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ABSTRACT 

Multiuser detection in Code Division Multiple Access 
systems usually requires either knowledge of the trans- 
mitted signature sequences and channel state informa- 
tion or use of a known training sequence for adapta- 
tion. In this paper we develop a scheme that can be 
employed for the joint adaptive blind multiuser identifi- 
cation and detection in asynchronous CDMA systems. 
This scheme relies on a multiuser Viterbi .ilgorithm 
that incorporates an adaptive estimation of the overall 
channel impulse responses, given by the convolution of 
the signature sequences of the users and corresponding 
physical channels impulse responses. Once the over- 
all channel responses are estimated, the blind mul- 
tiuser detection algorithm performs like the maximum- 
likelihood sequence estimator. Results are provided to 
illustrate the convergence of the blind multiuser ap- 
proach, near-far resistance and sensitivity to the algo- 
rithm initialization. 

1. INTRODUCTION 

Increasing interest in the multiuser detection area was 
initiated by the work on the optimal structures and 
the performance bounds for the Gaussian noise chan- 
nel [l]. The optimal multiuser detector employs a bank 
of matched filters (one for each active user) followed 
by a multiuser maximum-likelihood sequence estimator 
(MLSE). Its complexity is exponential in the number of 
active users and it requires knowledge of the transmit- 
ted signature sequences and channel state information. 
Consequently, suboptimal near- far resistant receivers 
of linear complexity were developed that still provide 
significant performance gain over the conventional sin- 
gle user receiver [2]. In addition, multiuser receivers 
were designed for fading and multipath channels [3]. 

Recently, adaptive multiuser receivers have gained 
considerable attention [4]. The requirement of train- 
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ing sequences for adaptive multiuser reception, or pre- 
vious knowledge of the users signatures and chan- 
nels for the centralized multiuser receivers mentioned 
above, represents an important drawback for efficient 
multiuser communications. This motivates the devel- 
opment of multiuser receiver structures that can be 
adapted blindly, i. e. without the need of training se- 
quences [4]. In this paper we present a scheme for the 
joint blind identification and detection of multiuser sig- 
nals which has the following features: 

e No knowledge of the signature waveform of any 
user is required (although their approximate 
knowledge speeds up the convergence). 

0 Training sequences are not required. 

e No timing information of any user needs to be 
known or acquired a priori. 

e No channel state information is required. 

e The blind multiuser detector is near-far resistant. 

e It provides an estimate of the signature sequence 
of each user convolved with its physical chan- 
nel impulse response, and its ML transmitted se- 
quence estimate after the convergence. 

This approach is motivated by the bandwidth efficient 
multiuser systems which utilize small spreading ratio, 
burst transmissions and relatively large SNR [5]. 

2. SYSTEM MODEL 

We consider the asynchronous CDMA white Gaussian 
noise channel, 

where h,(t - nT) t )  is the overall complex channel im- 
pulse response, given by the convolution of the signa- 
ture sequence, physical channel and the receiving filter 
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impulse responses. It incorporates t8he amplitude and 
the delay for user I C ,  and its duration is assumed to be 
smaller or equal to  L symbols, i.e. hk(7,t)  = 0 , ~  < 
0 , ~  > LT, V t .  The total number of active users is K 
and their transmitted sequences are binary indepen- 
dent symbols b k [ n ]  E (1, -1}. The symbol rate is 1/T 
and w ( t )  is normalized white Gaussian noise. 

The CDMA channel is sampled at  a rate M / T  = 
l/T'? to derive the discrete vector sequence r[n] 

r[n] = [ r ( n ~ ) ,  r ( n ~  + T ~ ) ,  . . . r ( n ~  + ( M  - I ) T , ) ] ~  . 
(2) 

The observation r[n] is modeled as a probabilistic M 
length vector sequence of a state vector s[n] 

r[n] = 'Fl[n]s[n] + ~ [ n ]  . (3) 

There are N = 2L" possible state vectors correspond- 
ing to L binary symbols of K users. We denote the indi- 
vidual states as the KL length vectors {SI, s2,. . . , S N } ,  
si = [Ai(l, l ) ,  . . . , A i ( L ,  1) ,  . . . ,Ai (L,K)IT,  Ai(l,k) E 
{l , - l}  and the state at time instant nT as s[n].The 
( M  x KL) matrix %[n] depends of the overall discrete 
impulse response for all users 

x[n] = [Hl[n], . . ., HK[n]] 
 HI,[^] = [hko[n], . . . hq~- i ) [n ] l  

(4) 
(5) 

h k ( ( n .  + l)T, nT) 

