
Efficient Learning using
Kernelized Associative Memories

Aitor Ortiz de Latierro Olivella
Bachelor Degree in Informatics Engineering - Computing

supervised by
Lluís A. Belanche Muñoz

Computer Science

January 17, 2017

Contents
1 Introduction 6

2 Background 7

2.1 Learning Process . 7
2.2 Energy-Based Learning . 9
2.3 Kernel Methods . 9

3 Problem Formulation 12

3.1 Objectives . 12
3.2 Limitations . 13
3.3 Risks . 14
3.4 Previous Work . 15

4 Project Methods & Tools 17

4.1 Development Cycle . 17
4.2 Results Validation . 17
4.3 Development Tools . 18

5 Associative Memories 19

5.1 Linear Associative Memory . 19
5.2 Bidirectional Associative Memory 22
5.3 Recurrent Associative Memory 23

6 Kernelized Associative Memories 24

6.1 Kernelized Hebbian Memories 24
6.2 Kernelized Pseudoinverse Memories 25

7 Sparse Kernelized Associative Memories 27

8 Experiments 28

8.1 Memory Capacity . 29
8.2 Noise Robustness . 32
8.3 Classification . 36

9 Discussion 38

9.1 Capacity Increase by Kernelization 38
9.2 Pseudoinverse Learning usefulness 38
9.3 Recurrence Effectiveness . 39
9.4 Sparsity Impact . 40

10 Work Plan 42

10.1 Project Structure . 42
10.2 Resources . 45
10.3 Action Plan . 46

11 Budget 47

11.1 Costs Estimation . 47
11.2 Control Management . 50

12 Sustainability 51

12.1 Economic . 51
12.2 Social . 51
12.3 Environmental . 52
12.4 Sustainability Matrix . 52

13 Future Work 53

14 Conclusions 54

References 55

List of Tables
1 Classification experiment results 37
2 Tasks . 44
3 Human resources costs . 47
4 Software resources costs . 48
5 Hardware resources costs . 48
6 Contingencies cost . 49
7 Total cost . 49
8 Sustainability Matrix . 52

List of Figures
1 Associative Memory Structure 20
2 Memory Capacity experiment, m = 16 31
3 Memory Capacity experiment, m = 32 31
4 Noise Robustness experiment, M = 2 34
5 Noise Robustness experiment, M = 8 34
6 Noise Robustness experiment, M = 16 35
7 MNIST binarized handwritten digits examples 36

1 Introduction
The associative memory, defined as the ability to learn and remember
relationships between unrelated items, is one of the many types of memories
that exist in the human brain. Since 1982 –with the description of what
would be known as the Hopfield network– we have tried to replicate this fas-
cinating idea computationally following (or not) the original biological model.

Hitherto, many applications and possible uses have been explored and many
ideas have been tried to improve these memory models [14] [9] [1]. Recovering
data from incomplete or corrupted versions, associating handwritten letters
to their binary representation or even helping to understand how the human
brain works are examples of the former. Finding more general structures, de-
veloping optimal methods and applying algorithmic tricks to increase their
efficiency are examples of the latter.

The goal of this degree final project is to continue this long path a little step
further focusing on a recently reopened topic of kernelized associative mem-
ories. These memories use the mathematical kernel trick that allows them
to work implicitly at high-dimensional spaces very efficiently. We develop a
learning framework from the scratch using the Julia language, implement
some of the most fundamental associative memories as well as new kernelized
variations and compare them in a series of experiments. We focus also on the
method’s efficiency, something not always pointed out, analyzing critically
their cost in memory space and computation time.

From the tests results we have obtained positive feedback about the per-
formance and efficiency of our novel methods as well as instructive insights
about the associative memory nature. We explain all of them with theoreti-
cal arguments emphasizing the most unintuitive ones.

This thesis is divided in 14 chapters, including a preparatory section of
terminology, an extensive overview of past and novel theory, experiments
with critical results analysis, and ideas for future projects. It also contains
management-oriented chapters, like budget estimations and a sustainability
study, meeting the school requirements and wrapping up the project.

6

2 Background
An associative memory (AM) is, by definition, a kind of neural network
that learns to relate different patterns without a direct connection. Given a
set of p pairs S = {(xi,yi)} with xi ∈ X ,yi ∈ Y , the goal of an associative
memory (AM) is to store the pairs in such a way that, when presented with
a vector, known as a pattern, xi, its corresponding pattern yi is correctly
recalled, even if the input pattern xi has been corrupted in some way. The
patterns are normally expressed in the form of bipolar vectors representing
the ON and OFF states continuing the neural analogy. We have then:

for every memory i : xi ↔ yi with x ∈ {−1,+1}m and y ∈ {−1,+1}n

where ↔ has to be read as “is associated with” For convenience we also
define X ∈ {−1,+1}p×m and Y ∈ {−1,+1}p×n as the matrices that contain
all the memories of each type, by rows.

Although the notation makes it a bit unintuitive, it is important to ignore the
asymmetric assumption than x will correspond to the input patterns and y
to the output ones. Rather, the association is bidirectional, and in principle
there is no privileged component.

An important classification of AMs is according to the kind of associativity.
The scenario above, where the associative memory stores pairs of patterns, is
known as a heteroassociative memory. The special case where the associative
memory stores only a set of single patterns to remember, rather than a set of
pairs, is known as the autoassociative case, and some associative memories
are specially designed for this case, like the well-known Hopfield network [5].
The autoassociative case is equivalent to having xi = yi for all i ∈ {1, ..., p}
in the formulation above.

2.1 Learning Process

It is important to explain the two phases of the learning process that will
follow the AMs included in the text, and the majority of machine learning
models, as it will require to talk about some relevant concepts. To illustrate
the process we will use a simple linear regression as an example.

7

The first one is the training phase. In this step we are presented with
some training examples and we have to find the values for our model param-
eters that best adapt to them. What do we mean by best and how we find
them will define different training processes with different properties.

Example: We have some examples, inputs X and outputs y, and we have
to find the best values for the parameters w of our model y = wTx. One pos-
sible kind of training for this model is the ordinary least squares estimation
that finds the parameters that reduce most the mean squared error of
the training examples. Fortunately it is closed-form, ŵ = (XTX)−1XTy.

The second one is the inference phase. In this step we produce the out-
puts for different inputs. We can then evaluate our model performance if we
know how the output should be or just use it for the application that it was
created.

Example: When we are presented with a new input example xnew we just
have to compute our model ynew = ŵTxnew to obtain the predicted output.

In some of the AMs that will be explained in the text the inference phase
will not be completely straightforward as they have recurrent structure, the
output will not be obtained by a number of simple mathematical operations.
For these models there will be an iterative inference process with forward
and backward steps and a condition to stop the algorithm.

This also brings the idea of convergence of the AMs to the table: we
would like that the inference process eventually ends because the stopping
criteria was met. In this thesis we will mention, when it has been proven, if
those AMs always convernge for different reasonable stopping conditions.

We would also like to note that in some cases these two phases of the learning
process are not completely separable, e.g. in online learning, but this kind
of models are beyond the scope of our work and will not be explained.

8

2.2 Energy-Based Learning

All the models of AMs that will be presented in this thesis can be seen as a
part of the Energy-Based Models (EBMs) family. These models basically
assign a scalar value, an energy, to each possible configuration of input-output
variables with lower values for more plausible combinations [8].

