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Abstract Time-dependent strains, when restrained,

can lead to important tensile forces and damage,

affecting, among other aspects, the shear response and

ultimate load carrying capacity of shear-critical RC

frames. This paper presents a detailed study of this

problematic by means of an extension of a shear-

sensitive fibre beam model to time dependent

behaviour of concrete. The model is firstly validated

with experimental tests on diagonally pre-cracked

beams under sustained loads. From these analyses, the

contributions of shear distortions and bending curva-

tures to the total long-term deflection of the beams are

discerned. Afterwards, the model is applied to study

the influence of restraining strains due to long-term

creep and shrinkage in the service and ultimate shear

response of frames. In contrast with flexural resistant

mechanisms, delayed strains may influence the latter

shear resistance of integral structures by reducing the

concrete contribution to shear resistance and leading

to a sooner activation of the transversal reinforcement.

These aspects can be relevant in assessing existing

structures and this model, due to its relative simplicity,

can be advantageous for practical applications.

Keywords Reinforced concrete � Shear � Time-

dependent deformations � Restraining stresses � Fibre
beam model � Nonlinear analysis � Delayed tensile-

shear interaction � Integral structures

1 Introduction

Concrete structures show a complex behaviour that

includes material nonlinearities (cracking of concrete,

yielding of reinforcement) and time-dependent

response (creep, shrinkage, ageing). Both types of

phenomena interact in the structural response, e.g.: the

existence of cracking increases the compression

stresses and creep; and shrinkage can lead to cracking

of concrete. In the case of structural members mainly

loaded in bending, the coupling of nonlinear and time-

dependent phenomena was successfully studied in the

past [1–3].However, for the case of structuralmembers

critical to shear, the interaction between diagonal

cracking, delayed strains and resistant mechanisms is

not well known. This interaction can be relevant in

service and ultimate limit states. In fact, one the one

hand, diagonal cracking can affect the time-dependent

strains and creep response and, on the other hand,

restrained shrinkage can reduce the shear capacity.
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Pertaining to ultimate limit states, analytical mod-

els for shear capacity are usually set as a combination

of contributions of concrete (Vc) and transversal

reinforcement (Vs) [4]. Axial forces (compression

and tension) influence the shear strength of RC

elements [5]. Hence, in contrast to the case of bending,

delayed axial-shear force interaction induced by

restraining time-dependent strains affects the concrete

contribution, and consequently the ultimate shear

capacity. This problem is also relevant in prestressed

elements; where the axial force introduced by the

prestressing influences the shear resistance of pre-

stressed concrete beams [6]. As creep and shrinkage

decrease the prestressing force with time, resistance to

shear also decreases (which may be balanced by the

gain of concrete strength with age). This is completely

different from the case of bending, in which creep and

shrinkage also affects the prestressing force, but have

no influence in the ultimate resistance of the beams

failing in a ductile mechanism.

Shear resistance in reinforced concrete (RC)

involves different contributing actions, leading to

state-dependent distributions of shear strains and

stresses. The numerical simulation of this mechanism

requires models able to reproduce phenomena, such

as, diagonal cracking, anisotropic responses and brittle

failures. Finite element (FE) models, based on plane

stress and solid continuum approaches, are usually

used in academia to study small scale specimens;

however these models are time consuming, require

fine FE meshes and can therefore hardly be applied at

the true structural scale.

On the other hand, frame models constitute an

efficient alternative to solids FE’s, with much less

degrees of freedom, while model generation is simpler

and faster [7]. These models, which were traditionally

limited to bending analysis [2], were extended to

include shear and multiaxial force interactions [8, 9],

as well as, other aspects of RC behaviour (e.g. force-

interaction, material degradation, strengthening with

new materials and bond-slip), generating enhanced

beam models; e.g. Mazars et al. [10]; Valipour and

Foster [11].

The complexity of the shear response in RC makes

its numerical simulation and introduction into fibre

beam models to be quite challenging [8, 9]. Pioneer

works in this field are attributed to Vecchio and

Collins [12], Spacone et al. [13] and Petrangeli et al.

[14]. More recently, proposals for accounting for

shear-flexural interaction in fibre beam models

focused on increasing accuracy and computational

efficiency; some relevant examples are Güner [15] and

Mohr et al. [16] differing in the level of complexity

and applicability. A shear sensitive fibre beam model

was developed by the authors [17], covering nonlinear

axial–bending–shear (N–M–V) interaction and seg-

mental construction, including the effects of strength-

ening and repair interventions [18]. The model was

applied to the assessment and strengthening analysis

of true-scale structures, as bridges [7].

This paper studies the influence of the delayed

deformations in the shear-related response of struc-

tures. For this purpose, the shear beam model was

extended for time-dependent analysis including con-

crete creep, shrinkage and temperature variations.

Shear modelling involves multiaxial strain–stress

states that have to be considered in the time-

dependent analysis. Extensive experimental research

and development of numerical models have mainly

been conducted on the uniaxial case [19, 20]. The

principle of superposition and the Poisson’s ratio

resulting from creep of concrete under multiaxial

stress states is rather controversial, either by difficul-

ties of measuring and the variability on the experi-

mental devices and also due to the many parameters

influencing its behaviour. The non-validity of the

superposition assumption for the cases of biaxial

stresses is supported by some authors [21, 22]; other

authors argue that the multiaxial creep Poisson’s ratio

varies with time and does not depend on the stress

states [23].

The assumption that creep of concrete under

multiaxial stresses can be satisfactorily predicted in

practice by assuming a constant Poisson’s ratio equal

to the elastic value, along with a theoretical model for

creep under uniaxial stresses is also sustained [23–26].

