
mep, andlg, represent the mass of the counter-weight and the _ [o 000002 0 }T
distance between the counter-weight and the joint, resjpdet 0000 0 0025
ms andris are the radius of the main and tail shield. C- {1 0000 o]
“lo01000]|"

The rotational velocity of tail motar; and the angular velocity

of the main rotorw,, are non linear functions of the input where the scheduling variable is the azimuth angle of béam

anda’ (px,) can be determined from (6).

voltage of the DC-motorw; = Pp,(upr) andw,, = Py ()

with ) N W Um 05, 0.,
Upp = (—unp + Um) 1 0 0 0 -0.9326
ir (32) 2 0 005 01074 -0.9257
Uy = = (—Upy + Uy) 3 0 010 0.2146 -0.9133
Tonr 4 0 015 0.3199 -0.8895
T,.» and T}, are the time constant of main and tail motor- 5 0 020 04211 -0.8501
propeller system, respectively. Table 1. Equilibrium points of the

eachj*" linear model.

5.3 The TRMS LPV model and observer design

The LTI systems are incremental and the equilibrium cooddi
There are different ways to obtain LPV models. Some method$ Table 1 should be added. Consequently, the expressions of
use the nonlinear equations of the system to derive LPV modiélese conditions are:



N Fig. 4(a) shows the azimuth angle of bedmand its adaptive
9(k) = Z ol (0y) [Ci2(k) + 7] (33) threshold. The prediction bounds of the azimuth angle ofrbea
J=1 0, are obtained using zonotopes (see Section 4) and taking
B - into account the uncertainty in the parameters. Fig. 4(bjvsh
wherey; = [0, ¢,]" (See Table 1). the residual signal for azimuth angle of beam and the
Additionally, uncertainty has been included in some param&nvelopes computed using the zonotope method. The engelope
ters of the observer model to take into account the differen®f the residual are adapted following the changes in thesyst

between the LPV model and the real nonlinear behawigr= dynamics. The fault detection test in both cases shows that
[a§2 +0.0092], aig c [aig +0.0133) andaiG c [aia +0.0107] the fault alarm is activated it = 41.5s and the alarm keeps

for j = 1,..., N. This uncertainty will be taken into accountconStant untit = 44.6s.
when generating the set of output behaviors using the iaterv B [y
LPV observer (7).

The proposed observer design procedure was applied tanobtai
L; such that the poles are in disk LMI region with the parame-
tersc = —0.5 andr = 0.5. In the design of the observer gains
L; uncertainty in matrix4; () has been considered.
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Fig. 3 presents the time evolution responses of outputs and
their adaptive thresholds in different operating pointg. B(b) 8 =T T
shows the pitch angle of beam and Fig. 3(c) presents itsuakid 0
response. It can be seen that the adaptive threshold changes
the system dynamics. el ‘ ‘ A
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Fig. 4(c) shows the pitch angle of beain and its adaptive

threshold. The bounds of pitch angle of beéynare obtained
SN using the zonotope algorithm. Fig. 4(d) presents its redidu

-5 ‘ ‘ ‘ ] response and its adaptive threshold. In this case, the fault

Residual
=)

0 20 40 60 B(; 100 . . . ;

g'”;e‘s) detection test shows that the fault alarm is activated ia
c 40.4s.

Figure 3.(a) Azimuth angle of beam. (b) Pitch angle of beam. (c) Residu

of pitch angle of beam 5.4.2 Fault scenario 2. An additive sensor fault of the pitch
angle of beany), is defined as:
5.4 Fault scenarios B 0, for t<40
fo.(t) = { 0.015, for ¢ > 40 (35)

The fault scenarios were implemented in nonlinear TRMS, ) ) )
equations (31)-(32) using interval LPV observer designdtié  Fig- 5(a) shows the azimuth angle of bedmand its adaptive
previous section. Figs. (4)-(5) present the results andaiie threshold. The fault detection test (20) detects the fauthée

detection indicator is presented at the bottom of each graph imet = 42.9s. Fig. 5(b) shows the residual signal for azimuth
angle of bean#;, and its envelopes that are based on zonotope

5.4.1 Fault scenario 1. An additive actuator fault of the tail algorithm.
motor f,, is defined as: Finally, Fig. 5(c) shows the pitch angle of bedpand its adap-

() = 0, for ¢<40 (34) tive threshold. Fig. 5(d) shows the residual signal fortpéngle
@Y7 0.025, for ¢t > 40 of beaméd, and the envelopes computed using the zonotope
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