
ar
X

iv
:1

41
1.

66
39

v1
  [

m
at

h.
N

T
] 

 2
4 

N
ov

 2
01

4

Functions and differentials on the non-split Cartan
modular curve of level 11
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Abstract

The genus 4 modular curve Xns(11) attached to a non-split Cartan group of level 11
admits a model defined over Q. We compute generators for its function field in terms of
Siegel modular functions. We also show that its Jacobian is isomorphic over Q to the new
part of the Jacobian of the classical modular curve X0(121).

Introduction

When making computations on the modular curve attached to a congruence subgroup Γ of
level N containing Γ1(N), one counts on the Q–rationality of the cusp at infinity. Moreover,
several well-known classical modular tools, such as the Dedekind η-function, are then available,
together with explicit methods to find a basis for the vector space of weight 2 cuspforms, that
is, a basis of regular differentials on the curve. Any such a cuspform f(τ) has period 1 on
the complex upper half-plane, hence admits a Fourier expansion in e2πiτ and, furthermore, the
minimal field of definition for f(τ) is the number field generated by its Fourier coefficients. All
of this provides some crucial help in order to compute generators for the function fields of the
curve and its quotients. See, for instance, [Gon91], [Shi95], [BGGP05], [Gon12].

By constrast, this kind of computation becomes more complicated and laborious whenever Γ
does not contain Γ1(N). This article is meant to serve as an explicit example in which Γ is the
congruence subgroup corresponding to a non-split Cartan group of level N=11. The attached
modular curve Xns(11) has genus 4 and is not hyperelliptic. Though it is defined over Q, its
cusps are not. Even worse, for a function on the curve, its minimal field of definition does not
necessarily coincide with the number field generated by its Fourier coefficients. The interest
on the modular curves Xns(N) is closely related to the class number one problem and comes
from the classification in [Ser72] of the cases in which the Galois representation attached to the
N -torsion of an elliptic curve is not surjective.

An equation for Xns(11) is derived in [DFGS14] from a certain elliptic quotient X+
ns(11)

which was first handled in [Lig77]. This is done by combining a result of [Bar10] on the
ramification locus of the modular j–function together with an expression given in [Hal98] for
this function in terms of the Weierstrass coordinates ofX+

ns(11). The proof relies strongly on the
fact that this elliptic curve has trivial rational 2-torsion. Through a different method not using
this proof, in Section 2 we compute generators for the function field of Xns(11) satisfying the
equation given in [DFGS14]. They can be explicitly given in terms of Siegel modular functions.

∗The authors are partially supported by DGICYT Grant MTM2012-34611
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For that purpose, some information on the modular curve Xns(11) and its cusps is recalled in
Section 1.

A basis of regular differentials for Xns(11) can be obtained from the equation in Section 2
to produce a period matrix for the Jacobian of the curve. According to [Che98], this Jacobian
is isogenous over Q to the new part of the Jacobian of the genus 6 modular curve X0(121).
In Section 3 we show computationally that these two abelian varieties are in fact isomorphic
over Q and, nevertheless, X0(121) is not a covering of Xns(11).

1 The modular curve Xns(11)

Let p be an odd prime. A non-split Cartan group of level p is a subgroup of GL2(Fp) in the
conjugacy class of {(

m αn
n m

) ∣∣∣ (0, 0) 6= (m,n) ∈ F2
p

}

for any non-square α in F
∗

p . Such a matrix group and its normalizer in GL2(Fp) define, as shown
in [Lig77] or [Maz77], respective canonical curves Xns(p) and X+

ns(p) defined over Q, along with
projections

X(p)
π

// Xns(p)
π+

// X+
ns(p)

j
// X(1),

where X(p) is a model over Q for the classical modular curve attached to the kernel of the
mod p reduction map SL2(Z)−→ SL2(Fp). The map π+ has degree 2 and is defined over Q,
so that X+

ns(p) = Xns(p)/〈w〉 for an involution w of Xns(p) defined over Q. This involution is
conjectured to be the the only non-trivial automorphism of Xns(p) whenever p > 11. As for
the maps π and j, they have degree (p+1)/2 and p (p−1)/2, respectively. We refer to [Bar10],
where formulas for the genus and the number of cusps for Xns(p) and X+

ns(p) are given.

An explicit description of the cusps is required for our purposes. There is a bijection between
the set of cusps of X(p) and the quotient set of F2

p \ {(0, 0)} by the equivalence relation
identifying a pair (m,n) with the pair (−m,−n). This bijection comes from the reduction
mod p of the coordinates, taken to be coprime, of every point in P1(Q). The (p2 − 1)/2 cusps
thus obtained map to the cusps of X+

ns(p), which are represented by the pairs of the form (m, 0)
for m = 1, . . . , (p− 1)/2. On the above canonical model for X+

ns(p), the set of cusps is a Galois
orbit defined over the maximal real subfield of the p-th cyclotomic extension of Q. Each of
these cusps has two preimages on Xns(p) which are switched by the involution w, and the set
of cusps on Xns(p) is a Galois orbit defined over the p-th cyclotomic extension of Q [Ser89].