In order to memorize the set S of associated pairs, we first assume there
is some general dependency between the components xi of x and the com-
ponents yj of y. We then want to discover the form of this dependency so
that we can use it to map an input vector xi from S to its corresponding
vector yi (and potentially vice versa). One way to do this is to define first the
believed structure, or architecture, of the dependencies, and then to define
an associated function, known as the energy function, that takes x and y as
inputs and outputs a measure of how well x and y satisfy the dependency.

The process of optimizing the parameters of the architecture (or energy func-
tion) such that the energy function indicates high compatibility between vec-
tor associations in the list is known as training. Finally, with the optimized
model in hand, we need a way to infer y given only x. This process of defin-
ing an architecture, an associated energy function, a training method/loss
function, and an inference method is known as energy-based modeling.

With this fact in mind we can reduce the model to an energy function, the
training step to the search of parameters that minimize that energy func-
tion for our training examples, and the inference step to the search of the
minimum-energy combination of outputs.

2.3 Kernel Methods

As we will see in during the thesis (viz. section 6.2), one of the novel ideas is
the kernelization of a particular AM learning process. In order to under-
stand that, we will need to explain what we actually mean by kernelization.
As we explained in 2.1 most of the machine learning algorithms can be seen
as the mapping of some data x, a sample of some features, to an output y.
The effectiveness of our method will depend both on the expressiveness of
the algorithm, how much it can transform our data, and on the quality of
our data, how much it is related with the desired outputs.

9

On the one hand, improving the first factor using more general and pow-
erful algorithms can become computationally intractable and we can become
prone to overfitting. On the other hand increasing the quality of the data
is in general out of the question in most problems.

Kernel Methods are basically augmentations of simple algorithms –via
an implicit mapping function– provided they can be expressed with only in-
ner products between data instances. These algorithms, that are originally
linear, can be non-linearized by what it is called kernel trick, changing that
vector inner product for a kernel function. To explain this, it is best to con-
sider a specific example that will be developed below.

Consider the problem of fitting a linear function f(x) = wTx to a dataset
S = {(xi, yi)} for i ∈ {1, ..., p}, with xi ∈ Rn, yi ∈ R, such that f(xi) ≈ yi
in the mean square sense, and such that f makes good predictions on new
inputs (i.e., it should generalize well).1 Classical ridge regression does this
by finding the w that minimizes the sum of the squared errors over the
dataset, plus a regularization term that penalizes complexity by pushing the
Euclidean length of the weight vector w to 0:

ŵ = argmin
w

Eλ(w)

where

Eλ(w) =

p∑
i=1

(yi −wTxi)
2 + λ ‖w‖2

The optimal solution for this turns out to be

ŵ = (XTX+ λIn)
−1XTy

where X ∈ Rp×n is the matrix with row vectors xi, y is the vector of the yi
and In is the n×n identity matrix. After some algebra, it turns out that we
can re-write ŵ as a linear combination of the input vectors:

ŵ =

p∑
i=1

αixi, with α = (XXT + λIp)
−1y

1It is costumary to include a bias term w0; to do this we may just add one dimension
to the xi as xi := (1,xi)

T and then w := (w0,w)T ∈ Rn+1.

10

So f(x) can be written as

f(x) =

p∑
i=1

αixi
Tx

Here’s where the trick comes in: the data from the input space only appears
in inner products with other vectors from the input space. To see why this
is useful, assume we now want to make the transformation from the input
space into some higher dimensional feature space. Let φ : X → H be such
a transformation (known as the feature map), where X is the domain of the
input data (Rn in the case of ridge regression) and H is some Hilbert space
(which has the property that the inner product between vectors in the space
is well-defined). We can then substitute φ(x) for x in all positions in the
solution for f(x) (and in the matrix X used in the computation of α):

f(x) =

p∑
i=1

αiφ(xi)
Tφ(x)

As mentioned before, we do not want to have to define the transformation
φ explicity. For a certain class of functions between two vectors –known as
kernel functions– the evaluation of the function is guaranteed to be equivalent
to performing an inner product between transformations of those vectors in
some Hilbert space. Without defining φ explicitly, we can replace the inner
products with a function k : X × X → R for which the identity k(x,y) =
φ(x)Tφ(y) holds, so that

f(x) =

p∑
i=1

αik(xi,x)

and α becomes
α = (K+ λIp)

−1y

where K is the p × p kernel matrix with elements (K)ij = k(xi,xj). Per-
forming the replacement of the inner product with a kernel function makes
it possible to work directly with the input data while still effectively working
with a transformation of the data, and is known as the kernel trick.

A couple of very common kernels are

• Polynomial kernel: k(x,y) = (xTy + b)d, with d ∈ N+, b ≥ 0, d ∈ N

• Gaussian RBF kernel: k(x,y) = exp(−γ ‖x− y‖2), γ > 0

11

3 Problem Formulation
After a brief introduction of the topic it is important to define the project that
this thesis is about. We need to explain its scope, the goals and limitations,
and its associated risks in order to assess its success at the end of it.

3.1 Objectives

Although the goal of this thesis is pushing forward the state of the art of
kernelized AM’s, focusing mostly on efficient methods, we can divide its
contributions in different objectives. Having these concrete goals makes more
clear their progress and helps to structure the project.

1. Although it is really only a prerequisite for the core work of this thesis,
the development from scratch of a flexible framework to imple-
ment different types of AMs will be a considerable chunk of the
project. We want to make clear that the creation of a new environment,
although more demanding, was more reasonable than the reutilization
of a different one. The previously existing ones were too generic, not
focused on associative memories, or not flexible enough to implement
the new developed AM’s variants or some of the planned experiments.
As a subgoal, all the programming will be done in Julia [2] a relatively
new language for technical computing. We will explain more about the
reason of this decision in the next section Project Methods & Tools.

2. Novel AM Kernelization: one of the ideas that started off the
project was the kernelization of an AM learning process that had not
been done yet in an heteroassociative context, the pseudoinverse train-
ing. This derivation requires some extra steps compared to a standard
kernelization, and fills a gap in previous literature. It has to be said
that this method was not developed for efficiency at all but we thought
that it was important to include in the project.

3. Sparse Learning: An important objective of the project, and the one
that gives its name, is the development of new efficient learning meth-
ods for associative memories. In order to achieve this efficiency we will
focus on sparsity, aimed at discarding redundant memory associations
in order to make the inference process faster.

12

4. Experimental part: An important co-requisite that deserves being
counted on as a goal is the development of a series of experiments to
compare the different algorithms and methods. Although this project
has a motivating theoretical component, we would not like to forget
about practice, the numerical results. Some of the experiments will also
have a secondary goal, to show the capabilities of kernelized associative
memories in tasks different from the purely associative one.

In this thesis we focus on efficiency apart from efficacy, by creating Sparse
Kernelized Associative Memories that benefit from the training memo-
ries redundancy. In particular, we follow the path started by [12] proposing a
more general kernelization in Kernelized Pseudoinverse Memories. We
also give importance to the fact that the memories can be heteroassociative,
we think that an AM has to be seen symmetrically, from x to y and from y
to x. Finally, although not patent in the theoretical core of the thesis, the
development of our own framework is an important part in itself. The use of
a novel language like Julia and the re-implementation of all the explained
memories to be flexible enough for experimentation justifies it.

