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AbstractIn this paper the problem of robust fault detectionusing an interval observer for dynamic
systems characterized by LPV (Linear Parameter Varying) models is presented. The observer face the
robustness problem using two complementary strategies. Parametric modeling uncertainties are consid-
ered unknown but bounded by intervals. Their effect is addressed using an interval state observation
method based on zonotope representation of the set of possible states. The observer gain is designed via
pole placement using LMI (Linear Matrix Inequalities) formulation. The method is applied to a LPV
representation of a Twin Rotor MIMO System.
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1. INTRODUCTION

Model-based fault detection methods are based on the use of
the mathematical models of the monitored system to exploit
analytical redundancy. Many model-based fault detection tech-
niques, mostly based on linear models, have been investigated
and developed in the literature over the last few years. The
use of FDI linear-based methods has been extended to non-
linear systems using linearization around an operating point
(Chen and Patton, 1999). However, for systems with high non-
linearity and a wide operating range, the linearized approach
fails to give satisfactory results. To tackle this problem new
fault detection methods based on non-linear models have been
developed. Methods range from the direct use of non-linear
models to the use of neural networks, TS fuzzy systems and
neuro-fuzzy systems (Chen and Patton, 1999). Alternatively,
Linear Parameter Varying (LPV) models have recently attracted
the attention of the FDI research community. Such models
can be used efficiently to represent some nonlinear systems
(Shamma and Cloutier, 1993, Andrés and Balas, 2004). This
has motivated some researchers from the FDI community to
develop model-based methods using LPV models (see Bokor
et al. (2002), among others). But even with the use of LPV mod-
els, modeling errors and disturbances are inevitable in complex
engineering systems. So, in order to increase reliability and
performance of model-based fault detection the development
of robust fault detection algorithms should be addressed. The
robustness of a fault detection system means that it must be
only sensitive to faults, even in the presence of model-reality
differences (Chen and Patton, 1999). One of the approaches to
robustness, known aspassive, is based on enhancing the robust-
ness of the fault detection system at the decision-making stage.
The aim with the passive approach is usually to determine,
given a set of models, if there is a member in the set that can
explain the measurements. A common approach to this problem
is to propagate the model uncertainty to the alarm limits of the
residuals. When the residuals are outside of the alarm limits it is

argued that model uncertainty alone can not explain the residual
and therefore a fault must have occurred. This approach has the
drawback that faults that produce a residual deviation smaller
than the residual uncertainty due to parameter uncertaintywill
not be detected. Another approach to the passive robust fault
detection problem is to explicitly calculate the set of states that
are consistent with the measurements. When a measurement
is found to be inconsistent with this set, a fault is assumed
to have occurred. As an exact representation of the set of
states consistent with the measurements is hard to calculate,
approximating sets that provide outer bounds are often used
instead. In the literature several approximating sets to enclose
the set of possible states have been proposed. In Witczak et al.
(2002), a state estimator based on enclosing the set of states
by the smallest ellipsoid is proposed following the algorithms
proposed by Maksarov and Norton (1996). However, in this
approach only additive uncertainty is considered, but not the
multiplicative one introduced by modeling uncertainty located
in the parameters. In this paper, both types of uncertainties
are considered as in Rinner and U. Weiss (2004), but there
only system trajectories obtained from the uncertain parameter
interval vertices are considered, assuming that the monotonicity
property holds.

The main contribution of this paper is to develop a passive ro-
bust fault method for LPV systems that uses a interval observer
approach based on enclosing the set of states by zonotopes.
The proposed state-estimator applied to fault detection follows
a consistency based approach that is based on determining the
set of states that are consistent with parameter and measurement
uncertainty.

The structure of this paper is organized as follows. The LPV
systems that uses a interval LPV observer is introduced in
Section 2. Additionally, a solution for the design of an interval
LPV observer via pole placement using linear matrix inequal-
ity (LMI) formulation is proposed. Section 3 explain the fault
detection test using interval LPV observers. In Section 4 the



implementation of interval LPV observers using zonotope ap-
proach is presented. Finally in Section 5, an illustrative example
based on the Twin-Rotor MIMO System (TRMS) is used to
assess the validity of the results derived in the paper.

