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Abstract 
A new damage model, based on continuum damage mechanics and simulating the opening, 
closing and reopening of cracks in concrete using only one surface of discontinuity, is proposed 
in this article. The model complies with the thermodynamics principles of non-reversible, 
isothermal and adiabatic processes. Two scalar internal variables have been defined: a tensile 
damage variable d +  and a compressive damage variable d − ; the threshold of damage is 
controlled by only one surface of discontinuity and a new parameter that controls the damage 
variable which should be activated. This new parameter represents the ratio of tensile stress to 
compressive stress in the damaged material. The continuity of response under complex loads, 
which is one of the aims of this work, is ensured. An adequate response under different types of 
loads leads to the conclusion that the proposed model provides a powerful tool to numerically 
analyze reinforced concrete structures. Validation and illustrative examples are included in the 
article. 
Keywords: Damage model; non-linear analysis; concrete, FEM. 
 
INTRODUCTION 
Micro-cracking and sliding between granular particles cause the highly non-linear behavior of 
concrete (Oller 1988), and it is difficult to represent this behavior through constitutive models. 
These phenomena can be characterized by the cohesion and the inner friction angle, the softening 
stress strain curve and the volumetric dilatation (Tao and Phillips 2005). They cause the decrease 
of the material’s elastic modulus and strength. If the material is exposed to alternating tensile-
compressive stress states, the opening, closing and reopening of cracks can occur. These 
phenomena must be adequately represented by constitutive models ensuring continuity of the 
response to complex loads. 
Traditionally, constitutive models for concrete use the fracture mechanics theory (CFM) and the 
continuum damage mechanics theory (CDM). Classical fracture mechanics gives a basis for 
simulating the opening and closing of cracks. Hillerborg et al. (1976) describe the mechanical 
behavior of concrete by developing a non-linear fracture model and using the finite element 

                                                 
1 National University of Colombia, Manizales Campus, A.A. 127, Colombia. E-mail address: 

japaredesl@unal.edu.co (Corresponding author)  
2 Civil Engineering School–CIMNE, Technical University of Catalonia. c/ Gran Capitan s/n Ed. C1, Campus 

Nord, 08034 Barcelona, Spain. sergio.oller@upc.edu 
3 Civil Engineering School–CIMNE Technical University of Catalonia. c/ Gran Capitan s/n Ed. C1, Campus 

Nord, 08034 Barcelona, Spain. alex.barbat@upc.edu 

J. Paredes, S. Oller, A. Barbat (2016). New Tension-Compression Damage Model for Complex 
Analysis of Concrete Structures. Journal of Engineering Mechanics – ASCE. 04016072. Vol. , 
No. , pp. . Jun./2016. ISSN: 0733-9399. doi: 10.1061/(ASCE)EM.1943-7889.0001130 

mailto:japaredesl@unal.edu.co
mailto:sergio.oller@upc.edu
mailto:alex.barbat@upc.edu


2 

 

method (FEM). Rots and de Borst (1987) and Bazant (1989), among others, have also proposed 
constitutive models based on CFM.  
The possibility to include plasticity, viscoelasticity and damage theories in crack modeling 
allows developing models based on continuum mechanics. Kachanov (1958) established the 
basis of the CDM theory that was used later on to represent the mechanical behavior of different 
materials. The damage model was first applied to represent the dislocation and softening 
phenomena for metal.  Lemaitre (1985) and Simo and Ju (1987; Simo and Ju 1987) proposed the 
isotropic damaged model; Oliver et al. (1990), Chaboche (1988; Chaboche 1988) and Ju (1989) 
used CDM for the numerical modeling of quasi-brittle materials. In the early eighties CDM was 
used for the numerical modeling of concrete. Some of these models were based on CDM and the 
classical plasticity theory (Jason et al. 2006; Lubliner et al. 1989; Mazars and Pijaudier-Cabot 
1989; Oller 1988; Tao and Phillips 2005) among others. The continuum damage constitutive 
models are defined by using an inner damage variable that represents the deterioration of the 
strength and the elasticity modulus. This variable can be either scalar or tensorial. In the case of 
the isotropic damage model (Oliver et al. 1990; Simo and Ju 1987), the inner variable is scalar 
and, therefore, crack orientation is not considered. If orientation is considered, the local effect of 
damage becomes anisotropic in nature and the damage variable changes.      
When the anisotropy of the damaged and undamaged material is taken into account, the inner 
variable is defined in the tensorial space by means of a second- or fourth-order tensor (Carol et 
al. 2002; Cicekli et al. 2007; Ju 1990; Luccioni and Oller 2003; Maire and Chaboche 1997; 
Martinez et al. 2008). One challenge of the constitutive models based on CDM is modeling the 
opening and closing of cracks, because the inner damage variable does not decrease. Thereby, 
constitutive models with two different inner variables, one for tensile damage and another for 
compressive damage, are necessary when a material is subjected to reversible loads. Mazars and 
Pujaudier-Cabot (1989) and Faria et al. (1998) proposed constitutive models in which the 
evolution of each inner variable is activated by using two different threshold functions; these 
functions, tensile and compressive thresholds, are independent of each other. In the case of axial 
loads, it is easy to identify if the process is either compressive or tensile, and the results obtained 
with these models are good; conversely, the results for the shear loads show deficiencies. The 
tensors of tensile stress and compressive stress are obtained from the polar decomposition of the 
stress tensor and are compared with the tensile and compressive thresholds, respectively. This 
fact leads to a discontinuity in the response as well as to an unsuitable representation of shear 
stresses. However, the independence of the threshold functions in the model of Faria et al. 
(1998), with two independent threshold functions, has been used in modeling construction joints, 
in which the tensile strength is near to zero while the compressive strength is high. Paredes et al. 
(2011) also describe the application of such a model.  
In this work, a new constitutive damage model is developed with two scalar inner variables: the 
tensile damage variable d +  and the compressive damage variable d − ; the threshold of damage is 
controlled by only one surface of discontinuity and a new parameter controls the damage 
variable that should be activated. This new parameter is obtained starting from the model 
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proposed by Oller (1988) and it is the ratio of tensile stress to compressive stress in the damaged 
material. This model is based on CDM and complies with the thermodynamics principles of non-
reversible, isothermal and adiabatic processes. This new constitutive model with only one 
damage threshold function is an improvement of the previous conventional d + − d − model of 
Faria et al. (1998) ensuring the continuity of the response for any type of stress states in each 
point of analysis. It also introduces a new definition of the internal damage variable and a novel 
use of the Mohr-Coulomb modified threshold function (Oller et al. 1990).  
The model validation is carried out in four sequential steps: 1) the numerical results for 
increasing monotonic compressive axial loads are compared with the experimental results of 
Kupfer et al. (1969); 2) the results under the increasing monotonic tensile axial load are 
compared with the experimental data published by Gopalaratnam and Shah (1985); 3) the 
numerical results are validated for reversible loads; 4) the results are validated for shear states 
and compared with the experimental data published by Kupfer et al. (1969). The upgraded model 
proposed in this article has a unique threshold surface and is oriented towards improving the 
shear behavior of the original Faria et al. (1998) model. This aspect has been included in page 4 
of the new version of the text. The results obtained with the new constitutive model are 
compared with those of the work of Arrea and Ingraffea (1982), in which a concrete beam was 
subjected to complex loading. From a fracture mechanics point of view, this test shows the 
evolution of cracking for the mixed mode fracture.  
 