3.2 Limitations

Every project has some fundamental bounds in the available resources that
end up defining an scope. We have to take into account that this project is
a bachelor thesis worth 18 ECTS credits (roughly 450 work hours).

Limited Experiments: One of the biggest limitations is the computa-
tional power. Many interesting experiments require too much time
to be done with some statistical validity because the AMs, and in par-
ticular the kernelized ones, are not fast.

Baseline Diversity: The comparison of new methods with preset baselines
is a useful way to check their progress. In this project we compare
them to different associative memories, algorithms of the same kind,
but we don’t compare them with different classes of machine learning
algorithms.

This limitation is mainly because of schedule reasons, the implementa-
tion of different algorithms for my experiments would be expensive in
time and would not allow to parts more related with the project.

13

Alternative Methods: During the brainstorming sessions we had more
ideas than the ones finally implemented in the paper. Some were dis-
carded because of their impracticability and others just because we did
not choose them.

At the end of the document, section Future Work, the most interest-
ing discarded ideas are presented as different paths to be continued.

3.3 Risks

It is natural to evaluate the associated project risks to take them into ac-
count when we are planning the project. Their economical evaluation and
the preventive actions that have been taken will be explained in later sections.

Now we will name the 3 most important risks.

Method Failure: Although sound in theory, some of the new developed
methods may not work in some cases in practice. It is important to
document it and analyze the motives of the failure, which will help
to understand more about the topic and avoid that future research
projects fall in this pitfall.

One could say that this is not a real risk, as it is just a possibility
when testing something new, but as it is not the expected outcome we
think that it is important to consider its consequences.

Expensive Experimentation: Some of the planned experiments, although
already filtered as we say in 3.2, may still be too expensive in terms of
computer power.

Time Problems: One of the most recurrent problems in projects is tem-
poral cost estimation of the tasks. We have a limited temporal budget
and we have to try to achieve all the planned objectives without ex-
ceeding it. An initial realistic plan with some flexibility is essential
for a smooth and successful project.

All this will be fully explained in the Work Plan section.

14

3.4 Previous Work

In this section we will review the existing literature about associative memo-
ries with emphasis on the ones that talk about their kernelization. Although
these memories can be seen as a type of neural network we will not be that
general as it would require an enormous amount of effort to review all the
field. We encourage the reader to check the elaborate review [13].

3.4.1 Associative Memories.

The concept of associative memory comes from the 80s with the Hopfield
Network and the Bidirectional Associative Network (BAM) by B.
Kosko [7]. Both are recurrent networks, but the former was autoassociative
and the latter heteroassociative. From then numerous articles and publica-
tions have been written analyzing their capacity, generalization abilities as
well as different training and inference methods. Their use in different kinds
of data and their behavior against different types of noises has also been
extensively studied. The most relevant papers for this thesis have been:

B. Kosko [7] From the BAM’s creator, a crucial article about heteroasso-
ciative memories and bidirectionality, recurrence.

Y.-J. Jeng et al. [6] An interesting paper that starts to explore non-
linearities in order to improve the AM precision (as we do in kernelization).

We recommend [1] for a complete review about the topic.

3.4.2 Kernelized Associative Memories.

The application of some kind of kernel trick to associative memories it is
not new although it can be said to be a current research topic. We could
highlight because of their relevance with our work:

B. Caputo et al. [3] Modelling the problem as Markov network this is
the first paper that kernelized the energy function. Despite this, it is only
focused in the autoassociative case and the use of that energy function as a
patter classifier, they do not study the inference process.

15

D. Nowicki et al. [10] A very thorough thesis that reviews autoasso-
ciative and heteroassociative memories and proposes a kernelization for an
autoassociative version. They focus on the creation of flexible memories for
online learning, something out of the project scope.

M. Saltz [12] Master thesis that reviews that studies the BAM kerneliza-
tion in detail. He also proposes new inference methods based on classical
mathematical optimization techniques like Hill Climbing.

16

4 Project Methods & Tools
In this section we will explain some key insights about the followed project
methodology as well as the tools used in its development. It is important to
document this processes as lessons for future ventures can be extracted.

4.1 Development Cycle

It is important to remark that this project is a solo project in its develop-
ment with only a tutoring figure to guide and advise. Many of the team
methodologies learned through the degree do not apply as real parallel work
is hardly ever possible because of this limitation.

The project was roughly divided in small tasks and goals and their progress
was tracked in weekly meetings with the tutor. Sometimes, if for example
not enough progress was achieved or there was some kind of impediment, a
meeting could be canceled in exchange of feedback through email.

In case there was need to change the planning the developer proposed the
change to the tutor and he approved or recommended distinct options.

4.2 Results Validation

The validation of results is a fundamental part of the project as we think
that transparency and reproducibility in the research community is essential.

First, all the experiments will be repeated several times (and not cherry-
picked) in order to obtain statistical sound results. The number of repeti-
tions will be specified in each particular case depending on how much time-
demanding they are or if they are more or less volatile.

As an external verification, out of the scope of this project, I will also up-
date the code with a polished version of the developed framework with easy
commands to try the experiments and check the obtained results.

17

4.3 Development Tools

This project will use GitHub as the basic management and version control
system of the code. For the less technical part of the management we will
use the gantter web app, a free and simple alternative to Microsoft Project.

As we mentioned previously, all the code will be in Julia, a relatively new
but very powerful open-source language for technical computing. We will use
only some basic external packages like PyPlot for plotting.

This document and all the external documentation has been written using
LATEX with the cross-platform editor TexMaker and several packages.

18

5 Associative Memories
Having briefly defined in the Background section what an AM is we now
can explain in detail some of their main implementations.

First of all, taking into account the EBMs framework used in this thesis,
we need to define the energy function. The most natural option is:

E(x,y) = −1

2
(xTW1y + yTW2x)

where lower values are associated with more compatible pairs of vectors.
Moreover, in order to understand why we separate the function in matrices
W1 and W2 it is important to see in Figure 1 how an AM looks like..

5.1 Linear Associative Memory

The simplest AM is the so-called Linear Associative Memory (LAM).

By definition it only has forward connections (W1), the backward connec-
tions W2 are set to zero. We end up with this simple energy function:

E(x,y) = −xTWy

Because of its nice structure, we can infer the most compatible y easily and
obtain the inference rule:

y∗ = argmin
y∈{−1,+1}n

E(x,y) = sgn
(
−∂E
∂y

)
= sgn(xTW)

19

Figure 1: Associative Memory structure. The arrows to the right represent
W1 connections and the arrows to the left represent W2 connections.

5.1.1 Hebbian Training

The first developed training method for LAMs is named after Hebbian theory
in neuroscience [4] and it is based on correlations.

W = XYT =

p∑
i=1

xiyi
T (1)

Which basically adds up the training data (X and Y) correlations in order to
set a low energy when we are presented with those memories together again.

E(xi,yi) = −xiTXYTyi = −(
p∑
j=1

xi
Txj)(

p∑
j=1

yj
Tyi)

Note that the energy will at least have big negative value for the case i = j.

20

This method has some properties that makes it useful in some situations.

