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Abstract

The measure of statistical dependence among two or more phenomena is an important
task in a lot of scientific and engineering problems. Although Shannon’s mutual in-
formation is a well measure of statistical dependence, its estimation from data usually
becomes difficult due to the difficulty of estimating joint density functions. As a result,
there is nowadays an increasing interest in defining alternative measures of dependence
and, in parallel, a better understanding in which manner statistical dependence can be
inferred directly from data samples.

Some alternative forms have been formulated based on kernel signal processing. It
consolidates a powerful and applicable tool to many problems, specially for non linear
approaches. Two of them will be reviewed in this work: the first, an alternative path of
Shannon entropies through the generalization of them called Rényi entropies, and the
second, that uses the kernel properties to build a Hilbert space allowing measures in
high dimensional spaces.
This work intends to fill a gap on the understanding of the two proposals and their

inherit properties, as well as proposing a more realistic and applicable case.
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Abstracte

La mesura de dependència estadística entre dos o més successos és una tasca important
en diversos camps científics i en la enginyeria. La mesura d’informació mútua definida per
Claude Shannon és útil per mesurar-ho, però en casos reals es poden trobar adversitats
donada la dificultat d’estimar la funció de densitat conjunta. Aquest fet ha portat que
la cerca de mètodes alternatius estigui al alça, a més de la preocupació per caracteritzar
aquesta dependència estadística a partir de unes mostres donades.

És per això que actualment existeixen diverses tècniques de processat basades en els
anomenats kernels, que han esdevingut una eina adient per resoldre diversos problemes,
especialment els no lineals. En aquest treball ens centrarem en dos d’ells. El primer
és un camí alternatiu a l’entropia de Shannon, que serà precisament una generalització
d’aquesta: les entropies de Rényi. El segon està basat en aprofitar les propietats dels
kernels com a generadors d’espais Hilbertians, els quals permeten un àmbit de treball en
espais infinits sense la necessitat de visitar-los.
Aquest treball té com a intenció millorar l’enteniment d’aquests mètodes així com

també de proposar un cas real on aquestes mesures siguin aprofitables.
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Notation

a Scalar

a∗ Complex conjugated of a

a Vector (column form)

1 Column vector of ones

ai The i.th element of a vector a

ai Indexed vector

A Matrix with (i, j) entries Aij

I Identity matrix

|A| Determinant of matrix A

tr (A) Trace of matrix A

diag (A) Diagonal of matrix A

‖A‖F Frobenius norm of matrix A

AT Transposed matrix A

A�B Schur-Hadamard or elementwise product

b̂ Estimate of b

E [b] Mathematical expectation of b

〈b, c〉 Inner product of b and c
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1 Introduction

The most known figure of merit to determine the degree of dependence is the mutual
information defined by Shannon at 1948. His genuine and original work “A mathematical
theory of communication” is still nowadays a reference for many of the current literature
on Information Theory. In that time, the interest of the research was to determine the
capacity of a noisy channel, but the result was on a higher scale, providing the basis of
many further fields as probability, statistics, computer science and, in a special mention,
communications. It is then unquestionable the importance of the figure of Claude E.
Shannon on nowadays, and this work does not intends to be an exception.

The capacity of extracting knowledge from pure observations is one of the direct results
of the mutual information measures. In a world of pure data there is an important
concern on trying to get insights from it. In order to make it possible, there is an
increasing seek of the appropriate statistical tools. The usual line of solutions to these
kind of problems are found in Machine Learning, being it a neighboring field to the work.
We are going to see that, like in Machine Learning, the interest relays on mapping the
observations to an another space which is usually richer in information than the data
space.
This Master’s Thesis objective is to define and analyze the presence of relation between

two sets of data observations. To do so, the tool of choice will be the kernel. The notions
of kernels appeared as a powerful field on Machine Learning allowing to solve non linear
problems in an elegant manner. Its addition to signal processing has provided versatility
and a suitable framework to this non linear perspective. In essence, the kernels are
defined as functions that map the input data to a higher dimensional space based on
the inner product of them. Its appealing definition and usage has promote the onset of
kernel based techniques.
In respect of the matter at hand, there actually exist many techniques to obtain

the desired degree of dependence. In this work we are going to review some of them,
trying to scratching the core and emerging anew with a better understanding of what
is happening. The objective is to fill a gap between the mathematical overview in the
literature and a signal processing approach, and to fill a gap between the usually blind
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INTRODUCTION

methodology of Machine Learning and the understanding on how the data is enhanced
when kernel processing is used.

1.1 Thesis outline and organization

This Master’s Thesis is organized in two blocks, being the second a consequence of the
first. The first part will be entirely dedicated to the derivation and description of the
methodologies that will be used as dependence detectors. Each detector is going to be
reasonably obtained step by step and then analyzed from a perspective of goodness in
the detection. The second part is focused on the derivation of the detectors to propose
a latency estimator at the end of the work. Both parts will be highly correlated given
the second is a practical approach to the first.

The general structure will be based on the ordered development of the methodologies.
The first two chapters will be dedicated to the settlement of the problem as well as actual
methodologies, while the rest of the work will be focused on the progression of the core
of the work. Specifically, the structure is the following:

• In chapter 2 some generic expressions of detection theory are explained. It is going
to be convenient to define the metrics and figures of merit that are going to be
used in the rest of chapters, specially on the results presentation. Additionally,
some background and definitions of kernel methodologies will be presented, which
are going to be fundamental in the throughout of the work.

• In chapter 3 it is presented a state of the art in terms of detecting dependence. It
begins with the correlation methods and finishes with a review on actual depen-
dence detectors in the literature.

• Chapter 4 is the main core of the Master’s Thesis. It is fully dedicated on the
development of the detectors, its properties and the insights given by each one in
memoryless cases. We are going to see four different approaches with the respective
performance at the end of the chapter.

• In Chapter 5 it is going to be reviewed some channel model approaches in order
to adapt the detectors to a more realistic case of transformations. We are going
to see the disadvantage of the methodologies when memory is added and how to
solve it.
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INTRODUCTION

• Chapter 6 will enclose the latency estimator proposal. The problem statement and
its mapping to our case of dependence detectors will be reviewed here.

• Finally, chapter 7 is the conclusion of the work and such the final thoughts and
some perspective to the future.

For any reader that founds it appropriate and/or interesting, the Matlab code used
through the development of the work can be found in the following GitHub link:

https: // github .com/ FerranDeca/ TFM-Detection-of-dependence-based-on-kernel-

signal-processing
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2 Problem statement and definitions

Before going on the main development, it is going to be useful to review the purpose of
the work. The objective on doing so is manifold. First, the basis and objective of the
work is defined and so the general workspace is built. It is also intended to define some
tricks and gimmicks to build the detectors or to check their performance. It is important
to remark that the equations and definition from this section will be widely used in the
development of the work afterwards, and so the intention is nothing else that the reading
and comprehension tempo of the Master’s thesis would not be broken or interrupted.

Specifically, it is going to be seen that the problem in hands is highly related to
detection theory procedures, additionally with some implications and figures of merit.
Inside this part it is going to be reviewed the detection theory similarities that can be
useful for enhancing the detection of dependence proposed in this work. Then, some
performance indicators are going to be presented that in order to express as freely as
possible the advantages and disadvantages of each detection. Lastly, an approach will
be presented that will allow to advance faster once the estimators have been formulated.
To end up the chapter, we are going to review and define the kernel technique. Based

on the title of the Master’s Thesis, it is expected that the kernel methodologies conform
the basis and will be widely present from now on.

2.1 Measuring and detection of statistical dependence

The general assumption of the work is that the knowledge about the statistics presented
is null. The objective is then to determine the statistical dependence between two sets
of observations in a blind way. The interest on this search of dependence are those
applications on the understanding of the events is reduced, and so we are limited on raw
observations. Objectively, the interest on building dependence detectors based on the
lack of knowledge relies in applications that actually looks for the increase of the degree
of cognition.
In general, we are going to define these observations as data samples {xi} and {yi}

stored in vectors x and y. Hence, the objective is clear: detect the dependence or
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PROBLEM STATEMENT AND DEFINITIONS

independence of the two random variables based on these two vectors. We are going
to see that this task of detection is not straightforward due to the implication of many
factors.

2.1.1 Detection theory resemblance

It has to be pointed out the similarities of detection theory and the problem stated in
this Master’s thesis. Some definitions given to solve properly the detection problems are
going to be useful to organize and test the solutions proposed.

The general framework is going to be a binary hypothesis based on a finite data set
of samples. The objective is to define a dependence detector and so two hypothesis
will be defined: hypothesis H0 will assume statistical independence while hypothesis
H1 will assume dependence case. These hypothesis will be tested over a set of data
x = x(1), x(1), ..., x(N) using a function called test statistic T (X), and so the following
function:

T (x) = f (x(1), x(1), ..., x(N)) (2.1)

The test statistic will be compared with a threshold to make the decision

T (x)
H1
≷
H0

γ (2.2)

or equivalently, the space of observation will be segmented into disjoint decision regions
H = H0 ∪H1.
Using the test statistic and the trehshold, we can express the probability of success or

failure with the following probabilities:

• Probability of false alarm or PFA: Decide H1 when H0.

• Probability of detection or PD: Decide H1 when H1.

• Probability of miss detection or PMD: Decide H0 when H1.

Originally in detection theory, these probabilities are obtained through the integral over
the region of detection hypothesis of the true pdf case. In real scenarios, it is a difficult
task to measure them properly. In the case of the dependence detector, it is going to
rely only on a finite set of data with unknown pdf. For these cases, the measure of PFA,
PD and PMD are more alike in machine learning classifiers, where the evaluation is done
multiple times for different inputs and the measures of the probabilities are done based
on the number of times a false alarm or miss detection events occurs.

16



PROBLEM STATEMENT AND DEFINITIONS

For this purpose, L i.i.d samples for each hypothesis will be created, separated in M
blocks of N samples, and so it will hold the following relation will be held: L = M N .
From each block, a dependence measure from T (x) will be extracted and compared to
the threshold. Formally, it is going to be expressed as

T (X;H0) = [T (x1;H0) ...T (xM ;H0)] (2.3)

for hypothesis of independence, and

T (X;H1) = [T (x1;H1) ...T (xM ;H1)] (2.4)

for dependence, being xi = x1,i, ..., xN,i.
Then, for a fixed γ, the probabilities will have the following form :

PFA =
∑
i

(T (xi;H0) ≥ γ) /M (2.5)

PD =
∑
i

(T (xi;H1) ≥ γ) /M (2.6)

PMD =
∑
i

(T (xi;H1) < γ) /M = 1− PD (2.7)

Once having tested a detector multiple times and the probabilities have been mea-
sured, the next natural step is to draw the called receiver operatic characteristic curve,
or ROC curve. This curve represents the evolution of the probability of detection over
the probability of false alarm for certain thresholds. So basically, it illustrates the per-
formance of the detector as shown in figure 2.1.
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PROBLEM STATEMENT AND DEFINITIONS

Figure 2.1: ROC curve example

The ROC curve allow to implement a visual performance indicator, but we can get a
close expression for a more concrete indicator, explained at the next sub-section.

Asymptotic Behavior

Another useful characteristic of detection theory is the one given by the Stein’s lemma.
By this lemma, an asymptotic expression for the false alarm and error probabilities can
be obtained. To develop it, it is necessary to define the pseudo-distance of Kullback-
Leibler (KL) or the Kullback-Leibler Divergence (KLD).
Given two density functions f and g with f, g ∈ S, the KL divergence is defined as

the measure of the distance between the two probability distributions:

D (f ‖ g) =
ˆ
S
f(x) log f(x)

g(x)dx (2.8)

For the dependence estimators, the density functions for the estimators will be de-
noted as p (X;H0) for the probability density under hypothesis H0, and p (X;H1) under
hypothesis H1. Then, considering these density functions, the Stein’s lemma states an
asymptotically behavior for the false alarm probability and probability of miss detection
with the following expressions:

lim
N→∞

1
N

logPFA = −D (p (X;H1) ‖ p (X;H0)) (2.9)

18



PROBLEM STATEMENT AND DEFINITIONS

lim
N→∞

1
N

logPMD = −D (p (X;H0) ‖ p (X;H1)) (2.10)

The demonstration can be reviewed on [7]. Do note that apart from demonstrating
an asymptotic convergence it also has the implication that the false alarm and miss
detection probability falls exponentially.