From now on, we stick to the case p = 11, namely to the only prime p for which X+
ns(p) has

genus 1. As a matter of fact, X+
ns(11) is an elliptic curve. A Weierstrass equation for X+

ns(11)
was determined in [Lig77]:

y2 + y = x3 − x2 − 7x + 10. (1.1)

It has conductor 121 and label B1 in [Cre97]. Its Mordell-Weil group is infinite and generated
by the point P :=(4,−6). So X+

ns(11), as an algebraic curve, has infinitely many automorphisms
defined over Q. They are generated by the elliptic involution

(x, y) 7−→ (x,−1 − y)

and the translation-by-P map

(x, y) 7−→
(

4x2 + x− 2 + 11y

(x− 4)2
,
(2x2 + 17x− 34 + 11y) (1− 3x)

(x− 4)3

)
.
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Among the corresponding infinitely many pairs of functions in Q
(
X+

ns(11)
)
satisfying (1.1), in

Section 2 we compute functions for which the projection

j : X+
ns(11)

// X(1)

is given by the rational function

j(x, y) =
(
7x2 + 16x− 44 + (x+ 18) y

)2 (
4x3 + x2 − 24x− 11−

(
x2 + 3x+ 5

)
y
)11

(
11 (y − 5)

(
x2 + 3x− 6

)(
3x2 − 3x− 14− (2x+ 3) y

))3
((
12x3 + 28x2 − 41x− 62 +

(
3x2 + 20x+ 37

)
y
)(
x3 + 4x2 + x+ 22− (3x− 1) y

))3

(x+ 2)
−12

(x− 4)
−14

(
x5 − 9x4 − 16x3 + 53x2 + 37x− 23

)
−11

(1.2)

obtained through the above translation from the expression for j in Section 2.2 of [Hal98]. This
fixes the j-invariants of the points on X+

ns(11) corresponding to the origin O of (1.1) and to the
point P, namely j(O) = 23 33 113 and j(P ) = −215 53 3.

The bielliptic curve Xns(11) has genus 4. We note that Proposition 1 in [Ogg74] implies
that it is not hyperelliptic. The equation derived in [DFGS14] for this curve, as a degree 2
covering of the elliptic curve X+

ns(11), is

t2 = −(4x3 + 7x2 − 6x + 19). (1.3)

In particular, the curve admits an exotic involution ̺ inducing the elliptic involution onX+
ns(11).

The goal of [DFGS14] is proving that w and ̺ generate the full automorphism group of Xns(11).

2 The function field of Xns(11)

In this section we compute generators X, Y, T for the function field of Xns(11) satisfying the
equations (1.1) and (1.3). They can be made explicit from certain modular functions of level 11
with cuspidal divisor. We must first gather the required ingredients at the starting point of our
computations; the main reference is [KL81].

Let us fix the 11-th root of unity ζ := e 2πi/11 together with the generator ǫ := ζ + ζ−1

for the maximal real subfield of Q(ζ). For τ in the complex upper half-plane, let us take
q∗ :=e 2πiτ/11 as local parameter of level 11 at infinity. The set of modular functions of level 11
whose Fourier q∗–expansion has coefficients in Q(ζ) can be naturally identified with the function
field of the modular curve X(11) over that cyclotomic extension. Any such a function can be
uniquely normalized by a suitable constant so that the first non-zero coefficient of its Fourier
q∗–expansion is 1.

To every cusp of X(11), represented by a pair (m,n) as in Section 1, one can attach the
Siegel function

S(m,n) := q 11/2B2(m/11)
∗

(
1− ζnqm

∗

)∏

k≥1

(
1− ζnq 11k+m

∗

)(
1− ζ−nq 11k−m

∗

)
,

where B2(x) = x2 − x + 1/6 is the second Bernoulli polynomial. The power S
132

(m,n) becomes a
function on X(11) whose divisor has support in the set of cusps and can be explicitly given: the
order at a cusp represented by a pair (m′, n′) is 726B2

(
(mm′+nn′)/11

)
, where one regards the

sum mm′+nn′ reduced mod 11. The product of all Siegel funcionts S(m,n) is a constant in Q(ζ).
As a matter of fact, every product of Siegel functions whose divisor has integer coefficients lies
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in the function field of X(11) over Q(ζ). Conversely, every modular unit on X(11), that is,
every non-constant modular function of level 11 with cuspidal divisor can be explicitly written,
up to a non-zero multiplicative constant, as a product of Siegel functions.

Finally, we need some more notation to proceed further. As in Section 1, π and π+ stand
for the canonical projections

π : X(11) −→ Xns(11), π+ : Xns(11) −→ X+
ns(11).

For k = 1, . . . , 5, let Pk denote the image by π of the cusp represented by the pair (k, 0).
The cuspidal points on Xns(11) are then P1, . . . , P5, wP1, . . . , wP5. They all have ramification
index 11 over X(1), are defined over Q(ζ) and are transitively permuted by the Galois group
of this extension over Q. The cuspidal points on X+

ns(11) are π+(P1), . . . , π
+(P5) and their

minimal field of definition is Q(ǫ).

The first step in our computations is an application of the results in [KL81].

Lemma 2.1. There are exactly two normalized modular units X̃, Ỹ on X+
ns(11) having degree

at most 3 and only a pole at π+(P1). There are exactly two normalized modular units Ũ , Ṽ
on Xns(11) which are not functions on X+

ns(11) and have only poles at P1 and wP1 of order 5.

Specifically, the functions X̃, Ỹ , Ũ , Ṽ have divisors

div(X̃) = (π+(P3)) + (π+(P5)) − 2 (π+(P1)) ,

div(Ỹ ) = (π+(P3)) + 2 (π+(P2)) − 3 (π+(P1)) ,

div(Ũ) = 4 (P2) + (P4) + 5 (P3) − 5 (P1) − 5 (wP1) ,

div(Ṽ ) = 4 (wP2) + (wP4) + 5 (wP3) − 5 (P1) − 5 (wP1) ,

and they are respectively given, up to the product by elements in Q(ǫ), by

g5 h5 ,
g5 h5

g3 h3

,
g25 h5

h2 g3 h2
3
g4

,
g5 h

2
5

g2 g23 h3 h4

,

where gk and hk stand for the products of Siegel functions S(m,n) for (m,n) running over a
system of representatives for the set of cusps π−1(Pk) and π−1(wPk), respectively.