This simplification is assumed in the proposed model,

which is justified by the structural approach of the

target simulations.

At the structural level, most studies on shear

behaviour have been conducted on isolated elements

on isostatic static schemes, allowing free deformation

to occur. When analysing large continuous structures,

relevant doubts exist in engineering community

whether induced stresses, strains and previously

developed damage (e.g. rheological induced cracks)

produce differences in the resisting behaviour. Studies

about this problem are scant.
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In this paper, a study is conducted in order to

address this problematic based on the shear frame

model previously developed by the authors. The

model was adapted to include creep and shrinkage

capabilities in a multiaxial format for the frame

element. After presentation of the formulation, the

model is validated against experimental tests on shear-

sensitive beams under sustained load. Subsequently,

the model is used to study the details of the influence

of delayed tension-shear forces interaction and

restrained strains in the ultimate shear strength of

RC frames. These studies aim to investigate the effects

of rheological strains and its previously induced

damage in the shear resisting behaviour of continuous

concrete elements.

2 Numerical model

The detailed description and validation of the non-

transient version of the shear-sensitive fibre beam

model can be found in [17]. This section presents only

the fundamentals of the basis shear model and focus on

the time-dependent procedures.

2.1 Fundamentals of the shear-sensitive fibre

beam model

The model is based on a displacement-based fibre

beam FE formulation for the nonlinear analysis of

concrete frame structures. The fundamental assump-

tions of the model are: (i) RC frames are idealized by

means of beam elements of arbitrary cross sections

interconnected by nodes; (ii) the cross section is

discretized into fibres of concrete and filaments of

longitudinal steel; (iii) transversal reinforcement is

accounted as smeared in the concrete fibre; (iv) for

each FE, the longitudinal reinforcement is considered

parallel to the longitudinal axis; (v) the Timoshenko

beam theory is applied at the element level; (vi) at the

sectional level, a shear-sensitive formulation accounts

for the axial force–bending–shear (N–M–V) interac-

tion: the Bernoulli–Navier plane-section theory is

coupled with a constant shear stress constraint along

the cross section leading to a 2D strain–stress state in

the fibres.

A smeared and rotating crack approach is consid-

ered for concrete. The Hognestad parabola is assumed

for concrete in compression as the backbone curve.

The determination of the various parameters of this

curve (ultimate strength fc, strain at peak stress e0,
ultimate strain eu) account for lateral effects: softening
[27] and strength enhancement [28] factors. For

concrete in tension a linear response is assumed

before cracking and a tension stiffening curve is

considered in the cracked stage. A modified version of

the exponential tension stiffening curve of [29] is used,

being calibrated so that it produces null stiffening for

beyond yielding of steel [17]. Steel is only submitted

to axial strains and stresses by means of uniaxial

constitutive laws (defined by the yielding stress fsy and

strain esy and the ultimate stress fsu and strain esu).
Perfect bond between concrete and steel reinforce-

ments is assumed.

2.2 Time-dependent constitutive model

for concrete

Creep is a stress dependent strain, although it is not

instantaneous, and can be computed by two modelling

approaches: (i) include it as part of the response of a

visco-elastic material and (ii) referring to mechanical

strain only to the strains related to the instantaneous

stresses ðDem ¼ D�1DrÞ and considering all delayed

strains (including creep) as a free strain.

In the first option, creep should be considered as

part of the mechanical strains, which requires com-

puting both displacement and velocities in the iteration

scheme.

In the second option, creep similarly to other free

strains, in general do not satisfy compatibility, thus

unbalanced forceswill develop in timewithout variation

of forceswhich activates theNewton–Raphson iteration

process in order to preserve equilibrium, as used by

Kabir and Scordelis [30], Kang and Scordelis [31] and

Mari [2]. Therefore, together with the equilibrium

conditions, this approachwill produce equivalent results

to the visco-elastic material formulation. This second

approach is the one followed in this paper.

Time-dependent effects of concrete creep and

shrinkage are taken into account in the shear fibre

beam model through a biaxial formulation within a

time-step procedure based on the work of [3].

Within the time domain, an incremental step-by-

step method is used to compute the non-mechanical

strains. Each component of strain is determined

separately and summed afterwards by assuming valid

the principle of superposition of strains. Creep and
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shrinkage are treated in a decoupled manner. The

effects of temperature variations are also considered in

an independent fashion. Coupling between cracking

and time-dependent strains [32] is not considered, for

the sake of simplicity of the model devised for

structural applications; and also because capturing

beam failures under sustained loads and at high stress

levels is not a goal of this study.

Non-mechanical strains accounts for strain offsets,

different from instantaneous strains produced by

stresses increments in the current time step. In the

context of this work, it includes both shrinkage and

creep strains. Even though creep strains are actually

stress dependent, they are related to the previously

applied stresses, not the increment on the current time-

step. Therefore, they can be considered as strain off-

sets, provided that the iteration process accounts for

compatibility and equilibrium conditions, producing

similar results as considering creep as stress depen-

dent, after convergence. The 2D non-mechanical

strain vector Denm depends on time t and is divided

into two types of strains: stress-dependent Dec and

stress-independent De0 (in incremental approach),

Denm tð Þ ¼ Dec tð Þ þ De0 tð Þ ð1Þ

The strain tensor of creep Dec is stress-dependent,

Dec tð Þ ¼
Decx
Decz
Dccxz

8
><

>:

9
>=

>;
ð2Þ

The tensors of strains due to shrinkage and

temperature variations, considered as stress-indepen-

dent, are treated as volume changes De0, and for this

reason, do not contemplate shear deformations, as in

Chong et al. [33]:

De0 tð Þ ¼
De0x
De0z
0

8
><

>:

9
>=

>;
¼

Deshx
Deshz
0

8
><

>:

9
>=

>;
þ

DeTx
DeTz
0

8
><

>:

9
>=

>;
ð3Þ

2.2.1 Creep

The principle of superposition of creep strains is

assumed valid, as the strains are considered small. The

principles of isotropy and linearity are assumed valid

as well, as considered in [24].