CONSTITUTIVE TENSION-COMPRESSION DAMAGE MODEL 

The aim of the proposed model is to describe the opening, closing and reopening of cracks. 
Also, this model has been developed to compute stiffness degradation due to the cracking 
process considering reversible loads. Then, the proposed model allows developing load-
displacement curves with high accuracy, even when the load orientation changes. This is the 
result of proposing a model that is able to recover the stiffness when the load orientation is 
changed. Nevertheless, the cyclic effect is not taken into account because the model does not 
incorporate the kinematic hardening effect.   

Two concepts have to be defined when formulating the new constitutive damage model for 
tension (structural damage) and compression (constitutive damage) behaviors (Paredes 2011). 
Structural damage is associated with the tensile damage (opening of cracks) suffered by the 
material at any point; this damage does not imply a decrease of compressive strength during 
subsequent load states. Thus, the structure is able to support a compressive state after a tensile 
state. The constitutive damage is associated with the compressive damage (crushing) suffered by 
the material at any point. The material’s compressive failure is a mechanical process that implies 
its degradation on the constitutive level and, consequently, both the tensile and the compressive 
strengths decrease.  

The Cauchy stress tensor is defined by using the effective stress introduced by Kachanov 
(1958), also used in the isotropic damage theory (Oliver et al. 1990; Oller 2001). In this work, 
the Cauchy stress tensor σ  is defined by the polar decomposition of the effective stress tensor 
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oσ  in terms of the tensile damage variable d +  and the compressive damage variable d −  (Faria et 
al. 1998) (Wu et al. 2006) (Cicekli et al. 2007) 

 
(1 ) (1 )o od dσ σ σ+ + − −= − + −  (1) 

The tensile stress tensor oσ
+  and the compressive stress tensor oσ

− , which are obtained by the 

polar decomposition of the effective stress tensor oσ , is expressed as  
3

1
o oi i i

i
vp vpσ σ+

=

= ⊗∑  (2) 

o o oσ σ σ− += −  (3) 

where oiσ  is the Macaulay function of the i-th principal stress of the effective stress tensor oσ , 

and ivp  is the corresponding principal direction. Thus, the effective stress tensor is  

:o o o oCσ ε σ σ+ −= = +  (4) 
where ε  is the strain tensor and oC  is the fourth-order elastic constitutive tensor of the 

undamaged material. The tensor oσ
+  can be also represented by means of the projection tensor 

3

0
1

( )i i i
i

P H vp vpσ
=

= ⊗∑  

:

( ) :
o o

o o

P
I P

σ σ

σ σ

+

−

=

= −
 (5) 

where 0( )iH σ is the Heaviside function. The initial hypothesis is given by equation (1), which 
must be tested after ensuring that the constitutive model complies with the thermodynamics 
principles of non-reversible, isothermal and adiabatic processes.  
 
Thermodynamic framework 

Definition of the Helmholtz free energy  
By using the mechanical process of tension-compression damage, the Helmholtz free energy 

is written in the following additive form as it can be seen in references Faria et al. (1998), Wu et 
al. (2006), Cicekli et al. (2007) 

 
( , , ) (1 ) ( ) (1 ) ( )o od d d dψ ψ ε ψ ε ψ ε+ − + + − −= = − + −  (6) 

The elastic Helmholtz free energy of the undamaged material, in small strain, is defined as 
1( ) : :
2o oCψ ε ε ε=  (7) 

Considering the symmetry of both oC  and ε , and using equations (4) and (5), equation (7) can 
be expressed as  
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1 1( ) : ( ) :
2 2o o o oψ ε σ ε σ σ ε+ −= = +  (8) 

whereby, for the undamaged material, the elastic Helmholtz free energy is obtained both for 
tension and compression (see Figure 1) 

1 1( ) ( ) ( ) : :
2 2o o o o oψ ε ψ ε ψ ε σ ε σ ε+ − + −= + = +  (9) 

Definitions of stress and constitutive tensors  
The mechanical part of the dissipation must comply with the Clausius-Plank inequality 

(Maugin 1992) which can be written as 
: 0σ ε ψΞ = − ≥    (10) 

where the temporal variation of free energy is defined by 

: d d
d d

ψ ψ ψψ ε
ε

+ −
+ −

∂ ∂ ∂
= − −
∂ ∂ ∂

    (11) 

The mechanical dissipation Ξ  is obtained by substituting equation (11) for equation (10) and 
reordering terms  

0d d
d d

ψ ψ ψσ ε
ε

+ −
+ −

∂ ∂ ∂ Ξ = − + + ≥ ∂ ∂ ∂ 
    (12) 

According to the Coleman method (Maugin 1992), the inequality (12) holds for all temporal 

variations of the free variable ε  and, therefore, the term ψσ
ε

∂
−
∂

 must be null. The hyperelastic 

constitutive law for the model is thus deduced. 
ψσ
ε

∂
=
∂

 (13) 

The mechanical dissipation and, consequently, the expression of hyperelastic constitutive law 
is obtained, in terms of the inner damage variables d +  and d −  and of the free variable ε , by 
substituting equation (6) for equation (13)  
 

( , , ) (1 ) (1 )o od d d dψ ψψ εσ
ε ε ε

+ −+ −
+ −∂ ∂∂

= = − + −
∂ ∂ ∂

 (14) 

From equation (9) the free energies for tension and compression are obtained as 
1( ) :
2
1( ) :
2

o o

o o

ψ ε σ ε

ψ ε σ ε

+ +

− −

=

=
 (15) 

