
  Abstract

Trace-Level Speculative Multithreaded Processors

exploit trace-level speculation by means of two threads

working cooperatively. One thread, called the speculative

thread, executes instructions ahead of the other by

speculating on the result of several traces. The other thread

executes speculated traces and verifies the speculation

made by the first thread. In this paper, we propose a static

program analysis for identifying candidate traces to be

speculated. This approach identifies large regions of code

whose live-output values may be successfully predicted. We

present several heuristics to determine the best

opportunities for dynamic speculation, based on compiler

analysis and program profiling information. Simulation

results show that the proposed trace recognition techniques

achieve on average a speed-up close to 38% for a

collection of SPEC2000 benchmarks.

1. Introduction

Trace-level speculation avoids having to execute of a

dynamic sequence of instructions by predicting the set of

live-output values, based for instance on recent history.

There are two important issues regarding trace-level

speculation. The first of these involves the

microarchitecture support for trace speculation and

concerns how the microarchitecture manages trace

speculation. The second involves trace selection and data

value speculation techniques. 

 Traces are identified by an initial and a final point in the

dynamic instruction stream, and data speculation refers to

the prediction of a trace´s live-output values. Traces can be

built according to various heuristics such as basic blocks

and, loop bodies, etc [7], [11], [12]. Once a trace is built,

live-output values can be predicted in several ways,

including using conventional value predictors such as last

value, stride, context-based and hybrid schemes [15], [24]. 

In this paper we assume a microarchitecture called

Trace-Level Speculative Multithreaded Architecture

(TSMA) [16],[17]. This microarchitecture is tolerant to

misspeculations in the sense that it does not introduce

significant trace missprediction penalties and does not

impose any constraint on the approach to building or

predicting traces. This work focuses on the

microarchitecture support for trace speculation and

therefore assumes a simple mechanism for building traces

and determining live outputs. We extend this initial work

by proposing a trace selection method based on a static

analysis that uses profiling data. In this way, we focus on

developing effective trace selection schemes for TSMA

processors. 

The rest of this paper is organized as follows. The trace

selection approach is presented in Section 2. An overview

of the TSMA microarchitecture is presented in Section 3.

The performance of the processor with the proposed trace

selection scheme is analyzed in Section 4. Related work is

analysed in Section 5. The main conclusions of this paper

and outlines for future work are discussed in Section 6.

2. Trace Selection

Program profiling analysis is an effective technique for

determining code regions whose live-output values may be

reused at run-time [7],[13]. In this paper we propose a

profile-guided analysis for selecting the traces to be

speculated by a TSMA processor. This analysis is detailed

in the following subsections.

2.1. Graph Construction

Trace selection is performed using an abstract data

structure that is built from information obtained from the

control flow graph, the data dependence graph and the

predictability of values. The abstract data structure is a

graph in which each node provides useful information for

an static instruction. This information is obtained by

running the test input set of the analyzed benchmarks. The
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information maintained in each node or static instruction

is:

•The type of instruction and number of dynamic

executions.

•The pointers to succeeding instructions in the dynamic

execution stream with their corresponding frequencies

(a single pointer in the case of arithmetic or memory

instructions and multiple pointers in the case of

conditional instructions and indirect jumps).

•The pointers to instructions that produce values that are

consumed by the current instruction, pointers to

instructions that consume values that are produced by

the current instruction and their corresponding

frequencies. 

•The predictability of live-output values for different

value predictors (stride and context based predictors

are considered).

•The percentage of times that the value produced by the

current instruction is never used. Even with aggressive

compiler optimizations, there are opportunities for

removing code [5] that may be only dead on a specific

path. 

2.2. Graph Analysis

Once the graph is built, several heuristics are applied to

identify large regions of code that are suitable for traces.

Several issues may be considered in the process of trace

selection. These are related to the method for selecting the

initial point of a trace, the final point and the predictability

of live-output values.