In this model it is considered that, while performing

the time integration with a small time step, the stress

state does not vary within the time step. It should be

noticed that different assumptions may be considered

depending on the integration scheme. However, as

creep evolves slowly in time, different evolution

hypotheses will not produce significant variations. The

creep response in compression and tension is assumed

equal before cracking; after cracking no creep strain is

considered in tension.

The incremental strain tensor in concrete due to

creep Dec is given by the constitutive relationship for

aging material under multiaxial stress for a given

instant of time t:

DecðtÞ ¼
Z t

0

Be J t0; t � t0; Tð Þ or t0ð Þ
ot0

dt0 ð4Þ

in which specifically for the 2D case, comes:

Dec tð Þ ¼ Decx;De
c
z ;Dc

c
xz

� �T ð5Þ

Dr tð Þ ¼ Drx;Drz;Drxz
� �T ð6Þ

Be ¼
1 �tc 0

�tc 1 0

0 0 2 1þ tcð Þ

0

@

1

A ð7Þ

whereDr is the incremental stress tensor and BeJ is the

compliance matrix in which the creep compliance

function J(t0,t-t0,T) depends on the concrete age at the
moment of loading t0 and the temperature T. Justified

by the focus of this model on the structural level, the

creep Poisson ratio tc under biaxial stresses is

assumed constant and equal to the elastic value.

Based on the formulation derived by [34], the

biaxial creep strain tensor given by the integral of

Eq. (4) is determined through a fitted series of

Dirichlet as

J t0; t � t0; Tð Þ �
Xm

i¼1

aiðt0Þ 1� e�kiu Tð Þ t�t0ð Þ
h i

ð8Þ

where ai are the scale factors that depend on the age of

loading t0 and ki are retardation time constants that

govern the shape of the logarithmic decaying creep

curve, u(T) is the temperature shift function that

depends on the temperature, t is the considered time

and m are the number the series of Dirichlet used to

approximate the compliance function [2]. The defining

parameters are determined by applying the least

square method to a creep empirical expression. In

the analysis presented in this paper the expression
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proposed by Model Code 1990 (MC-90) [35] is used;

which is justified by the fact that the model that is in

the basis of this work [2] used this expressions. The

empirical curves were not updated to more recent ones

in order to ensure a direct comparison between the two

models. Also, considering the main goal of this

work—evaluate the influence of time-dependent

strains in the nonlinear shear structural response—

MC90 expressions are acceptable and will not affect

the main conclusions related to shear behavior.

The approximation of the Dirichlet series is

performed by means of the hidden variables formu-

lation [34]; constants ki set as 10-i (k1 = 0.1,

k2 = 0.01; k3 = 0.001) and 3 series are considered

(m = 3), which does not require the storage of all

previous stress states for the determination of the creep

strain increment in a time step. The algorithm used to

compute creep strains through a Dirichlet series is

described in detail in Annex A.

2.2.2 Stress-independent strains

Biaxial shrinkage strain Desh is given by the vector of

stress-independent volume changes:

Desh tð Þ ¼ Deshx ;De
sh
z ; 0

� �T ð9Þ

In the analysis presented in the paper, the MC-90

code [35] function for the total shrinkage strains, i.e.

including both autogenous and drying shrinkage, is

used to compute the increment of shrinkage strain as:

Deshx ¼ ecs0bs t � tsð Þ; Deshz ¼ ecs0bs t � tsð Þ ð10Þ

in which ts is the age of concrete at the start of

shrinkage; ecs0 is the notional shrinkage coefficient

that is a function of the compressive strength of

concrete, of the cement type and of the environmental

relative humidity; bs is the coefficient that describes

the development of shrinkage with time and depends

on the dimensions of the cross-section of the element.

Effects of temperature variations are accounted for

by means of the stress independent strain vector DeT:

DeT tð Þ ¼ a Tn � Tn�1ð Þ
1

1

0

2

6
4

3

7
5 ð11Þ

through the coefficient of thermal dilatation of

concrete a and the differences of temperature T be-

tween the time steps n and n-1.

2.3 Formulation to account for shear and time-

dependent effects

In the shear-sensitive sectional model, the plane

section theory is coupled with a shear stress constraint,

and the determination of the fibre state is performed

using a hybrid stress–strain input parameters. For each

fibre, given the axial strain in concrete ex and the

assumed shear stress s* = V/A, and using the equilib-

rium, compatibility and constitutive equations, the

strain and stress states and the stiffness of the fibre are

determined. Details about the formulation can be

found in [17].

The constitutive model is formulated in terms of

average principal strains e12 = [e1 e2]
T and average

principal stresses r12 = [r1 r2]
T, in which the prin-

cipal directions of the strain and stress tensors are

assumed to be coincident. In the principal referential

axes, the 2D stress–strain state can be written as

r1
r2
s12

8
<

:

9
=

;
¼ D12

e1
e2
c12

8
<

:

9
=

;
; D12 ¼

E1 0 0

0 E2 0

0 0 G12

0

@

1

A

ð12Þ

G12 ¼
1

2

r1 � r2
e1 � e2

ð13Þ

where E1 and E2 are the stiffness modulus in each

principal direction and G12 is the co-rotational

transversal modulus [36].