2.1.2 Detection performance indicators

At the end of the day, when the detectors are defined and explained, there will be a
major need on testing its performance. It has been seen that the ROC curve is useful
for this purpose, but it is also interesting to define more indicators to get comparable
results.
The first one is the figure of merit called Area Under the Curve (AUC) [5]. It is a

usual metric used to define the goodness of the ROC curves. Its principle is that the
better the detector, the better is the area under the curve, and so more likely is the
detector of making a good decision. The interpretation is that is comparing the average
value of PD for all the values of PFA. The AUC will be 1 when the perfect detector is
achieved but the metric that will be used in this work will be 1−AUC in the sense that,
when better the detector the close to 0.
The second was given by the hands of Picinbono in [22], with the intention of pro-

viding a simple criteria to avoid the ROC curve calculation. As said, it provides an
efficient solution that relies on the difference between the medium value of true depen-
dent measures and the medium value of true independent measures. It is also usually
called Signal to Noise ratio in the cases of detection with two hypothesis. To be more
precise, it has the following form:

Deflection = (E [T (X;H1)]− E [T (X;H0)])2

var [T (X;H0)] (2.11)

Contrary to the 1 − AUC, the deflection provides a better detection when higher is
the parameter, and so the mean values of the test statistics under the two hypothesis
are more spaced between them.
By using these criteria, the system performance can be evaluated with only one num-

ber, and so they can be used to enhance the visual representation that provides the
ROC. These two values will be specially useful for evaluating the performance of multi-
ple detectors for different N to see its asymptotic behavior.

The threshold decision is also something to care about. The proposed metric is based
on the perfect detection mapped into the ROC curve, that happens when we get a perfect
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probability of detection and a zero probability of false alarm. Then, the closer to the
upper-left part of the figure the better. This can be measured by the euclidean distance
between the (0,1) coordinates and the curve.

Suppose a vector of T thresholds that provides the sweep of the ROC curve γ =
γ1, ..., γT , we can measure a PFA and a PD for each γ to obtain PFA = PFA(γ1), ..., PFA(γT )
and PD = PD(γ1), ..., PD(γT ), then the threshold is the one that obtain the close eu-
clidean distance:

γ = min
i

√
P 2
FA(γi) + (1− PD(γi))2 (2.12)

2.1.3 Low SNR assumption

Being the detection of dependence the main focus on this work, the random values used
as an input for the detectors will provide a low degree of dependence. The contrary, a big
and visible dependence, would not be an interesting case as the result is kind of direct.
Having this in mind, it is possible to make some approximations that will allow to make
a more precise estimation and detection at nearly independence random vectors. The
title of this section, low signal to noise ratio (SNR) assumption, is used because of its
similarities with the proposed case.
Recalling the additive white Gaussian noise (AWGN), its channel capacity can be

reduced to C = B·SNR when low SNR is accomplished. The removal of the logarithm
allows to move from a logarithmic function to an approximation of a line when the signal
level is near the noise level, or equivalently, when SNR ≈ 1, and this is a very powerful
trick to apply on the dependence detector.
For instance, we can recall Shannon’s mutual information for continuous sources as:

I(X;Y ) =
ˆ ˆ

fX,Y (x, y) log
(
fX,Y (x, y)
fX(x)fY (y)

)
dxdy ≥ 0 (2.13)

being X and Y two continuous random variables, fX,Y (x, y) its joint distribution and
fX(x) and fY (y) the marginal distributions. The inequality becomes equality when X
and Y are independent. In the matter at hand, for random vectors close to independence,
the inner part of the logarithm will be close to one given fX,Y (x, y) = fX(x)fY (y) at
independence, and so it is immediate to recall the fundamental inequality for logarithms.
This inequality defines an upper bound as log x ≤ x− 1 for ∀x > 0. The demonstration
can be obtained from Taylor series:

log (1 + x) =
∞∑
n=1

(−1)n+1 x
n

n
≤ (−1)2 x

1

1 + (−1)3 x
2

2 ≤ x (2.14)
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The closer x to 1, the closer the equality, and then it is possible to proceed as follows:

I(X;Y ) ≤
ˆ ˆ

fX,Y (x, y)
(
fX,Y (x, y)
fX(x)fY (y) − 1

)
dxdy

=
ˆ ˆ

f2
X,Y (x, y)

fX(x)fY (y)dxdy −
ˆ ˆ

fX,Y (x, y)dxdy

=
ˆ ˆ

f2
X,Y (x, y)

fX(x)fY (y)dxdy − 1 (2.15)

Leading to this final inequality:

ˆ ˆ
f2
X,Y (x, y)

fX(x)fY (y)dxdy − 1 ≥ I(X,Y ) ≥ 0 (2.16)

Do note that this expression has a very high potential as a detector if an estimator
of the first term can be formulated. As it is going to be seen, the pdf estimators will
depend on the data samples and so a proper estimator from this expression will be
actually possible. It is going to be seen in detail at Chapter 4.

2.2 Kernel definition and basics

The kernels will constitute the most important core of the work being all the estima-
tors and detectors based on them. Thus, a proper definition and some basics on kernel
processing will be useful to be described. The kernel on the field of signal processing is
useful on many application. For example in Adaptive Filtering [17], in Fisher Discrim-
inant Analysis [19], in comparing distributions by Maximum Mean Discrepancy [11] or
even in biomedical engineering [43].
The kernel theory was proposed and consolidated in 1909 by the hands of Mercer [18],

but for this work the notation and definitions will follow the ones by Aronszajn in [1],
who defined the reproducing kernel theory. Another reference for kernel processing and
its properties can be found in [14].
A kernel is defined as a continuous function k : X ×X → R that operates in an input

space X . A kernel can also be defined as positive semi-definite when for any set of input
data x ∈ X of size N it satisfies:

N∑
i,j

αiαjk (xi, xj) ≥ 0 ∀αi ∈ R (2.17)

A positive semi-definite kernel can be used to map the input values to an n-dimensional

21



PROBLEM STATEMENT AND DEFINITIONS

space where the variables live, called a feature space, through a function ψ(x) : X → H
that assigns a kernel value k(x,y) to the input y. Indeed, a feature space is associated
with a positive semi-definite kernel through a inner product of the kernel, as demon-
strated in [1]:

〈k (x, ·) , k (y, ·)〉 = k (x,y) = 〈ψ (x) , ψ (y)〉 (2.18)

which is called reproducing property, and for this the positive semi-definite kernels are
commonly called reproducing kernels.
One interesting property of the inner product that defines a kernel, is that with a

specific norm ‖g‖ ≡
√
〈g, g〉 it turns out into a Hilbert space. A Hilbert space H, with

function f : X → R, is an inner product space that is complete, and so the Cauchy
sequence

{
x(k)

}
converges to an unique x ∈ H. In the cases of kernels, if there exists a

function k : X × X → R defined by the norm, as kernels are, is then called reproducing
kernel Hilbert space (RKHS). In fact, by the theorem of Moore-Aronszajn we can assure
that any positive-definite function actually defines a RKHS, while a RKHS also defines
a kernel by the means of the inner product which implies a positive-definite kernel. It is
then a circle of definitions that provides mutual involvement.

It is also desirable to define the kernel matrix and its properties. For a set of N
data values x1, ..., xN , the N ×N kernel matrix K is composed by the elements Ki,j =
k (xi, xj), as represented in the equation that follows:

Kx =



k(x1, x1) . . . k(xN , x1)
. . .

. . .

. . .

k(x1, xN ) . . . k(xN , xN )


(2.19)

The properties of the kernels also defines the properties of the kernel matrix, for
instance if the kernel is semi-definite positive, the kernel matrix will also be, fulfilling
αTKα ≥ 0 ∀αi ∈ R. Additionally, for Gaussian kernels we can also assure that the
diagonal will be always a vector of ones, diag (K) = 1, all its elements are positive,
(K)i,j ≥ 0, and it conforms a Gram matrix, satisfying Ki,j = K∗j,i.
The construction of the Kernel matrices is going to be fundamental as it is the first

step for a mutual information estimator. The point on using the kernel matrix is its
capability of manipulating kernels without considering the mapped feature space, and
so it provides a link between raw data and the purpose of measure.
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3 State of the art

To measure statistical dependence is not a novel problematic in statistics. In the current
literature there exist many algorithms to address the measures. Some examples are
the Maximal Information Coefficient (MIC) [26], the kernel Independent Component
Analysis (KICA) [2], the distance of Brwonian Correlation (dCor) [34], the Mutual
Information Dimension (MID) [33] or the Hilbert-Schmidt independence criteria (HSIC)
[12] further developed to the Constrained Covariance (COCO) [13]. A part from these
proceedings, the development of dependence measures in [23] and [41] will have a special
mention due to its closeness with the firsts steps of the work.

Across all of these references, we do note a high relation between correlation and
dependence, specially when the data is mapped into another space. Thus, first we are
going to review some correlation methods that are interesting in the sense that will be
useful afterwards. Then, we will take a look on some of the dependence detectors to
obtain a better perspective of what is the general metric when dependence is sought.

3.1 Correlation detection methods and limitations

The correlation as a measure of dependence is a known and widely searched merit figure.
The analysis of its existence has been studied for years and there are a lot of interesting
techniques for many different purposes. In this work we are going to review three of them
given its relation and implication throughout the development. The Pearson coefficient
is a basic measure which provides a solid expression for the cross-correlation matrix
estimate when the only knowledge about a random variable are data samples. The
Frobenius norm provides an useful technique to estimate the degree of correlation for
two vectors of data realizations, something that lacks in the Pearson coefficient. Finally,
the Canonical Correlation analysis provides a measure of correlation that can be related
to the mutual information under additive and white Gaussian channels.
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3.1.1 Pearson coefficient

The most common and basic correlation detector for a population is the Pearson coeffi-
cient which is based on measuring the linear dependence of two random variables xand
y, defined by:

ρx,y = E [(x− x̄) (y − ȳ)] (3.1)

being x̄ and ȳ the mean of the random variables x and y respectively. Do note the
detector can also be written as the cross-covariance between the two random variables
as ρx,y = cov (x, y).
The coefficient results in ρx,y = 0 for uncorrelated random variables and ρx,y 6= 0 for

correlated random variables. However, if the only knowledge of the random variables
are random data samples x = {x1, ..., xN} and y = {y1, ..., yN}, the coefficient can be
estimated as

ρ̂x,y = 1
N − 1

N∑
n=1

(xn − x̄n) (yn − ȳn) (3.2)

where the factor 1
N−1 is used to obtain an unbiased estimator and the sample mean

x̄n = 1
N

N∑
m=1

xm. As being an estimator, the detection of correlation has to be evaluated
over a threshold γ in the following form:

|ρ̂x,y|2 > γ (3.3)

If we generalize the detection problem for multiple x and y, the same principle can
be used to measure the correlation between them. Suppose the data is organized in Mx

and My vectors of N random samples over the matrices X and Y , with columns xn and
yn containing the random data generated from the random variables x, y ∈ R . Then,
the sample correlation coefficient turns into

Ĉx,y = 1
N − 1

N∑
n=1

(xn − x̄n) (yn − ȳn)H = 1
N − 1

(
X − x̄1H

) (
Y − ȳ1H

)
. (3.4)

which is the sample cross-correlation matrix.
In order to simplify the expression, we can take

(
X − x̄1H

)
and define it as a cen-

tering of the signal. Thus, it is equivalent to project the signal into a new space that
allows both signals to be compared independently of its original space. Formally, x̄ is
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the sample mean of the columns and so it can be expressed as x̄ = 1
NX1. Then we get

(
X − x̄1H

)
= X − 1

N
X11H = X

(
I − 1

N
11H

)
= XP (3.5)

being P the projector matrix to the orthogonal. It is known that the projector matrix
have the form A

(
AHA

)−1
AH , and so when A = 1, then P results to be a projector

to the dimension of ones.
The new reformulation of the sample cross-covariance matrix is

Ĉx,y = 1
N − 1 (XP ) (Y P )H = 1

N − 1
(
XPPHY H

)
= 1
N − 1

(
XPY H

)
(3.6)

in the sense that it tends to the real cross-covariance matrix in probability

Ĉx,y −→
N→∞

Cx,y (3.7)

This is known as the sample cross-correlation, and although is an efficient estimator
of the cross-covariance based on raw data, the metric needed to determine the degree of
correlation is not well defined. However, in the next sub-section it is going to be seen a
procedure to exploit the information of this matrix in order to build a proper detector.