A trace is considered a good candidate for speculation if

the predictability of the live-output values achieves a

certain threshold. Once live-output values are identified,

their predictability has to be checked. Two types of

statistics are analyzed: prediction accuracy and utilization

degree, which refers to the percentage of times that the

value produced by an instruction is not consumed by any

other instruction. If a live-output value does not achieve a

certain threshold in terms of value predictability but is not

frequently consumed, it is considered predictable. 

The initial and final points of a trace are the other

important issues to be determined. Note that

misspeculations occur when live-output values are

misspredicted or the actual control flow does not reach the

trace termination point. The trace termination point

selected must try to maximize the trace length and

minimize control flow misspeculations. Below we describe

three basic heuristics for building traces: procedure trace,

loop trace and instruction chaining trace.

2.2.1. Procedure Trace Heuristic

Procedures are potential sources for trace speculation.

They are relatively frequent in a program execution and the

computations that follow a subroutine return are fairly

independent of the subroutine, except for return values and

some memory locations. This means that just a few values

should be predicted. Also, the control return point is

normally reached despite the complexity of the control

flow inside the procedure, which means that it is quite easy

to predict the end of the trace.

 This heuristic tries to identify some procedures as

traces. In this way, a call instruction is marked as the initial

point of a trace, and the return address is set as its final

point. Figure 1.a shows an example of procedure trace

detection. Note that the whole subroutine is considered as a

single trace regardless of the control flow followed at each

invocation. 

To determine the predictability of live-output values, a

given number of instructions belonging to all significant

paths after the execution of the procedure are checked. A
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Figure 1. Trace Recognition Heuristics Examples

(a) Procedure Trace (b) Loop Trace (c) Instruction Chaining  Trace
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path is considered to be significant if its frequency of

execution is above a certain threshold. For each instruction

in a significant path it is checked whether any of its

operands are produced by any instruction of the procedure.

If this is the case, the predictability of the producer

instructions are checked (through profiling) and if a certain

threshold is not achieved, the trace is discarded. It has been

empirically observed that there is no need to check too

many instructions after the trace to identify good procedure

traces. Moreover, binaries assumed in this paper (Alpha

under Unix) help this validation because only a couple of

registers are used to return values other than memory

locations.

2.2.2. Loop Trace Heuristic

Loops are a traditional source of parallelization and

speculation. This heuristic considers the whole execution

of a loop as a trace. The aim of this heuristic is to detect

loops whose live-outputs after their whole execution are

predictable (in fact, we are only concerned with outputs

that are consumed relatively early).

This heuristic sets the initial point of a trace as the target

of a backward branch and the final point of the trace is the

fall-through instruction of the same backward branch.

Figure 1.b shows an example of a loop trace. Note again

that the whole loop is considered as a single trace

regardless of the control flow followed at each invocation.

As for subroutines, the predictability of the live-output

values is checked by analyzing a given number of

instructions belonging to the significant paths after the

execution of the loop. The trace is selected only if the

predictability of the producer instructions is above a certain

threshold.

2.2.3. Instruction Chaining Heuristic

The aim of this heuristic is to identify large sequences of

dynamic instructions besides procedures and loops (and

not necessarily contiguous in the static binary), with

potential for speculation.

First, the initial point of a trace is selected. The taken

and non-taken targets of all conditional branches are

considered as initial points of a trace The trace is then

extended by adding successive instructions until a final

point of the trace is reached. A trace reaches its final point

when a new instruction already belongs to the same trace,

the trace reaches a maximum size, or the new instruction is

an indirect jump. 

A trace in this case corresponds to a single control-flow

path. Therefore, every time a conditional branch is found, a

trace is split into two, one for each potential path. Figure

1.c shows an example of various traces with the same

initial point. Each trace is identified by its initial point, its

final point, and the behavior of the conditional branches

within the trace. To limit the number of different traces

with the same initial point, paths whose frequency of

execution is below a given threshold are ignored.

Once a candidate trace has been identified, its live-

output values are determined and its predictability is

checked. For each live-output value, the highest value

between its prediction accuracy and its utilization degree is

chosen. The percentages of different live-outputs are then

multiplied to estimate the probability that the trace is

correctly speculated (a value is correctly speculated if it is

correctly predicted or if it is not frequently used). If this

probability is above a certain threshold, the trace is

considered predictable and the process finishes. Otherwise,

the final instruction of the trace is removed and the process

starts again. This process is repeated until the trace

achieves the defined threshold or the size of the trace

reaches a minimum. Note that this process tries to select

the longest predictable traces.