Transversal steel is considered smeared through its

volumetric ratio qst and is submitted to axial stresses

rz
st (along direction z). The increment of axial stresses

in the transversal reinforcement Drz
st is computed as

0

Drz

0

0

B
B
@

1

C
C
A

st

¼ Dst

0

Dez

0

0

B
B
@

1

C
C
A;

Dst ¼
0 0 0

0 qstEst 0

0 0 0

0

B
@

1

C
A ;

qstEst ¼
Xnk

k¼1

Ast;k

skbk
Est;k

� �

ð14Þ

where Est is the elasticity modulus of steel; as the cross

section can have different configurations of stirrups,

Ast,k is the area of transversal steel bk is the width of the
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cross-section and sk is the longitudinal spacing of each

configuration k (for more details see Ferreira et al.

[18]). Compatibility requirements impose that the

vertical strain in concrete and the strain in the

transversal reinforcement are equal, being denoted as

ez. No bond slip is considered. The stiffness matrix of

the fibre Dfibre is given by the summation of contri-

butions of concrete and transversal reinforcement,

upon rotation to the local x–z referential system,

Drx

Drz

Dsxz

0

B
B
@

1

C
C
A ¼ Dfibre

Dex

Dez

Dcxz

0

B
B
@

1

C
C
A

Dfibre ¼
D11 D12 D13

D21 D22 D23

D31 D32 D33

0

B
@

1

C
A

D22 ¼ D22 þ qstEst

ð15Þ

The determination of the state of the fibre (con-

densed stiffness matrix Kfibre and internal resistant

force Sfibre) is presented in the following sections,

including the effects of the non-mechanical strains due

to the time-dependent effects.

The contribution of the fibres to the sectional

stiffness matrix Ksec and internal force vector Ssec are

determined by the integration of stiffness and forces of

all the fibres of the cross section, as:

Kcþst
sec ¼

Z

A

TT Kfibre T dA ð16Þ

Scþst
sec ¼

Z

A

TT Sfibre dA ð17Þ

where A is the area of each fibre and T is the

Timoshenko transformation matrix that relates the

generalized strains of the element to the strains in each

fibre.

Longitudinal steel is considered under axial strain–

stress state. The contribution of the longitudinal

reinforcement for the cross-section can be computed

as the integral of stiffness and stresses throughout all

the filaments as:

Ksl
sec ¼

Z

Asl

TT
sl E

sl Tsl dAsl ð18Þ

Sslsec ¼
Z

Asl

TT
sl r

sl
x dAsl ð19Þ

where Asl is the area of each steel filament and Tsl is the

transformation matrix related to the plane section

theory.

The element used is a 2-node Timoshenko FE with

linear shape functions. The determination of the

element stiffness matrix Kelem and the internal resis-

tant load vector Felem use the sectional formulations

formerly described:

Kelem ¼
Z

L

BKsec Bdx ð20Þ

Felem ¼
Z

L

BT Ssec dx ð21Þ

These integrals are solved through the Gaussian

Quadrature Method and reduced integration is con-

sidered in order to avoid shear locking. The nonlinear

FE model is implemented into a Newton–Raphson

(NR) framework in order to solve the global equations

of equilibrium.

2.3.1 Basic fibre state determination

In order to determine the state of each fibre, two

requirements have to be fulfilled: (i) equilibrium in the

transversal direction between the concrete and the

vertical reinforcement, given by:

Drcz þ qstDr
st
z ¼ 0 qstDr

st
z ¼

Xnk

k¼1

Ast;k

skbk
Drstz;k

� �

ð22Þ

and (ii) the computed increment of shear stress Dsxz
must equate the imposed shear stress given by the

fixed stress constraint Ds*:

Ds� � Dsxz ¼ 0 ð23Þ

Considering the system of these two equations and

making use of the Eq. (15) and after mathematical

handling, the increments of vertical axial strain Dez
and shear strain Dcxz are given by:

Dez ¼
D23D31 � D33D21ð ÞDex � D23Ds�

D33D22 � D23D32

ð24Þ

Dcxz ¼
D22Ds� þ D32D21 � D31D22

� �
Dex

D33D22 � D23D32

� � ð25Þ
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being functions of the increments of the longitudinal

axial strain Dex, the shear stress Ds* and the material

stiffness matrix Dfibre. This determination is not linear

and an iterative procedure within the fibre level is

needed; for more details see [17].

After convergence is achieved and the requirements

at the fibre level are verified, a static condensation of

Eq. (15) is performed in order to eliminate the

elements related with the vertical direction (Drz,
Dez) that are not included in the sectional formulation,

resulting into the following expressions:

DSfibre ¼ Kfibre

Dex
Dcxz

( )

ð26Þ

Kfibre ¼
D11 �

D12D21

D22

D13 �
D12D23

D22

D31 �
D32D21

D22

D33 �
D32D23

D22

0

B
@

1

C
A

¼ D�
11 D�

13

D�
31 D�

33

� �

ð27Þ

DSfibre ¼
Drx
Dsxz

 !

ð28Þ

where Kfibre is the condensed stiffness matrix and Sfibre
is the internal resistant force vector of the fibre.

2.3.2 Inclusion of the time-dependent effects

The time of the analysis is divided into time steps.