• It has a very low complexity as only a matrix multiplication is needed,
naively O(mnp), to obtain the model parameters.

• It allows easy online learning, updating the model as data arrives is
as simple as adding the correlation matrix of the new association to
eq. (1).

5.1.2 Pseudoinverse Training

In the previous training method we did not try to find optimal values and
were only guided by correlations between the given training memories. This
hints us that maybe there exists a more accurate method to find the param-
eters W, taking into account all the memories as a whole.

We define the Optimal Linear Associative Memory (OLAM) as the
LAM whose parameters are found with the expression:

W = X+YT

where X+ stands for the pseudoinverse of X. We say that it is optimal as
this expression comes from the well known problem of linear least squares
regression, summarized below.

We want XW ≈ Y so for W∗ = argminW ‖XW −Y‖2 = (XTX)−1XTY.

OLAM’s advantage over Hebbian is its implicit orthogonalization of the in-
put patterns that the pseudoinverse applies. It is shown in detail at [11] but
it is instructive to check that in the extreme situation where all the input
patterns are orthogonal both methods generate identical weights:

W = X+Y = XT(XXT)−1Y = XTI−1Y = XTY

since xi
Txj = 1 if i = j and xi

Txj = 0 otherwise.

We have to be more careful with the number of patterns in this memory
as the training complexity is higher because we need to find X+.

21

5.1.3 Loss-based Learning

The OLAM is only optimal to minimize the mean square energy of the mem-
ories to remember. Using different criteria that define a different loss we can
obtain W through gradient descent or a similar optimization technique.

5.2 Bidirectional Associative Memory

A Bidirectional Associative Memory or BAM [7] is a LAM adding a
constrained backward pass. Specifically, it has to be symmetrical to the for-
ward one or, technically, W2 = W1

T = W.

The addition of this backward pass transforms the inference process from
a simple closed-form expression to an iterative process until convergence.
From now on we will use the notation sx(t) and sy(t) when we talk about
the input and output state at the step t of that iterative process.

The inference in a BAM will then be:

sx(0) = x

sy(1) = sgn(sx(0)W)

sx(2) = sgn(Wsy(1)
T)

...

sy(t+ 1) = sgn(sx(t)W)

sx(t+ 2) = sgn(Wsy(t+ 1)T)

We say that the process has converged when we enter into a fixed point, and
we use that y or x (depending on our objective) as the output.

Because of the forward-backward symmetry we will have to be careful when
we choose the training method as not all of them will work.

22

5.2.1 Hebbian Training

Hebbian training was the original method devised for BAM’s, the symmetric
structure of correlation matrices fits perfectly the constraint.

W1 = XYT and W2 = YXT satisfies W2 = W1
T

Fortunately, it has the same training complexity than its LAM counterpart.

5.2.2 Pseudoinverse Training

Pseudoinverse training, on the other hand, can not be successfully adapted
into this BAM architecture.

W1 = X+Y and W2 = Y+X does not satisfy W2 = W1
T in general

This fact is not mentioned in some previous literature and can be forgot-
ten when implementing associative memories. We think that it is important
to emphasize it and we will show what would happen if we implemented this
structure anyway in the Experiments section.

5.3 Recurrent Associative Memory

The last generalization possible is to forget about the symmetrical constraint
and fully use all model parameters W1 and W2.

The inference process will change slightly with respect to the BAM one:

sx(0) = x

sy(1) = sgn(sx(0)W1)

sx(2) = sgn(W2sy(1)
T)

...

sy(t+ 1) = sgn(sx(t)W1)

sx(t+ 2) = sgn(W2sy(t+ 1)T)

As Hebbian training with this structure becomes only a BAM we will just
consider the pseudoinverse case with W1 = X+Y and W2 = Y+X.

23

6 Kernelized Associative Memories
We explained in Kernel Methods that kernelization, if well applied, can
transform a simple machine learning into a much more powerful one. Some-
times the possibility of kernelization is clear, as we showed in our KPCA
example, but sometimes a little bit of processing is actually needed.

We have that all the AMs explained in the previous sections can be con-
verted to variants of Kernelized Associative Memories (KAM). We will
separate them by the learning method in order to distinguish more clearly the
one of the additions of this thesis, the one that will be known as KOLAM.

6.1 Kernelized Hebbian Memories

In this section we will tackle the kernelization of a BAM (KBAM) and its
particular case of no backward pass KLAM. The first and most important
step is the kernelization of the energy function that guides our memory.

E(x,y) = −xTWy = −xTXYTy = −
p∑
i=1

(xTxi)(y
Tyi)

Now we have an expression that only depends on a scalar product so:

E(x,y) = −
p∑
i=1

kx(x,xi)ky(y,yi)

It is important to note that kx and ky do not have to be the same. If we
now kernelize the inference process we arrive at the following expressions
expressions for the forward and backward pass [12]:

sy(t+ 1) = sgn

(
p∑
i=1

kx(sx(t),xi)
∂ky
∂sy

(0,yi)

)
(2)

sx(t+ 1) = sgn

(
p∑
i=1

∂kx
∂sx

(0,xi)ky(sy(t),yi)

)
(3)

With this new structure we have to make an evaluation about the changes:

24

• We have decreased training complexity to zero, we do not have to create
any W1 now W2 matrices. We can start recalling instantly.

• We have increased considerably the computationally cost of inference,
each step will require O(pm) or O(pn) operations!

• We now have to store all the training memories to do inference.

6.2 Kernelized Pseudoinverse Memories

The Kernelized Pseudoinverse Memory, KOLAM the direct version and
KRAM the recurrent one, will be the most powerful memory explained in
this text and, according to our data, it has never been explored before with
this generality. First of all, as we have done above, we need to kernelize the
energy function of the associative memory.

E(sx, sy) = −
1

2
(sx

TW1sy + sy
TW2sx)

= −1

2
(sx

TXT(XXT)−1Ysy + sy
TYT(YYT)−1Xsx)

= −1

2
(

p∑
i=1

p∑
j=1

kx(sx,xi)K
−1
x,ijky(sy,yj)

+

p∑
i=1

p∑
j=1

ky(sy,yi)K
−1
y,ijkx(sx,xj))

= −1

2
(

p∑
i=1

p∑
j=1

kx(sx,xi)(K
−1
x,ij +K−1y,ij)ky(sy,yj))

With Kx = XXT and Ky = YYT one recovers standard pseudo-inverse
learning energy function presented in the previous section.

Now we need to kernelize the inference process completely:

sy(t+ 1) = argmin
y∈{−1,+1}n

E(sx(t),y) = sgn
(
−∂E
∂y

)
= sgn

(
p∑
i=1

p∑
j=1

kx(sx,xi)(K
−1
x,ij +K−1y,ij)

∂ky
∂y

(y,yj)

)

25

And analogously for x we would arrive to:

sx(t+ 1) = sgn

(
p∑
i=1

p∑
j=1

∂kx
∂x

(x,xi)(K
−1
x,ij +K−1y,ij)ky(sy,yj)

)

It would be natural to compute the derivatives ∂kx
∂x

and ∂ky
∂y

from the previ-
ous sx and sy, but in some preliminary experiments we have obtained better
results using 0, a neutral point in the bipolar vectors space. For example,
using an RBF kernel for both kx and ky we would obtain:

sy(t+ 1) = sgn

(
p∑
i=1

p∑
j=1

kx(sx,xi)(K
−1
x,ij +K−1y,ij)

∂ky
∂y

(0,yj)

)

= sgn

(
p∑
i=1

p∑
j=1

exp(−γ ‖sx − xi‖2)(K−1x,ij +K−1y,ij)2 exp(−γ ‖yj‖
2)yj

)

= sgn

(
p∑
i=1

p∑
j=1

exp(−γ ‖sx − xi‖2)(K−1x,ij +K−1y,ij)yj

)

sx(t+ 1) = sgn

(
p∑
i=1

p∑
j=1

xi(K
−1
x,ij +K−1y,ij) exp(−γ ‖sy − yj‖2)

)

Finally, we have to consider that although this method is much more general
we now have quadratic complexity with the number of memories which
can be a computational bottleneck even for moderate size problems.