3. Trace-Level Speculative Multithreaded
Architecture

Trace-level speculation can be implemented in various

ways. It generally requires a live-input or live-output test to

validate the speculation. A TSMA processor can

simultaneously execute a couple of threads (a speculative

one and a non-speculative one) that cooperate to execute a

sequential code. Speculated traces are validated by

verifying their live-output values. Live-output values are

those that are produced and not overwritten within the

trace. The first thread, called the speculative thread,

executes instructions and speculates on the result of whole

traces. The second thread executes speculated traces and

verifies instructions that are executed by the speculative

thread. This second thread is called the non-speculative

thread. In the rest of the paper we will use the terms ST and

NST to refer to the speculative thread and the non-

speculative thread respectively. Note that ST runs ahead of

NST. 

Both threads maintain their own architectural state by

means of their associated architectural register file and a

memory hierarchy with some special features. NST

provides the correct and non-speculative architectural state,

while ST works on a speculative architectural state. Note

that each thread maintains its own state, but that only the

state of NST is guaranteed to be correct. Additional

hardware is required for each thread. ST stores its

committed instructions to a special FIFO queue called

Look Ahead Buffer.

ST speculates on traces with the support of a Trace

Speculation Engine (TSE). This engine is responsible for
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building traces and predicting their live-output values. In

this paper, we extend the TSE engine proposed in [16] to

support a trace selection method based on compiler

analysis. The above off-line profile-guided analysis

determines trace candidates to be speculated. These

selected traces are communicated to the hardware at

program loading time by filling a special hardware

structure called trace table. We assume in this paper a

simple 4-way set associative PC-indexed table with 128

entries. We have empirically observed that this number of

entries and this degree of associativity leads to a good

distribution of traces along the structure, and minimizes

aliasing. As shows Figure 2, each entry contains the

following information:

•PcIni: the initial program counter of the trace.

•PcFin: the final program counter of the trace. 

•BranchHist: some bits that encode the history of some

preceding branches.

•LOValues: value prediction information of N live-

output values. 

•FreqCount: a counter that determines the number of

times that the trace has been found.

Live-output values are predicted by means of a hybrid

scheme comprising a stride predictor and a context-based

predictor. Based on the data in the trace table, the trace

speculation engine (TSE) responsible for detecting initial

and final points of a trace, maintaining value prediction

information to compute live-output values, updating

branch history and incrementing frequency counter. When

the frequency counter of a trace reaches the maximum

value, all frequency counters of traces with that initial

program counter are initialized to zero. 

The TSE also has to determine trace speculation

opportunities by scanning the current program counter of

the speculative thread and checking it against the trace

table. In this way, if the current PC is the beginning of a

potentially predictable trace, the trace is speculated since

the architecture is very tolerant to trace misspredictions. As

we discussed in Section 2.2.3, multiple traces with the

same initial program counter may be stored in the trace

table. In this case, the trace predictor selects a trace from

those with the same initial point based on the history of the

preceding branches. If the current branch history matches

that of a stored trace, this trace is selected for speculation.

If no branch history matches the current one, the most

frequent trace is selected among all with the same initial

program counter by checking frequency counters.

Once the TSE determines that the current PC is the

beginning of a potentially predictable trace, it provides the

final program counter for the fetch engine. Also, some

MOV instructions are generated in order to initialize the

live-outputs with the predicted values. Further details may

be found in [16].

NST, on the other hand, uses special hardware called a

Verification Engine. The NST executes the skipped

instructions and verifies instructions in the look-ahead

buffer executed by ST. This is done by verifying that

source operands match the non-speculative state and by

updating the state with the new result in case they match. If

there is a mismatch between the speculative source

operands and the non-speculative ones, a trace

misspeculation is detected and a thread synchronization is

fired. Basically, this recovery action implies flushing the

ST pipeline and reverting to a safe point in the program. An

advantage of this approach is that any live-output values

used are the only ones that are verified. Note also that the

verification of instructions is faster than their execution

because instructions always have their operands ready. In

this way, the NST quickly catches up to the ST. 