The constitutive equation of the model is obtained by substituting equation (15) for equation 
(14) and differentiating with respect to the free variable as it can be seen in references Faria et al. 
(1998), Wu et al. (2006), Cicekli et al. (2007) 
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( , , ) (1 ) (1 )o o
d d d dψ εσ σ σ
ε

+ −
+ + − −∂

= = − + −
∂

 (16) 

The starting hypothesis is confirmed by equation (16) and the mechanical dissipation is 
expressed as 

0o od dψ ψ+ + − −Ξ = + ≥   (17) 
In equation (17), each term is bigger or equal to zero for all the instants of the process. The 
general expression of the secant constitutive tensor of the differentiated damaged model is 
obtained from equation (13) 

2 2

(1 ) (1 )s o oC d dψ ψσ
ε ε ε ε ε

+ −
+ −∂ ∂∂

= = − + −
∂ ∂ ⊗∂ ∂ ⊗∂

 (18) 

 
Damage threshold criterion 
For any stress tensor, the damage threshold criterion allows establishing the limit up to which 

the mechanical behavior is elastic 
[ ] [ ]0 0( , , , ) ( ) 1 ( , ) ( , ) 0c t

o oF d d r f H r R c H r R cσ σ+ − = − − − ≤  (19) 

where ( )of σ  is a scalar function of the effective stress tensor (equation 4); c c ( , , )c c d d r+ −=  and 

c c ( , , )t t d d r+ −=  are two functions that define either tensile or compressive strength depending 

on the parameter r ;  0H( , )r R  is the Heaviside function; 0

c
o
t

o

f
f

R =  is the ratio of the compressive 

initial strength of the material to the initial tensile strength; the new parameter ( , )or d r+  
establishes the ratio of the tensile stress to the compression stress for complex stress states; r  
depends on the inner tensile damage d +  and on the parameter that establishes if the stresses are 
tensile or/and compression stresses  (Oller 1988). This parameter, named or , is an indicator of 
the tension-compression ratio is written as 

3

1
3

1

o
i

i
o

o
i

i

r
σ

σ

=

=

=
∑

∑
 (20) 

where o
iσ  is the Macaulay function of the i-th principal stress of the effective stress tensor oσ . 

Note that if 1or = , the stress state represents a pure tension one and, if 0or = , the stress state 

represents a pure compression one; if 0 1or< <  the stress state is complex with tensions and 
compressions.  

In concrete, in which tensile strength is smaller than compressive strength, the degradation of 
the material under complex stress states starts with the cracking process due to tensile stress. 
This process changes the configuration of the material from undamaged to damaged and, 
consequently, the ratio of tensile to compressive stresses also changes. In the case of the 
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isotropic damage model, this ratio is maintained constant and the parameter or  is valid (Oller 
1988). However, this ratio is variable in the case of the proposed damage model; therefore, a new 
parameter is introduced, which depends on the tensile damage variable d + , and represents the 
changes in the ratio of tensile to compressive responses 

3

1
3

1

(1 )
(1 )

o
i

i
o

o
i

i

d
r d r

σ

σ

+

+=

=

−
= = −
∑

∑
 (21) 

Due to the differentiate behavior in tension and compression strengths of concrete, the failure 
will be driven by the tension strength when or is greater than 1/ oR . This condition activates, 

through the r parameter, the internal damage tension variable d + . In the compression case, the 
failure will activate the internal damage compression variable d − . For all the intermediate cases, 
the following approximation of the r variable is proposed: 

1                                if 1 1/  

(1 )                    otherwise
0                                if 1/

o o

o

o o

r R
r d r

r R

+

> −


= −
 <

 (22) 

Given that the strain tensor ε  is the free variable and that each i-th principal stress of the 
effective stress tensor o

iσ  represents the response stress of the undamaged material under a 
complex load state, it can be said that, in an undamaged state, there is proportionality between 
applied loads and stresses. Consequently, the parameter or  is an indicator of the tension-
compression ratio of both the applied loads and the response stresses. 

Once a crack opens, the tension-compression ratio of the stresses must change. This ratio is 
represented by the new variable r  given by equation (22). The use of the ratios or  and r  in the 
constitutive model allows considering both the complexity of the applied loads and the changes 
of the mechanical response of the fractured material. As shown in equation (22), in processes 
with predominant axial loads the ratio r  remains constant, whereas in load states with shear 
actions the ratio r  is variable.      

   The general function that defines the damage threshold given in equation (19) can be 
particularized for either the tensile damage or the compressive damage function depending on 
the value of r  (see equation 22). The Heaviside function 0H( , )r R can be defined in terms of r  

0
0

0

10         if  
H( , )

11         if  

r
R

r R
r

R

 ≤= 
 >
  

(23) 

According to equations (22) and (23), the damage threshold criterion for extreme stress states 
can be written as 
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0

0

( , , , ) ( ) ( , , ) 0    if  ( , ) 0
( , , , )

( , , , ) ( ) ( , , ) 0    if  ( , ) 1

c
o oo

t
o o

F d d r f c d d r H r R
F d d r

F d d r f c d d r H r R
σ σ

σ
σ σ

− + − + −
+ −

+ + − + −

 = − ≤ == 
= − ≤ =  

(24) 

Compressive damage function: if 0H( , ) 0r R = , the load process is controlled by the compressive 
strength of the material; therefore the compressive damage function is given by 

[ ]( , , , ) ( ) ( , , ) 0c
o oF d d r G f G c d d rσ σ− + − − − + − = − ≤   (25) 

where c ( , , )c d d r+ −  is the function that defines the compressive damage threshold. 
Tensile damage function: if 0H( , ) 1r R = , the load process is controlled by the tensile strength of 
the material; in this case the tensile damage function is given by 

[ ]( , , , ) ( ) ( , , ) 0t
o oF d d r G f G c d d rσ σ+ + − + + + − = − ≤   (26) 

where c ( , , )t d d r+ −  is the function that defines the tensile damage threshold. G−  and G+  are 
scalar, invertible, positive, with positive derivatives, and monotonic increasing functions.  