[ h ( ( n  + l)T + ( M  - l)Ts, nT) 
hkl[4 = 

The normalized noise vector is defined as 

W[.] = [w(nT),w(nT+T,), . . . ,w (nT+(M- l )T , ) ]T  . 
(7) 

The probability density function of the observation vec- 
tor conditioned on a given individual state sj  is 

where 
mj = 'Fl(nT)sj, 1 5 j 5 N . (9) 

3. BLIND IDENTIFICATION AND 
DETECTION ALGORITHM 

3.1. Introduction 

If the overall impulse response for each user was known, 
that is if the signature sequence, physical channel im- 
pulse response, amplitude and delay corresponding to 
each user were available, then using this information, 
the Viterbi algorithm could be employed to determine 
the multiuser maximum-likelihood sequence. That 
is, given X ( t ) ,  and all possible multiuser sequences 

b = {[bl[n], . . . , b ~ [ n ] ] ~ , V n }  the ML transmitted se- 
quence is the one that maximizes the joint posterior 
distribution p(blr(t) ,  Vt) .  This maximization, equiva- 
lent for equiprobable sequences to  p ( r ( t ) ,  Vtlb), can be 
efficiently computed finding the most likely sequence of 
states using (8) for cumulative metric calculation and 
the Viterbi algorithm [l]. 

3.2. Algorithm description 

In the method we present, the Viterbi algorithm is ap- 
plied with current estimates of the overall impulse re- 
sponses which are updated recursively. First the algo- 
rithm is initialized with an arbitrary impulse responses 
for each user. The number of users I< is assumed known 
together with a bound for the impulse response dura- 
tion that determines L.  Then the algorithm is iterated 
at the symbol rate as in a conventional Viterbi scheme. 
In this case however, metrics along the trellis are com- 
puted using for each state its %wn current estimate of 
the overall impulse response, Zj[n], j = 1, . . . , N .  At 
each iteration, a ML path is continued for each state 
selecting the most likely possible predecessor and up- 
dating the accumulated metric using (8). Each state 
shares L - 1 symbols for each user with its set of pos- 
sible predecessors and thus there are 2K predecessors 
per state. 

The channel estimate matrix 6j[n], j = 1, . . . , N is 
updated for each state modifying the one associated 
to  its most likely predecessor using a standard system 
identification LMS scheme 

where the state si is the predecessor to  state s j ,  p is 
the adaptation constant and the error vector eij[n] is 
defined as 

After convergence, the impulse response corresponding 
to  the most likely final state can be employed to  yield 
the ML transmitted sequence for each user as in the 
conventional multiuser optimal receiver. A similar ap- 
proach was proposed for the blind equalization of single 
user channels using the Viterbi algorithm [6] and the 
Baum-Welch identification algorithm [7]. 

3.3. Algorithm convergence 

We illustrate the convergence of the algorithm in a sce- 
nario of 4 users employing Gold sequences of length 7 
in stationary AWGN channel. Users' signals are syn- 
chronous and their amplitudes are 1, 1.5, 2, and 2.5 
respectively. After 300 iterations (symbols) the global 
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Figure 1: Learning curve for %MI, 

estimated impulse response is 

2 M L  = 

1.020 1.520 -1.966 -2.511 
0.986 -1.477 -1.939 -2.532 

-1.002 1.551 -1.967 2.471 
-1.033 -1.547 1.991 -2.467 

0.989 -1.433 2.038 -2.532 
-1.001 1.523 -2.005 -2.467 

, 1.013 1.501 -1.993 2.474 

whereas the actual X is 

3-1= 

- 1 1.5 -2 -2.5 
1 -1.5 -2 -2.5 

-1 1.5 -2 2.5 
-1 -1.5 2 -2.5 

1 -1.5 2 -2.5 
-1 1.5 -2 -2.5 

- 1 1.5 -2 2.5 

After convergence, the final global impulse response 
could be used to  yield a close to optimal demodulation 
of the received sequence. The algorithm was initial- 
ized assuming the amplitude of all users was 1 and the 
SNR was 10 dB for the weakest user. No symbol errors 
were observed backtracking the ML path created dur- 
ing adaptation. Fig. 1 illustrates the evolution of the 
estimation of 3-1 for the ML state at each sample. 