2. INTERVAL OBSERVERS FOR LPV SYSTEMS

2.1 System set-up

Let us consider that the nonlinear system to be monitored can
be described by its LPV representation as follows:

x(k + 1) = Ã(ϑk)x(k) + B̃(ϑk)u(k)

y(k) = C̃(ϑk)x(k) + D̃(ϑk)u(k)
(1)

whereu(t) ∈ ℜnu is the system input,y(t) ∈ ℜny is the system
output andx(t) ∈ ℜnx is the state-space vector.ϑk := ϑ(k)
is a vector of time-varying parameters of dimensionnϑ that
changes with the operating point scheduled by some measured
system variablespk (pk := p(k)) that can be estimated using
some known function:ϑk = f(pk). However, some uncertainty
in the estimated parameter values is considered to be bounded
by the following set:

Πk = {ϑk ∈ ℜ
nϑ | ϑk ≤ ϑk ≤ ϑk} (2)

This set represents the uncertainty about the exact knowledge
of real system parametersϑk. The interval for uncertain pa-
rameters can be inferred from real data using set-membership
parameter estimation algorithms (Milanese et al., 1996).

System (1) describes a model parametrized by a scheduling
variable denoted bypk. In this paper, the kind of LPV sys-
tem considered are those whose parameters vary affinely in a
polytope (Apkarian et al., 1995). In particular the state-space
matrices range in a polytope of matrices defined as the convex
hull of a finite number,N , of matrices. That is,(
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with αj(pk) ≥ 0,
∑N

j=1 αj(pk) = 1 andϑj = f(pj) is the
vector of uncertain parameters ofjth model where eachjth

model is called vertex system and it is assumed according to
property (2) that:ϑj ∈ [ϑj , ϑj ].

Consequently, the LPV system (1) can be expressed as follows:

x(k + 1) =

N∑

j=1

αj(pk)
[
Aj(ϑ

j)x(k) + Bj(ϑ
j)u(k)

]

y(k) =

N∑

j=1

αj(pk)
[
Cj(ϑ

j)x(k) + Dj(ϑ
j)u(k)

]
(4)

HereAj , Bj , Cj andDj are the state space matrices defined
for jth model. Notice that, the state space matrices of system
(1) is equivalent to the interpolation between LTI models, for
example:Ã(ϑk) =

∑N

j=1 αj(pk)Aj(ϑ
j).

The polytopic system is scheduled through functionsαj(pk), ∀j ∈
[1, . . . , N ] that lie in a convex set:

Ψ =
{
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α1(pk), . . . , αN (pk)

]T
,
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}

. (5)

There are several ways of implementing (3) depending on how
αj(pk) functions are defined (Murray-Smith and Johansen,
1997). Here the approach used in Baranyi et al. (2003) is
proposed:
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) andµm,2 = 1−µm,1 wherepj
m and

pj
m represent the upper and lower bounds ofpm respectively

andv is the number of scheduling variables.

2.2 Interval observer

The system described by (1) is monitored using a linear ob-
server with Luenberger structure considering parameter uncer-
tainty given byϑj ∈ [ϑj , ϑj ]. In the following, we consider
only strictly proper systems such thatD = 0. Consequently,
the interval LPV observer can be written as:

x̂(k + 1) =

N∑

j=1

αj(pk)
[
A0,j(ϑ

j)x̂(k) + Bj(ϑ
j)u(k) + Ljy(k)

]

ŷ(k) =

N∑

j=1

αj(pk)
[
Cj(ϑ

j)x̂(k)
]

(7)

whereA0,j(ϑ
j) = Aj(ϑ

j) − LjCj(ϑ
j), u(k) is the measured

system input vector,̂x(k) is the estimated system state vector,
ŷ(k) is the estimated system output vector andLj is the
observer gain that has to be designed in order to stabilize the

observer given by (7) for allϑj ∈ [ϑj , ϑ
j
].

Definition 1. Consider the state estimator given by (7), an
initial compact setX0 and a sequence of measured inputs
(ui)

k−1
0 and outputs(yi)

k−1
0 . Theexact uncertain estimated

state setat time k is expressed by

Xk =
{
x̂k : (x̂i = Ã(ϑi−1)x̂i−1 + B̃(ϑi−1)ui−1

+L̃(yi−1 − ŷi−1))
k
i=1, (ŷi−1 = C̃(ϑk−1)x̂i−1)

k
i=1

| x̂0 ∈ X0, (ϑi−1 ∈ Πi)
k
i=1

}
(8)

whereL̃ =
∑N

j=1 αj(pk)Lj .