The initial values of the threshold functions allow establishing the limit beyond which the 
behavior will be non-linear. Due to the fact that the ratio of the initial tension strengths to the 
compression one is 0R , and that this parameter is included in the discontinuity function, the 
damage model can be formulated in a more objective form using only one initial damage 
threshold oc .  Normally, this value is defined as the compression strength 

c
o oc c=  (27) 

c ct
o o=  (28) 

  
Evolution law of the damage variables of the model  

Compressive damage variable 
The evolution law of the compressive damage variable can be obtained from the potential 

[ ]( )( ( )
( ) ( )

oo

o o

G fF fd
f f

σσµ µ
σ σ

−−
− − − ∂∂
= ≅

∂ ∂
    (29) 

where µ−  denotes the compressive damage consistency parameter. This parameter allows 
controlling either the loading or the unloading processes according to the Kuhn-Tucker 
conditions (Oller 2001)  

( , , , ) 0oF d d rµ σ− − + − =  (30) 
From equation (30) it follows that 

if  ( , , ) 0  ;    0 0oF d r dσ µ− − − −< = ⇒ =  (31) 

if  0 ( , , ) 0   ;   0oF d r dµ σ− − − −> ⇒ = ≠  (32) 
From the inequality of equation (25) and from the condition established in equation (32), it 
follows that 
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[ ]( ) ( , , ) ( ) ( , , )c c
o oG f G c d d r f c d d rσ σ− − + − + − = ⇒ =   (33) 

Given that function G−  is monotonically increasing, the arguments in equation (33) are equal 
and, as a consequence, it follows that 

[ ]( ) ( , , )
( ) ( , , )

c
o

c
o

G f G c d d r
f c d d r

σ
σ

− − + −

+ −

∂ ∂
=

∂ ∂
 (34) 

From the temporal variation of the compressive damage threshold function, it is obtained that 

[ ] ( , , )( )
( , , ) ( ) ( , , )

( ) ( , , )

c
oo c

o c
o

G c d d rG f
F d r f c d d r

f c d d r
σ

σ σ
σ

− + −−
− − + −

+ −

 ∂∂  = =
∂ ∂

   (35) 

Equation (35) shows that the stress path must remain on the discontinuity surface; therefore, it is 
possible to conclude that 

( ) ( , , )c
of c d d rσ + −=   (36) 

Additionally, the temporal variation of function G  can be expressed as 
[ ] [ ] [ ]( ) ( )

( ) ( )
( )

o o
o o

o

G f G f
G f f

t f
σ σ

σ σ
σ

− −
−∂ ∂

= =
∂ ∂

  (37) 

Now, according to equations (29) and (37), d G− −=   and, knowing that 
( ) ( , )c

of c d rµ σ− −= =   (38) 
( ) ( )( ) : : :o oo o

o
o o

f ff Cσ σσ σ ε
σ σ

∂ ∂
= =

∂ ∂
   (39) 

it is possible to obtain the evolution law of the compressive damage variable as 
[ ]( ) ( ) : :
( )

o o
o

o o

G f fd C
f

σ σ ε
σ σ

−
− ∂ ∂
=

∂ ∂
   (40) 

The temporal variation of the compressive damage dissipation is obtained from equation (40) 
and can be written as 

[ ]( ) ( ) : :
( )

o o
o o o

o o

G f fd C
f

σ σψ ψ ε
σ σ

−
− − − −  ∂ ∂ Ξ = =  ∂ ∂  

   (41) 

Once the non-linearity due to the compressive stress components is reached, the compressive 
threshold function must be updated in the following form 

{ } 0max ; ( )   if   ( , ) 0c
o oc c f H r Rσ= =  (42) 

Tensile damage variable 
The evolution law of the tensile damage variable can be also obtained from the potential 

function  
[ ]( )
( )

o

o

G f
d

f
σ

µ
σ

+
+ + ∂=

∂
   (43) 

Thus, the evolution law of the tensile damage variable can be derived in an analogous way 
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[ ]( ) ( ) : :
( )

o o
o

o o

G f fd C
f

σ σ ε
σ σ

+
+  ∂ ∂ =  ∂ ∂  
   (44) 

and the temporal variation of tensile damage dissipation is 

[ ]( ) ( ) : :
( )

o o
o o o

o o

G f fd C
f

σ σψ ψ ε
σ σ

+
+ + + +  ∂ ∂ Ξ = =  ∂ ∂  

   (45) 

Once the non-linearity due to the tensile stress components is reached, the tensile threshold 
function must be updated in the following form 

{ }max ; ( )t
o oc c f σ=   if 0H( , ) 1r R =  (46) 

The tensile damage variable must be updated whenever the compressive damage variable is 
activated according to the constitutive damage concept 

{ } { }max ;         c max c ;ct t cd d d+ + −= ∧ =  (47) 
Finally, the temporal variation of the total mechanical dissipation is obtained as the sum of 
equations (41) and (45) as shown in equation (12)  

+ −Ξ = Ξ +Ξ    (48) 
 
PARTICULAR DEFINITIONS OF THE DAMAGE VARIABLES EVOLUTION LAWS 

The evolution laws of the tensile and compressive damage variables can be linear, 
exponential or hyperbolic. Although the discontinuity function ( )of σ  is unique, it is possible to 
consider that each dissipation process (tensile or compressive) may have different evolution 
laws. 

 
Linear evolution law of the damage variables 

The evolution law of the internal damage variables depends on the initial damage threshold 

oc for tension and compression and on the values of the tensile and compressive damage 

thresholds, tc  and cc , respectively 

• For compression     ( , , ) 1
( , , )

c o
c

cd G c d d r
c d d r

− − + −
+ −

 ≅ = −   (49) 

• For tension    
( , , ) 1

( , , )max
t o

t

cG c d d r
c d d rd

d

+ + −
+ −+

−

   = −  ≅ 



 (50) 

 
Exponential evolution law of the damage variables 

In the proposed model, the evolution of damage is equal to the evolution of the discontinuity 
functions and these functions depend on the elastic strain. Therefore, it is possible to use the 
damage formula of Mazars and Pijaudier-Cabot (Mazars and Pijaudier-Cabot 1989) as given by 
Faria et al. (1998) 
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• For compression 

 ( , , ) 1 (1 ) exp (1 ) ;     if    
c

c co
oc

o

c cd G c d d r A A B c c
c c

− − + − − − − 
 = = − − − − ≥  

 
 (51) 

• For tension 

( , , ) 1 (1 ) exp (1 )
 max ;     if    

t
t o

t t
o o

c cG c d d r A A B
c cd c c

d

+ + − + + +
+

−

  
  = − − − −   = ≥  




 (52) 

In equations (51) and (52), oc  is the initial damage threshold (for both tension and compression), 
tc  and cc  are the values of the tensile damage and the compressive damage thresholds, 

respectively, once non-linearity is reached. A−  and B−  are constants to be obtained from the 
maximum crashing energy cG  resulting from the uniaxial compressive experimental curve, and 

A+  and B+  are constants to be obtained from the maximum fracture energy fG  resulting from 

the uniaxial tensile experimental curve. A procedure to obtain these constants can be seen in 

reference (Paredes et al. 2011). /
/

f c
f c

ch

G
g

l
= are the regularized crushing cg /fracture cg  energies 

of the material and the geometrically regularization parameter chl  called fracture characteristic 
length related with the size of the finite element makes the non-linear process independent of the 
used mesh size (Oller 1988; Oliver et al. 1990; Paredes et al. 2011; Oller et al. 1990). The 
constitutive damage concept introduced above must be complied with, and this is ensured by 
equations (51) and (52). 