As it can be checked from their Fourier q∗-expansions, the functions in Lemma 2.1 satisfy
the relations

Ỹ 2 − 2 ǫ X̃ Ỹ +
(
2 + 6ǫ+ 2ǫ2 − 2ǫ3 − ǫ4

)
Ỹ = X̃3 − 2

(
3ǫ+ 3ǫ2 − ǫ3 − ǫ4

)
X̃2 +

(
3 + 11ǫ+ 5ǫ2 − 4ǫ3 − 2ǫ4

)
X̃

and
Ũ Ṽ = Ỹ 2

(
X̃2 −

(
1− 3ǫ+ ǫ3

)
Ỹ +

(
1− 2ǫ− 3ǫ2 + ǫ3 + ǫ4

)
X̃
)
. (2.1)

Proposition 2.1. With the notation in Lemma 2.1, consider the functions

X̂ := 5− 5ǫ− 7ǫ2 + 2ǫ3 + 2ǫ4 +
(
12− 7ǫ− 12ǫ2 + 3ǫ3 + 3ǫ4

)
X̃,

Ŷ := −12 + 3ǫ+ 10ǫ2 − ǫ3 − 2ǫ4 −
(
13− 7ǫ− 20ǫ2 + 5ǫ3 + 6ǫ4

)
X̃ −

(
46− 19ǫ− 57ǫ2 + 7ǫ3 + 13ǫ4

)
Ỹ

4



and the constants

α2 := 11ǫ+ 6ǫ2 − 4ǫ3 − 2ǫ4, γ3 := −4− 26ǫ− 19ǫ2 + 10ǫ3 + 7ǫ4,

α1 := 21 + 66ǫ+ 25ǫ2 − 24ǫ3 − 12ǫ4, γ2 := −200 − 722ǫ− 313ǫ2 + 259ǫ3 + 133ǫ4,

α0 := 17− 103ǫ− 61ǫ2 + 38ǫ3 + 21ǫ4, γ1 := 208 + 1062ǫ + 633ǫ2 − 396ǫ3 − 245ǫ4,

δ1 := 77 + 242ǫ + 99ǫ2 − 88ǫ3 − 44ǫ4, γ0 := 534 + 1499ǫ + 425ǫ2 − 516ǫ3 − 210ǫ4,

δ0 := 187 + 517ǫ+ 264ǫ2 − 187ǫ3 − 110ǫ4, β := −7− 52ǫ− 38ǫ2 + 20ǫ3 + 14ǫ4.

Then,

X =
α2X̂

2 + α1X̂ + α0 + β Ŷ
(
X̂ − 11ǫ− 6ǫ2 + 4ǫ3 + 2ǫ4

)2 and Y =
γ3X̂

3 + γ2X̂
2 + γ1X̂ + γ0 +

(
δ1X̂ + δ0

)
Ŷ

(
X̂ − 11ǫ− 6ǫ2 + 4ǫ3 + 2ǫ4

)3

are the generators of the function field Q
(
X+

ns(11)
)
satisfying the relations (1.1) and (1.2).

Their values at the cusps are

X(P1) = 11ǫ+ 6ǫ2 − 4ǫ3 − 2ǫ4, Y (P1) = −4 − 26ǫ− 19ǫ2 + 10ǫ3 + 7ǫ4,

X(P2) = 10− 3ǫ− 10ǫ2 + ǫ3 + 2ǫ4, Y (P2) = −29 + 13ǫ+ 37ǫ2 − 5ǫ3 − 9ǫ4,

X(P3) = −3 − 4ǫ+ 11ǫ2 + ǫ3 − 3ǫ4, Y (P3) = 2 + 17ǫ− 21ǫ2 − 4ǫ3 + 6ǫ4,

X(P4) = 2− 2ǫ− 5ǫ2 + 2ǫ3 + 2ǫ4, Y (P4) = −ǫ− 2ǫ2 − 3ǫ3 − ǫ4,

X(P5) = −2ǫ− 2ǫ2 + ǫ4, Y (P5) = 1− 3ǫ+ 5ǫ2 + 2ǫ3 − 3ǫ4,

where X(Q), Y (Q) is an abuse of notation for X(π+(Q)), Y (π+(Q)), respectively. The first
coefficients of their Fourier q∗-expansions are as follows:

qn
∗

X Y

1 11ǫ+ 6ǫ2 − 4ǫ3 − 2ǫ4 −4− 26ǫ− 19ǫ2 + 10ǫ3 + 7ǫ4

q∗ 12 + 54ǫ+ 22ǫ2 − 19ǫ3 − 9ǫ4 −62− 239ǫ− 115ǫ2 + 86ǫ3 + 47ǫ4

q2
∗

58 + 237ǫ+ 113ǫ2 − 86ǫ3 − 46ǫ4 −352− 1463ǫ− 704ǫ2 + 528ǫ3 + 286ǫ4

q3
∗

232 + 968ǫ+ 477ǫ2 − 351ǫ3 − 192ǫ4 −1763− 7441ǫ− 3640ǫ2 + 2691ǫ3 + 1469ǫ4

q4
∗

889 + 3760ǫ+ 1854ǫ2 − 1362ǫ3 − 746ǫ4 −8158− 34317ǫ− 16835ǫ2 + 12417ǫ3 + 6790ǫ4

Proof. From the Weierstrass equation given in (2.1), X̂ and Ŷ can be checked to satisfy

Ŷ 2 + Ŷ = X̂3 − X̂2 − 7 X̂ + 10.