The uncertain state set described inDefinition 1 at time k
can be computed approximately by admitting the rupture of
the existing relations between variables of consecutive time
instants.1 This makes possible to compute an approximation
of this set from the approximate uncertain state set at timek-1.

Definition 2. Consider the state estimator given by (7), the set
of uncertain states at time k-1,Xk−1 and the input/ouput values
(uk−1, yk−1). Then, the set of estimated states at time k based
on the measurements up to time k-1 is defined as:

1 However, the problem of uncertainty propagation (wrappingeffect) could
appear when this set is approximated in this way because of the accumulation
of overestimation along the time and deriving in an explosion of uncertainty.



X
e
k =

{
x̂k : Ã(ϑk−1)x̂k−1 + B̃(ϑk−1)uk−1

+L̃(yk−1 − ŷk−1), ŷk−1 = C̃(ϑk−1)x̂k−1

| x̂k−1 ∈ Xk−1, ϑk−1 ∈ Θk}

(9)

Analogously, considering measurement equation in (7), the
approximated set of estimated outputsY

e
k can be determined.

Since the set of estimated statesXe
k is difficult to compute,

one way is to bound it using some geometric regions easy to
compute as for example: a box (interval hull) as in Puig et al.
(2002), an ellipsoid as in Maksarov and Norton (1996) or a
zonotope as in Alamo et al. (2005).

Here, the set of estimated statesXe
k (or outputsYe

k) introduced
in Definition 2 will be approximated iteratively using zono-
topes. From these zonotopes, an interval for each state variable
can also be obtained by computing the interval hull of the zono-
tope. The sequence of interval hulls2Xe

k with k ∈ [0, N ] will
be called theinterval LPV observer estimationof the system
given by (7). Analogously, the sequence of interval hulls2Ye

k

can be obtained. Following the previous idea,Algorithm 1 is
proposed to determine an approximation ofset of uncertain
estimated states.

Algorithm 1 Interval LPV Observer using Set Computations
1: k ← 1
2: while k ≤ N do
3: Obtain and store input-output data{uk−1, yk−1}
4: Compute the approximated set of estimated outputs,Ye

k

5: Compute the interval hull of the approximated set of

estimated outputs,2Ye
k =

[
y

k
, yk

]

6: k ← k + 1
7: end while

2.3 Observer design

The design of the interval LPV observer (7) can be solved with
the LMI pole placement technique (Chilali and Gahinet, 1996),
that allows to locate the poles of the observer in a subregionof
the left half-plane using a LMI region.

Consider a given2d× 2d Hermitian matrix defined as

R =

[
R00 R10

R∗

10 R11

]
∈ C

2d×2d, R11 ∈ C
d×d ≥ 0 (10)

and the feasibility set of an associated LMI defined as

D =
{
s ∈ C : R00 + (R10s)

H
+ R11s

∗s < 0
}

(11)

where(R10s)
H denotes the Hermitian transpose ofR10s. Sets

defined according (10)-(11) are calledD-regions (Chilali and
Gahinet, 1996). Moreover, the intersection ofD-regions is
a D-region, allowing to characterize some multiple temporal
specifications. For example, for the vertical left half-plane
characterized byx < λ, the associated matrixR is

R =

[
−2λ 1

1 0

]
(12)

while for an open disk with centerc = c1 + c2i and radiusr is

R =

[
c2
1 + c2

2 − r2 −c1 + c2i
−c1 − c2i 1

]
(13)

Using these formulas, it is easy to verify that the classicalsta-
bility regions for continuous-time (left half-plane) and discrete-

time (origin-centered unitary disk) systems are associated to the
matrices

Rct =

[
0 1
1 0

]
, Rdt =

[
−1 0
0 1

]
(14)

In particular, let consider a disk LMI region calledD defined
by centerc (in this casec = c1 andc2 = 0) and a radiusr
such that(c + r) < 1. The two scalarsc and r are used to
determine a specific region included in the unit circle where
the observer eigenvalues will be placed. Therefore, this circular
region puts a lower bound on both the exponential decay rate
and the damping ratio of the closed-loop response. The design
of the interval LPV observer (7) such that the observer poles
are placed in this LMI region requires to find for each vertex
jth (with j ∈ [1, . . . , N ]) the observer gainLj and unknown
symmetric matrixXj = XT

j > 0 thats satisfies the following
LMI:(

−rXj cXj + (A0,j(ϑ
j)T Xj)

T

(c + A0,j(ϑ
j)T )Xj −rXj

)
< 0, (15)

for ϑj ∈ [ϑj , ϑj ], that corresponds to Eq. (10) in Chilali and
Gahinet (1996) with matrixA being transpose of the observer
matrixA0,j .