3.1.2 Frobenius norms

Given the Pearson coefficient approach there are many covariance degree estimators
that are interesting and useful. Specifically, in a work by Santamaría et al., [27], it
is demonstrated that under Gaussian data assumption and low correlation degree the
optimal estimator is the squared Frobenius norm of the cross-correlation matrix. Hence,
under an hypothesis of low covariance estimated from data, a degree of correlation can
be formulated as ∥∥∥Ĉx,x

∥∥∥2

F
= tr

(
Ĉ
H
x.xĈx.x

)
(3.8)

being Ĉx,x normalized sample covariance matrix obtained in the previous Section, and
so Ĉx,x = 1

N−1

(
XPXT

)
. This detector can be extensible by a cross-covariance by

the means of
∥∥∥Ĉx,y

∥∥∥2

F
. The reason behind the Frobenius norm is to search over the

covariance matrix for the largest singular value. If both hypothesis of uncorrelation and
correlation are close enough, and the data is assumed Gaussian, a small change to the
eigenvalues of the estimated cross-covariance matrix is visible and determinant to make
the detection. It is actually a very powerful tool that allows to present the detector as
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follows: ∥∥∥Ĉx,y

∥∥∥2

F
= tr

(
Ĉ
T
x,xĈx,y

)
=
( 1
N − 1

)2
tr

((
XPY H

)H (
XPY H

))
=
( 1
N − 1

)2
tr
(
PXHXPY HY

)
(3.9)

The implicit result on this methodology is that we are now interested on inner prod-
ucts, and so it does not require products between data of different sets nor outer products.
Formally, it has begun with a sample cross-covariance matrix that gives attention to the
data dimensionality Mx and My, called Primal form, and it has ended with a detector
that prioritize the data sample length N , called Dual form. This approach differs from
the usual procedure in signal processing, where the Primal form highlights. Then, it is
interesting to stick on the Dual form given that Mx is generally larger than N . In fact,
the matrices XHX and Y HY are Gram matrices that later on will be called Kx and
Ky.

The importance of this result will be seen later on, when the inner products will
define a new space based on kernel processing and will allow flexibility over the future
expressions.

3.1.3 Canonical Correlation analysis

The Canonical Correlation Analysis (CCA) is an another correlation detection widely
used in the literature developed by Hotelling in 1936 [16]. It is based on finding the
space formed by linear combinations between two sets of data x = {x1, ..., xN} and y =
{y1, ..., yN} which provides maximum correlation. Additionally, an important remark on
CCA is that it is invariant to affine transformations of the data.
The principle is similar to the one presented with the Pearson coefficient, but instead

of projecting the matrices into the constant vector space, the projection is based on the
direction vectors. Considering a pair of vectors ui and vi, the linear combinations from
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x and y called canonical variates are x = xHui and y = yHvi, hence

γi = E [xy]√
E [x2]E [y2]

=
E
[
uHi xy

Hvi
]

√
E
[
uHi xx

Hui
]
E
[
vHi yy

Hvi
]

=
E
[
uHCx,yv

]
√
E
[
uHi Cx,xui

]
E
[
vHi Cy,yvi

] (3.10)

where maximum canonical correlation is the maximum γi with respect to different ui
and vi, which is an indicator to how strong a relationship is.
There is also a relation between the canonical correlation and mutual information

which relies in the property of mutual information of being additive for independent
variables. If the independence is accomplished, then the mutual information is the sum
of mutual information between xi and yi. For Gaussian variables this means:

I (x,y) = 1
2
∑
i

log
(

1
1− γ2

i

)
(3.11)

The implication behind is that it is only possible when the correlation does not depend
on higher order statistic dependencies other than correlation. Additionally, for a low
correlation degree we can linearize the logarithm around log (1), as it is going to be
explained at Section 2.1.3, and so we get

I (x,y) ≤ 1
2
∑
i

(
1(

1− γ2
i

) − 1
)

= 1
2
∑
i

(
γ2
i

1− γ2
i

)
(3.12)

which actually tends to the sum of γ2
i . This way, it can be compared with 3.9 in the

sense that the Frobenius norm is the sum of the squared elements of the matrices of data
X and Y , and so it looks on all directions instead of focusing where the information lies
in the search of the degree of correlation. In this case but, we do only sum the degree
of correlations given u and v, but at the cost of finding them first.
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3.2 Current dependence detectors

The current existing detectors of dependence based on kernel signal processing are many
and manifold. Apart from the ones that are going to be further developed in the through-
out of the work, some interesting approaches are the works by Gretton and Smola et
al., providing the Hilbert-Schmidt independence criterion (HSIC). The idea is to define
two feature maps for each variable x and y through the kernel functions, and to mea-
sure the correlation in the Hilbert space that these kernels reproduce. The detection of
correlation in that space is shown to be highly related with the dependence in the data
space. The main idea is adjacent with the idea behind the sampling of the Characteristic
function in section 4.4. Actually, we will see that it results in a very similar expression
to the HSIC one:

HSIC = 1
N2 tr (KPLP ) (3.13)

being K and L Gram kernel based matrices. Also do note its resemblance with 3.9. It
is given because the Hilbert spaces will be seen as an extension of the Frobenius norm
when kernels are applied. These relations are going to be seen in detail in Chapter 4.

The extension of the CCA for measuring independence through kernel methods, called
Kernelized Correlation Component Analysis (KICA) [2] do also follows the seek of the
degree of correlation in the infinite space. In this case, the canonical correlation is given
by

γi = αT1KxKyα2√
αT1Kxα1

√
αT2Kyα2

(3.14)

being Kx and Ky the Gram matrices associated with a kernel function and α direction
vectors of the space spanned also by the kernel function ψ(x) : X → H. The idea
behind is the same as in CCA, but instead of looking for linear relations in the data
space, these relations are looked in a Hilbert space.
Generally speaking, in the analysis of dependence between two vectors of data obser-

vations it is going to be seen that there is no good reason to stay in the data space. The
addition of kernels and so the mapping to a higher space provides an information not
present in the original space. Kernels signal processing will then be the key on detecting
dependence.
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4 Dependence detection in memoryless
systems

The next natural step is to move to the main development. This chapter consolidates
the core of the work in the sense that we derive the detectors of dependence and we
analyze them by its functionality and characteristics.
In this chapter we are firstly reviewing the estimation of the pdf given N observations

in order to, then, estimate the entropy associated with them. Within this, we are going
to naturally derive the kernel processing from the estimation of the pdf, and so we will
relate the kernel processing with the information theory. Based on this relation, three
detectors will be extracted. The first is directly obtained from the density estimate, a
process that can be reviewed in [23] and in [41]. The second and the third will be derived
from the properties of the Rényi entropies and from the U-statistics respectively. The
appropriate step will then be to review the insights of the detectors and to analyze what
is happening in the kernel processing applied. The last detector will be developed from
the characteristic function, an alternative path to densities to characterize a random
process, and from the Hilbert-Schmidt norm, an extension of the Frobenius norm when
kernels are used. Finally, the detectors will be tested to determine the performance with
a synthetic model.

4.1 Parzen density estimation

In order to estimate the mutual information of multiple random variables I(X1, ..., XN ),
it is therefore needed an estimation of entropy H(X1, ..., XN ). The first step is to define
an estimator of the probability density function that works on samples from a random
variable, and so do Kernel Density Estimation (KDE) techniques. The most important
definitions for KDE were given by Emanuel Parzen (1962) and Murray Rosenblatt (1956),
being the Parzen window estimate the preferred choice in this work [21].
Let us assume a sequence of i.i.d. random samples x1, x2, ..., xM , then the estimation
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of its pdf is given by

f̂x(x) = 1
N

N∑
i=1

g

(
x− xi
σ

)
(4.1)

The proposal from Parzen is a plug-in algorithm that relays on the summation of
evaluated functions, also called kernels, depending on the data samples. The interesting
point on the proposed estimator was the capability of reconstructing the pdf given a
finite amount of random values, and so a non-parametric model to set the problem. It
does act as a local builder, and so the outliers have minor impact at the reconstruction.
Also, do note this estimator acts as an average over the samples using a kernel g, which
is actually a semi-definite kernel, but whose definition differs from the kernels on section
2.2 in the sense that the metrics of inner products are not necessarily defined there.
It is coherent to think that for most distributions a Gaussian kernel is the most

appropriate, but for non-negative distributions it may cause a non desirable tail effect
on the negative part of the estimate. At any case, at the matter in hand this little caveat
will not make any point but other properties.
Most important, for a proper estimation of the pdf, the kernel g must have the fol-

lowing characteristics:

• g(x) ≥ 0 for any x

• limx→∞ |xg(x)| = 0

•
´∞
−∞ g(x)dx = 1

To fulfill these properties, the Gaussian function g is used:

g

(
x− y
σ

)
= 1√

2πσ
exp

(
−‖ x− y ‖

2

2σ2

)
. (4.2)

One of the reasons on the choice of Gaussian form is because the parameter σ, which
can be obtained through an optimal like rule-of-thumb if the true pdf has Gaussian form
and Gaussian kernels are used. At any case, it is proven that generally speaking the
Gaussian kernel provides the best estimation of the true pdf.

The selection of σ, user oriented, is one of the major constrains of the work as well as
a turning point given its impact on the pdf estimation. A low bandwidth will result on
spiky estimate and a high bandwidth into an oversmoothing estimate.The first thought
is to sweep for a range of σ until some cost function is accomplished, although it is not a
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practical solution when multiple estimations are needed as the computational time could
be a drawback.

Silverman showed in 1986 that for Gaussian densities the optimal kernel bandwidth
is a thumb rule based on the standard deviation of the data [32]. The proposal for a
univariate Gaussian distribution was the following one:

σk = σ̂data

( 4
3N

) 1
5 ∼= 1.06σ̂dataN−1/5 (4.3)

For multivariate normal density, the formula generalizes as

σk = σ̂data

( 4
N (2d+ 1)

) 1
4+d

(4.4)

The scope under these assumptions was to reduce at minimum the integrated mean
squared error (IMSE) assuming true normal distributions. The IMSE cost function is
specially used on KDE mainly because the bias of the integral of the pdf estimation
leads to zero unlike the mean squared error (MSE) which is biased. The IMSE is defined
by:

E

[ˆ
R

(
f̂x(x)− fx (x)

)2
dx

]
(4.5)

It has to be pointed out that for univariate kernels the optimal bandwidth is of order
O
(
N−1/5

)
while for multidimensional kernels it is of order O

(
N−1/(4+d)

)
. The point is

that for multidimensional estimates larger bandwidths are needed. If we think in a two
dimensional pdf it has some sense to use wider kernels to fill the spread data properly.
Another point of view is to map this expression to the multivariate normal distribution,
where the determinant of the covariance matrix Σ determines the volume of the data
spread.
For kernel density estimator there is also another rule-of-thumb given by Scott in

1979 for a more general true densities [28]. The proposed for univariate variables was
σk = 3.49σ̂dataN−1/3. Although Scott gives a good approximation of pdf, this work will
maintain the Gaussian assumption for the reasons explained previously.

Back to pdf estimation, for multiple random variables the joint probability density
function estimator extends to:

f̂X(X) = 1
N

N∑
i=1

g

(
X −Xi

σi

)
(4.6)

31



DEPENDENCE DETECTION IN MEMORYLESS SYSTEMS

It can also be written with a multivariate kernel g(x1, ..., xN ) as following:

f̂X1,...,XN
(x1, ..., xN ) = 1

N

N∑
i=1

g

(
x1 − x1,i

σ1
, ...,

xN − xN,i
σN

)
(4.7)

The multivariate pdf estimation have some more insights than the marginal estimation
because of the σ variability. For different kernel bandwidth the equation transforms into
a weighted summation kernels, being the marginal kernel bandwidth the weight for each
kernel. The purpose is to add control to the multidimensional pdf estimation and to
adapt every random variable to its own standard deviation.

At any case, the focus of this work is to measure independence between two random
variables X and Y and so from now on a more maneuverable expression is going to
be used. Do note that these expressions can always be generalized to multiple random
variables.

Then, rewriting the previous expressions leads to

f̂X,Y (x, y) = 1
N

N∑
i=1

g

(
x− xi
σx

,
y − yi
σy

)
(4.8)

where g(x, y) fulfills

• g(x, y) ≥ 0 for any x and y

•
´ ´

g(x, y)dxdy = 1

Another reason to use Gaussian kernels is that under independence of the data, it is
possible to apply separability on the joint density estimator, leading to

g(x, y) = g(x)g(y) (4.9)

and the joint probability function becomes

f̂X,Y (x, y) = 1
N

N∑
i=1

g

(
x− xi
σx

)
g

(
y − yi
σy

)
(4.10)
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4.2 Rényi entropy and mutual information

It is widely known that entropy H(X) is a quantification of information or uncertainty
of a random variable X, defined as

H(X) = −
∑
x∈X

PX(x) logPX(x) (4.11)

and being X a discrete random variable, PX its distribution and PX(xi) the probability
of observing xi.

This approach was first introduced by Shannon [31] in 1948. This equation consol-
idates the information theory background given its usefulness. From there, other im-
portant statements can be derived as mutual information I (X;Y ), conditional entropy
H (X|Y ), joint entropy H (X;Y ), Kullback-Leibler divergence D (X||Y ), and so on. So
it is clear that Information Theory (IT) is a key stone on many applications and studies,
by now and by the introduction.