 
Hyperbolic law for damage variables 

An objective of the proposed constitutive model is to describe complex stress states, which 
can be achieved by considering the interaction between tensile and compressive dissipations. By 
using linear dissipation, the initial ratio of the tension to the compression thresholds is 
maintained but the hardening effect cannot be represented. Additionally, for compressive 
dissipation, in the equation proposed by Mazars and Pijaudier-Cabot (1989) the initial 
compressive strength, c

oσ , is an input parameter. Thus, by using the constants A−  and B− , the 

ultimate compressive strength c
uσ  is internally calculated and the compressive hardening effect 

is obtained. The tensile dissipation in concrete does not normally show hardening; therefore, the 
tensile threshold is defined by using the ultimate tensile strength, t

uσ , instead of the initial tensile 

strength, t
oσ . Thus, the operative problem is that two different initial strengths are necessary, c

oσ  

for compression and t
uσ  for tension. The goal of this article is to define only one initial strength 

threshold and to represent the tensile and compressive hardenings by using the following 
hyperbolic dissipation law 
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• For tension 
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(54) 

where oc  is the initial damage threshold (for both tension and compression) that is normally 

given by the compressive strength of the material; Ai±  and q  are constants that must be obtained 
from experimental studies. Similarly as explained in section treating the “Exponential evolution 
law of the damage variables”, the objectivity of the mesh has been reached including the 
regularized fracture and crashing energy in the parameters Ai± . 
 
DISCONTINUITY STRESS FUNCTION 

Several discontinuity functions can be used within the proposed differentiated damage model. 
The discontinuity function must be chosen assuring the best representation of the behavior of 
each material. The modified Mohr-Coulomb discontinuity function (Oller 1991) will be used in 
the implementation and validation of the proposed constitutive model. The modified Mohr-
Coulomb function is suitable to represent the mechanical behavior of concrete because it allows 
considering the ratio oR . It depends on the effective stress tensor and is given by 

2 3 2 1 2
3

2sin( )sin( )( ) ( , , , ) cos( )
3 cos( )o

NIf f I J K J K K
J

fθ fσ θ f θ
θ

   = = + −  
    

 (55) 

Thus, the threshold function defined in equation (19) can be written as 

2( , , , ) ( , , , ) 0o oF d d r f I J cσ θ f+ − = − =  (56) 

where c
o oc σ=  is the compressive strength of concrete. The constants defined in equation (55) 

can be expressed as 
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INTEGRATION ALGORITHM OF THE PROPOSED CONSTITUTIVE MODEL 

The procedure that allows integrating the proposed constitutive law is explained in Figure 2. 
From the mechanical properties of the material, the initial threshold oc  is established, which is 
common to both compression and tension processes. The non-linear process should be carried 
out step by step with increasing load increments. Thus, for the i-th load increment and for an 
analysis point, the input values for both the inner damage variables 1i d− +  and 1i d− − , and the 
thresholds 1i c− +  and 1i c− − , must be given in the previous step; the strain tensor ε  is the free 
variable that allows calculating the effective stress tensor oσ , with which the tensile and the 
compressive stress tensors can be calculated through polar decomposition (see equations 2 and 
3). Thus, the stress ratio r  and the Heaviside function 0H( , )r R  are obtained (see equations 22 

and 23, respectively). The value of the discontinuity function ( )of σ  is obtained from the 

effective stress tensor oσ . The type of damage (tensile or compressive) must be established 

depending on the value of the Heaviside function 0H( , )r R , and the discontinuity function is 

compared with either the 1i tc−  or 1i cc−  threshold values. The above procedure must be carried out 
for all the material analysis points and, subsequently, the global convergence must be verified 
through integration in the space domain. Once convergence is achieved, the next load step will 
be applied; otherwise, the iterative process must be carried out and the above procedure will 
restart. 
 
VALIDATION OF THE PROPOSED MODEL 

The proposed model was implemented in the finite element software PLCD (PLCD-Manual 
2008) and validated by comparing the numerical result with experimental data obtained from the 
literature. Several tests were performed, including the compressive axial test, the tensile axial 
test, the reversible axial test and the biaxial test.  

 
Monotonic compressive axial load 

The response of the model was validated by comparing the numerical results with one of the 
most invoked experimental results, published by Kupfer et al. (1969). The friction boundary 
condition of the experimental test at the ends of the sample was not considered in the numerical 
analysis. The experimental results are shown in Figure 3 and correspond to an elastic modulus 
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28657000 kPaE = , an initial compressive strength 13120c
of = kPa, and an ultimate 

compressive strength 32800c
uf = kPa and also 1.38A− =  and 0.22B− =  (see equation 51). 

Using this data, monotonic compressive axial loads were applied numerically on a 0.20 x 0.20 x 
0.05 m concrete sample discretized in hexahedral-shaped finite elements; similar result to that 
obtained by Kupfer have been obtained. The linear dissipation curve is fitted in such a way that 
the energy dissipated per unit volume was equal to that obtained by using the exponential 
dissipation curve, when both curves have the same compression threshold. For each area under 
the curve (see Figure 4), dimensions of the element, and the compression/ tension ratio of the 
material ( 10oR = ), the value of the fracture energy per surface unit was calculated as 0.3fG =  

kNm/m2.   
 