They are functions in Q(ζ)
(
X+

ns(11)
)
with a pole at the cusp π+(P1) of order 2 and 3, respec-

tively. This means that their relation with X and Y must be given, up to the elliptic involution,
by translation by π+(P1), namely,

(X, Y ) = (X̂, Ŷ ) + (X(P1), Y (P1)) or (X, Y ) = (X̂, −1− Ŷ ) + (X(P1), Y (P1)) ,

where the addition sign stands for the group law in the Weierstrass equation (1.1). The exact
relation turns out to be of the second type and holds for

X(P1) = 11ǫ+ 6ǫ2 − 4ǫ3 − 2ǫ4, Y (P1) = −4 − 26ǫ− 19ǫ2 + 10ǫ3 + 7ǫ4.
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Indeed, it is uniquely determined from the values that the functions X , Y , X̂, Ŷ take at the
other cuspidal points. On the one hand, each of these points is a zero of either X̃ , Ỹ or Ũ Ṽ,
so that the relations in (2.1) lead to the following values:

X̂(P2) = −2 + ǫ+ 5ǫ2 − ǫ4, Ŷ (P2) = −4 + 2ǫ+ 5ǫ2 − 2ǫ3 − 2ǫ4,

X̂(P3) = 5− 5ǫ− 7ǫ2 + 2ǫ3 + 2ǫ4, Ŷ (P3) = −12 + 3ǫ+ 10ǫ2 − ǫ3 − 2ǫ4,

X̂(P4) = 1− 2ǫ+ 3ǫ2 − ǫ4, Ŷ (P4) = −2− 4ǫ+ 11ǫ2 + ǫ3 − 3ǫ4,

X̂(P5) = 5− 5ǫ− 7ǫ2 + 2ǫ3 + 2ǫ4, Ŷ (P5) = 11− 3ǫ− 10ǫ2 + ǫ3 + 2ǫ4.

On the other hand, the cusps on X+
ns(11) have ramification index 11 over X(1) and are transi-

tively permuted by the Galois group of Q(ǫ) over Q. Thus, the expression (1.2) yields

X(Pk) = −2z − 2z2 + z4, Y (Pk) = 1− 3z + 5z2 + 2z3 − 3z4,

for z lying in the set
{
ǫ, −2 + ǫ2, 2− 4ǫ2 + ǫ4, −3ǫ+ ǫ3, −1 + 2ǫ+ 3ǫ2 − ǫ3 − ǫ4

}

of Galois conjugates of ǫ. The way in which z runs over this set for k = 1, . . . , 5 is the only
one making the values X̂(Pk), Ŷ (Pk) match with the values X(Pk), Y (Pk) through one of the two
possible relations above.

Remark 2.1. The relations

(X, Y ) = (X̂, −1−Ŷ ) + (X(P1), Y (P1)) and (X̂, Ŷ ) = (X, −1−Y ) + (X(P1), Y (P1))

are equivalent. This means that the expressions for X and Y as rational functions on X̂, Ŷ are
the same as the expressions for X̂ and Ŷ, respectively, as rational functions on X , Y. These
expressions can thus be seen as an involution on X+

ns(11) defined over Q(ǫ).

Proposition 2.2. With the notation in Lemma 2.1 and Proposition 2.1, consider the function

T̂ := Ũ +
1

11

(
8 + 17ǫ− 21ǫ2 − 4ǫ3 + 6ǫ4

)
Ṽ

and let T be the trace of
(
X − 11ǫ− 6ǫ2 +4ǫ3+2ǫ4

)5
T̂ from the function field Q(ζ)

(
Xns(11)

)

to the subextension Q
(√

−11
)(
Xns(11)

)
. Then, the function

T :=
T√

−11
(
1458X3 + 12640X2 − 56666X + 59141− (107X2 + 7296X − 5508)Y

)

generates Q
(
Xns(11)

)
over Q

(
X+

ns(11)
)
and satisfies the equation (1.3) along with X. The

first coefficients of its Fourier q∗-expansion are as follows:

qn
∗

T/
√
−11

1 −5− 17ǫ− 10ǫ2 + 6ǫ3 + 4ǫ4

q∗ −34− 152ǫ− 78ǫ2 + 55ǫ3 + 31ǫ4

q2
∗

−214− 903ǫ− 441ǫ2 + 326ǫ3 + 178ǫ4

q3
∗

−1088− 4550ǫ− 2215ǫ2 + 1645ǫ3 + 896ǫ4

6



Proof. The functions Ṽ and Ũw have the same divisor, so Ũw = a Ṽ for some constant a.
This constant can be computed using that Ũ + a Ṽ, which is a function in Q(ζ)

(
X+

ns(11)
)
with

only a pole of order 5 at the cusp π+(P1), must be a polynomial in X̃ and Ỹ. Specifically, from
the Fourier q∗-expansions of these functions one obtains

Ũ + a Ṽ = b2X̃
2 + b1X̃ + b0 + (c1X̃ + c0)Ỹ (2.2)

for

11 a = −8− 17ǫ+ 21ǫ2 + 4ǫ3 − 6ǫ4, 11 b2 = −21 + 9ǫ− 15ǫ2 + 5ǫ3 + 9ǫ4,

11 c1 = 3− 17ǫ+ 21ǫ2 + 4ǫ3 − 6ǫ4, 11 b1 = −13 + 4ǫ+ 52ǫ2 − 10ǫ3 − 18ǫ4,

11 c0 = −25− 71ǫ+ 45ǫ2 + 29ǫ3 − 5ǫ4, 11 b0 = 17 + 76ǫ+ 31ǫ2 − 25ǫ3 − 12ǫ4.

The function T̂ = Ũ − a Ṽ keeps the same polar part as Ũ , Ṽ and satisfies T̂w = −T̂, so its

square must also be a polynomial in X̃, Ỹ hence in X̂, Ŷ. The relations given in Proposition 2.1

and Remark 2.1 between X̂, Ŷ and X, Y lead to an identity of the form

((
X − 11ǫ − 6ǫ2 + 4ǫ3 + 2ǫ4

)5
T̂
)2

=
1

11

(
4X3 + 7X2 − 6X + 19

)(
f1(X) + f2(X)Y

)2
(2.3)

for certain polynomials f1(x), f2(x) in Z[ǫ][x] of respective degrees 3 and 2 (see Remark 2.2).