The extension to continuous sources, called differential entropy h(x), appeared the
same year by both Shannon and Wiener [42] as

h(X) = −
ˆ
S
fX(x) log (fX(x)) dx (4.12)

being X a continuous random variable with a pdf fX defined on S.
From here and recalling equation 4.1, the new estimate for marginal differential en-

tropy becomes
ĥ(x) = −

ˆ
S
f̂x(x) log

(
f̂x(x)

)
dx (4.13)

which can be rewritten as

ĥ(x) = − 1
N2

 ∞̂
−∞

N∑
i=1

g

(
x− xi
σx

)
log

(
N∑
i=1

g

(
x− xi
σx

))
dx

 (4.14)

At this point the difficulty of solving the equation has increased significantly due to
the logarithm inside the integral. The inner part of it could be forced to be close to one
in order to apply the fundamental inequality, but this would only force to stick to that
regimen and it can be limiting afterwards. Luckily, Shannon entropy is only a particular
case of a major family of entropies. This family consists in a generalization form that
allows versatility and a more straightforward approach to the entropy estimator. This
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generalization came from Rényi at nearly 60s in the following form [24]:

Hα(X) = 1
1− α log

(∑
x∈X

PαX(x)
)

(4.15)

with the following properties:

• α > 0

• Non-negative, concave and bounded.

• Hα(X) is a continuous function with probabilities PX(x), x ∈ X

• It converts to Shannon entropy when α→ 1 : H(X) = lim
α→1

Hα(X)

• For α→ 0 it recalls Max or Hartley’s entropy: log |X| = lim
α→0

Hα(X)

• For α→∞ it recalls Min or Chebyshev entropy: − log max
i
pi = lim

α→∞
Hα(X)

• H0 ≥ H1 ≥ H2 ≥ ... ≥ H∞

• Additivity property remains as Hα(X,Y ) = Hα(X)+Hα(Y ) at independence, but
not sub-additivity.

• Other Shannon entropy properties also remain, as permutationally symmetric,
recursivity and monotonicity.

Note that α-entropy, or α-Rényi entropy, behaves like a group of functions for measuring
uncertainty with different meanings for each α, being Shannon entropy a characterization
of the generalized formula, with the addition that most of the properties that Shannon
entropy holds are also fulfilled with the generalization of entropy. For instance, the
Shannon entropy can be seen as a subset of the α entropy.
Although all the properties that inherits from Shannon entropy, the sub-additivity

property is not fulfilled with Rényi entropies, as exposed in [8] and in [36], only case
α → 1 and α → 0. This implication means that, under assumption of independence, it
is no possible to bound the joint entropy like Shannon’s H(X,Y ) < H(X) +H(Y ) and
so a possible detector of dependence cannot rely on it. On section 4.2.4 the estimator
will be derived based on an alternative path.
Its extension to continuous sources is then formulated as

hα(X) = 1
1− α log

(ˆ
S
fαX(x)dx

)
(4.16)
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This work will be focused in the case α = 2, which is the called 2-Rényi entropy
or Collision entropy. The interest in H2 is multiple. First, as being a lower bound of
Shannon entropy, it might be more efficient than Shannon’s for entropy maximization,
as explained in [23]. Additionally, the inner part of the logarithm is called Information
potential V2, which formally has the form

V2 =
ˆ
S
f2
X(x)dx (4.17)

and it can be described as monotonic decreasing function that can be estimated non-
parametrically from pairwise sample differences as it is going to be seen, which is one of
the main focus in this work. From its definition it can be seen that works as a 2 power
norm of the pdf, which properties can come in handy lately.
At this point, the equation 4.13 can be reformulated to fit the Rényi entropy as

ĥ2(x) = − log
(ˆ

S
f̂2
X(x)dx

)
= − log(V̂2(x)) (4.18)

and therefore

ĥ2(x) = − log 1
N2

∞̂

−∞

(
N∑
i=1

g

(
x− xi
σx

))2

dx

= − log 1
N2

∞̂

−∞

N∑
i=1

N∑
j=1

g

(
x− xi
σx

)
g

(
x− xj
σx

)
dx

= − log 1
N2

N∑
i=1

N∑
j=1

∞̂

−∞

g

(
x− xi
σx

)
g

(
x− xj
σx

)
dx

= − log 1
N2

N∑
i=1

N∑
j=1

kσx (xj − xi) (4.19)

Then, the information potential results in:

V̂2(x) = 1
N2

N∑
i=1

N∑
j=1

kσx (xj − xi) (4.20)

Do note that the result is only applicable with certain kernels. As previously pointed,
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Gaussian kernels are assumed, being then

kσ (xj − xi) =
∞̂

−∞

g

(
x− xi
σx

)
g

(
x− xj
σx

)
dx = exp

(
−‖ xj − xi ‖

2

2σ2
x

)
. (4.21)

From equation 4.19 there is an additional step that is intrinsic on its definition, which
is the matrix form expression. With this replacement, the formula transforms into a
more intuitive form like the summation of all the elements is. Thus, the new expression
transforms into

ĥ2(x) = − log 1
N2

(
1TKx1

)
= −log

(
V̂2(x)

)
. (4.22)

The same process can be applied for joint 2-Rényi entropy. It is a necessary step as it
is needed for measuring 2-Rényi mutual information and it will give some insights in its
matrix form. For two random variables, the joint Rényi entropy is defined as:

ĥ2(x, y) = − log
(ˆ ˆ

f̂2
X,Y (x, y) dx

)

= − log
(ˆ ˆ (

1
N

N∑
i=1

g

(
x− xi
σx

)
g

(
y − yi
σy

))
× 1

N

N∑
j=1

g

(
x− xj
σx

)
g

(
y − yj
σy

) dxdy


= − log

 1
N2

N∑
i=1

N∑
j=1

ˆ ˆ
g

(
x− xi
σx

)
g

(
y − yi
σy

)
×

(
g

(
x− xj
σx

)
g

(
y − yj
σy

))
dxdy

)

= − log

 1
N2

N∑
i=1

N∑
j=1

kσx (xj − xi) kσy (yj − yi)


= − log

( 1
N2

(
1T (Kx �Ky) 1

))
(4.23)

= − log
(
V̂2 (x; y)

)
The final expression of the equation leads to think about a joint Rényi entropy as a

summation of point to point comparison between two matrices built on pairwise kernel
measures. At independence, and from additivity property, the expected result is the
same as adding both separate kernel matrices summation, so it leads to think about
this equation as a searcher of divergence between random vectors. At dependence it is
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trickier to make an analogy because the sub-additivity property is not fulfilled.
Equation 4.19 and equation 4.23 will be the pivoting cores to the future expressions

for defining independence detectors. It reflexes a proper way to quantify the 2-Rényi
entropy from an average of kernels evaluated to random samples differences.
But there is an stronger implication within these expressions. At this point we have

arrived to the first important result in the work. It turns out that, given the Gaussian
kernel kσ (xj − xi) is a semi-definite function defined by the inner product of kernels´
g (x− xi) g (x− xj) dx, the 2-Rényi entropy is then obtained through a kernel as de-

fined in section 2.2. In fact, is the equation 4.21 that assures the semi-definite positive
property of the kernel k. Hence, the matricesKx andKy are kernel matrices that maps
the input data to a feature space. Actually, if we rebuild the joint information potential
as

V̂2 (x; y) = 1
N2 tr

(
KT

xKy

)
(4.24)

it is obtained a similar expression to the one in equation 3.9 which also looked for a
relation even if it was the correlation. The point is, in order to measure the 2-Rényi
entropy, we are looking for a relation in a higher dimensional space. When the detectors
will be defined this implication will be important to analyze them.

Finally, to conclude the subsection, a formal definition for Rényi mutual information is
needed. Although Rényi did not define the α mutual information, he actually defined a
divergence measure for a general α based on the Kullback-Leibler divergence DKL (f ||g),
and from there it is possible to define the mutual information. In [25] it can be seen the
α divergence as

Dα (f ‖ g) = 1
1− αlog

ˆ
f (x)

(
f (x)
g (x)

)α−1
dx. (4.25)

Its properties are the following ones:

• Dα (f ||g) ≥ 0 , ∀f, g , α > 0

• Dα (f ||g) = 0 iif f(x) = g(x) ∀x ∈ R

• lim
α→1

Dα (f ||g) = DKL (f ||g)

which can be proven as in [23].
From there, a definition for the α mutual information can be built based on the

property of Shannon’s mutual information that fulfills

I(x) = DKL (fx(x1, ..., xn)||fx(x1)fx(x2)...fx(xn)) (4.26)
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considering a continuous n-dimensional random variable X, with marginal distributions
fX(xo) and joint distribution fX(x1, ..., xn). Then it is possible to use this property and
equation 4.25 to built the mutual information as follows:

Iα(x) = 1
1− αlog

ˆ
...

ˆ
fαx (x1, ..., xn)
n∏
o=1

fα−1
x (xo)

dx1dx2...dxn (4.27)

In the case of two continuous random variables used in this work, being called x and
y, and assuming the α = 2 case or the called 2-Rényi mutual information, the equation
simplifies to

I2(x; y) = −log
ˆ ˆ

f2
x,y(x, y)

fx(x)fx(y)dxdy (4.28)

Do note this expression is similar to the used to explain the Low SNR regimen, which
will provide an effective form to estimate the Shannon’s mutual information through the
estimation of the pdf’s. This is in fact what is going to be done in the subsection 4.2.2.

4.2.1 Bias, variance and kernel bandwidth

At this point it is important to make a pause before deriving the detectors in order to
analyze the 2−Rényi estimate by the means of it expected value and variance. The inter-
esting point is that both of them are highly correlated with the called kernel bandwidth
σk, and so its selection will consolidate as an important task throughout the rest of the
work.
Let us first take the marginal 2−Rényi entropy defined by

ĥ2(x) = − log 1
N2

N∑
i=1

N∑
j=1

kσ (xj − xi) (4.29)

Being the logarithm a monotonic function it will not provide any contribution, alongside
with the constant, so we will not count them. Additionally, we can also remove the
non-informative elements, and so the cases i = j, which only provides a bias to the
estimator. The i > j cases are repetitive, and so they will also not provide information.
Hence, lets express the estimator as

ˆ̂
h2(x) = 2

N (N − 1)

N∑
1≤i<j≤N

kσ (xj − xi) (4.30)

Within this bias removal, and being the sum contained by i.i.d. elements, we have now
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a called Unbiased statistic, and so it is interesting to review it.
The U-Statistics are defined as a class of statistics that allows to derive a minimum-

variance unbiased estimator (MVUE) from an unbiased estimator of a parametric func-
tion θ = θ(x). The introduction to the U-Statistics were first given by Hoeffding at
1948 within [15]. A more general discussion of U-Statistics can be found in [29], and for
specifically on non-parametric models at [9].
The interest on U-Statistics for the non-parametric estimator desired lies in the pos-

sibility of building an estimator close to the asymptotic mean or variance of the random
samples. In general, from an estimator built from samples x1, ..., xN defined by the
distribution f(x), the estimator may be represented as:

θ(x) = E [h (x1, ..., xN )] =
ˆ
...

ˆ
h (x1, ..., xN ) df(x1)...df(xN ) (4.31)

given a generic kernel function h (x1, ..., xN ). Then, the corresponding U-statistic for
estimate θ on a data of M ≤ N samples is obtained through averaging the kernel
symmetrically over observations:

UN (x1, ..., xN ) = 1(
N

M

)∑
c

h (xi1 , ..., xiM ) (4.32)

with c denoting the the subset of M random samples obtained from the total N .
The richness of using U-statistics in our case is the processing of pairwise data that

defines Serfling in his book. He was trying to evaluate the statistics from pairs of data of
2, 3, 4... and to extend to the case where M were taken. From the pairwise perspective,
we would have a U-statistic of M = 2.
For instance, if we do an estimation of the variance of the data samples θ = σ2

x =
var (x), we can express the variance of a pair of data, and so M = 2, as

σ2
i,j = var (xi) + var (xj)

2 = E

[
(xi − xj)2

2

]
(4.33)

Then, defining a pairwise kernel that holds the data as the pairwise variance from the
previous equation h (xi, xj) = (xi − xj)2 /2, the U-statistic holds that

UN = 2
N (N − 1)

N∑
1≤i<j≤N

(xi − xj)2

2 = 1
N (N − 1)

(
N∑
i=1

x2
i −Nµ2

)
= σ2

x (4.34)
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The point is, when estimating the variance through a pairwise kernel, the result is the
variance of the data. Do note that it has a great similarity with equation 4.30, with the
exception of the kernel used. If we now consider that the kernel bandwidth is sufficiently
large, for instance σk →∞, then the pairwise measures of the Gaussian kernel leads to
measures on the parabolic regime of the Gaussian, and so we can state

2
N (N − 1)

N∑
1≤i<j≤N

kσ (xj − xi) −→
σk→∞

2
N (N − 1)

N∑
1≤i<j≤N

(
1− (xj − xi)2

α

)
(4.35)

being α ∈ R a constant with α > 0. Finally, by the sense of the U-statistics, we can state
that the expectation of the unbiased estimator tends to 1− σ2

x/α. The interpretation is
that the 2−Rényi entropy tends to be affine to a second-order statistic of the U-statistics
when using wide kernels. The expectation of the opposite case, and so σk → 0, would
lead to pairwise measures of high narrow band functions, and so to 0.
Another implication is more related with the change of the kernel function used to

determine the expectation. On Section 4.3 we will see that, for any semi-definite positive
kernel, the called kernel trick allows versatility in the sense that we can change the first
kernel to a second one also semi-definite positive and the results does not alter. In this
case the change of kernel implies that, even using a Gaussian kernel, on the feature space
we are measuring the a metric proportional to the variance of the data.