Monotonic tensile axial load 

The experimental results obtained by Gopalaratnam and Shah (1985) for a specimen 
measuring 76 x 19 x 305 mm with notches of 13 x 3 mm on each side were used to validate the 
model under monotonic tensile axial loads. Thus, the effective area perpendicular to the direction 
of the tensile load is 50 x 19 mm. Measurements of the longitudinal displacements were made 
using two sets of strain gages that were 13 and 83 mm long. In order to take full advantage of the 
experiment, a numerical model of 50 x 19 x 83 mm was selected. The mechanical properties of 
the material to be used in numerical analysis were directly obtained from reference 
(Gopalaratnam and Shah 1985), excepting the fracture energy per unit area, fG , which was 

calculated as the area below the experimental stress-displacement curve. These properties are 
shown in Table 1. Numerical analysis considering the dissipation laws described above was 
carried out. Incremental displacements in the longitudinal direction, zδ , were applied at the top 
face while the displacements at the bottom were restricted to ensure axiality. The numerical 
force-displacement curves fitted the experimental ones quite accurately, as seen in Figure 5. 
Similar results are shown for the stress-displacement curves (Figure 6) and the stress-strain 
curves (Figure 7). The fracture energy per unit area was calculated for each dissipation law and 
these results are shown in Table 2. 

 
Mesh objectivity 

Objectivity was studied using three different meshes for the same specimen: mesh 1 with 312 
elements and 504 nodes, mesh 2 with 680 elements and 990 nodes, and mesh 3 with a single-
element and 4 nodes. Incremental displacements in the longitudinal direction, zδ , were applied 
on the top nodes, whereas displacements on the bottom nodes have been restricted in order to 
ensure axiality. Geometry, meshes and boundary conditions are shown in Figure 8. Each force-
displacement curve fits each other accurately for the three analyzed meshes (see Figure 9). Thus, 
it can be concluded that the proposed model meets the requirements of mesh objectivity and the 
dissipated energy is independent of the size of the mesh. 
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Reversible loads test 

This test shows that, under a reversible load, the model maintains the stiffness to compression 
after being damaged to tension. Many models can simulate this effect but the one proposed has a 
distinctive feature: it defines the damage space with a single discontinuity threshold function. 
This fact allows using the classic functions of Mohr-Coulomb, Modified Mohr Coulomb, 
Drucker-Prager etc. Nevertheless, it is important to note that the damage to compression can be 
visualized by following the loading-unloading path shown in Figures 10-12. 

The model’s response under uniaxial reversible loads was tested. The loads were applied on a 
single element of concrete and started with tension, followed by compression. The tensile load 
was increased up to the tensile damage threshold (o-a) and the softening effect was numerically 
observed as the tensile damage variable grew (a-b). The tensile unloading process was then 
carried out (b-o), followed by a compressive load increase beyond the compressive damage 
threshold (o-c-d). Then, the compressive unloading process was carried out (d-o). The tensile 
reload was increased beyond the last tensile damage threshold (o-b-e). Then the tensile unloading 
process was repeated (e-o), followed by a compressive reload beyond the last compressive 
damage threshold (o-f-g). After that, compressive unload (g-o) and tensile reload (o-h-i) 
followed.  

The tensile damage was activated in a-b; however, the compressive load (o-c) occurred with 
the undamaged stiffness of the material. The tensile crack opened in a-b, and, subsequently, this 
crack closed in b-o. The initial compressive strength and the initial compressive stiffness of the 
material were maintained in o-c, whereas the compressive damage variable remained null. The 
compressive damage variable grew on c-d; however, the tensile damage variable at point b was 
greater than the compressive damage variable at point d. Therefore, the slope of compressive 
unload (d-o) was greater than the slope of tensile reload (o-b). It can be said that the structural 
damage occurred up to point d, which explains the structural damage concept that was 
introduced earlier. The evolution of the tensile damage variable depends on the load path and can 
be seen in Figure 11. 

 The compressive damage variable at point f was smaller than the tensile damage variable at 
point e. The compressive load was applied on f-g; then, the compressive damage value reached 
the last tensile damage value (point e) during path f-g. Thereafter, the evolution of the tensile 
damage variable must be equal to the evolution of the compressive damage. This implies that the 
slope of the tensile reload path o-h must be equal to the slope of the compressive unload path g-
o. Note that the tensile damage variable at point h is greater than at point e without applying 
tensile load. Therefore, there is a discontinuity between points e and h. All this explains the 
constitutive damage concept that was introduced before. The evolution of the compressive 
damage variable depends on the load path and can be seen in Figure 12.  

According to Figures 10-12, it is possible to remark that compressive damage introduces 
tensile damage, whereas tensile damage does not introduce compressive damage. 
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Analysis under biaxial loads 

The ability of the model to analyze biaxial problems was validated following the 
experimental results of Kupfer et al. (1969). The biaxial test was performed on the same 
specimen described before. The specimen was simultaneously subjected to tensile 1σ  and 

compressive 2σ  stresses. Numerical analysis was carried out for several 2 1/σ σ  ratios whose 
results are shown in Figure 13, where stress strain curves for both tensions and compressions can 
be seen. 

Strength curves for concrete under combined tension and compression were published by 
Kupfer et al. (1969) for three values of the ultimate compressive strength of concrete 

2190  kg/cmuσ = , 2315  kg/cmuσ =  and 2590  kg/cmuσ = . Numerical results were obtained for 
2328 kg/cmuσ = , in agreement with the shear experimental results shown in Figure 14. The 

proposed constitutive model yields better results under complex loads, which is one advantage 
for concrete modeling. Additionally, this allows representing the sequence of both cracking and 
crushing processes in coupled form. 

The failure sequence has been analyzed in the case of pure shear ( 2 1/ 1/1σ σ = − ). Tension 
and compression dissipation are shown in Figure 15. It can be observed that, if the threshold 
function of the material is exceeded (at or ac), the tensile strength decreases (segment at - bt) as 
tensile damage variable starts to increase, whereas compressive strength continues to increase 
(segment ac - bc) up to point bc. At this point, the compressive damage variable is activated 
because the tension-compression ratio r  has changed. Variable r  becomes smaller than 
parameter 01 R  along bt-ct, (see equation 22). Therefore, the value of the Heaviside function 
must be changed (see equation 23) and the compressive threshold is activated (see equation 24). 
From this point (ct  or cc), the tensile and compressive damage variables will grow at the same 
rate, as it is a constitutive damage. This behavior was compared with both the isotropic damage 
model (Oller 1991) and the constitutive damage model proposed by Faria et al. (1998). 
Thereafter, the threshold function of the material is exceeded (points at and ac) and softening for 
both tension and (at-ct) compression (ac-cc) occurs, as seen in Figure 15. The constitutive damage 
model proposed by Faria et al. (1998) indicates that there are two failure points: when the 
principal tensile stress reaches the tensile strength of the material; and, subsequently, when the 
principal compressive stress reaches the compressive strength of the material. This fact can be 
explained because two independent threshold functions are used in this model. Thus, tensile and 
compressive responses will be independent of the 2 1/σ σ  ratio. This new constitutive model 
allows correcting the disadvantages of the numerical modeling of concrete under shear load. 
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APPLICATION EXAMPLE 