A critical feature of this microarchitecture is that this

recovery is implemented with minor performance

penalties. Also, this paper extends the previous TSMA

microarchitecture with a novel verification engine that can

significantly improve performance. This novel verification

engine does not always produce a thread synchronization

in the presence of a trace misspeculation. Therefore, the

number of recoveries may be decreased without increasing

the complexity. Further details of this architectural

enhancement may be found in [17].

Figure 2 shows the proposed microarchitecture with the

additional hardware requirements highlighted. The

hardware can be divided into three categories:

1.Local: each thread maintains a logical register file, an

instruction window, a load store queue and a reorder

buffer. All this hardware is replicated for both threads.

(light grey in Figure 2)

2.Shared: non-replicated hardware is shared by both

threads. These resources are the instruction cache, the

fetch engine, the branch predictor, the decode and

rename logic, functional units, a modified data value

cache and logical control. (grey in Figure 2)

3.Additional: hardware requirements to support trace-

level speculation. These resources are the look ahead
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buffer, the verification engine and the trace

speculation engine. (dark grey in Figure 2).

4. Performance Evaluation

This section discusses the experimental framework and

analyzes the performance of the proposed scheme. 

4.1. Experimental Framework

The TSMA simulator is built on top of the Simplescalar

Alpha toolkit [4]. The following Spec2000 benchmarks

have been considered: crafty, eon, gcc, mcf, vortex, and vpr

from the integer suite and ammp, apsi, equake, mesa,

mgrid, and sixtrack from the FP suite. The programs have

been compiled with the DEC C and F77 compilers with -

non_shared -O5 optimization flags (i.e. maximum

optimization level)

Table 1 shows the main parameters used in the program

analysis phases. These values have been empirically

checked to represent a good design point. First, it is

important to minimize the number of misspeculations

without losing speculation opportunities. In this way, the

percentage of speculated traces is higher when the trace

recognition heuristics are less conservative, but this also

increases the percentage of misspeculation. However, the

percentage of speculated traces and therefore the

opportunities for speculation, decreases when the trace

recognition heuristics are more conservative. Second, it is.

important to maximize the number of speculated

instructions and minimize the number of trace

speculations. This means speculating traces as long as

possible since every speculation introduces a minor

penalty. Unfortunately, speculation accuracy decreases

when the traces are larger because a huge number of live-

output values have to be predicted. For the profiling data,

each program was run with the test input set and statistics

were collected for 250 million instructions after skipping

initializations. 

Table 2 shows the parameters of the baseline

microarchitecture. The TSMA assumes the same sizes as

the baseline configuration and for each thread unit

replicates the instruction window, reorder buffer and

logical register mapping table. It also adds some new

structures (see Table 3).

For the simulation, each program was run with the ref

input set and statistics were collected for 250 million

instructions after skipping initializations.

4.2. Analysis of Results

 Figure 3 shows the type of speculated instructions

corresponding to instruction chaining traces, call traces and

Value predictors considered stride 

&context

Minimum size of trace 16

Maximum size of trace 1024

Maximum number of live-output values 32

Minimum combined percentage to consider a set of live-

output values predictable

25%

Minimum frequency to consider a path as significative 10%

Minimum accumulative frequency to consider multiple paths 1%

Table 1. Profiling Analysis Parameters

Instruction fetch 4 instructions per cycle.