Note that expression (15) is a Bilinear Matrix Inequality (BMI)
which cannot be solved with LMI classical tools. But substitut-
ing Wj = LT

j Xj it is possible to transform it into:
[

−rXj · · ·
(c + Aj(ϑ

j)T )Xj − Cj(ϑ
j)T Wj · · ·

cXj + XT
j Aj(ϑ

j)−WT
j Cj(ϑ

j)
−rXj

]
< 0. (16)

Then, the design procedure boils down to solving the LMI (16)
and then determiningLj = (WjX

−1
j )T . Finally, the observer

gainsLj will be interpolated to obtain the interval LPV ob-
server (7).

3. FAULT DETECTION USING LPV OBSERVERS

3.1 Input-output form

The system (1) can be expressed in input-output form using
the shift operatorq−1 and assuming zero initial conditions as
follows:

y(k) = Gu(q−1, ϑk)u(k) (17)
where:

Gu(q−1, ϑk) = C(ϑk)(qI−A(ϑk))−1B(ϑk) + D(ϑk) (18)

The effect of the uncertain parametersϑk on the observer
temporal responsêy(k, ϑk) will be bounded using an interval
satisfying2 :

ŷ(k) ∈
[
ŷ(k), ŷ(k)

]
(19)

in a non-faulty case.

The application of observers to fault detection consists intest-
ing whether the measured output is consistent with the one
given by an observer using a faultless model. If an inconsis-
tency is detected, the existence of a fault is proved. In case
of modeling a dynamic system using an interval model, the

2 In the remainder of the paper, interval bounds for vector variables should be
considered component wise.



predicted output is described by a set that can be bounded using
an interval. Then, the fault detection test can be stated as:

y(k) /∈ 2Y
e
k (20)

whereYe
k is the set of predicted outputs that can be obtained

usingAlgorithm 1and2Ye
k = [y

1
, y1]× · · · × [y

ny
, yny

].

Algorithm 2 implements fault detection using interval LPV
observers and the fault detection test presented in (20).

Algorithm 2 Fault Detection using Interval LPV Observers
1: fault← FALSE
2: k ← 0
3: Xe

k ⇐ X0

4: while fault = FALSE do
5: Obtain input-output data{uk, yk}
6: Compute the set of estimated outputs,Ye

k using Algo-
rithm 1

7: if y(k) /∈ 2Ye
k then

8: fault← TRUE (Fault detection test (20))
9: end if

10: k ← k + 1
11: end while

3.2 Residual form

Alternatively, a fault detection based on generating a residual
can be used. The residual is generated by comparing the mea-
surements of physical variablesy(t) of the process with their
estimationŷ(k) provided by the associated system model:

r(k) = y(k)− ŷ(k) (21)

wherer(k) ∈ ℜny is the residual set and̂y(k) is the prediction
obtained using the nominal LPV model.

When considering model uncertainty located in parameters,the
residual generated by (21) will not be zero, even in a non-
faulty scenario. To cope with the parameter uncertainty effect
a passive robust approach based on adaptive thresholding can
be used (Horak, 1988). Thus, using this passive approach, the
effect of parameter uncertainty in the residualr(k) (associated
to each system outputy(k)) is bounded by the interval:

r(k) ∈ [r(k), r(k)] (22)

where:

r(k) = ŷ(k)− ŷ(k) andr(k) = ŷ(k)− ŷ(k) (23)

beingŷ(k) andŷ(k) the bounds of the predicted output (19) that
can be obtained using observer (7),Algorithm 1and2Y

e
k =

[y
1
, y1]× · · · × [y

ny
, yny

].

Then, a fault is indicated if the residuals do not satisfy the
relation given by (22). Note that the fault detection test inAlgo-
rithm 2can be implemented using (22), instead of using (20).

4. IMPLEMENTATION USING ZONOTOPES

4.1 Introduction

In this paper, zonotopes are used to bound the set of uncertain
estimated sets. Let us introduce zonotopes.

Definition 3. The Minkowski sum of two setsX andY is defined
byX⊕ Y = {x + y : x ∈ X, y ∈ Y}.