Description of the experimental test 
The results of the experimental test carried out by Arrea and Ingraffea (1982) will be used 

herein for the validation of the proposed model. This test has been traditionally used for the 
validation of constitutive models of concrete (Blanco Ibáñez 2007; Gálvez and Cendón 2002; 
Oller 1988; Rots and de-Borst 1987). Two concentrated loads are applied on the beam, which are 
asymmetric with respect to the notch and the supports. The ratio between these loads is 0.13/1 
and was maintained by using a high-stiffness beam. The punching effect on the loading and 
support points was avoided in the test by using steel plates to distribute the forces. Each loading 
step has three different stages. First, the load is increased, then the load is maintained constant, 
and, finally, it is removed. The experimental test made by Arrea and Ingraffea (1982) was carried 
out using two types of concrete with compressive strengths of  45.5 MPac

of =  and 

43.4 MPac
of =  (series B and series C, respectively). Each series has a different kind of notch 

but the notch depth is 82 mm in both series. The geometry of the test beam is shown in Figure 
16.  

 
Numerical analysis 

The concrete beam in Figure 16 is discretized using 13014 linear tetrahedral elements with 
only one integration point. The mesh with 2.842 nodes is shown in Figure 17a. The forces in 
points A and B were applied in 63 incremental steps. The arc-length method is employed when 
the softening response is reached, and the crack mouth sliding displacement, CMSD, is the 
control parameter. Ten pairs of nodes were controlled, located on the lips of the notch. 
Longitudinal (x direction) and vertical (z direction) displacements of the nodes in line D were 
restricted, whereas the displacements of the nodes in line E were only restricted in the vertical 
direction z. The applied loads and support conditions are shown in Figure 17b. 

 
Input parameters 

A numerical analysis was carried out using the input parameters of the Arrea and Ingraffea 
test (Arrea and Ingraffea 1982): the compressive strength of concrete 43.4 MPac

of = , the 
elasticity modulus 43.4 GPaE =  and the Poisson coefficient 0.18υ = . Additionally, the tensile 
strengths of concrete, t

of , with values between 2715.5 and 2630.3 kPa, were calculated 

depending on the parameter 0
c

o
t

o

f
fR = , and for the energy of fracture per unit area, fG , values 

between 0.045 and 0.065 kNm/m2 were used. For the numerical validation of the model it was 
necessary to carry out the sensitivity analysis for different concrete properties (see Table 3) 
because neither tensile strength nor energy of fracture is known for the experimental data. 
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Results 

Numerical results obtained with the new constitutive tension-compression damage model 
agree with the experimental results published by Arrea and Ingraffea (1982) quite accurately. 
The results obtained by using the proposed model were compared with both the numerical results 
reported by Oller (1988) (see Figure 18) and the numerical results published by Gálves and 
Cendón (2002) (see Figure 19), which agree quite well. The objective of Figures 18 and 19 is to 
illustrate the sensitivity of the results to several combination of fracture energy fG  with tensile 

strength t
of . The curves P’- CMSD are plotted for the total vertical reaction force, P’.  

In the DCM theory, the evolution from microcracks to cracks is represented by the evolution 
of the inner damage variables. The damage value for which microcracks become cracks is not 
defined and it is still a topic of discussion. However, it is possible to consider that the evolution 
of the inner damage variable corresponds to the area in a structural element where microcracks 
and cracks are located.  

The numerical results for the damage variables show that the cracking pattern in the 
experimental beam fits the envelope of cracks drawn by Arrea and Ingraffea (1982). The 
numerical and experimental cracking patterns are overlapped in Figure 20. The evolution of the 
tensile damage variable started in load step 5; the major value of tensile damage variable was 
0.1731 for this load step. In load step 13, a peak vertical reaction of 166.78 kN was reached, 
which corresponded to a value of the tensile damage variable of 0.9247 (see Figures 18, 19 and 
21). Subsequently, the descending branch of the P’-CMSD curve starts in load step 23 and 
becomes gradually asymptotic in load step 45 (see Figures 18 and 19). The last load step was 63, 
for which the highest value of the tensile damage variable was 0.9959. The evolution of the 
tensile damage variable is shown in Figure 21 and the cracking process corresponds to mode II 
of fracture in shear up to load step 13. However, there is compressive stress on the faces of the 
notch, which implies that there could be compressive damage in this zone. In step 23 (see Figure 
21), it can be seen that the notch is open. Notice that between steps 13 and 23 there was a change 
in the fracture mode, from mode I to the mixed mode, due to the fact that the fracture zone is 
subjected to shear and tensile stresses. Thereafter, in steps 45 and 63, the fracture zone grows 
following the described mechanism, although tensile stress is predominant for these steps. 

In step 13 the compressive damage variable had a value of 0.1325, which grew up to 0.6884 
in step 63. As shown in Figure 22, compressive damage is present at the top of the notch due to 
the fact that shear and compressive stresses are concentrated there during the first steps. That is, 
this zone is subjected to complex load states. In the final steps, compressive damage is observed 
at the top of the fractured zone due to the fact that the compressive stress necessary for the beam 
equilibrium is high. The evolution of the compressive damage variable is shown in Figure 22. 

The proposed constitutive tension-compression damage model is based on the CDM theory, 
where fracture is not considered as a discontinuity of the continuum medium, but rather as a 
discontinuity in the displacement field. It is known that discontinuity in a displacement field 
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implies a strong discontinuity in the strain field. The numerical results are in agreement with this 
premise, which can also be seen in the experimental fracture zone (see Figure 23) 

The load state and the support conditions imposed on the beam produce a complex stress 
state in the failure zone. The shear actions are predominating, and there is stress concentration 
particularly at the top of the notch, where stress states become complex in nature. Therefore, the 
principal stress fields must be examined in order to understand the response of each analyzed 
element. The maximum principal stress field (tensions) and the minimum principal stress field 
(compressions) observed in load step 13 are shown in Figure 24, where it is also possible to 
observe that the highest maximum principal stress has a value of 3.3 MPa, whereas the highest 
minimum principal stress has a value of -19.244 MPa. The values of both principal stresses are 
relatively high around the top notch; this fact confirms that, in this zone, the stress state is 
complex in nature. The compressive damage variable begins its evolution in step 13 (see Figure 
22) after the tensile damage variable had started its evolution in step 5 (see Figure 21). 
 