Let us then take the trace T of
(
X − 11ǫ − 6ǫ2 + 4ǫ3 + 2ǫ4

)5
T̂ to Q

(√
−11

)(
Xns(11)

)
.

Since X is defined over Q, it suffices to compute the conjugate functions σi

Ũ and σi

Ṽ for
i = 1, . . . , 4, where σ is the automorphism of the Galois extension Q(ζ)/Q

(√
−11

)
sending ζ

to ζ9 hence ǫ to ǫ2 − 2. To that end, one can first derive σi

X̃ and σi

Ỹ as rational functions
on X and Y with coefficients in Q(ǫ). This is a straightforward application of Proposition 2.1
and Remark 2.1.

Note that the values at the cusps given in Proposition 2.1 imply

π+(σP1) = π+(P4), π+(σP4) = π+(P5), π+(σP5) = π+(P2), π+(σP2) = π+(P3), π+(σP3) = π+(P1).

Of course, this agrees with the formula (3.6.1) in [Lig77], and the same permutation can be
checked to hold for the cusps P1, . . . , P5. Then, the information on Siegel functions leading to
Lemma 2.1 yields these expressions:

σŨ = ν1

g24 h4

h5 g2 h22 g1

, σ2
Ũ = ν2

g21 h1

h4 g5 h25 g3

, σ3
Ũ = ν3

g23 h3

h1 g4 h24 g2

, σ4
Ũ = ν4

g22 h2

h3 g1 h21 g5

,

σṼ = ϑ1

g4 h
2
4

g5 g22 h2 h1

, σ2
Ṽ = ϑ2

g1 h
2
1

g4 g25 h5 h3

, σ3
Ṽ = ϑ3

g3 h
2
3

g1 g24 h4 h2

, σ4
Ṽ = ϑ4

g2 h
2
2

g3 g21 h1 h5

,

where νi and ϑi are constants which can be determined from the conjugate functions σi

X̃, σ
i

Ỹ
and the relation (2.2). They are displayed in the following table:

i νi ϑi

1 2 + 7ǫ− ǫ2 − 8ǫ3 − 3ǫ4 ǫ2 − ǫ3 − ǫ4

2 −1 + 2ǫ2 − ǫ3 4ǫ+ ǫ2 − 2ǫ3

3 10− 3ǫ− 12ǫ2 + ǫ3 + 3ǫ4 −27 + 15ǫ+ 33ǫ2 − 8ǫ3 − 6ǫ4

4 −2ǫ+ 10ǫ2 − 3ǫ4 2 + 3ǫ− 10ǫ2 + 3ǫ4

7



Finally, one obtains the equality

T
2

= 11
(
4X3 + 7X2 − 6X + 19

)(
1458X3 + 12640X2 − 56666X + 59141− (107X2 + 7296X − 5508)Y

)2

from the Fourier q∗-expansions of T , X and Y.

Remark 2.2. Two polynomials f1(x), f2(x) satisfying (2.3) could be explicitly given:

f1(x) =
(

−3468 − 14558ǫ − 7094ǫ2 + 5265ǫ3 + 2866ǫ4
)

x3 +
(

−30028 − 126111ǫ − 61527ǫ2 + 45617ǫ3 + 24848ǫ4
)

x2 +

(

134152 + 563914ǫ + 276359ǫ2 − 204056ǫ3 − 111479ǫ4
)

x + 139612 − 587393ǫ − 288873ǫ2 + 212613ǫ3 + 116417ǫ4,

f2(x) =
(

251 + 1054ǫ + 522ǫ2 − 382ǫ3 − 210ǫ4
)

x2 +
(

17231 + 72451ǫ + 35622ǫ2 − 26226ǫ3 − 14358ǫ4
)

x +

−13166 − 55263ǫ − 26705ǫ2 + 19969ǫ3 + 10808ǫ4.

Note that the function
√
−11

(
X − 11ǫ− 6ǫ2 + 4ǫ3 + 2ǫ4

)5
T̂

f1(X) + f2(X) Y

generates Q(ζ)
(
Xns(11)

)
over Q(ζ)

(
X+

ns(11)
)
. Its norm to Q

(√
−11

)(
Xns(11)

)
is, up to sign,

the generator for Q
(
Xns(11)

)
over Q

(
X+

ns(11)
)
given by (4X3 + 7X2 − 6X + 19)

2
T. The point

in taking the trace T rather than the norm of the function
(
X − 11ǫ− 6ǫ2 + 4ǫ3 + 2ǫ4

)5
T̂ as

a generator is the much simpler expression for its square inside Q[X, Y ].

Remark 2.3. The trace T, hence also the generator T, can be explicitly given in terms of Siegel
functions from the data in the proof of Proposition 2.2 and in the statements of Proposition 2.1
and Lemma 2.1.

Remark 2.4. The proof of Proposition 2.2 is in fact an alternative explicit way of deducing
the equation (1.3). Indeed, the square of the trace T is defined over Q, hence either ςT = T or
ςT = −T must hold for the complex conjugation ς. In the first case, T would already be defined
over Q and the minimal field of definition for its values at the cusps should necessarily be Q(ζ).
But all the values of the function 11 (4X3 + 7X2 − 6X + 19) at the cusps can be computed
from those given in Proposition 2.1 and can be checked to be squares in Q(ǫ). So T/

√
−11 lies

in Q(Xns(11)).

3 The Jacobian of Xns(11)

In this section we exploit the equations (1.1), (1.3) and the regular differentials on the modular
curve X0(121) to make explicit an isomorphism defined over Q between the new part of its
Jacobian and the Jacobian Jns(11) of the curve Xns(11). First, we need to recall some concepts
and tools.