26

7 Sparse Kernelized Associative Memories
As mentioned, the main cons of KAMs are the need to store all memories and
the need to iterate through all of them in the inference process. It is natural
then to try to reduce the memories without sacrificing much performance
through methods that profit from the redundancy with sparse KAMs. We
will use the KBAM as the base AM to kernelize because of the computational
requirements of its companions KOLAM/KRAM.

A Stochastic KAM only uses a random subset of the stored memories
in each iteration speeding up the inference process. This simple method al-
lows to reduce the number of computations in a inference step to a fraction
r, the ratio of memories that will be used in that iteration.

The resulting equations will then be:

E(x,y) = −
dp·re∑
i=1

kx(x,xi)ky(y,yi)

sy(t+ 1) = sgn

(dp·re∑
i=1

kx(sx(t),xi)
∂ky
∂sy

(0,yi)

)

sx(t+ 1) = sgn

(dp·re∑
i=1

∂kx
∂sx

(0,xi)ky(sy(t),yi)

)

The optimal value for the hyperparameter r will depend on data and it will
be a trade-off between accuracy and inference speed. We will still need to
store all the training memories as the random subset changes in each step.

27

8 Experiments
In this section we will explain and show the results of a series of tests that
we have done to the memories mentioned through the thesis. We believe
that this is one of the most important parts of the project as it will give
perspective to the capacity of the AMs and how do the new variations do.

We will compare the different AMs efficiency and efficacy with controlled
tests or using established benchmarks datasets found in previous literature
in Memory Capacity, Noise Robustness and Classification. Although
the ultimate goal is this comparison, every experiment has a concrete pur-
pose that we will explain in its respective section.

The tested memories (categorized by kind) will be:

• Classical LAM, OLAM, BAM and RAM.

• Kernelized KLAM, KOLAM, KBAM and KRAM (RBF kernel).

• Sparse SKAM.

• Special PBAM (BAM structure with pseudoinverse training).

28

8.1 Memory Capacity

In this experiment we will try to see how many patterns association can the
AM recall in an ideal situation, without distortion nor ambiguous memories.
We think that capacity is one of the most relevant metrics about associative
memories and that is why this first experiment is included.

In each realization of the experiment we will train all the memories with
an increasing set of bipolar vectors associations and we will see how many
of them are recalled correctly afterwards. Each experiment will be defined
by the size of the inputs and the outputs, m, and the number of memories M.

All the realizations have been repeated 100 times for statistical validity.

8.1.1 Theoretical Bound

As there is no distortion involved nor ambiguous memories (the patterns are
one-to-one) a perfect algorithm would return the correct output with a 100%
effectiveness, it would always correctly recall the correct association.

8.1.2 Results

We have tested all the memories for different M values using m = 16, Fig-
ure 2, and m = 32, Figure 3. We have chosen relatively small values in order
to allow us to repeat the experiments many times without a high computa-
tional cost. Also, we have separated the normal and the kernelized methods
because of their different capabilities and to make the visualization clearer.

The first thing to notice is the perfection that kernelized memories exhibit in
these settings, with a 100% effectiveness. This is something that happens for
all the different tested m’s as well as with much biggerM ’s that the shown in
the graphs. This tells us that the requirement to have to store all memories
is not in vain, we are assured to have perfect recall when the original patterns
are presented again without any kind of distortion.

The second thing to notice is the significant performance difference between
pseudoinverse-based methods and the Hebbian ones in the non-kernelized
case. For both experiments, m = 16 and m = 32, we consistently see that

29

Hebbian start making mistakes with more than 4 memories while pseudoin-
verse methods recall acurately until m = M . This is coherent with the
approximate capacity bounds studied in the original BAM paper [7].

Also it is patent that the PBAM, the Frankenstein-like memory described
at Bidirectional Associative Memory has the worst results. As we pre-
dicted we can not combine enforcing the symmetry constraint and using a
pseudoinverse training method, it just does not work.

Finally, we can also observe that recurrent associative memories perform
a little bit worse than their direct-inference counterparts in the majority of
m and M cases. This is an unintuitive result, we would normally think that
the recurrence generalization is always positive, and it will be explained in
the Discussion section jointly with the other experiments.

30

Figure 2: Memory Capacity experiment, m = 16.
On the right figure all methods have 100% accuracy for every M value.

Figure 3: Memory Capacity experiment, m = 32.
On the right figure all methods have 100% accuracy for every M value.

31

8.2 Noise Robustness

This experiment is a modification of the previous one. After the initial train-
ing we do not present the original input patterns to the AM, we present
distorted versions of them, some of their components have been flipped.

In this experiment then we will try to determine how robust are the memories
to small distortions in their patterns as well as the capacity of the memory.
We think that noise robustness is another essential metric of an associative
memory for many reasons. Historically this was one of their firsts uses [7] and
in our opinion this relatively small generalization task hints the associative
memory true potential and capabilities.

Each realization of the experiment will be characterized again by the in-
put/output size m, the # of memories M and the # of corrupted bits N.

All the realizations have been repeated 100 times for statistical validity.

8.2.1 Theoretical Bound

In this case we need to be a bit more careful as actually smallish distor-
tions can really make some of the memories unrecoverable. If too many
components are flipped the corrupted memory may actually be more similar
to other patterns in the memory and correct guessing just be a matter of luck.

It is very interesting then to try to find this maximum in order to see how
close or far stand the analyzed memories. Unfortunately, we have not arrived
to a closed-expression formula of this bound but below we have an example
of how we could calculate it for each case.

Example (m = 8, M = 2, N = 1)

We have to take into account the cases where the corrupted memory may be
confused for another memory and compute their probability. In this example:

• The 2 memories are one bit away, p1 = 8
28−1 ≈ 2−5, the noise affects

that bit, q1 = 1
8
= 2−3, and the probability of error, r1 = 1

1
= 1.

• The 2 memories are two bits away, p2 = 8∗7
28−1 ≈ 0.22, the noise affects

32

one of those bits, q2 = 2
8
= 2−2, and the probability of error, r2 = 2−1

Now we just have to add them as 1− (p1 ∗ q1 ∗ r1 + p2 ∗ q2 ∗ r2) ≈ 0.97

In practice we have just approximated and simulated this bound.

8.2.2 Results

In order to test the noise robustness in different situations we have done 3
experiments, Figure 4 for an almost empty memory (M = 2) and Figure 5
and Figure 6 for fuller ones (M = 8 and M = 16). In all cases we have used
m = 16, an smallish memory size to speed up experimentation.