Definition 4. Given a center vectorπ ∈ ℜn and a matrixH
∈ ℜn×m the Minkowski sum of the segments defined by the
columns of matrixH, is called a zonotopeof order m (see
Fig. 1). This set is represented as:

X = π ⊕Hβm = {π + Hz : z ∈ βm}

where: βm is a unitary box, composed bym unitary intervals.

Then, a zonotopeX of ordermcan be viewed as the Minkowski
sum ofm segments. The orderm is a measure for the geomet-
rical complexity of the zonotopes.

Figure 1. Zonotope of order m=14

Definition 5. The interval hull 2X of a closed setX is the
smallest interval box that containsX.

Given a zonotopeX = π ⊕ Hβm, its interval hull can be
easily computed by evaluatingπ ⊕ Hβm, for all i = 1..n:
2X = {x : |xi − πi| ≤ ‖Hi‖1} whereHi is ith-row of H , and
xi andπi areith components ofx andπ, respectively.

4.2 Implementation of interval LPV observers using zonotopes

To implement interval LPV observers using zonotopes, it
should be noticed that using (7) as the expression of the esti-
mator model, it can be viewed as a discrete-time system with
one input that can be reorganized as:

x̂k+1 = Ao(ϑk)x̂k + Bo(ϑk)uo
k (24)

where:
Ao(ϑk) = Ã(ϑk) − L̃C̃(ϑk), Bo(ϑk) =

[
B̃(ϑk) 0 L̃

]
and

u0
k = [ uk yk+1 yk ]

T .

Then, the problem of interval observation can be formulatedas
a problem of interval simulation and requires characterizing the
setXe

k. This set can be viewed as thedirect imageevaluation of
(24) and can be implemented using zonotopes.

According toAlgorithm 1, interval LPV observers involves a
bounding operation applied to the set of estimated statesXe

k.

4.3 Implementation of prediction set step

The prediction set step requires characterizing the setXe
k. This

set can be viewed as thedirect imageevaluation off(xk, ϑk) =
Ao(ϑk)x̂k+Bo(ϑk)uo

k. There are different algorithms to bound
such an image using ellipsoids (see Maksarov and Norton
(1996)) or zonotopes (see Kuhn (1998)). To bound such image
using zonotopes the following result is used:

Theorem 1.”Zonotope Inclusion” (see Alamo et al. (2005)).
Consider a family of zonotopes represented byX = π ⊕Mβm



whereπ ∈ ℜn is a real vector andM ∈ In×m is an interval
matrix. A zonotope inclusion⋄(X) is defined by:

⋄(X) = π ⊕ [mid(M G)]

[
βm

βn

]
= π ⊕ Jβn+m

whereG ∈ ℜn×n is a diagonal matrix that satisfies:Gii =
m∑

j=1

diam(Mij)
2 , i = 1, 2 . . . n. with mid denotes the center and

diam the diameter of the interval according to Moore (1966).
Under this definition,X ⊆ ⋄(X).

This prediction step aims at computing the zonotopeXe
k+1 that

bounds the trajectory of the system at instantk+1, from the
previous approximating zonotope at time instantk, Xk, using
the natural interval extension of(24) as suggested by Moore
(1966) and the zonotope inclusion operator, as a generalization
of Kühn’s method (see Kuhn (1998)):

X
e
k+1 = πk+1 ⊕Hk+1β

r (25)

where:

πk+1 = mid(Ao(ϑk))πk + mid(Bo(ϑk))uo
k

and
Hk+1 = [J1 J2 J3]

J1 = ⋄(Ao(ϑk)Hk)

J2 = πk

(
diam(Ao(ϑk))

2

)

J3 = uo
k

(
diam(Bo(ϑk))

2

)

J1 is calculated using the zonotope inclusion operator.

It is important to notice that the set of estimated states hasan
increasing number of segments generating the zonotopeXe

k+1
using this method. In order to control the domain complexity,
a reduction step is thus implemented. Here we use the method
proposed in Combastel (2003) to reduce the zonotope complex-
ity.