CONCLUSIONS 

A new constitutive damage model with compressive and tensile damage variables using only 
one discontinuity surface has been proposed. An adequate response of the model under shear, 
tensile, compressive, biaxial and complex loads allows coming to the conclusion that the 
proposed model is a powerful tool for the numerical modeling of reinforced concrete structures. 

The discontinuity function depends only on the effective stress tensor. Therefore, the 
continuity of the response is ensured even if polar decomposition of the effective stress tensor is 
mandatory in order to calculate both the tensile and the compressive damage variables. This 
means, however, that tensile and compressive problems were analyzed as a single mechanical 
problem.       

Because tensile and compressive damage variables were defined, it is possible to represent 
the mixed mode of fracture (typical of CFM) through a CDM perspective. This was achieved by 
using an adequate evolution law for the damage variables. 

The proposed model is based on the CDM theory, where fracture is not considered as a 
discontinuity of the continuum medium, but rather as a discontinuity in the displacements field. 
The numerical results are in agreement with this premise, which can be seen in the application 
examples where the discontinuity in the displacement field in the experimental beam fits the 
enveloping of the experimental cracks. 

 The inner damage variables have been considered as scalar, which do not allow determining 
the cracking pattern associated with an orientation. Therefore, the development of a damage 
model with the damage variables defined at a vectorial or tensorial order, and with only one 
discontinuity function, would be an important research topic in the future. 
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Figure 1. Tension and compression elastic energy. 
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Figure 2. Constitutive model integration flowchart. 
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Figure 3. Stress-strain relationship under axial compression compared with the Kupfer 
experimental curve (Kupfer et al. 1969). 1 2 1 0σ σ = − . 
 
 

 
Figure 4. Linear and exponential dissipation under axial compression. 
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Figure 5. Force-displacement curves. Linear, hyperbolic and exponential dissipation compared 
with the experimental curve of Gopalaratnam and Shan (1985). 
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Figure 6. Stress-displacement curves. Linear, hyperbolic and exponential dissipation compared 
with the experimental curve of Gopalaratnam and Shan (1985). 
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Figure 7. Stress-strain curves. Linear, hyperbolic and exponential dissipation compared with the 
experimental curve of Gopalaratnam and Shan (1985). 
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Figure 8. Geometry and mesh for objectivity analysis. 
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Figure 9. Mesh objectivity. Force-displacement curves for three different meshes. Mesh 1 with 
312 elements; mesh 2 with 680 elements and mesh 3 with a single element. 
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Figure 10. Force displacement curve for reversible loads. The increasing load in segments (o-d) 
and (o-f) are different, due to the discontinuity between points d and f. 
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Figure 11. Tensile damage evolution. 
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Figure 12. Compressive damage evolution. 
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Figure 13. Stress-strain curves for bi-axial loads. 
 

 
Figure 14. Shear behavior. Experimental ultimate compressive strength by Kupfer et al. 1969: 

 19,0 MPa; 31,5 MPa; 59,0 MPa.u u us s s= - = - = -  
 
 



34 

 

 

 
Figure 15. Pure shear behavior. 
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Figure 16. Geometry of concrete beam of Arrea and Ingraffea (1982). Reproduced from Oller 
(1988). 
 

 
Figure 17. a) Finite element mesh. b) Load and support conditions. 
 
 
 
 
 
 



36 

 

 
Figure 18. Total vertical reaction force P’ vs CMSD curve for series B. Numerical results 
compared Oller’s results (Oller 1988). 
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Figure 19. Total vertical reaction force P’ vs CMSD curve for series C. Numerical results 
compared with Gálvez and Cendón’s results (2002). 
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Figure 20. Tensile damage variable in step load 63 overlapped with the experimental cracking 
pattern. 
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Figure 21. Tensile damage variable evolution. Undeformed and 200 times deformed 
configurations. Tensile strength of concrete 2630 kPa; compressive strength of concrete 43400 
kPa; Ro=16.5; Fracture energy of concrete 0.050 kN-m/m2. 
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Figure 22.  Compressive damage variable evolution. Undeformed configuration. Tensile strength 
of concrete 2630 kPa; compressive strength of concrete 43400 kPa; Ro=16.5; Fracture energy of 
concrete 0.050 kN-m/m2. 
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Figure 23.  Displacements. Load step 63. 
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Figure 24. Maximum principal stress (compression) and minimum principal stress (tension) in 
step load 13. 
 
 
Table 1. Mechanical properties obtained from Gopalaratnam and Shah (Gopalaratnam and Shah 
1985). 

Properties Values 
Fracture energy fG  [kN/m] 0.0564 

Elasticity modulus x106 [kN/m2] 33.469 
Ultimate strength t

pσ      [kN/m2] 3662.1 

Strain t
pε x10-6 in t

pσ  120 

Damage strength 0.4t t
o pσ σ=

[kN/m2] 

1464.8 
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Table 2. Calibration of the model with tensile axial load, parameters and results. 

Dissipation law Linear Hyperbolic 
Exponential of 
Mazars 

Parameters Le=0.083 
A1=2.24; 
A2=0.20; 

q=0.30 

A+=0.92; 
B+= 2.0 

Type of dissipation linear hyperbolic exponential 

Total energy dissipated 
Wf  [ kN-m]. Figure 5 

5.359e-5 4.384e-5 4.146e-5 

Energy dissipated per unit area. 

fG  [kN-m/m2]. Figure 6 0.0564 0.0462 0.0436 

Energy dissipated per unit 
volume. fg  [kN/m2]. Figure 7 0.6797 0.5560 0.5259 

 
Table 3. Values of the mechanical properties. 

Curve a1 a2 a3 a4 a5 a6 a7 

fG [kN-m/m2] 0.060 0.060 0.065 0.065 0.045 0.050 0.055 

0
c

o
t

o

f
fR =  16.0 16.5 16.0 16.5 16.5 16.5 16.5 

t
of  [kN/m2] 2712.5 2630.3 2712.5 2630.3 2630.3 2630.3 2630.3 
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