During a time-step, the structural response is determined

through the initial strain approach derived by [37] and

also used by [2, 3]. Load is applied at time tn and is kept

constant along the time step Dtn. At each time instant t,

the increment of the total strain vector in a fibreDet(t) is
given by the sum of the mechanicalDem(t) and the non-
mechanical strain Denm(t) vectors Eq. (1).

The non-mechanical biaxial strain vector in each

fibre is given by the summation of the different

contributions (creep Dec, shrinkage Desh and thermal

gradients DeT) as:

Denm tð Þ ¼ Dec tð Þ þ Desh tð Þ þ DeT tð Þ ð29Þ

The incremental form of the equivalent nodal force

vector in the element due to non-mechanical strains

DFelem
nm is given by the expression of the Finite Element

Method (FEM):

DFnm
elem ¼

Z

V

TTDDe
nm
dV ð30Þ

However, accordingly to the proposed shear fibre

beam model, the element equivalent force vector due

to non-mechanical strains DFelem
nm is computed in the

incremental form through the use of the sectional

equivalent force vector DSsec
nm (integration domain is

the element length (L) and reduced gauss integration is

used in the 2-nodes FE, that means one gauss point

located at the middle of each element):

DFnm
elem ¼

Z

L

TT DSnmsec dx ð31Þ

where T is the Timoshenko transformation matrix and

the extended formats of increment of equivalent load

force and non-mechanical strain vectors are:

DSnmsec ¼
cDN

DVz

DMy

2

6
4

3

7
5

nm

ð32Þ

Denm ¼
Dex
Dcxz
D/y

2

6
4

3

7
5

nm

ð33Þ

The sectional equivalent force vector due to non-

mechanical strains DSelem
nm , which includes concrete

and the smeared transversal reinforcement, is given as

DSnmsec ¼
Z

TT DSnmfiber dA ð34Þ

In each fibre, as the concrete and stirrups are in

equilibrium in the vertical direction and consequently

the resultant vertical stresses are null, the equivalent

internal load vector due to initial strains DSfibre
nm is

computed incrementally by means of the condensed

constitutive matrix of the fibre presented in Eq. (27).

DSnmfibre ¼ KfibreDe
nm ð35Þ

DSnmfibre ¼
Drnmx
Dsnmxz

 !

ð36Þ

Kfibre ¼
D�

11 D�
13

D�
31 D�

33

� �

ð37Þ

Denm ¼
Denmx
Dcnmxz

 !

ð38Þ
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As presented in the previous point, the input

variables needed to perform the fibre state determina-

tion are the mechanical longitudinal strain and the

shear stress:

DetxðzÞ ¼ De0 þ D/y � z
Ds� ¼ G�A�Dc0

(

ð39Þ

In the presence of non-mechanical strains, these

input equations are re-written as:

emx ðzÞ ¼ Detx � Denmx
Ds� ¼ G�A�Dc0

(

ð40Þ

On the one hand, in these entering assumptions,

non-mechanical strains are only taken into account in

the longitudinal direction Dex
nm; in fact, as a conse-

quence of the hypothesis assumed by the shear fibre

beam model, neither the vertical Dez
nm nor the

transversal non-mechanical strains Dcxz
nm are

accounted in this stage. On the other hand, the

outputted mechanical strains at the fibre level (the

vertical Dez and distortion Dcxz strains determined

respectively in Eq. (24) and Eq. (25) are computed, in

an incremental form, as functions of the mechanical

longitudinal strain Dex
m, imposed tangential stress Ds*

and the current stiffness matrix of the fibre Dfibre:

Demz ¼ f Demx ;Ds
�;Dfibre

� �

Dcmxz ¼ f Demx ;Ds
�;Dfibre

� �

(

ð41Þ

In order to compute the total incremental strains,

the non-mechanical strains are added to the corre-

spondent outputted mechanical strains as:

Detz ¼ Demz þ Denm�z

Dctxz ¼ Dcmxz þ Dcnmxz

(

ð42Þ

Note that, in the z-direction, Dez
nm* is not directly

given by the non-mechanical strain Dez
nm, actually, the

presence of transversal reinforcement do not allow for

the free deformation of the concrete in this direction.

In order to take into account the restraining effects to

the imposed deformations brought by the presence of

stirrups, the equilibrium in the z-direction given by

Eq. (22) is re-written as:

Drcz þ qstDr
st
z ¼ D�Denmz ð43Þ

or, in terms of strains, as:

DcDez þ qstEstDez ¼ D�Denmz ð44Þ

resulting into the following expression for the non-

mechanical strains in the vertical direction including

the restraining effects of the transversal reinforcement

in the fibre:

Denm�z ¼ Dc

Dc þ qstEst

Denmz ¼ 1

1þ nqst
Denmz ; n ¼ Est

Dc

ð45Þ

in which the stiffness of concrete Dc is given by the

element D22 of the stiffness matrix of the concrete

fibre, Est and qst corresponds, respectively, to the

elasticity modulus and the volume ratio of transversal

steel.

2.4 Finite element implementation

In the time-dependent analysis the period of time is

divided into time steps, and the non-mechanical strains

are continuously updated. Pertaining to the computa-

tion of strains, a step-forward integration scheme in

the time domain is performed by continuously adding

the results obtained at each previous time step, as

adopted in [2]. The response of a structure during a

time step is determined through the initial strain

approach previously described.

The increment of non-mechanical strains Denm that

occurs during the time interval Dtn is given by the

summation of the different contributions (creep Dec,
shrinkage Desh and thermal gradients DeT). After-

wards, the equivalent nodal force vector in the element

due to the non-mechanical strains DFelem
nm is deter-

mined. This load vector is assembled into the struc-

tural equivalent load vector. Load is then applied at

time tn and is kept constant for the time step Dtn.
A Newton–Raphson procedure is used to find the

solution of the global equilibrium equations.