4. LOCAL MINIMA EFFECT 

4.1. Existence of local minima 

In practice, this algorithm can be employed without 
further refinement if an approximate knowledge of the 
overall impulse response is used for initialization and 

all users are received with similar power. Otherwise, 
the adaptation can be easily trapped in local minima 
as a consequence of the near-far effect. This effect can 
be better understood in the two users case. When one 
of the users is characterized by an impulse response of 
much greater magnitude than the other, the algorithm 
tends to split the greater impulse response among both 
users (since this locally maximizes the probability func- 
tion (8)) and the signal received from the weak user is 
just taken as part of the noise. The algorithm con- 
verges to  a good approximation of the strong impulse 
response and neglects the weak one. The-same effect 
can happen after random initialization of 'H. This phe- 
nomenon, however can be easily detected since the cor- 
responding estimated ML sequences for both users are 
exactly the same (except for a possible sign change). 
In the more general case of K users, any of their ac- 
tual impulse responses, Hk[n] could in principle ap- 
pear partitioned into an arbitrary number of users, i. e.. 
H k [ n j  N Hk[n] + xj.fHtj [Iz], 6ut still this effect will 
be reflected in identical estimated ML sequences for 
these users (k and kj) again except for a possible sign 
difference. 

4.2. Avoiding local minima 

We propose a simple procedure to  overcome the conver- 
gence to  a local minima. Consider the two synchronous 
users case with L = 1. An improved implementation of 
the algorithm checks every P symbols for total coher- 
ence of the corresponding ML sequences for each user. 
The probability of random coincidence of two indepen- 
dent binary sources, except for a possible sign change, 
is 1/2p-1, and can be made arbitrarily small increas- 
ing P.  In case this absolute coherence is detected, it 
is assumed that the algorithm has converged to  a lo- 
cal minimum and the impulse responses of each user 
are added (or subtracted if the sequences were inverse) 
and assigned arbitrarily to  one of them. The other user 
impulse response is just reset to  zero, i. e. 

h, En] + &1[n3 f fi2[n] 

&,[.I 6- 0 . 
This compensation may be necessary until a good 
estimate of the strong impulse response is obtained 
which cancels the local minimum. In practice, we ob- 
served that one such compensations is necessary ap- 
proximately for each 10 dB in power difference. 

In general, for an arbitrary number of users and 
value of L ,  a total of (:) = K ( K  - 1)/2 symbol cross- 
correlation functions need to be computed, and each of 
them for 2L - 1 lags. This cross-correlation functions 
are defined as 

I - P-1 I 
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where b k b ]  is the ML sequence associated with user 
k for the previous P symbols. The global impulse re- 
sponse is compensated iterating for each user in as- 
cending order, i.e. k = 1,. . . , I< the following impulse 
response update 

K L-1 

k’=k+l  I’=O 

and possible reinitialization, 

k’ = + 1, .  . . , I<; I’ = 0 , .  . . , L - 1. (14) 

4.3. Near-far resistance 

We illustrate the near-far resistance of this blind de- 
convolution scheme considering the bandwidth efficient 
case [l] of 2 users using signatures [l, 1,1] and [l, -1,1]. 
The system is asynchronous and the second user arrives 
with a delay of T, with respect to the first one. This 
asynchronism makes L = 2. Their amplitudes are 1000 
and 1 respectively (60 dB power difference). After 400 
iterations (symbols) and 6 coherence compensations, 
the global impulse response estimated for the ML se- 
quences compared to the actual 3-1 is 

1 1000.0 -0.0763 -0.0199 1.0483 
G M L  = 1000.1 0.0385 0.9352 0.0361 

1000.0 -0.0618 -0.9724 0.0163 

3-1= 1000 0 

[ 
[ 1000 IOoo 0 O -1 0 1 

The number of symbol errors observed are 0 and 94 
respectively (again backtracking the ML path created 
during adaptation and not recalculating the ML se- 
quence with the estimated impulse responses). The al- 
gorithm was initialized assuming the amplitudes of all 
users were 1 and they were synchronous. The SNR was 
64.7 and 4.7 dB respectively. Fig. 2 illustrates the evo- 
lution of the estimation of 3-1 for the ML state at each 
sample. The parameter P was set to 30. It can be 
observed how coherence compensations are necessary 
until a precise estimate of the strong impulse response 
is attained, approximately after 180 symbols. After- 
wards, the algorithm converges to the global impulse 
response 3-1. 

5. CONCLUSIONS 

A new near-far resistant technique for the blind de- 
convolution of multiuser signals has been described. 
It can accommodate asynchronous multiuser channels 
with IS1 with a complexity that is exponential in the 

-4001 I 
0 50 100 150 200 250 300 350 400 

Symbols 

Figure 2: Learning curve for ~ ? M L  

number of users times the global impulse response du- 
ration in symbols. Local minima are avoided calculat- 
ing cross-correlation functions between estimated ML 
sequences for each pair of users. The application of this 
method to fading and multichannel systems and exper- 
imental validation of the algorithm on the real data are 
the topics of further investigation. 
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