We can notice again in all the experiment realizations that kernelization
is a huge improvement, there is a big performance difference comparing with
their normal counterparts. And not only that, we can see that they are all
actually quite close to the simulated theoretical bound proving again their
pattern association capabilities.

We can also observe that the best performers in these experiments are our
novel memories KOLAM and KRAM. The latter, the recurrent version of
the former, is actually better in some realizations and we can consider it the
real winner, the most noise-robust associative memory.

Another interesting insight is that the relative performance of the differ-
ent associative memories depends on how full is the memory. We can see
that recurrent memories do actually better than their non-recurrent coun-
terparts on more noisy situations and worse in less noisy ones. This justifies
the effects noted on the previous experiments where there was no noise and
non-recurrent memories performed well.

33

Figure 4: Noise Robustness experiment, M = 2

Figure 5: Noise Robustness experiment, M = 8

34

Figure 6: Noise Robustness experiment, M = 16

35

8.3 Classification

In this experiment we will show that AM’s can also do classification with
success. We have chosen the MNIST dataset, a large database of 60000
handwritten digits. The task will be to associate the images, that after be-
ing binarized can be seen as bipolar vectors, with the number they represent.

We think that this experiment will allow us to check how the associative
memories fare in a real dataset, not synthetic like in the previous ones. Also,
as it is not a injective dataset (many different handwritten numbers go to
the same category), we can try the novel sparse memory SKAM that takes
advantage of the redundancy present in the data to speed-up the inference
process ideally without losing much accuracy.

We will not test recurrent associative memories as they make no sense in
the classification context. Once the memory have classified a pattern, for
example image X is 4, it will not change its opinion for no reason.

Figure 7: MNIST binarized handwritten digits examples

36

Memory Precision (%) Training Time Inference Time (ms)
LAM 0.0 55 ms 42.6
OLAM 67.1 15.12 s 45.9
KLAM 96.9 - 590

SKAM (r = 0.5) 96.2 - 300
SKAM (r = 0.1) 93.6 - 61.5

Table 1: Classification experiment results

8.3.1 Results

In Table 1 we have a summary of the experiment obtained results. The
kernelized memories do not have Training Time because they do not have a
defined training process, they directly use in inference the training memories.

The first interesting results is the 0% accuracy of the simple LAM. This
is because the memory never predicts any number, it gets overload with in-
formation in training and makes the minor cost option, predicting no number.

We can also notice the tremendous performance gain that kernelization pro-
vides, from a 67.1% to almost all of them. This is consistent with the syn-
thetic experiments results showing that kernelization is also positive with
real data. Probably using our new KOLAM we would have obtained even
better results but because of the matrix kernel generation computational it
is completely impossible to run in this dataset.

Finally, our sparse associative memory has worked as we expected, hav-
ing very good results and reducing the recall time by an r factor. With
r = 0.5 we are almost twice as fast with almost the same performance and
with r = 0.1 we are almost ten times faster keeping 93.6% accuracy.

37

9 Discussion
After the experimentation are done and their results are stated it is important
to analyze them and justify the observations with arguments. Explaining and
understanding these experiments results in an essential part of the project.

We have extracted the most significant facts and explained them in detail in
the next subsections without a relevant order.

9.1 Capacity Increase by Kernelization

As noted in previous work, when we kernelize the associative memory we
observe in all experiments a very significant capacity increase. It can also be
seen that this difference depends on the used kernel in a consistent way.

We can explain why this happens having in mind the next facts:

• Kernelization transforms implicitly x to φx(x) and y to φy(y), vec-
tors in a higher-dimensional space of Sx and Sy dimension (potentially
infinite).

• The resulting size of W after kernelization is Sx × Sy.

• The capacity of an AM depends on the degrees of freedom of the design
matrix W (m), the bigger it is the more memories it can store.

This can also explain why the RBF kernel has in general a better performance
than the polynomial one, as the space dimension of the former is larger.

9.2 Pseudoinverse Learning usefulness

One of the objectives of this project was to develop a new kind of associative
memory that we called KOLAM and KRAM. We have also discovered in
the experiments that they provide an small but consistent better performance
than kernelized methods based on Hebbian training.

As another of our objectives is to take into account efficiency we think that
it is important to analyze and explain the observed results.

38

9.2.1 Redundancy with kernelization

We can observe that in all experiments the performance gained using pseu-
doinverse methods is smaller in kernelized memories than in normal ones.

A possible explanation of this fact is the redundancy of kernelizing and
pseudoinverse-training benefits, because as proved in [11], both methods or-
thogonalize the input patterns, one implicitly and the other by the design.

We can also see that if the kernelization almost orthogonalizes the patterns,
Hebbian and pseudoinverse training are almost equivalent:

φ(X)+Y = φ(X)T(φ(X)φ(X)T)−1Y ≈ φ(X)T(I)−1Y = φ(X)TY (4)

9.2.2 Complexity

One of the negative parts of these new memories is the huge computational
cost they require even preventing them to complete the MNIST experiment.
The computation of the energy function and an inference step needs to go
through all the combinations xi-yj, a quadratic complexity in the number of
stored patterns which is normally a very big number.

The most important fact is that this slowness is not at training, that only
has to be done once, it is at the inference phase, we have to do it every time
we want to recall a memory...

9.3 Recurrence Effectiveness

One of the most interesting observations of the experiments is that recur-
rence is not always positive, sometimes simple linear versions have slightly
better results. This happened specially on low noise situations.

We can theorize that this happens because in those easy situations the re-
currence can induce to find further (but lower) local minima on the energy
function when the real solution was the closest one.

As we have seen with the disastrous PBAM results we can not successfully
combine symmetry constraints with pseudoinverse training.

39

9.4 Sparsity Impact

In Classification experiment we tested our new memory SKAM and com-
pared them to different non-recurrent structures. Using r = 0.5 we obtained
a memory that was twice as fast losing less than 1% accuracy and with
r = 0.1 we obtained a memory that had the same computational cost than
a OLAM but with more than 25% accuracy.

We have to say two important things about the sparsity of our SKAM.

• Storage Sparsity: We are not doing complete sparsity in the sense
that we have to store all memories independently of r, we are just
ignoring them temporarily in some inference steps. In order to do real
sparsity we would to analyze the dataset in training time (we propose
it in the Future Work section).

• Complexity: We want to make clear that with these methods we
are not tackling one of the most important problems, the quadratic
complexity of kernelized pseudoinverse methods. A completely new
idea would have to be used in order to make them computationally
affordable in real datasets.

Despite this, we think that these results are very encouraging and that sparse
associative memories may offer a good trade-off between accuracy and effi-
ciency for many problems where just a moderate speedup is needed.

40

In the following three sections, Work Plan, Budget and Sustainability,
we will analyze the project from a management point of view.

It is important to keep in mind that some of the treated topics, like costs
estimation, are not real as this is just a bachelor’s thesis with no budget as-
signed. But, doing this simulation of sorts, does help us to realize the amount
of work devoted to the project and to analyze its structure and consequences.

41

10 Work Plan
In this section we will explain the project structure, the tasks in which it
has been divided and the resources used in order to carry it out. Moreover,
we will explain the action plan followed, how the tasks have been done, and
different proposals of alternatives and solutions to considered obstacles.