An abelian variety Ā is an optimal quotient of an abelian variety A over a number field K
if there is a surjective morphism π̄ : A→Ā defined over K with connected kernel. In such a
case, Ā is determined by the pull-back π̄∗(Ω1

Ā/K
) of the regular differentials defined over K.

Any basis ω1, · · · , ωn of this K-vector space yields a lattice for Ā as a complex torus by taking
in Cn the elements of the form (∫

γ

ω1 , . . . ,

∫

γ

ωn

)
,
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for γ running over the homology group H1(A,Z). For any surjective morphism π : A→B of
abelian varieties defined over K, there exists a morphism π̄ : A→Ā onto an optimal quotient
along with an isogeny µ : Ā →B, both defined over K, making commutative the following
diagram:

A
π

��
❃❃

❃❃
❃❃

❃❃

π̄
��

Ā µ
// B

Whenever A is the Jacobian of a curve X defined over K and B is an elliptic curve, there is a
morphism φ : X →B defined over K inducing π, hence there exists a non-constant morphism
φ̄ : X→Ā for which the diagram

X
φ

  
❅❅

❅❅
❅❅

❅❅

φ̄
��

Ā µ
// B

(3.1)

also holds.

We need to consider the classical modular setting X =X0(N). The new part J0(N)new of
the Jacobian J0(N) is the optimal quotient defined as follows. Take the usual local parame-
ter q :=e 2πiτ for τ in the complex upper half-plane, so that the space S2(Γ0(N)) of weight 2
cuspforms can be seen, through their Fourier q-expansions, inside the C-vector space C[[q]].
The map h(q) 7−→ h(q) dq/q yields an isomorphism from S2(Γ0(N)) to the space of regu-
lar differentials Ω1

X0(N)/C such that Ω1
X0(N)/Q is the image of the Q-vector space of rational

cuspforms, S2(Γ0(N)) ∩ Q[[q]]. The abelian variety J0(N)new corresponds to the subspace
S2(Γ0(N))new ∩ Q[[q]] which is orthogonal to the subspace of oldforms with respect to the
Petersson product.

Let us now focus on the genus 6 curve X0(121) and its Jacobian J0(121). There are exactly
four Q-isogeny classes of elliptic curves with conductor 121. They can be represented by the
Weierstrass models

EA : y2 + xy + y = x3 + x2 − 30x− 76,

EB : y2 + y = x3 − x2 − 7x+ 10,

EC : y2 + xy = x3 + x2 − 2x− 7,

ED : y2 + y = x3 − x2 − 40x− 221,

(3.2)

with respective labels A1, B1, C1, D1 in Cremona’s tables [Cre97]. These four elliptic curves
are optimal quotients of J0(121) and J0(121)

new over Q. Each of them admits a non-constant
morphism from X0(121) defined over Q such that the pull-back of the invariant differential
is, up to sign, the regular differential on X0(121) corresponding to the normalized newform in
S2(Γ0(121)) attached to the Q-isogeny class of the elliptic curve. Let fA, fB, fC , fD denote these
newforms. Thus, the sets

ΛA :=

{∫

γ
fA(q)

dq

q

}
, ΛB :=

{∫

γ
fB(q)

dq

q

}
, ΛC :=

{∫

γ
fC(q)

dq

q

}
, ΛD :=

{∫

γ
fD(q)

dq

q

}
,

for γ running over the homology group H1(X0(121),Z), are the lattices corresponding to the
elliptic curves EA, EB, EC , ED, respectively.

By Section 8 in [Che98], J0(121)
new is isogenous over Q to the Jacobian Jns(11). In order

to show this explicitly, we exploit the basis for the space of regular differentials Ω1
Xns(11)/Q

that was used in [DFGS14] to prove that the automorphism group of Xns(11) is isomorphic to

9



Klein’s four group. The quotients of the curve by the involutions in this group are the elliptic
curves EB, EC and the genus 2 curve given by the equation

X : y2 = −
(
4x3 − 4x2 − 28x+ 41

)(
4x3 + 7x2 − 6x+ 19

)
. (3.3)

One has a commutative diagram

Xns(11)
φB

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧

φX
��

φD

��
✻✻

✻✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻✻

φA

��✟✟
✟✟
✟✟
✟✟
✟✟
✟✟
✟✟
✟✟ φC

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘

EB X

πA
zz✉✉
✉✉
✉✉
✉✉
✉✉

πD
$$■

■■
■■

■■
■■

■ EC

EA ED

with degree 2 morphisms φB, φX , φC and degree 3 morphisms πA, πD which, on the models for
these curves given by (1.1), (1.3), (3.2) and (3.3), are defined as follows:

φB(x, y, t) = (x, y) , φX (x, y, t) = (x, (2y + 1) t) , φC(x, y, t) = (−x− 1, (t + x+ 1)/2) ,

πA(x, y) =

(
−13x3 + 13x2 + 102x− 147

4x3 − 4x2 − 28x+ 41
,

(
−8x3 + 19x2 − 10x+ 6

)
y

2 (4x3 − 4x2 − 28x+ 41)2
+

9x3 − 9x2 − 74x+ 106

2 (4x3 − 4x2 − 28x+ 41)

)
,

πD(x, y) =

(
27x3 + 138x2 − 101x− 749

4x3 + 7x2 − 6x+ 19
,
121

(
x3 − x2 − 29x− 53

)
y

2 (4x3 + 7x2 − 6x+ 19)2
− 1

2

)
.

We claim that the elliptic curves EA, EB, EC , ED are also optimal quotients of Jns(11) over Q.
Indeed, it suffices to replace the morphism φ in (3.1) with each of φA, φB, φC, φD and take into
account that neither EA nor ED admits an isogeny of degree 2 or 3 defined over Q to another
elliptic curve; see Table 1 in [Cre97]. This fact suggests that J0(121)

new and Jns(11) could be
isomorphic.