4.4 Checking for intersection emptiness

The step 7 ofAlgorithm 2requires to check if the intersection
of [yk] ∩ Ye

k, is not the empty set, before introducing such
operation, an additional definition is introduced.
Definition 6. Given the zonotopeYe

k = π ⊕ Hβr, the strip
[yk] = {x ∈ ℜn|cT x-d| ≤ σ}, a hyperplaneS = {x :
cT x = q} is a supporting hyperplane of a zonotopeYe

k if either
cT x ≤ q, ∀x ∈ Ye

k or elsecT x ≥ q, ∀x ∈ Ye
k with equality

occurring for somex ∈ Ye
k. The two constantsqu and qd

characterizing the supporting hyperplanes are easily calculated
as:

qu = cT π +
∥∥HT c

∥∥
1

(26)

qd = cT π −
∥∥HT c

∥∥
1

(27)

where‖.‖1 is the 1-norm of a vector. Then the intersection
check is very easy to perform considering that each new mea-
surement defines a set of consistent states defined by

Fk = {xk ∈ ℜ
n : −σ ≤ yk − Cxk ≤ σ} (28)

whereFk is the region between two hyperplanes and the output
yk is considered component-wise. The normalized form of this
strip is written as

F̄k = {xk ∈ ℜ
n : |

yk

σ
− cT xk| ≤ 1} (29)

Calculating the supporting hyperplane constantqu andqd the
intersection is empty if and only if:

qu <
yk

σ
− 1 or qd >

yk

σ
+ 1 (30)

This condition of inconsistency for a SISO model was reported
in Vicino and Zappa (1996).

5. CASE STUDY

5.1 Description of Twin-Rotor MIMO System

The twin-rotor MIMO system (TRMS) is a laboratory setup
developed by Feedback Instruments Limited for control exper-
iments. The system is perceived as a challenging engineering
problem due to its high non-linearity, cross-coupling between
its two axes, and inaccessibility of some of its states through
measurements. The TRMS mechanical unit has two rotors
placed on a beam together with a counterbalance whose arm
with a weight at its end is fixed to the beam at the pivot and
it determines a stable equilibrium position (Fig. 2). The TRMS
consists of a beam pivoted on its base in such a way that it
can rotate freely both in the horizontal and vertical planes. At
both ends of the beam there are rotors (the main and tail rotors)
driven by DC motors.

Figure 2.Components of the Twin Rotor MIMO System

The system input vector isu = [ut, um]T whereut is the
input voltage of the tail motor andum is the input voltage
of the main motor. On the other hand, the system states are
x = [θh, Ωh, ωt, θv, Ωv, ωm]T whereΩh is the angular
velocity around the vertical axis,θh is the azimuth angle of
beam (horizontal plane),ωt is the rotational velocity of the tail
rotor,Ωv is the angular velocity around the horizontal axis,θv is
the pitch angle of beam (vertical plane) andωm is the rotational
velocity of the main rotor.

5.2 Non linear Model of Twin-Rotor MIMO System

The mathematical model is developed assuming that the dy-
namics of the propeller subsystem can be described by first
order differential equations. Further, it is assumed that friction
in the system is of the viscous type. Thus, the mathematical
model of the TRMS becomes a set of the following nonlinear
differential equations (Fee (1998)):



θ̇h = Ωh = Sh +
Jmrωmcosθv

Jh

Ṡh =
ltFh(ωt)cosθv − Ωhkh

Jh

θ̇v = Ωv = Sv +
Jtrωt

Jv

Ṡv =
lmFv(wm) + g((a− b)cosθv − csinθv)

Jv

−
Ωvkv − 0.5Ω2

h(a + b + c)sin2θv

Jv

(31)

whereΩv and Ωh are the angular velocities around the hor-
izontal and the vertical axis, respectively.Sv and Sh are the
angular momentum in vertical and horizontal plane of the beam,
respectively.Fv(ωm) and Fh(ωt) are the dependence of the
propulsive force on DC-motor rotational speeds:

Fv(ωm) = −3 · 10−14ω5
t − 1.595 · 10−11ω4

t + 2.511 · 10−7ω3
t

−1.808 · 10−4ω2
t + 0.0801ωt

Fh(ωt) = −3.48 · 10−12ω5
m + 1.09 · 10−9ω4

m + 4.123 · 10−6ω3
m

−1.632 · 10−4ω2
m + 9.544 · 10−2ωm

Jtr andJmr are the moments of inertia in DC-motor tail and
main propeller subsystem, respectively. The moment of inertia
relative to vertical axis isJv = 0.055846 and horizontal axis is:

Jh = dsin2θv + ecos2θv + f

a =
(mt

2
+ mtr + mts

)
lt,

b =
(mm

2
+ mmr + mms

)
lm,

c =
mb

2
lb + mcblcb,

e = (
mm

3
+ mmr + mms)l

2
m + (

mt

3
+ mtr + mts)l

2
t

d =
mb

3
l2b + mcbl

2
cb

f = mmsr
2
ms +

mts

2
r2
ts

wheremms andmts are the masses of the main and tail shields.
mm andmt are the masses of the main and the tail parts of the
beam, respectively.mmr andmtr are the masses of the main
and the tail DC-motor with main and tail rotor,respectively. mb

andlb are the mass and the length of the counter-weight beam.
mcb and lcb represent the mass of the counter-weight and the
distance between the counter-weight and the joint, respectively.
rms andrts are the radius of the main and tail shield.