3 Simulation of the beam tests by Nie and Cai

3.1 Description

Experimental tests on diagonally cracked beams under

sustained load were performed by Nie and Cai [38].

The goal of this experimental campaign was to assess

the contribution of shear deformations to the long-

term deflection of RC beams. The specimens were
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designed to develop both flexural and diagonal

cracking under service load levels. In order to

determine the load level to apply in the long-term

tests that ensured significant diagonal cracking, instant

loading tests were carried out previously in analogous

specimens. By these means, the sustained load applied

in the long-term tests was chosen as the correspondent

load causing diagonal cracking of 0.2–0.3 mm of

width.

The beams are simple supported with a total length

of 2.78 m and a distance between supports of 2.18 m.

The cross section is of rectangular shape with 0.2 m

width and 0.4 m high. The beams have longitudinal

(two rows of three rebars) and transversal (two-branch

stirrups) reinforcement. The beams were tested under

two-point loading with a shear-span ratio of 2.5; each

point load located at a distance of 0.85 m from the

support.

From all the specimens tested, those with vertical

transversal reinforcement were considered for simu-

lation, whose characteristics are listed in Table 1. The

general information about the applied loads and

correspondent diagonal crack widths are included in

Table 1. The analysed beams differ from each other in

the ratios of longitudinal qsl and transversal qst
reinforcement and in the concrete strength fc

0. The
duration of the long-term tests were of 3 months and

the mid-span deflection data is available. Average

temperatures were of 28.1 �C for specimens B1–B3

and 17.5 �C for B5 and B6 and relative humidity of

50.7 and 61 %, respectively.

The experimental tests were simulated with the

proposed shear model and with the basic flexural

model [2]. By comparing both results (Fig. 1a), it is

possible to assess the importance of considering shear

effects in the prediction of the behaviour of these

beams. The mesh used is the same in both numerical

models (consisting of 26 FEs of constant length and

fibres of 0.005 m of width) and the reinforcement

ratios and material properties considered are those

presented in Table 1. Both models include similar

creep and shrinkage formulations.

3.2 Results and discussion

All the specimens were analysed with the numerical

models; however only the results of one beam (B1) are

presented here; the other simulations presented similar

results and agreement with the experimental data [39].

The experimental deflections at mid-span with time

are depicted in Fig. 1a along with the predictions

computed by the shear and flexural models. In general,

the instantaneous deflection is well predicted by the

shear model in contrast to the systematic lesser

displacement computed by the flexural model. This

difference evidences the significant importance of

shear in the behaviour of these specimens. Regarding

the general long-term response, acceptable predictions

were achieved by the shear model. Figure 1b repre-

sents the contributions of bending (u) and shear (c) to
the total long-term deflection, computed by the

proposed shear model. It is observed that shear

distortion is significant only in the instantaneous

deflection, bringing almost null contribution to the

long-term deflection.

4 Numerical studies on shear critical transfer

girders

4.1 Time-dependent response under service load

The classical shear benchmark of Vecchio and Shim

[40], beam VSA1, submitted to instantaneous incre-

mental load until failure at the age of 38 days was

considered as a reference example in this study. In a

Table 1 Characteristics of the Nie and Cai beam tests

Beam qsl
(%)

qst
(%)

Longitudinal steel fsy
(MPa)

Transversal steel fsy
(MPa)

Concrete f0c
(MPa)

Sustained load

(kN)

Initial diagonal crack

width (mm)

B1 2.5 0.25 462 293 38 220 0.2

B2 3.4 0.25 462 293 38 210 0.2

B3 2.5 0.50 462 293 38 220 0.2

B5 2.5 0.50 462 293 41 220 0.2

B6 2.5 0.50 462 293 41 260 0.3
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previous work [39], the shear model reproduced

correctly this test under instant load, revealing the

strong relevance of shear effects in the response. Here,

the VSA1 beam is adapted as part of integral

structures; theoretical transfer girders with different

levels of restraint were considered and simulated with

the numerical model.

Two transfer girders (TG) are analysed differing

only in the cross section of the columns as represented

in Fig. 2. The majority of properties of the original

beam VSA1 were maintained: geometry, material

properties, loading configuration and transversal rein-

forcement. The mechanical properties of concrete

were as follows: fc = 22.6 MPa, fct = 2.37 MPa and

Ec = 36.5 GPa. The mechanical properties of the

longitudinal steel reinforcement were fsy = 440 MPa

and Es = 201 GPa for rebars of 25.2 mm of diameter

and fsy = 436 MPa and Es = 200 GPa for rebars of

29.9 mm of diameter. As for the transversal reinforce-

ment, the mechanical steel properties were fsy = 600 -

MPa, fsu = 649 MPa and Es = 200 GPa.

The negative reinforcement was designed accord-

ing to the negative moments resulting from the

increasing flexure stiffness in the columns. In order

to investigate the influence of the stiffness of the

restraining element, the columns were simulated

through elastic supports at both ends of the beam—

the translation Kx and rotation stiffness Khy—deter-

mined accordingly to the geometry of the columns

(Fig. 2): E is the elasticity modulus of concrete

(35 GPa), I is the modulus of inertia of the cross

section (b is 0.3 m and h is 0.3 m for TG1 and 0.5 m

for TG2) and L is its length (4 m for both girders).