Branch predictor 2048-entry bimodal predictor

Instruction issue/commit Out-of-order issue, 4 instructions committed per cycle, 64-entry reorder buffer, loads execute only after all the preceding 

store addresses are known, store-load forwarding

Architectural registers 32 integer and 32 FP

Functional units 4 integer ALUs, 4 load/store units, 4 FP adders, 2 integer mult/div, 2 FP mult/div

FU latency/repeat rate int ALU 1/1, load/store 1/1, int mult 3/1, int div 20/19, FP adder 2/1, FP mult 4/1, FP div 12/12

Instruction cache 16 KB, direct-mapped, 32-byte block, 6-cycle miss latency

Data cache 16 KB, 2-way set-associative, 32-byte block, 6-cycle miss latency

Second Level Cache Shared instruction & data cache, 256 KB, 4-way set-associative, 32-byte block, 100-cycle miss latency

Table 2. Parameters of the baseline microarchitecture

Speculative data cache 1 KB, direct-mapped, 8-byte block

Verification engine Up to 8 instructions verified per cycle. Memory instructions block verification if fail in L1.

Number of additional instructions verified after average number to find an error is 16

Trace speculation engine 128 history table, 4-way set associative. Hybrid predictor (stride + context)

Look ahead buffer 128 entries

Table 3. Parameters of TSMA additional structures
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loop traces. Note that almost 45% of the speculated

instructions are due to speculation of instruction chaining

traces, 40% are due to speculation of call traces and the

remaining 15% correspond to speculation of loop traces.

Although the numbers of speculated call and loop traces

are relatively small, they are significantly larger than

instruction chaining traces. Table 4 shows that loop traces

have an average trace size of 215.8 instructions, while

instruction chaining traces have an average size of 36.4

instructions. Other statistics, such as the average number of

live-output values and average numbers of branches within

a trace, are also shown in Table 4.

Note that the number of skipped instructions is larger

when the traces are larger. However, this also implies a

larger number of live-output values and therefore increases

the probability of a live-output missprediction. The best

performance depends on finding the best trade-off the

between size of the traces and the predictability of their

live-output values.

A trace misspeculation can be produced by incorrectly

predicting a live-output value or incorrectly predicting the

final point of a trace. Also, the final point of a trace may be

correctly predicted but paths between the initial and the

final point of a trace may be incorrectly predicted. Note

that this does not necessarily produce a misspeculation. For

example, if-then-else structures that do not generate

different live-output values may produce different traces

with the same initial and final points.

 Figure 4 shows the distribution of speculated traces

divided into four categories: (1) correct trace speculation

and correct path speculation, (2) correct trace speculation

despite incorrect path speculation, (3) incorrect trace

speculation but correct path speculation, and finally (4)

incorrect trace speculation and incorrect path speculation.

We observe a significant percentage of correctly speculated

traces (almost 70%). Note that the contribution of traces

that do not produce misspeculation, even though the paths

between the initial and the final point of the trace were not

correctly predicted, is around 7%. On the other hand, the

percentage of misspeculations is close to 30% (21% for

correctly predicted paths and 9% for misspredicted paths or

misspredicton of the final point of a trace). These results

confirm that the proposed mechanism for predicting paths

and final points of traces provides a significant level of

accuracy. 

Figure 5 shows the speed-up obtained by the TSMA

processor over the baseline superscalar configuration. Our

results show that the average speed-up was almost 38%

and very high speed-ups were achieved for all benchmarks.

Note that significant speed-up was obtained despite

misspeculating an average of 30% of the traces. These

results also confirm that the proposed microarchitecture is

Average size of speculated traces per type 

(Instruction Chaining, Calls and Loops)

36.4, 97.3, 215.8

Average size of speculated traces 65.7

Average number of live-output values 16.4

Average number of branches within a trace 

(Instruction Chaining Heuristic)

5.3

Average number of traces with the same initial point 

(Instruction Chaining Heuristic)

1.57

Table 4. Additional simulation results

Figure 3. Type of speculated instructions
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tolerant to misspeculations and encourage further work to

develop more aggressive trace prediction mechanisms.

Figure 6 and Figure 7 provide several statistics about the

activity of the speculative thread and the non-speculative

thread, respectively. The dark-grey bar in Figure 6

represents the percentage of time that ST can speculate but

does not find a trace to be speculated, while the light-grey

bar represents the percentage of time that ST cannot

speculate traces because NST is executing and verifying a

speculated trace. Note that speculation may be performed

only when NST catches up to ST. On average, almost 25%

of the time the trace speculation engine did not

communicate a trace speculation opportunity to the fetch

engine because of this reason, which again confirms that

performance may be improved by further analysing of the

impact of the trace size. Note that the ideal scenario is

when the ST finds a point to speculate right after the NST

has caught up to it.