The rotational velocity of tail motorωt and the angular velocity
of the main rotorωm are non linear functions of the input
voltage of the DC-motor:ωt = Ph(uhh) andωm = Pv(uvv)
with

u̇hh =
1

Ttr

(−uhh + um)

u̇vv =
1

Tmr

(−uvv + ut)
(32)

Tmr and Ttr are the time constant of main and tail motor-
propeller system, respectively.

5.3 The TRMS LPV model and observer design

There are different ways to obtain LPV models. Some methods
use the nonlinear equations of the system to derive LPV model

such as state transformation, function substitution and meth-
ods using Jacobian linearization (Shamma and Cloutier, 1993).
Other methods use multi-model identification that consistsin
two-step procedure. First LTI models are identified at different
equilibrium points by classical methods, then a global multi-
model is obtained by interpolating among the local LTI models
(Murray-Smith and Johansen, 1997, Baranyi et al., 2003). The
multiple model approach obtained by physical laws or identifi-
cation can be viewed as a single linear parameter varying (LPV)
global model. Another technique is the LPV identification that
represents an extension of the classical identification (linear
regression, subspace) methods (Bamieh and Giarré, 2002).

In this case, the multiple linear model identification is used
around five different points (see Table 1) with a sampling time
Ts = 0.025s. The system has been identified using the input
u = [ut, um]T and the outputy = [θh, θv]T . Then the discrete
state space (7) is composed of the following matrices:

A1 =




1 0.025 0 0 0 0.0142

0 0.9905 0 0 0.0995 −0.0054

0 0 1 0.025 0.0732 0

0 0 −0.0862 0.9976 −0.0071 0.0078

0 0 0 0 0.9349 0

0 0 0 0 0 0.9825


 ,

A2 =




1 0.025 −0.0005 0 0 0.0141

0 0.9906 0.0002 0 0.0991 −0.0053

0 0 1 0.025 0.0732 0

0 0 −0.0862 0.9976 −0.0071 0.0102

0 0 0 0 0.9349 0

0 0 0 0 0 0.9825


 ,

A3 =




1 0.025 −0.0010 0 0 0.0137

0 0.9908 0.0004 0 0.0985 −0.0050

0 0 1 0.025 0.0732 0

0 0 −0.0862 0.9976 −0.0071 0.0207

0 0 0 0 0.9349 0

0 0 0 0 0 0.9825


 ,

A4 =




1 0.025 −0.0015 0 0 0.0131

0 0.9912 0.0005 0 0.0973 −0.0046

0 0 1 0.025 0.0732 0

0 0 −0.0862 0.9976 −0.0071 0.0375

0 0 0 0 0.9349 0

0 0 0 0 0 0.9825


 ,

A5 =




1 0.025 −0.0020 0 0 0.0123

0 0.9918 0.0006 0 0.0953 −0.0040

0 0 1 0.025 0.0732 0

0 0 −0.0860 0.9976 −0.0071 0.0575

0 0 0 0 0.9349 0

0 0 0 0 0 0.9825


 ,

B =

[
0 0 0 0 0.025 0

0 0 0 0 0 0.025

]T

,

C =

[
1 0 0 0 0 0

0 0 1 0 0 0

]
,

where the scheduling variable is the azimuth angle of beamθh

andαj(pk) can be determined from (6).

N ut um θh θv

1 0 0 0 -0.9326
2 0 0.05 0.1074 -0.9257
3 0 0.10 0.2146 -0.9133
4 0 0.15 0.3199 -0.8895
5 0 0.20 0.4211 -0.8501

Table 1. Equilibrium points of the
eachjth linear model.

The LTI systems are incremental and the equilibrium conditions
of Table 1 should be added. Consequently, the expressions of
these conditions are:



ŷ(k) =

N∑

j=1

αj(ϑk)
[
Cj x̂(k) + yj

]
(33)

whereyj = [θ
j

h, θ
j

v]T (See Table 1).