Significantly different restraint levels are achieved:

TG1 represents small level of restraint, Kx = 8859 -

kN/m and Khy = 23,625 kNm/rad (comparable to a

simple supported condition) and TG2 represents

higher level of restraint, Kx = 41,016 kN/m and

Khy = 109,375 kNm/rad (comparable to a double

end fixed condition); TG2 has translation and rotation

stiffness 4.6 times higher than TG1.

The girders were loaded until a service load of

P = 225 kN (V = P/2 = 112.5 kN), corresponding

to 49 % of ultimate load [40]. This load was sustained

for 4000 days and afterwards the girders were again

loaded incrementally until failure. Further analyses

were performed without passage of time, with the

instantaneous load being applied directly until failure.

In addition to these simulations with the shear

model, a parallel set of simulations are also performed

with the flexural basic model [2] in order to assess the

influence of shear in all these phenomena. Same

meshes and material properties were considered in all

the analyses.

The effects of cracking will be discussed in the

following presentation of results, with damage refer-

ring to observable physical damage of cracking of

concrete. In that sense, no distinction will be made

between cracking and damage in the element. It should

be noticed that, although related, the authors do not

refer strictly to a damage variable in the sense of a

damage constitutive model.

The different responses of the two girders are

evident in Fig. 3 where the development of axial force

(N) is represented with time. In the flexible girder

TG1, axial forces are low and there is a small influence

of shear in the response (both models give similar

results). In TG2, there are greater axial forces gener-

ated by the restraining effects. Development of tensile

forces with time caused by the restraining transient
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Fig. 1 Deflection at mid span versus time for beam B1: a total

displacements and b contributions of shear and bending
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strains is higher when shear effects are considered.

The inflection point in the shear model around

1500 days reflects the increment of cracking. Shear

effects in this case (TG2) increases damage.

Longitudinal strains ex and stresses rx
c in concrete

along themid shear span cross section under service load

level are depicted in Fig. 4 for t = 0 and t = ? and for

both models. In general, consideration of shear leads to

an increment of curvature of the cross section and an up

rise of the neutral axis. TG1 cross section is cracked at

the service load level. In the long-term, there is a

decrease of compression and tensile stresses which lead

to closing of cracks. TG2 presents an opposite response:

the cross section is not cracked for t = 0 and cracks with

Fig. 2 Characteristics of the transfer girders
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Fig. 3 Variation of axial force in the transfer girders with time
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time due to the restraining strains. Here, the shear model

presents more damage than the flexural model, with

lower tension stiffening stresses.

4.2 Behaviour at failure

After passage of time, the girders are submitted to

incremental loading until failure. Longitudinal strains

in the transversal reinforcement for t = ? are repre-

sented in Fig. 5 for the mid shear span cross section

and for two shear load levels (V): 112.5 kN (service

sustained load) and 175 kN (higher load level). The

results of the loading tests performed without time

passage are included in these graphs as t = 0. Only

results of the shear model are presented as the flexural

model does not consider transversal reinforcement.

For TG1, stirrups are activated right after the

application of the load (V = 112.5 kN). Under

sustained load and for t = ?, a redistribution of

forces between concrete and transversal steel is

observed, with increasing strains in the stirrups at

the bottom of the section and unloading at the upper

area. In girder TG2, stirrups are compressed for t = 0

and are activated for t = ?. Pertaining to the higher

load level (V = 175 kN), TG1 presents a strain offset

between t = 0 and t = ?: long-term analysis

(t = ?) presents greater strains in the stirrups than

short-term analysis (t = 0). However, this difference

is small when compared with the TG2 case. Here, for

V = 175 kN stirrups have null strains for t = 0 and

are yielded for t = ?. These results show the

development of stirrups strains with time as conse-

quence of restraining shrinkage strains. In fact, in

contrast with flexural resisting mechanism, delayed

strains may influence the latter shear performance of

RC frames.
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Fig. 4 Strains (left) and stresses (right) in concrete along the height of the mid shear span cross section: a TG1, b TG2
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This influence is clear when comparing contribu-

tions of shearmechanism in Fig. 6with increasing load

for short-term (t = 0) and long-term analysis (t = ?):

Vs is the contribution of transversal reinforcement and

is determined by integrating the longitudinal forces in

stirrups along the section height (Fig. 5) and Vc is the

concrete contribution and corresponds to the load level

of cracking initiation and consequent activation of

transversal reinforcement. These results also relate to

the cross section located at mid shear span. These

graphs show how time-dependent restrained strains

affect the concrete contribution to shear: Vc,? takes

smaller values than Vc,0 and this difference is greater

for higher levels of restraint.

In other words, the rigid frame TG2 presents more

damage due to higher restraining shrinkage strains,

resulting into a sooner activation of stirrups and

consequent reduction of ultimate shear strength. The

yielding of stirrups takes place for lower load levels

for t = ? than for t = 0, being this difference

particularly relevant in the case of the rigid girder

TG2, where a relevant reduction of shear capacity is

observed, as discussed next.

The analyses presented the following results of

ultimate shear capacity: Vu (t = 0) = 221 kN and Vu

(t = ?) = 209 kN for TG1; Vu (t = 0) = 250 kN and

Vu (t = ?) = 173 kN for TG2. Lower ultimate shear

capacity is observed in the long term analysis (t = ?),

being this difference more relevant for girder TG2.