4.2.2 Mutual information estimation

Once having a proper definition for the Rényi entropy estimation and Rényi mutual
information, the next natural step is to introduce an estimation of this last. From
equation 4.28, it could be pretty intuitive to replace the joint pdf and marginal pdf with
the estimation, but it is actually more clever to use the structure of the Rényi entropy
and the expectation theorem. If we define the 2-Rényi mutual information for continuous
sources as the following one:

I2(x; y) = log(C(x; y)) (4.36)

where

C(x; y) =
ˆ ˆ

f2
x,y(x, y)

fx(x)fy(y)dxdy =
ˆ ˆ

fx,y(x, y) fx,y(x, y)
fx(x)fy(y)dxdy (4.37)
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Then it is possible to express C(x, y) as an expectation like

C(x; y) = E

[
fx,y(x, y)
fx(x)fy(y)

]
. (4.38)

Now, if we assume a sufficiently large number of random values for each X and Y it
is possible to recall the law of large numbers, where the sample average converges to the
expectation, we get the following expression:

Ĉ(x; y) = 1
N

N∑
j=1

fx,y(xj , yj)
fx(xj)fy(yj)

(4.39)

At this point the integral has been removed and we can process freely so substitute
this equation with 4.6 and 4.10, resulting in

Ĉ(x; y) = 1
N

N∑
j=1

1
N

N∑
i=1

g
(
xj−xi

σx

)
g
(
yj−yi

σy

)
(

1
N

N∑
i=1

g
(
xj−xi

σx

))(
1
N

N∑
i=1

g
(
yj−yi

σy

)) (4.40)

Finally, the first approach to Rényi mutual information estimator is the resulting by
combining the previous expression and the definition in 4.36:

Î2(x; y) = log


N∑
j=1

N∑
i=1

g
(
xj−xi

σx

)
g
(
yj−yi

σy

)
N∑
i=1

g
(
xj−xi

σx

) N∑
i=1

g
(
yj−yi

σy

)
 (4.41)

This is the first attempt on estimating the Rényi mutual information. It has an
intuitive form like Shannon’s mutual information where joint pdf is confronted with the
product of marginal pdf. At independence, the joint pdf should result in a measure
similar to the product of marginal pdf and so a close to zero measure at its whole. For
a dependence hypothesis, it is not completely reliable as because it is not possible to
assure the independence assumption solution. We do need to bound this estimation in
order to consolidate a detector.
Then, an alternative path has to be found. If we stick on the low SNR assumption, it

is possible to write the following inequality:

C(x; y)− 1 ≥ I(x; y) ≥ 0, (4.42)
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being I(X,Y ) the Shannon mutual information. This inequality can be obtained from
2.16, and it makes our detector the following:

Ĉ(x; y)− 1 =
N∑
j=1

N∑
i=1

g
(
xj−xi

σx

)
g
(
yj−yi

σy

)
N∑
i=1

g
(
xj−xi

σx

) N∑
i=1

g
(
yj−yi

σy

) − 1 > γ (4.43)

Note that, as the logarithm is monotonic, the previous expression is equivalent to this
one:

T1 (x,y) = log


N∑
j=1

N∑
i=1

g
(
xj−xi

σx

)
g
(
yj−yi

σy

)
N∑
i=1

g
(
xj−xi

σx

) N∑
i=1

g
(
yj−yi

σy

)
 > γ

′ (4.44)

resulting in the first independence detector of this work.
As viewed, this detector is obtained through the search of estimating the 2-Rényi

entropy, and we have noticed that we can use it as a detector of independence through
the low SNR regimen. Although it has some potential to be described as a kernel matrix,
its own structure makes difficult to do so, so we are going to stick under the Shannon’s
mutual information resemblance.

4.2.3 Mutual information estimation based on non-additivity of joint Rényi
entropy

The sub-additivity property of Shannon’s joint entropy gives a very interesting approach
on detecting dependence, but lets not forget that Rényi entropies does not fulfill this
property. At any case, Rényi entropies does fulfill the additivity properties, so even if it
is not possible to assert that the joint 2-Rényi entropy is always above the sum of the
marginals at dependence, it is possible to assume that the value of the joint will be close
to that value.
In this case, the detector can be formulated based on the lack of equality between the

joint 2-Rényi entropies and the marginal ones:

| H2 (X;Y )−H2 (X)−H2 (Y ) |> 0 (4.45)
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The proposed detector for continuous random variables is:∣∣∣ĥ2 (x; y)− ĥ2 (x)− ĥ2 (y)
∣∣∣ > γ∣∣∣log V̂2 (x; y)− log V̂2 (x)− log V̂2 (y)

∣∣∣ > γ∣∣∣∣∣log
(

V̂2 (x; y)
V̂2 (x) V̂2 (y)

)∣∣∣∣∣ > γ (4.46)

which can be simplified by the assumption of near independence, or low SNR assumption,
as follows: ∣∣∣∣∣ V̂2 (x; y)

V̂2 (x) V̂2 (y)
− 1

∣∣∣∣∣ > γ (4.47)

Finally, from equation 4.19 and 4.23, we get the following final expression for the
second detector proposed:

T2 (x,y) =

∣∣∣∣∣∣N2

(
1T (Kx �Ky) 1

)
(
1TKx1

) (
1TKy1

) − 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣N2 tr (KxKy)(
1TKx1

) (
1TKy1

) − 1

∣∣∣∣∣∣ > γ (4.48)

The most important implication in the second detector is that we have naturally de-
rived a properly kernel processing as pointed out in the information potential estimator.
Given its structure, the detector looks for dependence relations in the new feature space
and compare it with the marginal ones. It actually is intrinsically the same metric of
what we are doing in the first detector, but instead of doing it column by column, this
new detector does it for the data at its whole.

4.2.4 Mutual information estimation based on Cauchy-Schwartz inequality
approach

The lack of sub-additivity of the joint Rényi entropy suggest a slight modification of
the previous detector, but this time based on U-Statistics and the Cauchy-Schwartz
inequality.
In order to derive the estimator into a U-statistics, it is needed to remove the bias

from it. As known from Section 4.2.1, the joint information potential V̂2(X,Y ) does
not provide information over the evaluation of the kernel with the the samples with
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themselves additionally with the repeated terms. Then, it is desirable to remove them:

V̂2(x; y) = 1
N2

N∑
i=1

N∑
j=1

kσx (xj − xi) kσy (yj − yi)

= 1
N

+ 2
N (N − 1)

N∑
1≤i<j≤N

kσx (xj − xi) kσy (yj − yi) (4.49)

Considering the informative second term

ˆ̂
V2(x; y) = 2

N (N − 1)

N∑
1≤i<j≤N

kσx (xj − xi) kσy (yj − yi) (4.50)

it is now a U-statistic ˆ̂
V2(X,Y ) = U (x1, ..., xM ). As explained, it can be seen as an

unbiased estimate of the statistical mean of the kernel function based on the samples
like:

E

[
ˆ̂
V2(x; y)

]
= E [kσx (xa − xb) kσy (ya − yb)] (4.51)

Now, using the Cauchy-Schwartz inequality, we can state that

(E [kσx (xa − xb) kσy (ya − yb)])2 ≤ E
[
k2
σx (xa − xb)

]
E
[
k2
σy (ya − yb)

]
(4.52)

with equality in case of dependence. Therefore the following inequality can be proposed:

E
[
k2
σx (xa − xb)

]
E
[
k2
σy (ya − yb)

]
(E [kσx (xa − xb) kσy (ya − yb)])2 − 1 > 0 (4.53)

for finally, reversing the U-statistic transform and leading into the third proposed detec-
tor:

N∑
1≤i<j≤N

k2
σx (xj − xi)

N∑
1≤i<j≤N

k2
σy (yj − yi)(

N∑
1≤i<j≤N

kσx (xj − xi) kσy (yj − yi)
)2 − 1 > γ (4.54)

To express in matrix form, the matrix L will be defined as a N ×N upper triangular
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matrix containing N (N − 1) /2 ones, with the following structure:

L =



0 1 . . 1
. . . .

. . . .

. . 1
0 . . . 0


(4.55)

Then, if we define K̃x = L�Kx , the third detector is expressed as

T3 (x,y) =

(
1T
(
K̃x � K̃x

)
1
) (

1T
(
K̃y � K̃y

)
1
)

(
1T
(
K̃x � K̃y

)
1
)2 − 1

=
tr
(
K̃xK̃x

)
tr
(
K̃yK̃y

)
tr
(
K̃xK̃y

)2 − 1 > γ (4.56)

Despite the structure of this detector is similar to the previous one, specially on the
denominator, the final expression leads to different meanings. This time we are removing
the non-informative part of the kernel matrix, and so the repeated values, and we are
evaluating the data spammed in the infinite space of the informative pairs. This means
that we are reducing the data compared in the unknown space and so it is expected for
the detector to be less sensitive in terms of bias-variance trade-off. Even though the
kernel bandwidth still affects in this affair.
The approach is interesting in the sense that what is desired is the unbiased estimator

instead of a more general expression, and the Cauchy-Schwartz inequality provides a
metric in order to compare the dependence relation.

4.3 The kernel idea

Given the last two detectors proposed we can get some insights of what is happening
when measuring the dependence. Remembering that these detectors have been drawn
from the Parzen window estimate and the properties of the 2−Rényi entropy, it turns
out that they are actually based on kernel mapping. This is a little of an interesting
result given the fact that Parzen window estimate uses a kernel as a mass-particle and
not as a kernel as defined in section 2.2. As a matter of fact, it is possible to think about
some implications:

• The evaluation of the data among the integral operators of the function g has
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been derived as a kernel of point to point differences, moving from the general
description of a kernel k (xi, xj) to a more specific for our case k (xj − xi). Hence
we have moved from the inner product to pairwise differences among the data
samples.

• In order to get a comparable detection for x and y, the kernels that maps the
data should be the same, and for this we can impose kσx(x, y) = kσy(x, y). The
same happens when using different hypothesis testing, different kernel bandwidth
for each hypothesis would not lead to a proper detection as the bias-variance from
each case should be similar to be compared.

Being the second important for the detectors built, the first has some important insights.
In kernel processing in general we are interested on the inner products of the data, and
so we look about linear implications. Within the use of pairwise Gaussian kernels, it
is maintained the property of measuring these inner products in a infinite-dimensional
space through the kernel function in the data input space. This implies that, if an
algorithm is constructed based on semi-definite positive kernels it is possible to replace
that kernel by another semi-definite positive kernel and the measures in the feature
space will remain. That’s why Gaussian kernels, among others, are said to be universal
[38]. This is known as kernel trick [37] and it consolidates the basis of the kernel signal
processing due to the advantages explained.

Another implication that will be useful is given by the structures of the kernel matrices.
Even though we don’t know about the feature map provided by the kernels, we do know
there is some type of relation in that space, reflected in the measurement of the data
through the kernel matrices. Being them semi-definite positive and Gram matrices, it is
possible to exploit the given structure to reduce the computational complexity derived
from the measurement of the data at the feature map. Doing so, the computational
complexity of the detectors can be reduced. We will come back to this at Section 4.5.

4.4 Hilbert-Schmidt norms

We have seen until now the properties of a kernel and its extension to a RKHS. The
interest now is to use these properties to build a detector of dependence through a cross-
covariance detector. The bridge that allow the link between the two of them is going to
be, in fact, the Hilbert space. The mapping function to the feature space f : X → R that
defines a Hilbert space H allows to constrict the dimension of measures, or in another
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words, it makes possible to get insights of a much superior or infinite-dimension without
the need of visiting it. A good reference for this property are the works by Smola and
Gretton et al. ([13, 12]).