Additionally, uncertainty has been included in some parame-
ters of the observer model to take into account the difference
between the LPV model and the real nonlinear behavior:aj

22 ∈

[aj
22 ± 0.0092], aj

43 ∈ [aj
43± 0.0133] andaj

46 ∈ [aj
46 ± 0.0107]

for j = 1, . . . , N . This uncertainty will be taken into account
when generating the set of output behaviors using the interval
LPV observer (7).

The proposed observer design procedure was applied to obtain
Lj such that the poles are in disk LMI region with the parame-
tersc = −0.5 andr = 0.5. In the design of the observer gains
Lj uncertainty in matrixAj(ϑ

j) has been considered.

Fig. 3 presents the time evolution responses of outputs and
their adaptive thresholds in different operating points. Fig. 3(b)
shows the pitch angle of beam and Fig. 3(c) presents its residual
response. It can be seen that the adaptive threshold changesin
the system dynamics.
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Figure 3.(a) Azimuth angle of beam. (b) Pitch angle of beam. (c) Residual
of pitch angle of beam

5.4 Fault scenarios

The fault scenarios were implemented in nonlinear TRMS
equations (31)-(32) using interval LPV observer designed in the
previous section. Figs. (4)-(5) present the results and thefault
detection indicator is presented at the bottom of each graph.

5.4.1 Fault scenario 1. An additive actuator fault of the tail
motorfat

is defined as:

fat
(t) =

{
0, for t < 40

0.025, for t ≥ 40
(34)

Fig. 4(a) shows the azimuth angle of beamθh and its adaptive
threshold. The prediction bounds of the azimuth angle of beam
θh are obtained using zonotopes (see Section 4) and taking
into account the uncertainty in the parameters. Fig. 4(b) shows
the residual signal for azimuth angle of beamθh and the
envelopes computed using the zonotope method. The envelopes
of the residual are adapted following the changes in the system
dynamics. The fault detection test in both cases shows that
the fault alarm is activated int = 41.5s and the alarm keeps
constant untilt = 44.6s.
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Figure 4.(a) Azimuth angle of beam in presence of faultfat . (b) Residual of
azimuth angle of beam in presence of faultfat (c) Pitch angle of beam
in presence of faultfat . (d) Residual of pitch angle of beam in presence
of fault fat

Fig. 4(c) shows the pitch angle of beamθv and its adaptive
threshold. The bounds of pitch angle of beamθv are obtained
using the zonotope algorithm. Fig. 4(d) presents its residual
response and its adaptive threshold. In this case, the fault
detection test shows that the fault alarm is activated int =
40.4s.

5.4.2 Fault scenario 2. An additive sensor fault of the pitch
angle of beamfθv

is defined as:

fθv
(t) =

{
0, for t < 40

0.015, for t ≥ 40
(35)

Fig. 5(a) shows the azimuth angle of beamθh and its adaptive
threshold. The fault detection test (20) detects the fault in the
time t = 42.9s. Fig. 5(b) shows the residual signal for azimuth
angle of beamθh and its envelopes that are based on zonotope
algorithm.

Finally, Fig. 5(c) shows the pitch angle of beamθv and its adap-
tive threshold. Fig. 5(d) shows the residual signal for pitch angle
of beamθv and the envelopes computed using the zonotope
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Figure 5.(a) Azimuth angle of beam in presence of faultfθv
. (b) Residual of

azimuth angle of beam in presence of faultfθv
(c) Pitch angle of beam

in presence of faultfθv
. (d) Residual of pitch angle of beam in presence

of fault fθv

method. The envelopes of the residual are adapted followingthe
changes in the system dynamics. The fault detection test in both
cases shows that the fault alarm is activated int = 40.025s.

6. CONCLUSIONS

In this paper, a robust fault detection using interval LPV ob-
server using zonotopes has been proposed. The gain of the in-
terval LPV observer has been designed using LMI formulation.
This method guarantees the pole placement of the observer
for each vertex with uncertainties. As a result a set of gains
is obtained and these are interpolated to calculate the gainof
interval LPV observer (7). A set of estimated outputs based on
propagating the uncertainty using zonotopes is proposed. This
set has been used to implement the fault detection test. Finally,
a TRMS has been used as a case study. It has been described by
means of LPV model with uncertainties, which were considered
unknown but bounded by intervals. According to the results
obtained in the considered fault scenarios, the proposed fault
detection approach has been successfully applied.
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