This is due to the loss of Vc caused by cracking of

concrete due to the delayed restrained strains. The

ratios of ultimate shear capacity (Vu) and concrete

contribution to shear resistance (Vc) determined in the

short- (t = 0) and long-term (t = ?) analyses are
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Fig. 5 Strains in transversal reinforcement along the height of the mid shear span cross section of TG1 (left) and TG2 (right):

a V = 112.5 kN and b V = 175 kN
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presented in Fig. 7 as function of axial restraint Kx.

The results of the simple supported beam VSA1

analysed in Ferreira [39] are added to this graphs with

Kx = 0. The shear strength Vu diminishes in the long

term with increasing Kx. This decrease is related with

the loss of concrete capacity Vc to absorb shear stresses

when pre-damage exists and higher restraints bring

higher delayed strains and damage. The flexural model

(only capable of capturing bending mechanisms) is

impermeable to these aspects, predicting similar load

capacities for all girders, despite their restraint levels

or long-term effects.
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5 Conclusion

The interaction between time-dependent strains and

shear resistant mechanisms of RC structural elements

in service and ultimate limit states is observed and

quantified in this paper.

A time-dependent model accounting for the effects

of creep, shrinkage and temperature variations is

incorporated in a shear-sensitive fibre beam model.

The model is validated through experimental tests

available in literature on diagonally pre-cracked RC

beams under sustained load. The results of the shear

model are compared with the ones of a traditional

flexural beam model and with the experimental data.

Shear was found relevant in the response of these

beams. The shear model achieved a better fitting with

the experimental data in comparison with the flexural

model. It was observed that the influence of shear

strains on the total deflection was relevant mainly in

the instantaneous response. However, the share of

shear deformation in the delayed deflections under

constant loads was observed small compared to that of

bending deformation.

Afterwards, the model is used to study the effects of

transient restrained strains in the shear response of RC

integral frames. A classical shear beam benchmark

was adapted as part of transfer girders with different

geometries of columns generating different magni-

tudes of restraint; a flexible and a rigid girder. Two

analyses were performed for each girder: (i) a long-

term analysis with loading (service load level),

passage of time and loading again until failure and

(ii) a short-term analysis with instantaneous loading

until failure. A considerable decrease of the ultimate

shear capacity was predicted in the long-term analy-

ses: (5.4 %) for the flexible girder and (28.8 %) for the

rigid girder. This decrease is consequence of cracking

and tensile stresses brought by restraining strains in

the time analysis, which were more relevant in the

rigid girder. This damage decreases the concrete

contribution to shear resistance, leading to the activa-

tion of the transversal reinforcement for lower loading

levels. This phenomenon is only found in the shear

mechanism. It differs from the bending ductile

response, in which the time-dependent response in

service does not influence the ultimate failure stage in

terms of material nonlinearities.

The same set of analysis was performed with the

flexural basic model, demonstrating its inadequacy to

analyse structures that may be critical to shear.

The magnitude of the generated tensile forces

varies with time, depending on the cracking state of

the element; which differs from an externally applied

load. This effect can be relevant in large integral

structures. Accurate numerical assessments must

account for the time-dependent strains and its influ-

ence in the ultimate shear resistance. It is worth

noticing that the presented model is based on a

relatively simple approach that allows fast modelling

construction, hence it is particularly suitable for whole

structural applications besides local analyses.
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Annex A

Algorithm for computing the biaxial creep strain

tensor (Eq. 4) through the approximation of the

Dirichlet series (Eq. 8) using the hidden variables

formulation of Bazant and Wu [34].

The time domain is divided into time steps Dtn that
go from tn to tn?1 and the Dirichlet series is

approximated as:

J t0; t � t0; Tð ÞDrn �
Xm

i¼1

Ain 1� e�kiu Tð ÞDtn
h i

ð46Þ

with the increment of creep strain Den
c determined as:

Decn ¼ Be

Xm

i¼1

Ain 1� e�kiu Tð ÞDtn
h i

ð47Þ

where Ain is the hidden state variable vector, given by:

Ain ¼ Ain�1e
�kiu Tð ÞDtn�1 þ Drnain ð48Þ

In the extended format, the determination of the

biaxial strain increment due to creep involves com-

puting the following expressions (consideringm = 3):
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Ain ¼
Ain;x
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Ain�1;xz 1� e�kiu Tð ÞDtn�1

� 	
þ Dsn;xzai;n

0

B
B
B
B
@

1

C
C
C
C
A

ð51Þ

In order to start the analysis (n = 1) the first hidden

variable vector Ai1 is given as

Ai1 ¼
Ai1;x

Ai1;z

Ai1;xz

0

B
@

1

C
A ¼

Dr1;xai;1
Dr1;zai;1
Ds1;xzai;1

0

B
@

1

C
A ð52Þ

Determination of the creep compliance function is

accomplished by fitting, through the least square

method, its aging scale parameters ai to the empirical

expression considered. Constants ki are set as 10-i

(k1 = 0.1, k2 = 0.01; k3 = 0.001) and three terms on

the Dirichlet series are considered (m = 3). From

Eq. (8) the following system of simultaneous equa-

tions is obtained

1� e�kiDtn 1� e�kiDtn 1� e�kiDtn

1� e�kiDtn 1� e�kiDtn 1� e�kiDtn

1� e�kiDtn 1� e�kiDtn 1� e�kiDtn

0

@

1

A

n�m

a1n

a2n

a3n

0

B
@

1

C
A

m�1

¼
J t0; t1� t0ð Þ
J t0; t2� t0ð Þ
J t0; t3� t0ð Þ

2

6
4

3

7
5

n�1

ð53Þ

which is solved to determine the values of ai that better

fit the empirical curve. Typical values for ai are around

1 9 10-7 and 2 9 10-7.
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