Theorem 3.1. The abelian variety J0(121)
new is isomorphic over Q to Jns(11). Moreover,

there exists an isogeny defined over Q

Jns(11) −→ EA × EB ×EC ×ED

with kernel isomorphic to (Z/2Z)4×(Z/3Z)2.

Proof. By computational means, we produce period matrices Ωnew and Ωns for the abelian
varieties J0(121)

new and Jns(11), respectively, such that

Ωns M = N Ωnew (3.4)

for some matrices M∈GL8(Z) and N ∈GL4(Q). This relation amounts to the first part of
the statement.

To make the computations easy, we choose in both cases a suitable basis of regular differ-
entials. Specifically, the directions of each basis are the pull-backs to J0(121)

new or to Jns(11),
respectively, of the spaces Ω1

EA/Q , Ω1
EB/Q , Ω1

EC/Q , Ω1
ED/Q. Moreover, the elements in each basis

yield, by integration over the homology group of the respective abelian variety, the above elliptic
lattices ΛA,ΛB,ΛC,ΛD. This is possible due to the fact that the elliptic curves EA, EB, EC , ED
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are optimal quotients of both abelian varieties over Q. The elements of such bases are then
determined up to sign, and the lattices Λnew and Λns of J0(121)

new and Jns(11), respectively,
defined by these bases are both contained in the lattice

ΛA × ΛB × ΛC × ΛD

attached to the abelian variety EA × EB ×EC ×ED.

The obvious basis of regular differentials to be taken for J0(121)
new is the one corresponding

to the newforms fA, fB, fC , fD. A basis for H1(X0(121),Z) can be explicitly given as a set of
modular symbols. The following subset provides a basis for the new part:

γ1 = {0, 3/52}, γ2 = {0, 4/97}, γ3 = {0, 19/92}, γ4 = {0, 59/119},
γ5 = {0, 8/57}, γ6 = {0, 11/74}, γ7 = {0, 3/28}, γ8 = {0, 11/37}.

One can then compute the matrix period attached to these data:

Ωnew :=




∫

γ1

fA(q)
dq

q
· · · · · ·

∫

γ8

fA(q)
dq

q
...

...
...

...

...
...

...
...

∫

γ1

fD(q)
dq

q
· · · · · ·

∫

γ8

fD(q)
dq

q




.

Its columns regarded in C4 are a Z-basis for Λnew. A Z-basis for each of the elliptic lattices
ΛA,ΛB,ΛC,ΛD can also be computed, and the quotient group (ΛA × ΛB × ΛC × ΛD)/Λnew is
then checked to be isomorphic to (Z/2Z)2× (Z/6Z)2, which implies the second part of the
statement.

As for the basis of regular differentials on Xns(11), we multiply by suitable constants the
invariant differentials of the elliptic quotients and then take the corresponding pull-backs:

ωA := φ∗
A

(
4 dx

2y + x+ 1

)
, ωB := φ∗

B

(
4 dx

2y + 1

)
, ωC := φ∗

C

(
4 dx

2y + x

)
, ωD := φ∗

D

( −4 dx

2y + 1

)
,

that is to say,

ωA :=
44 dX

(2Y + 1)T
, ωB :=

4 dX

2Y + 1
, ωC :=

−4 dX

T
, ωD :=

4 (3X − 1) dX

(2Y + 1) T
,

where X, Y, T are the functions in Propositions 2.1 and 2.2. In order to compute a period
matrix, we need to express these differentials in terms of a plane (singular) model for the
curve, which can be derived from the equations (1.1) and (1.3). Specifically, we take T and
Z := (2Y + 1) T as generators of the function field over Q, so that

X =
12 T 4 + 187 T 2 + Z2

4 (T 4 − 11 T 2 + Z2)
.

Thus, from the relation TdT =−(6X2 + 7X − 3)dX one obtains

ωC =
32 (T 4 − 11T 2 + Z2)

2

(18 T 4 + 121 T 2 + 7Z2)(32 T 4 + 605 T 2 − Z2)
dT

11



and

ωA =
−11 T

Z
ωC , ωB =

−T 2

Z
ωC , ωD =

−T (32 T 4 + 605 T 2 − Z2)

4Z (T 4 − 11 T 2 + Z2)
ωC .

One can then produce, using algebraic computational software such as Maple, a period ma-
trix Ωns attached to this basis of regular differentials. The proof concludes by checking that
the matrix

M :=

(
Re (Ωns)

Im (Ωns)

)−1(
Re (Ωnew)

Im (Ωnew)

)

lies inGL8(Z) and, thus, satisfies (3.4) for N equal to the identity matrix.

Remark 3.1. Though it is not needed for the proof, it can also be checked from the period
matrix Ωns that the quotient (ΛA × ΛB × ΛC × ΛD)/Λns is isomorphic to (Z/2Z)2×(Z/6Z)2.
Furthermore, the lattice ΛX of the Jacobian Jac(X ), defined by the regular differentials whose
pull-backs by φX are ωA, ωD, is a sublattice of ΛA×ΛD with quotient isomorphic to (Z/3Z)2.
Thus, there is an isogeny defined over Q

Jns(11) −→ Jac(X )× EB × EC

with kernel isomorphic to (Z/2Z)4.