To make it possible, the Hilbert-Schmidt norm has to be defined. Consider A a
linear operator that maps between two RKHS defined by the function f and g, with the
corresponding Hilbert Spaces F and G, and so A : F →G. If both Hilbert spaces are
separable, so they contain an orthonormal system defined by u and v orthonormal bases,
then the norm of the operator A is defined as

‖A‖2HS ,
∑
i,j

〈Aui, vj〉22 (4.57)

Do note that for matrix operators it corresponds to the Frobenius norm, and so a
Hilbert-Schmidt norms are extensions of the Frobenius norm for Hilbert spaces. The
interesting approach to this norm is that, in fact, we can use it to measure a cross-
covariance operator. Recovering the equation 3.9, we can state that, if matrcesx X and
Y are kernel based, and so we have used a semi-definite positive kernel to map raw
data to a Hilbert space, then the Frobenius norm of the cross-covariance will lead to
a Hilbert-Schmidt norm of the cross-covariance. The reasoning behind is to us these
metrics to measure a Frobenius norm of an unknown space through a Hilbert-Schmidt
norm, and so avoid functional analysis.
Despite the convenience of the Hilbert-Schmidt norm, it is still needed a mathematical

reason to formulate a dependence detector based on this norm.

4.4.1 Characteristic function uniform sampling interpretation

Given a random variable x with density probability function fx(x), then the character-
istic function that defines it is the Fourier transform of the pdf:

φx(u) = E
[
ejux

]
=
ˆ
R
fx(x)ejuxdu u ∈ R (4.58)

The characteristic function can always be obtained if there exist a pdf of the random
variable, as well as the pdf always exist if a random variable can be expressed by its
characteristic function through the inverse Fourier transform (FT). The existence of
the FT is a necessary condition for the existence of the characteristic function, while the
summability of the squared pdf is a sufficient condition. For a joint pdf, the characteristic
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function extends to

φx,y(u; v) =
ˆ ˆ

R
fx,y(x, y)ejux+jvydxdy = E

[
ejux+jvy

]
= E

[
ejuxejvy

]
u, v ∈ R

(4.59)
Do note that it is a special case of a FT. While the usual FT is evaluated through a

temporal domain, this case do evaluate it for another domain: the values of the pdf of
the original random variable. It is actually pretty direct considering that the pdf is a
function of likeliness given a determined pdf’s value. A good reference for other works
that measures FT as “amplitude” transforms can be found in [20].
Another useful implication under the characteristic function is that, for a true pdf of

Gaussian shape, the characteristic function is also Gaussian. For instance, if we define
fx(x) = 1√

2πσe
−x2/2σ2 , its characteristic function will be φx(u) = e−σ

2u2/2, providing
some interest in being stick under Gaussian assumption. Then, given its exponential
and expectation form, one interesting inherent property is the separability when x and
y are independents. Hence the following relation is accomplished:

φx,y(u; v) = E
[
ejux

]
E
[
ejvy

]
(4.60)

The expression of the characteristic function allows to express it as z1 = ejux, which
can be seen as function that transforms x from its own space to another space or feature
space. If we stick in independence assumption, the function zx and zy defined from the
variables x and y hold that

E
[
zxz
∗
y

]
= E [zx]E∗ [zy] (4.61)

or equivalently
E [(zx − z̄x) (zy − z̄y)∗] = 0 (4.62)

which results in the same structure as equation 3.1 and so it consolidates an uncorre-
lation detector under independence assumption. This is a very simple way to obtain
an independence detector through the correlation of zx and zy for any real values of u
and v. The drawback is that the uncorrelation property has to be verified for infinite
number of pairs {u, v}, and so the dimension of the feature space is infinite. This leads
to a search of methodologies that maintain the properties of infinite spaces but in finite
spaces in order to build the desired detector.
A first approach can be obtained if the feature space is constrained by assuming

finite support of the joint characteristic function, thus finite support of the marginal
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characteristic functions for −U > u > U and for −V > v > V as follows:

φx,y(u; v) = 0 φx(u) = φy(v) = 0 − U > u > U, −V > v > V (4.63)

The constrain over the characteristic function has implicit that the pdf of the random
variable has also to be finite. It is an extension of the classical time-frequency trade-off.
This is a strange case in terms of continuous random variables, being at most cases
sufficiently large or infinite like in the Gaussian case due is tails. Then, the constraint
can be relaxed by admitting an arbitrary small number instead of a zero:

|φx,y(u; v)| < ε (4.64)

Although this is an interesting approach, it is not going to be further developed because
of it would open an another path different from kernel processing, distracting of the main
focus of the work. However, the interest with characteristic function is not ended.

This time we will limit the dimension of the mapped space by doing a sample of the
discordant element u by n4, being n = 1, ..., Nz. This way, the vector form of the
samples characteristic function is

zx,i =
{
ejn∆xi

}
n=1...Nz

(4.65)

zy,i =
{
ejn∆yi

}
n=1...Nz

, i = 1...N (4.66)

being a x a sequence of scalar random samples {xi}i=1,..,N , which follows the assumption
of lack of knowledge about the random variables but random data samples. With this,
the constraint of infinite space has been relaxed and we are in terms of analyzing the
correlation in order to study its implication with mutual information. Additionally, do
note that Nx and Ny defines the dimensionality of the new feature space.
The covariance matrix is then the following:

R =



zH1 z1 . . . zH1 zN

. . .

. . .

. . .

zHNz1 . . . zHNzN



being the (i, j).th element of the correlation matrix Ri,j =
Nz∑
n=1

e−jn∆xiejn∆xj . At this
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point it can be questionable to use this sampling metric as a good approximation of
the real mapping of the characteristic function, specially because of the lack of well-

defined scalar products. In concrete, we are interested in the case
Nz∑
n=1

e−jn∆xiejn∆xj

when Nz →∞ in order to get a well-defined scalar product. To do so, the mapping can
be modified to assure finite norm functions.
To avoid infinite sampling, let us modify the mapping by rewriting the vectors as

functions of λ as
zx,i = zx,i (λ) = ejλxiG (λ) (4.67)

being G (λ) a window with
´
|G (λ)|2 dλ = 1 in order to maintain the inner products.

This way, the function has unit norm
ˆ ∞
∞
|zx,j (λ) dλ|2 dλ = 1

and the scalar product is defined:

〈zx,i, zx,j〉 =
ˆ ∞
−∞

z∗x,i (λ) zx,j (λ) dλ =
ˆ ∞
−∞

ejλ(xj−xi) |G (λ)|2 dλ (4.68)

which is actually related with the product between the vectors, and so we are trying to
avoid an infinite sampling by adding the window.
Do note that λ defines the values of u that are a priori relevant. With so, we are

again in the same constrain as in equation 4.63. However, we are now more interested
on reducing the values for which |G (λ)|2 ≈ 0, and so we are assuming the true pdf to
decay rapidly.
If the expression is looked carefully, we note that by substituting the pairwise measures

xj − xi with another variable α, we can express it as a function as follows

k (α) =
ˆ ∞
−∞

ejλa |G (λ)|2 dλ =
ˆ ∞
−∞

g (α− β) g∗ (β) dβ (4.69)

which turns out that it corresponds to the inverse Fourier transform of the window G (λ).
The gimmick is to define the window as Gaussian, which does not imply any restriction,
with unitary area:

|G (λ)|2 = 1√
2πσ2 e

−λ2/2σ2 (4.70)

and to define k (α) as a finite-energy signal |k (α)| ≤ k (0) = 1, symmetric k (α) = k (−α),
real, and asymptotically zero when α → ±∞, and so a valid autocorrelation function.
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Then, the function k can be expressed as

k (α) = e−α
2σ2/2 = e−(xj−xi)2σ2/2 (4.71)

resulting in a kernel function of pairwise measures that has been used until now. Do note
that the parameter σ is still controversial due to the fact that is not the same as the kernel
bandwidth σk described until now, but it is highly related to it. In this case σ provides, as
explained, the bandwidth of G (λ) and so which values of the characteristic function are
supposed irrelevant. It is important to assure the independence case for any of the values
of the origin space, to assure 4.60 to be still valid, and so to assure that characteristic
functions are still separable. To do so it is correct to assume the convergence of G (λ) as
necessary to provide this link of independence, removing importance from the tails and
centering where the information must be evaluated.
At any case, the value of σ is related to the kernel bandwidth in the sense that it will

highly depend one from the another. A higher σ provides a more sensitive evaluation
but a more restrictive kernel bandwidth, and vice-versa. To sum up, it is a trade off
between sensitivity and variance.

Recalling the steps followed, we have started from a characteristic function uniform
sampling, we have seen that its correlation can be obtained from pairwise measures,
and the inner product results in a Gaussian kernel function. Within these steps, it is
intrinsically defined a proper kernel with well defined inner products, and so it is possible
to state that it provides the mapping to an infinite feature space. The correlation matrix
is now defined as a kernel matrix with elements Ki,j = e−(xj−xi)2σ2/2, which is actually
a Gram matrix related to the correlation from the characteristic function. Now we can
use this knowledge to build a cross-correlation detector, which result to be the Frobenius
norm of the cross-covariance matrix estimation as in equation 3.9:

∥∥∥Ĉx,y

∥∥∥2

F
=
( 1
N − 1

)2
tr (PKxPKy) (4.72)

But what is more is that, given the Gram matrices are kernel based, the measure of
this norm is actually a Hilbert-Schmidt norm as defined in equation 4.57, and so this
detector is actually measuring the correlation in a infinite space. Remembering that the
condition of independence with the characteristic functions was to assure the separability
in a infinite space, we have now obtained a independence detector by using the Hilbert-
Schmidt norm that looks for that independence in the desired space. Hence, the fourth
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detector proposed is the following:

T4 (x,y) =
( 1
N − 1

)2
tr (PKxPKy) > γ (4.73)

The insight is that we are now capable of measuring independence by measuring
correlation on the feature space mapped by the kernels, which differs from other detectors
in the sense that this time it is correlation based. Generally speaking, the interesting
approach of this detector is that it can relate independence and incorrelation instead of
separating them, even if this relation appears on an infinite space.

4.5 Fast computation through Incomplete Cholesky
Decomposition

All the detectors presented until now have a polynomial computational complexity of the
order O

(
N2) due to the kernel matrices dimensions. This is a direct result of deriving

the detectors from a Dual form expression. It is clear that is desirable to reduce the
polynomial rate to another relation. For this purpose, the first thought is to decompose
the matrix in order to reduce its complexity. The most common used in these cases
is the QR decomposition, but given the property of the kernel matrix of being definite
semi-positive, the particular case is called Cholesky decomposition. A reference for this
decomposition can be found in [10] and [35].

Given a N ×N symmetric and positive definite matrix K, the matrix can be decom-
posed asK = GTG, where matrix G corresponds to an N×N upper triangular matrix.
This decomposition can be obtained through the reproducing property of the positive
semi-definite kernels. Given a kernel k, its function ψ that maps into a feature space
and a the matrix X defined in section 3.1.1 of dimension Mx × N whose columns are
projections of a data set, a QR decomposition can be applied in the feature space such
that

X = QG (4.74)

being Q an Mx × N orthogonal matrix containing the orthonormal basis derived from
the Gram-Schmidt method. Recalling that we are working on a regimen of Mx >> N ,
which is an atypical situation in signal processing. Then Q holds that

QTQ = I (4.75)
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Now we are settled to define the decomposition of the matrix:

K = XTX = GTQTQG = GTG (4.76)

The (i, j) element of the matrix G is obtained by the Gram-Schmidt decomposition
as follows:

Gi,j = 1√
dj

Ki,j−
j−1∑
k=1

Gk,jGk,i

 i = j + 1, ..., N (4.77)

which corresponds to evaluate the inner product 〈ψ (xj) , ψ (xi)〉 = Ki,j and the basis
vector qj for i > j, that corresponds to the component lying in the feature space by

the basis vectors to j − 1 :
j−1∑
k=1
〈qk, ψ (xj)〉 〈qk, ψ (xi)〉. The vector d stores the squared

residual norm of the orthogonal vectors. It is initialized with d = diag(K), which leads
to 1N for Gaussians, and updated by di → di −G2

j,i.
For a direct measure of the columns of G, it can be done by generalizing the previous

expression:

gj = 1√
dj

kj− j−1∑
k=1

Gk,jgk

 i = 1, ..., N (4.78)

The Cholesky decomposition does not give the desired advantage on computational
time but, it turns out that if the eigenvalues of K decays rapidly it is possible to reduce
its spacial dimension by allowing a certain error on the reconstruction of the matrix
([3]). This is the called Incomplete Cholesky Decomposition, or ICD, and it allows to
express the kernel matrix as K ≈ G̃T