This project officially started on September 12th of 2016 and has been de-
livered to the examiners’ panel on January 17th of 2017.

10.1 Project Structure

In order to make a clear structure the project has been divided in 6 big blocks
that partially overlap. We will explain first the general idea of each of them
and their weight in the project.

10.1.1 Project Idea

The conception of the project idea and the first outline of the objectives was
made before the registration of the TFG, in July 2016.

The topic was proposed by Lluís A. Belanche, the tutor. We wanted a re-
search topic in the area of machine learning and he recently had guided a
master thesis [12] that had proposed many new paths to be continued.

Although some brainstorming meetings were done we will exclude them from
the other sections as they were out of the official project schedule.

10.1.2 Initial Stage

The initial stage goes from September 19th to October 24th of 2016.

In this stage we developed the project foundations, both technical and more
management related. We tried to make clear the scope, objectives and create
an rough initial planning from the very first moment in order to reduce risks
and make the project firsts steps.

42

10.1.3 Development

The development of the project, mathematical and algorithmic, is the core
of the project from September 30th to November 18th.

As we have explained in Objectives this project has not only one goal and
this fact is reflected in the variety of tasks of this block.

Although this section comes theoretically after initial stage ending it actually
started some weeks before.

10.1.4 Experimentation

As in almost all research projects experimentation is an essential part that
takes quite a long time. We planed from October 10th to December 5th.

In this block I consider the experimentation related to the testing, to verify
that the developed code is correct, as well as the design and execution of all
the different experiment and applications shown in the thesis.

10.1.5 Documentation

One of the most forgotten parts in project planning but the imperative to do!

In this block I include internal documentation, intermediate results of failed
methods, and the real documentation, the thesis and the code.

10.1.6 Extra

At the end of the project, from December 12th to January 17th, we decided
to set an extra time to try new ideas not initially planned or end the final
tasks if we were behind the planned schedule.

We finally had to use all of this time finishing up documentation and experi-
ments as there were some miscalculations in some tasks resources estimation.

43

Task Description Time

Initial Stage Initial assessment document tasks 78 h
Framework Structuring Creation of the new software struc-

ture, flexible and general enough to
implement the different algorithms.

18 h

Baselines implementation Implementation of the non-novel al-
gorithms to test the framework.

33 h

Pseudoinverse Methods Implementation of all non-novel
pseudoinverse training methods.

18 h

Heteroassociativity Study and development of methods
related with heteroassociativity.

66 h

KOLAM & KRAM New kernelized associative memories
programming and testing.

33 h

SKAM Programming and testing of new
sparse associative memory.

18 h

Experiments (I) Experiments related to memory ca-
pacity and noise robustness.

18 h

Experiments (II) Experiments related to classification
and efficiency.

33 h

Thesis Draft Creation of first thesis draft. 33 h
Extra Unassigned time to finish the thesis

and try new ideas.
93 h

Total 441 h

Table 2: Tasks

44

10.2 Resources

The project resources planning can be divided in hardware and software.
We will not consider human resources as there really is just one worker.

10.2.1 Hardware

We have used a 1.7 GHz i5 processor laptop, where we have programmed
and have written all the other documents, and a 2.66 GHz i5 desktop where
all the tests and all the final experiments have been done.

The other specifications are not mentioned as they are not relevant.

10.2.2 Software

The programs used in the elaboration of the thesis are:

• Atom Text editor used to write all the code.

• gantter Cloud-based project scheduling tool.

• GitHub Online project hosting using git.

• Julia Programming language used for all programming tasks.

• LATEX Typesetting system used to write the documentation.

• Texmaker Cross-platform LATEX editor.

• Ubuntu OS used in both systems during the project.

45

10.3 Action Plan

We decided to initially follow tasks of a duration of some weeks and subdivide
them in one or two weeks chunks when we started them. During the project
we found out that sometimes those estimations were not very accurate and
had to be adjusted slightly delaying some other tasks.

In order to find bugs as soon as possible small tests were planned after every
programming tasks and theoretical derivations were reviewed by the tutor.

The Extra block was initially planned to try new ideas if the project was on
schedule and act as a safety margin if there were delays. It was finally used
to finish some tasks and do some thesis drafts reviewing iterations.

46

11 Budget
In this section we will make some guesses and estimations of how much the
project would have cost if it was a real business venture. We will break down
costs, evaluate some of the possible risks and briefly talk about how do we
would the project control management to avoid major evils.

11.1 Costs Estimation

We think that the typical cost breakdown by tasks is not well suited for this
kind of project with algorithms development and experimentation. It is more
interesting to talk directly about human, software and hardware costs.

11.1.1 Human Resources

The table below shows the considered human resources costs.

Role Price per hour Time Cost

Project Manager 50.00 ¤ 95 h 4750.00 ¤
Researcher 40.00 ¤ 170 h 6800.00 ¤
Programmer 30.00 ¤ 110 h 3300.00 ¤

Tester 20.00 ¤ 66 h 1320.00 ¤
Total 441 h 16170.00 ¤

Table 3: Human resources costs

Manager In charge of project planning and management. Responsible of
Initial Stage and writing definitive Documentation.

Researcher In charge of the project theoretical part. Responsible of the
algorithms development and the experiments design.

Programmer In charge of algorithms and experiments programming and
other low-level implementation details.

Tester In charge of doing the experiments, annotate and verify results as
well as report issues and execution problems.

47

11.1.2 Software Resources

The table below shows the considered software resources costs.

Product Price

Atom 0.00 ¤
gantter 0.00 ¤
GitHub 0.00 ¤
Julia 0.00 ¤

Texmaker 0.00 ¤
Ubuntu 0.00 ¤

Total 0.00 ¤

Table 4: Software resources costs

As all the used technologies are free we did not need to buy expensive licenses
and we could use that saved money in other important areas.

11.1.3 Hardware Resources

The table below shows the considered hardware resources costs.

Product Price Amortization

Laptop 400.00 ¤ 67.00 ¤
Desktop 700.00 ¤ 117.00 ¤

Total 184.00 ¤

Table 5: Hardware resources costs

We have used a 3-year period in amortization calculations as the hardware
is low-end, it has a short life.

Example: 400.00 ¤ ∗0.5 years
3 years

≈ 67.00 ¤

48

11.1.4 Unforeseen Costs & Contingencies

All projects are exposed to numerous risks and the best way to deal with it
is preventing. We have reflected about what could go wrong and we have
decided that biggest predictable risks are:

Risk Probability Cost Exposure

Experiment failure 10% 600.00 ¤ 60.00 ¤
Method failure 10% 800.00 ¤ 80.00 ¤
Re-planing 5% 500.00 ¤ 25.00 ¤

Total 165.00 ¤

Table 6: Contingencies cost

We have created an especial budget item called Contingency Plan.

Moreover, as we want to be prudent and sensible, we have decided to add an
extra 5% over the principal costs in order to avoid Unforeseen Costs.

11.1.5 Total Cost

In the table below we can see the summary of all the previous costs.

Item Cost

Human Resources 16170.00 ¤
Software Resources 0.00 ¤
Hardware Resources 184.00 ¤
Contingency Plan 165.00 ¤
Unforeseen Costs 818.00 ¤

Total 17337.00 ¤

Table 7: Total cost

We can see that the biggest cost by large is the Human Resources item it
is a project with low hardware and software requirements.