Remark 3.2. The normalized weight 2 cuspforms corresponding to the pull-backs of the spaces
Ω1

EA/Q , Ω1
EB/Q , Ω1

EC/Q , Ω1
ED/Q by the morphisms φA, φB, φC, φD, respectively, are canonically

defined by the regular differentials ωA, ωB, ωC, ωD of Xns(11) in the proof of Theorem 3.1. The
first coefficients of their Fourier q∗-expansions can be computed from the expressions given in
Propositions 2.1 and 2.2 for the generators X, Y, T of the function field of the curve:

qn
∗

√
−11

4 (ǫ− 2)2
(3− ǫ2)(1 + ǫ− ǫ2)ωA

q∗
dq∗

√
−11

4 (ǫ− 2)4
(11 + ǫ− 22ǫ2 + 2ǫ3 + 5ǫ4)ωC

q∗
dq∗

q∗ 1 1

q2
∗

−8ǫ− 6ǫ2 + 3ǫ3 + 2ǫ4 2ǫ− ǫ3

q3
∗

−2
(
−2− 8ǫ− 5ǫ2 + 3ǫ3 + 2ǫ4

)
2
(
−2 + 2ǫ+ ǫ2 − ǫ3

)

q4
∗

−6ǫ− 3ǫ2 + 2ǫ3 + ǫ4 2− 3ǫ2 + ǫ4

q5
∗

−3− 6ǫ− 2ǫ2 + 2ǫ3 + ǫ4 3− 4ǫ2 + ǫ4

q6
∗

2
(
−3− 6ǫ− 2ǫ2 + 2ǫ3 + ǫ4

)
2
(
−3 + 4ǫ2 − ǫ4

)

qn
∗

−11

4 (ǫ− 2)
(2− ǫ− 3ǫ2 + ǫ4)ωB

q∗
dq∗

√
−11

4
ǫ (1 − ǫ)(1 + ǫ)(2 + ǫ)ωD

q∗
dq∗

q∗ 1 1

q2
∗

0 2
(
−4ǫ+ 3ǫ3 + ǫ4

)

q3
∗

−3 + 3ǫ+ 4ǫ2 − ǫ3 − ǫ4 1 + ǫ− 2ǫ2 − 3ǫ3 − ǫ4

q4
∗

2
(
2− 4ǫ2 + ǫ4

)
2
(
−2ǫ3 − ǫ4

)

q5
∗

−3
(
−2 + ǫ+ ǫ2

)
3ǫ+ ǫ2 − 4ǫ3 − 2ǫ4

q6
∗

0 2
(
3ǫ+ ǫ2 − 4ǫ3 − 2ǫ4

)
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Note that the cuspforms provided by the pull-backs of the invariant differentials of the elliptic
curves EA, EB, EC , ED are not normalized: the leading coefficient in each case is, up to 4 times
a unit in Z[ζ ], a power of a generator of the prime ideal over 11. The corresponding normalized
cuspforms, as it happens for the functions X , Y and T/

√
−11, have Fourier coefficients in Q(ǫ).

It may be that this property holds for all primes p ≥ 11, namely that there exists a basis
of Ω1

Xns(p)/Q
whose corresponding weight 2 normalized cuspforms have Fourier coefficients in

the maximal real subfield of the p-th cyclotomic extension of Q.

It follows from Theorem 3.1 that Jns(11) is an optimal quotient of J0(121). Nevertheless,
the Riemman-Hurwitz formula implies that Xns(11) does not admit a non-constant morphism
from X0(121). Let us finish by giving a less obvious result: neither does its genus 2 quotient X .
This is related to the modularity of curves over Q.

A curve C defined over a number field L is called modular over L if there exists a non-
constant morphism π :X(N) −→ C defined over L for some integer N. In that case, the
curve C is also covered by the modular curve X1(N

2), though not necessarily over L. See, for
instance, the appendix in [Maz91]. Both Xns(11) and X admit then a non-constant morphism
from X1(121). Let us also show that any such a morphism cannot be defined over the quadratic
field K = Q(

√
−11 ).

Proposition 3.1. The curves Xns(11) and X have no points defined over K.

Proof. It suffices to prove the statement for X . The origin O of EA is the only rational point
on this elliptic curve; see [Cre97]. Take P in EA(K). Then P + ςP lies in EA(Q), where ς
stands for the complex conjugation. So ςP = −P, which means that P defines a rational point
on the twist of EA by K. On this twist, which has conductor 121 and label C2 in [Cre97], the
origin is also the only rational point. Hence P must be O. Since the preimages of O under the
map πA are not defined over K, the result follows.

Proposition 3.2. All endomorphisms of J0(121) are defined over K.

Proof. The Jacobian J0(121) is isogenous over Q to the product of elliptic curves

EA × EB ×EC ×ED × J0(11)
2.

The elliptic curve EB is the only one in this product having complex multiplication (by the
ring of integers of K). As noted in the proof of Proposition 3.1, EA is isogenous to EC over K.
The same holds for ED and J0(11). Specifically, the twist of ED by K is the elliptic curve
with conductor 11 and label A3 in [Cre97]. Since none of the curves in the Q-isogeny class
of EA is isomorphic to a curve in the Q-isogeny class of ED, these two elliptic curves cannot be
isogenous. Hence the splitting of J0(121) over Q is

E 2
A × EB ×E 3

D

and it is defined over K. The endomorphisms of EB are defined over K, so the result follows.

Corollary 3.1. Any curve X of genus g > 1 defined over K which can be covered by X0(121)
admits a non-constant morphism X0(121)−→X defined over K.
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Proof. For a non-constant morphism π : X0(121)−→X defined over Q, Proposition 3.2 implies
that

π∗(Ω1
X/Q

) ∩ Ω1
X0(121)/K

is a K-vector space of dimension g. The results in Section 2 of [BGGP05] show then that there
exist functions in K(X0(121)) which generate the field K(X) over K.

Corollary 3.2. The curves Xns(11) and X cannot be covered by X1(M) over K, for any M,
nor by X0(121) over Q.

Proof. Since the cusp at infinity on both X1(M) and X0(121) is defined over Q, the result
follows from Proposition 3.1 and Corollary 3.1.
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