G̃, being G̃ a D ×N matrix with D ≤ N , when
the eigenvalues ofK stored at d decay rapidly. The error ε is an arbitrary small positive
number that can be quantified as follows:∥∥∥K − G̃T

G̃
∥∥∥ < ε (4.79)

In order to reduce at maximum the computational complexity, from O
(
ND2) to

O (ND), the evaluation of G̃ is done by pivoting the columns ofK for which the error is
minimized and stopping when it is reached. The pivot is selected by tracking the vector
d and by measuring the values from the actual step to the end di:N . The update has
the following form

di:N = tr
(
Ki:N −GT

i Gi

)
= 1N−i+1 − tr

(
GT
i Gi

)
(4.80)

where Gi corresponds to the sub-matrix of G with rows from i to N , or what we want
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to measure, and the columns from 1 to i−1, or what we have already measured. Finally,
the new pivoting column of K corresponds to that with the maximum singular value
which is the position of max value in d from i to N .
In terms of algorithmia, the error parameter is user oriented in terms of making

a decision on the reduction of D. The less the error allowed, the higher the output
dimension and vice versa. The normal premise of the work will lead to a narrow difference
between independent and dependent estimations, so it is not very recommended on
allowing a high error, but the contrary will lead to a poor dimensionality reduction and
so it becomes a trade-off.
The algorithm, extracted from [30] with slight changes adapted for Gaussian kernels,

is the following:

Algorithm 4.1 Incomplete Cholesky Decomposition with pivoting

Input: {xi}1≤i≤N , k, ε
d = 1N , p = [1, 2, ..., N ]T
G(:, 1) = [k(x1 − x1), k(x1 − x2), ..., k(x1 − xN )]
for i = 1 : N

if i 6= 1
d (i : N) = 1N−i+1 − (G (i : N, 1 : i− 1)�G (i : N, 1 : i− 1)) 1i−1

end if
if
∑
d (i : end) < ε

Break
end if
j∗ = arg maxd (i : end)
p (i)↔ p (j∗)
G (i, 1 : i− 1)↔ G (j∗, 1 : i− 1)
G (i, i)↔

√
d (j∗)

for j = i+ 1 : N
pivot (j − i) = k

(
xp(i) − xp(j)

)
end for
G (i+ 1 : N, i) =

(
pivot−G (i+ 1 : N, 1 : i− 1)G (i, 1 : i− 1)T

)
/G (i, i)

end for
Sort rows of G according to p

In summary, the ICD provides a change in computational complexity from O
(
N2)

to O (ND), which can make a huge difference on computational time. To avoid the
caveat of measuring the whole K, matrix G̃ is constructed through pivoting certain
columns of K and stopping when the error is obtained. This allows to do not compute
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K at its whole but only pairwise measures until the algorithm detects that is sufficiently
representative.

With the preconditioning that the ICD provides, it is not only possible to accelerate the
process of evaluating the data with a kernel to buildK but also to reduce the expressions
of some of the detectors presented. In fact, the most interesting simplifications are

1TK1 =
∥∥∥1T G̃T

∥∥∥2

F
(4.81)

and

1T (Kx �Ky) 1 = tr
(
KT

xKy

)
= tr

(
G̃
T
x G̃xG̃

T
y G̃y

)
= tr

(
G̃yG̃

T
x G̃xG̃

T
y

)
=
∥∥∥G̃yG̃

T
x

∥∥∥2

F
(4.82)

Do note that with this reduction we are still measuring inner products but with the
advantage of being a D×N . This implies that we are now measuring matrices of D×D
elements, which differs from the usual N ×N . Additionally, the kernel matrices Kx and
Ky will provide different rank, and so different dimension Dx and Dy, highlighting the
importance of obtaining the expressions in this form.

4.6 Detectors performance

To end up with the chapter, the detectors will be evaluated for a given presented problem.
The proposal is to prepare a model where the correlation is not a reliable measure but
there still exist dependence, so we are forcing to detect independence over correlation.
Following the notation until now, M blocks of N random data samples will be generated
from a bivariate Gaussian model N ∼ (0,Σ) with the covariance matrix

Σ =
[ √

1− ρ2 ρ

ρ
√

1− ρ2

]
0 ≤ ρ ≤

√
2/2 (4.83)

The parameter ρ allows to constrict or relax the correlation, being ρ = 0 leading
to two vectors of independent Gaussian random samples and ρ =

√
2/2 leading to

two completely dependent and correlated vectors of random data samples. Then, to
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decorrelate the signal, a non linear operation will be used. To be more precise, the
generated vector x will be randomly multiplied a random vector w satisfying

wn =

1 p = 1/2

−1 p = 1/2
(4.84)

This is one of the procedures used in [26], which will lead to a cross alike form as
shown in figure 4.1.

Figure 4.1: Model for dependent and uncorrelated random values, ρ = 0.7

The proceeding will be to use the data generated and decorrelated as hypothesis
of dependence H1 and to generate two complete random vectors of data samples for
the independence hypothesis H0. Another consideration is the criteria selection of the
threshold γ that will classify the output of the sufficient statistics, or detectors, as
dependent or independent. In general, the ideal situation is the one with an universal
threshold that is good enough for all the detectors, but it is not possible to assure an
universal floor value. This is a direct result from constructing each detector with its own
metrics and so each one will result in a bias-variance trade off adapted by its own. This
caveat has some similarity with the Normalized Least Mean Square algorithm (NLMS),
where the data is scaled depending on its power. In the NMLS case, the algorithm is
not supposed to be universal but adaptive. Thus, the same idea will be used in order to
compare the efficiency of each detector. The threshold will be based on the floor value
provided by the measures under hypothesis of independence, and so the mean.
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Figure 4.2: Detectors ROC curve for ρ = 0.3, N = 1000

A first review of the detectors are found in figure 4.2. It can be seen that the first
detector derived directly from the KDE provides the worst performance while the third
detector, derived from the u-statistics, provides the best, closely followed by the second
and fourth. The parameter ρ provides a difficulty degree to the detection in the sense
that higher data size is needed for more restrictive ρ and vice versa. At any case, the
number of samples N should be usually high enough in the pro of the detection. In order
to enhance the results, the figure 4.3 shows the logarithmic scale for the ROC curve with
a higher dependency but fewer points to see in a closer way the detectors performance. In
this case, the probability of miss detection is used instead of the probability of detection
to get a better detector when closer to zero.
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Figure 4.3: Log scale of ROC for ρ = 0.5, N = 300

In order to see the asymptotic behavior of the detectors, a sweep of the dimension of
the data N is done. It is expected that, in terms of 1 − AUC, the detectors tends to
zero and so the perfect discrimination between independent and dependent hypothesis.
In figure 4.4 can be seen that the last three detectors do tend to the perfect detection
in exception of the first one. This is mainly caused because the first detector provides a
high variance in terms of test statistics measures.
Taking a close look on the first detector in 4.44, it can be seen that its format of

measuring mutual information row by row, instead of the whole matrix, provides a more
sensitive output when the mean of a row is close to zero, and so we observe outliers. In
figure 4.5 we can see the output of the test statistic of the detectors for both hypothesis.
Apart from the outliers of the first detector, the third and the fourth provides the
minimum variance over all the detectors but at the cost of introducing bias, specially
the fourth. In these cases, the hypothesis H0 is getting far from the expected close
to zero output. On the other hand, in the second detector the hypothesis are close to
zero but at the cost of a higher bias. Within this, it is consolidated that the choice of
detectors become a trade-off of bias variance as expected.
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Figure 4.4: Detectors 1−AUC for ρ = 0.3, N from 50 to 2000
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Figure 4.5: Test statistic outputs for both hypothesis, ρ = 0.3, N = 500
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If we take a look on he deflection, we can see that it increases with a better detection as
seen in figure 4.6. This is in fact a result of both hypothesis separating naturally when
N increases. The reasoning is that with more samples the kernel methods get more
representative data from the input, and so the information of them in the mapped space
is richer. Then, the detector is capable of separating better both hypothesis resulting in
a better detection.
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Figure 4.6: Detectors Deflection for ρ = 0.3, N from 50 to 2000
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5 Dependence detection in Hammerstein
systems

When applying the problem of dependence detection on reals cases, some sort of distor-
tions are expected from a given channel. Noise addition, attenuation or multipath are
only some of the expected results on communication through a channel. In the signal
processing field it is usual to assume a given model for a channel in order to study its
affects and how they can be solved. In order to be capable of extending the detectors
into a more general situation, and preparing for the latency estimation, this chapter will
provide some channel characterizations with solutions to the degrade of the signal.
Firstly, some channel models will be proposed and its extension to the detectors yet

developed. For any new addition, the detectors will be assessed to verify in which point
the information is lost. The main progress is going to be the addition of the memory in
the channel, and so the memory into the data samples. We will see in which degree this
implication affects the detection and how to solve it by adding memory to the detectors.

5.1 Hammerstein systems and applications

The Hammerstein system is a specific configuration of a nonlinear model, usually used
to characterize or evaluate different channels jointly with the Wiener system. Its scope
is to define a channel by the means of the input x [n] and the output y [n] through a
memory channel composed by a memoryless nonlinear transformation f (·) and a finite
impulse response (FIR) filter h (·). It is actually a specific case of the Volterra nonlinear
systems [40], described by

y [n] = h0+
∞∑
i=1

hi (x [n]) (5.1)

being hi polynomial integrals operators with hi (x [n]) =
∑
n1
...
∑
ni

hn1...nix [n− n1] ...x [n− ni]

for the discrete case. The expression results in a very wide possibilities of channel
characterization but with increasing estimation difficulty when the data input and the
nonlinearity grows, and so it us usual to select predefined models that are sufficient to
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evaluate certain channels behaviors. One of them is the reduced model called Wiener
model proposed in [4], conformed by a non-linear dynamic function followed by a linear
non-dynamic one:

y [n] = f

(
M−1∑
i=0

hix [n− i]
)

(5.2)

with the corresponding block diagram from [39]:

Figure 5.1: Wiener model diagram

To define the Hammerstein system, it is only needed to inverse the blocks from the
Wiener system, resulting in a linear block followed by a non-linear dynamic:

y [n] =
M−1∑
i=0

hif (x [n− i]) (5.3)

with a block diagram like the following one:

Figure 5.2: Hammerstein model diagram

The Hammerstein-Wiener models have many applications in many engineering prob-
lems. One of the main uses in the literature is the non-linear process identification of
many kinds, specially to determine the parameters of the model in order to characterize
and define them for multiple objectives.
In the case of this work, the Hammerstein model will have a special interest on the

current problematic due to the fact that is a natural extension of the non-linear and
one to one transformation used to decorrelate the data samples. This way, the addition
of the filter will not invalidate the previous analysis of the detectors but adding more
complexity to them.

The next step is to use this model to look on how far transformations due to the
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channel are distorting the original signal, and so what can be done in order to detect
some dependence between the original sequence and the sequence at the output of the
channel. To do so, the input x [i] will be related to the metrics used until now in the
sense that x = {xi}i=1,..,N and so x [i] = xi . To make it more realistic, an additive white
Gaussian noise will be added to the channel drawn from a zero-mean normal distribution
with variance σ: n ∼ N (0, σ).
At this point, the resemblance with an AWGN channel is direct, and so the objective

of the detector will be to look for dependence over the input x and the output y.

As a first evaluation, and to define a starting point, the basic model will be composed
by the non-linear operator and the addition of noise, as in the figure 5.3.

Figure 5.3: Memoryless channel detector proposal

It is expected that the noise power respect to the power of the signal, and so the SNR,
has a great impact on the detection task. In figure 5.4 the impact of multiple noise
levels can be reviewed. It can be seen that, for an equal signal and noise power, the
detection task is in fact not deteriorated, but when the power of the noise augments, the
real signal gets masked and the task becomes more difficult as expected. At any case,
the noise addition does not provide a great impact on the final output if being at levels
close to the signal.
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Figure 5.4: Noise impact on detection for N = 500

Given the memoryless performance, we can now move to introduce some memory type
transformation. As a matter of fact, it is only needed to apply the Hammerstein model
plus the addition of noise, as in figure 5.5. The used linear filter to test the channel
was a unit-energy triangular one with memory depth of 5. Although is a very simple
implementation, it is sufficient to see the effects on the detection task.

Figure 5.5: Hammerstein channel detector proposal
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The addition of the filter provides some time-varying transformation that is expected
to difficult the task of detection. As can be seen in figure 5.6 the pairwise measures have
lost the instant information with a dynamic system, and so with memory. The result
implies that, in order to recover the relation between pairs, it is needed to add memory
in the detector in some way.
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Figure 5.6: Hammerstein model detection performance for N = 500

A possible solution to recover the information lost could be to use Matched filter. But
this kind of filtering is thought to improve the SNR in terms of stochastic noise addition,
so it actually does not provide signal regeneration to the memory problematic. In this
case, another solution has to be applied.