49

11.2 Control Management

In order to control the project status weekly checkups will track the num-
ber of real work hours and the task progress. In this way the deviations will
be quickly detected and corrected if they are significant enough.

For example, to cope with a delay in some task we would first prioritize
it and, if deemed necessary, use Extra resources as a last resort.

50

12 Sustainability
Nowadays the sustainable development of projects is of vital importance. As
a society we have realized that we have to take care of the resources we have
since they are scarce and we may run out of them in a future.

In order to analyze this complex topic we have decided to divide it and
analyze its economic, social and environmental dimensions separately.

12.1 Economic

A thorough economic evaluation has been done at Budget and the project
utility and decisions have been assessed objectively.

We think that as it is a research project, we are not competing against rivals,
the schedule does not have to be extreme. Despite this, we have given impor-
tance to task planning and costs estimation so that we do not waste resources.

The developed methods in this thesis may be used in more practical ap-
plications in a future but we have not considered them in the analysis as it
is impossible to predict them and we do not feel responsible for them.

12.2 Social

We consider the social impact of this project negligible, we are only develop-
ing learning algorithms for associative memories.

We do not harm nor help any social collective and, as we have previously
explained, we do not consider possible future applications.

51

12.3 Environmental

The only environmental resource used in this project is the energy consumed
by the computers as it is a software development project without peripherals
involved. We could also consider the energy consumed in the desktop and
laptop manufacturing but that would only over-complicate the analysis.

We can make a simple environmental impact estimation considering a time
dedication, 441h, and the consumption of both computers, 250 W.

E = 441 h ∗ 250 W ≈ 110 kWh

We can also compute the estimated pollution emitted using 0.5 kg CO2

kWh
as ref.

C = E ∗ 0.5 ≈ 55 kg CO2

12.4 Sustainability Matrix

After the explanations of the previous subsections we can show a very well-
known metric of sustainability, the Sustainability Matrix. All the figures
have been obtained taking into account the previous explanations.

Economic Social Environmental

Development 9 7 7

Exploitation 14 16 14

Risks -4 0 -4

59

Table 8: Sustainability Matrix

52

13 Future Work
There were many interesting ideas that we did not have time to fully develop
and include for this thesis because of our limited time and resources. Here
we will explain the ones that we thing that we consider more promising with
hopes that they are continued in another projects.

One of the most interesting paths to pursue is about the sparse AM’s.
We have only proposed a simple stochastic variant (SKAM) but we think
that many other approaches are possible. For example, we tried to create
a Weighted KAM, a memory that analyzing the dataset gave a weight to
every pattern to learn and focusing on creating 0’s (effectively discarding
them). This would be completely sparse, we would not even have to store
the discarded memories. We could not make it work but it is a promising idea.

Another thing that we have not studied in the project is the convergence
of the kernelized associative memories. It is not obvious which properties of
their non-kernelized counterparts remain in those memories as the structure
is severely changed.

Finally, we also encourage to try these memories on different applications
as we have shown their classification capabilities and flexibility.

53

14 Conclusions
In this thesis we have developed a new learning framework for associative
memories and aside from implementing the most fundamental past methods
we have proposed two new ones. The first one, KOLAM/KRAM, combines
kernelization and pseudoinverse training something novel in an heteroasso-
ciative context. The second one, the Stochastic KAM, is a first attempt
to speed-up recall in kernelized associative memories and increase their effi-
ciency, another of the main goals of the project.

We have done three experiments to find out how these new methods com-
pared with the previous ones obtaining some key insights. First, the most
complete method KRAM had the best in all situations getting very near the
theoretical bound in the synthetic experiment. Second, SKAM proved to
provide a very a useful trade-off between accuracy and speed reducing recall
time considerably while having highly competitive results. Third, we need to
find out a method to make kernelized pseudoinverse methods computation-
ally affordable because of their intrinsic quadratic complexity.

Last but not least, we have also studied and documented the management
part, the used methods in the project, a budget estimation and a sustain-
ability study. We have learned that it is essential to estimate correctly the
project tasks duration and that it is highly recommended to have contingency
plans like a priori unassigned days before deadlines to avoid failure.

54

References
[1] Maria Elena Acevedo-Mosqueda, Cornelio Yáñez-Márquez, and

Marco Antonio Acevedo-Mosqueda. Bidirectional associative memories:
Different approaches. ACM Computing Surveys (CSUR), 45(2):18, 2013.

[2] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah.
Julia: A fresh approach to numerical computing. arXiv preprint
arXiv:1411.1607, 2014.

[3] B Caputo and H Niemann. From markov random fields to associa-
tive memories and back: Spin glass markov random fields. SCTV2001,
98:101–102, 2001.

[4] Donald Olding Hebb. The organization of behavior: A neuropsycholog-
ical theory. Psychology Press, 1949.

[5] John J Hopfield. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the national academy
of sciences, 79(8):2554–2558, 1982.

[6] Y-J Jeng, C-C Yeh, and TD Chiueh. Exponential bidirectional associa-
tive memories. Electronics Letters, 26(11):717–718, 1990.

[7] Bart Kosko. Bidirectional associative memories. IEEE Transactions on
Systems, Man, and Cybernetics, 18(1):49–60, 1988.

[8] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A
tutorial on energy-based learning. Predicting structured data, 1:0, 2006.

[9] G Mathai and BR Upadhyaya. Performance analysis and application of
the bidirectional associative memory to industrial spectral signatures.
In Neural Networks, 1989. IJCNN., International Joint Conference on,
pages 33–37. IEEE, 1989.

[10] Dimitri Nowicki and Hava Siegelmann. Flexible kernel memory. PloS
one, 5(6):e10955, 2010.

[11] Raúl Rojas. Neural networks: a systematic introduction. Springer Sci-
ence & Business Media, 2013.

[12] Matthew Saltz. A study into kernelized associative memories. 2015.

55

[13] Jürgen Schmidhuber. Deep Learning in neural networks: An overview,
2015.

[14] Haihong Zhang, Bailing Zhang, Weimin Huang, and Qi Tian. Gabor
wavelet associative memory for face recognition. IEEE Transactions on
Neural Networks, 16(1):275–278, 2005.

56

	Introduction
	Background
	Learning Process
	Energy-Based Learning
	Kernel Methods

	Problem Formulation
	Objectives
	Limitations
	Risks
	Previous Work

	Project Methods & Tools
	Development Cycle
	Results Validation
	Development Tools

	Associative Memories
	Linear Associative Memory
	Bidirectional Associative Memory
	Recurrent Associative Memory

	Kernelized Associative Memories
	Kernelized Hebbian Memories
	Kernelized Pseudoinverse Memories

	Sparse Kernelized Associative Memories
	Experiments
	Memory Capacity
	Noise Robustness
	Classification

	Discussion
	Capacity Increase by Kernelization
	Pseudoinverse Learning usefulness
	Recurrence Effectiveness
	Sparsity Impact

	Work Plan
	Project Structure
	Resources
	Action Plan

	Budget
	Costs Estimation
	Control Management

	Sustainability
	Economic
	Social
	Environmental
	Sustainability Matrix

	Future Work
	Conclusions
	References