5.2 Adding memory as input kernel dimensionality

In order to recover the data after it has been distorted by the filter, the proposal is to use
the kernel definitions to introduce some kind of memory inside the detectors as in figure
5.7. The objective is to not only provide information of the sample being measured with
a kernel but to provide information of the sample itself and the near ones in the sense
of indexing.
To do so, we will take advantage of the structure of the kernel by evaluating the kernel

with vectors instead of scalars and so we are going to move from kernel pairwise measure
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k (xj , xi) to k (xj ,xi). Within this change, we are mapping two vectors into an scalar,
and so the feature space is now group oriented instead of pair oriented. Given the filter
is lineal, the purpose is to analyze the lineal combinations in the infinite space given two
input vectors. As reviewed in Section 4.3, the lineal products are intrinsically measured
by the kernel trick when using a Gaussian kernel.

Figure 5.7: Hammerstein channel detector with memory proposal

Consider an input signal of random data realizations x = {xi}i=1,..,N , the kernel input
is going to be re-ordinate as a d×L matrix with L = N −d+1 and d the dimensionality
introduced to the kernel. The matrix X will then be

X =



x1 x2 . . . xN−d+1

x2 x3 . . . xN−d+2

. . .

. . .

xd xd+1 . . . xN


(5.4)

with xi the i.th column vector of the matrix. This is a common reorganization of the
data in signal processing for time variant schemes. The vectors xi are usually called
run-time signal, being each column a different time instant. The kernel matrix is then
constructed with elements

Ki,j = e−‖xj−xi‖2/2σ2
k (5.5)

which is similar to evaluate a multivariate Gaussian function.
An important addition to the new kernel measure is the change of the kernel band-
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width σk. We have reviewed in equation 4.4 that for multivariate density estimations
the optimal standard deviation has a dimensionality parameter included. As the detec-
tors does not imply a different derivation for a multidimensional case, and so they are
generalizable, the kernel bandwidth only requires to be tuned by its dimensionality. The
reasoning is that we are now spanning the data that lies in the infinite space, and so the
kernel bandwidth requires a higher value to evaluate that space properly.
To make a comparison, in figure 5.8 it is viewed the effect of the kernel bandwidth in

both memory and memoryless detection using the third detector. For the memoryless
detector, the pairwise kernel provides similar performance when a kernel bandwidth
near the one obtained from Silverman rule. On the counterpart, we can see that the
performance improves using a higher σk than the kernel bandwidth of the memoryless
detector σ1. In this case, the detector with memory is more sensitive to the change of
kernel bandwidth.
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Figure 5.8: Performance based on bandwidth value for ρ = 0.3, N = 500

Within the spanning of the data there is another implication. Being the kernel matri-
ces a representation of the so called infinite space, it is supposed that the matrix becomes
rank complete or close to it in order to enclose the spanning in that space. The result
is that the Incomplete Cholesky decomposition does not reduce the computational com-
plexity when dimensionality is added, and so there is no gain to use it. In figure 5.9 is
shown a comparison between the reduction of D that provides the Incomplete Cholesky
Decomposition when we add dimensionality to the kernel versus when the kernel is pair-
wise. The general implication between input and kernel dimensionality is an open issue
that deserves further attention, but it is out of the scope of this work.
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Figure 5.9: Dimension D from ICD for d = 3 and d = 1 with N = 500

To finish this chapter, figure 5.10 is provided. This figure represents the detection
performance using the Hammerstein model when d = 4 versus the same performance
obtained in figure 5.6 and so when d = 1. It is clear that for a given d and using the
Hammerstein model, the detector can discern between dependence and independence,
detecting the linear operator applied by the filter properly. Do note the detector is blind
in terms of knowledge of the channel, and so no additional information is needed but
the depth of the memory added by the channel.
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Figure 5.10: Hammerstein detector with memory ROC curve, N = 500, d = 4, SNR =
0dB
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6 Latency estimation

Once the channel has been defined and analyzed, the natural step is to use the knowledge
acquired to construct a more practical model for an approach to real problematic. Given
the natural step of the detectors of measuring the dependence between two vectors of
random values, the proposal of this work is to use them to estimate the latency. The
objective of this estimation is manifold, i.e. determine at what epoch a given information
arrives to its destination, at the same time of detecting at which node it arrives.

To do so, the Hammerstein model will be used to characterize the channel and the de-
tector input will be based on a sliding window that search over the output sequence of the
channel. The latency estimator will result in the window instant when the dependence
is maximum.

6.1 Problem statement and applications

The Time delay estimation (TDE), or latency estimation, is an area with a high number
of interest due to its multiple applications. Usual uses of TDE cover diverse fields as
radar, seismology, geophysics or communications. When specifically looking on time de-
lay in signal processing it is usually also described as Time Difference of Arrival (TDOA)
estimation. The reason is that it is used as a metric to define the lag or propagation
between two known points instead of detecting the Time of Arrival (TOA), which defines
the time of forward and backward propagation. Common applications of the TDOA in-
cludes array of sensor approaches, submarine telecommunications or phone localization
techniques, among others.
The general definition of the time difference of arrival considers a model like

r [i] = αs [i− τ ] + n [i] i = 0, 1, ..., N − 1 (6.1)

being r[i] the received signal and n [i] the noise at the time instant i, s [i− τ ] the signal
of interest and α the attenuation of the channel. The scope is then to estimate the delay
τ .
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Among multiple techniques, the idea of the generalized cross-correlation (GCC) al-
gorithm will be interesting due to its closeness on what we are going to do with the
dependence detector ([6]). For random signals, lets consider another signal

r2 [i] = s [i] + n2 [i] (6.2)

with s [i] and n2 [i] being zero-mean and white processes. The scope is to minimize a
cost function through the minimum mean square error (MMSE):

MMSE (α̃, τ̃) = E
[
(r2 [i]− α̃r [i− τ̃ ])2

]
(6.3)

Without the need of entering into details, it can be seen that the estimation of the
delay corresponds to the value of τ̃ which provides maximum correlation between r2 [i]
and r [i− τ̃ ], and so

τ̂ = argmax
τ̃

(E [r2 [i] r [i− τ̃ ]]) (6.4)

To sum up, in order to find the delay we just need to compute a cross-correlation method
between the observed signal and signal generated with similar metrics and same noise
power. It is direct that, as with the kernel methods the correlation is observed, by
measuring the dependence between the output of the channel and a realization of the
original signal it is like applying the cross-correlation method here exposed.

6.2 Extending the classical time difference of arrival estimation
problem

Lets assume y a vector that contains realizations of a unknown random process at the
output of a Hammerstein channel with y = {yi}i=1,..,N . Consider that at a time instant
D, we do observe L values from y, namely yD = y1+D, ..., yL+D with L ≤ N −D and
0 ≤ D ≤ N − L. If the input of the channel is known with x = {xi}i=1,..,N , then the
objective is to estimate the time instant D̂ in which the channel output yD corresponds
to the input xD. As we have seen, by GCC the solution is the instant when yD is
maximum correlated with xD.
Reformulating 6.3 for the Hammerstein channel, we have that the new cost of function

is:
MMSE

(
h̃, τ̃

)
= E

[(
r2 [i]− h̃f (r [i− τ̃ ])

)2
]

(6.5)

This way, we do reformulate the channel as an attenuation to incorporate the Hammer-
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stein channel. The new latency estimator will also be based on measuring the cross-
correlation, but this time it will be done by the means of kernel processing.

To extend the dependence detectors as latency estimators the proposal is based on
generating N data samples as channel input, and to crop L of them at a random instant
D, namely xL. This way, the latency estimation is based on comparing the cropped
sequence with the output of the channel for multiple time instant. Then, the cross-
correlation method would be

τ̂ = argmax
D

(
E
[
(xL − µx)

(
yTD − µy

)])
= argmax

D
Cx,yD (6.6)

By using the detectors, we know that it is being measured the correlation on the feature
space mapped by the kernel, and so it is being applied a cross-correlation method on an
infinite space by the means of dependence on the data space. For example, the third
detector for latency estimator is the following:

τ̂ = argmax
D

 tr
(
K̃xK̃x

)
tr
(
K̃yDK̃yD

)
tr
(
K̃xK̃yD

)2 − 1

 (6.7)

being K̃yD and K̃x kernel matrices of L× L.
The figure 6.1 shows the detector output for multiple D in multiple realizations. The

latency estimator was tested with N = 1000 and adding memory to the detector in order
to detect the dependence close to D after the Hammerstein channel. Also do not the
effect of the memory addition to the detector. Around the peak of the detector, it is
reflected the behavior of the run-time vectors near the real one. Within this, we can
assure that the kernel with dimensionality is correctly detecting the data redundancy of
the input matrix 5.4, providing a more robust result to the general estimation.
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Figure 6.1: Latency estimation output for multiple delays, D = 500, L = 250
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Recalling the threshold setting problem, it has to be pointed out that we do now have
access to constant observations under independence hypothesis. Then, it is direct to
make the threshold to be calibrated automatically by the floor level. Thanks to these
constant observations, the bias of the detector does not make any implication on latency
estimation due to the fact that we can define different levels of threshold depending on
the detector used.

73



7 Conclusion

The kernel signal processing has provided an attractive framework for non linear signal
processing. We have seen that with the addition of kernel functions, we are now capable
of using a broaden methodology that allows to solve elegantly the problems proposed.
Additionally, by the universality of the kernels, it turns out to be a very versatile and
powerful tool capable of fitting a wide range of problems.

Reviewing the work, in this Master’s Thesis the kernel methodology has been studied
in terms of detecting dependency between two sets of observations. We have derived
a kernel environment from the Parzen window estimate and the Rényi entropies based
on the pairwise measures and we have seen its properties. The estimation of the Rényi
entropy has been extended into a kernel processing problem, studying the tendency of
the estimator depending on the kernel bandwidth used and deriving three detectors from
it, based on the bound that the 2−Rényi mutual information provides.
It has been reviewed the importance of the reproducing property, pointing out the

advantages of being in a Hilbert space through the Hilbert-Schmidt norm. In that
space, the relation between the correlation and the dependency emerges, so we took
advantage of it. By studying the characteristic function of a given pdf, we have seen
how to define a correlation metric that depends of the independence assumption on an
infinite space. From there, we have adapted it to the framework of data observations
and how to derive it in order to avoid the infinite space problematic, by the means of
kernel processing.
To wrap the obtained detectors into the dependence detection context, we have eval-

uated its performance for a given data set dimension and its asymptotic convergence
when this dimension is increased.
In the final part of the work, a more general detection model has been viewed by the

means of characterizing a channel. We have seen the effects of non linear transformations,
the addition of noise and the effects of a dynamic system. The increase of the kernel
dimensionality has provided a solution to recover the spatial information by moving from
pairwise to pairs of run-time vectors.
Finally, we have applied the knowledge obtained with the Hammerstein model to apply
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the detectors to a more suitable case. We have seen that it is possible to detect the point
to point latency by looking at the correlation in the Hilbert space.

7.1 Future work

Although the metrics of the work are generally well-defined, the scope of the methodology
remains to be seen. A latency approach has been proposed to give a real framework to
the problem, but the final purpose can actually be diverse. The work intended to give a
more general comprehension on the kernel methodology for detecting dependence. But
as has been told, the applicable fields are based on the ones with a lack of knowledge
and so the possibilities nowadays are fullness.

Specifically in the work, there is a need on a better understanding on the kernel pro-
cedure when dimensionality of the data is added. We have seen the effects on recovering
dynamic information from a detector point of view. But the study on how this dimen-
sionality increase affects the kernel itself is something that needs an study for a better
comprehension.

From the detection point of view, two natural extensions can be drawn:

• The direct estimation of mutual information instead of pure detection. Although
an estimator has been derived, there is a lack on focusing in the pure estimator
at its own. We have derived the detectors in a bounded point of view, looking
at being close to zero near independence and assuming a low SNR regime. The
extension to the general purpose of estimating can provide even more insights on
the study of dependence, expanding the scope possibilities.

• The direction of information. It is an ambitious point of view that has to be
reviewed carefully. The presence of dependence and the estimation of the degree
of dependence is just the first step on determining the cause of the dependence
and the direction of it. A better understanding of the direction can be used to
draw relations between nodes in a lack of information framework. A good scope
for this evaluation is, for example, the better understanding of unknown networks
topologies and so the study of network tomography.

Beginning with known structures for detecting dependence and ending with an applicable
case, there is a something certain: this research field is still big, open, and his future has
yet to be drawn.
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