 The dark-grey bar in Figure 7 represents the percentage

of time that the NST executes traces speculated by ST,

while the light-grey bar represents the percentage of time

that the NST verifies instructions from the look-ahead

buffer. In general, more speculated instructions (see Figure

6) imply more time executing instructions for the NST and,

since verifying instructions is faster than executing them,

this follows a superlinear relation.

Figure 8 shows the percentage of time that ST executes

instructions beyond a misspeculation point. On average ST

wastes up to 20% of the time executing instructions that

will be discarded. Note that the ideal scenario would be

when this percentage is negligible, which also implies a

minimal number of trace misspeculations.

Finally, we also observed that, despite the significant

number of branches within the trace, the instruction

chaining heuristic does not provide many traces with the

same initial point (see Table 4). In this way, we studied

branch behavior and concluded that the majority of

branches almost always take the same direction. Figure 9

shows the accumulated distribution of the branch

behaviour for all the benchmarks used in this paper. The X-

axis represents the percentage of times that a branch takes

the most common direction (50% means that the branch

takes the taken and the not taken paths the same number of

times and 100% means that the branch always takes the

same path). The Y-axis represents the accumulated number

of dynamic branches. Note that almost 80% of the branches

take the same direction more than 90% of the times. This

result, combined with the parameters used for the analysis

phase (listed in Table 1), significantly limits the number of

traces with the same initial point.

Figure 6. Type of cycles of the Speculative Thread
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Figure 7. Type of cycles of the Non Speculative Thread

Figure 8. Useless cycles of the Speculative Thread
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Figure 9. Branch Behaviour Distribution
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5. Related Work

Several previous studies [7],[11],[12],[21] have shown

that programs usually have a significant degree of

repeatability/predictability, which suggests that there may

be effective schemes to significantly increase the accuracy

of trace predictors. [19], identified the potential sources of

speculative parallelism in programs and concluded that a

combination of loop and procedural speculation is a

promising parallelization scheme for speculative thread-

level parallel machines 

Value profiling has also been studied as a mechanism to

assist value prediction or value reuse schemes. A value

prediction scheme guided by value profiling is presented in

[10]. Compiler-directed approaches for identifying code

regions whose computation can be reused during dynamic

execution are proposed in [7] and [13]. A code

specialization approach that uses value profiling is

presented in [18]. A compiler framework that includes

analysis for speculative optimizations has recently been

proposed [14]. This uses profiling information and simple

heuristics to supplement traditional non-speculative

compile-time analysis.

The idea of dynamic verification was introduced in [22].

The proposed AR_SMT processor uses a time redundant

technique that enables some transient errors to be tolerated.

Slipstream processors [20] dynamically avoid the

execution of non essential computations of a program.

These authors suggest creating a shorter version of the

original program by removing ineffectual computation.

The use of dynamic verification to reduce the burden of

verification in complex microprocessor designs is covered

in [8].

Several thread-level speculation techniques have been

explored to exploit parallelism in general-purpose

programs. Speculative multithreading [2],[15] is a well-

known technique based on the concurrent execution of

speculative threads. Various authors have studied the

impact of different value predictors to alleviate dependence

constraints and enable look-ahead execution of speculative

threads. Simultaneous Multithreading [25] allows

independent threads to issue instructions to multiple

functional units in a single cycle. Multiple Path Execution

[1],[26] permits the speculative execution of multiple paths

in parallel. Simultaneous Subordinate Microthreading [6]

was proposed in order to execute subordinate threads that

perform optimizations on a primary thread. 

Other recent studies have also focused on speculative

threads. The pre-execution of critical instructions by means

of speculative threads has also been proposed [9],[23],[27].

Critical instructions, such as misspredicted branches or

loads that miss in cache, are used to construct traces called

slices that contain the subset of the program that relates to

that instruction. A novel microarchitecture that

dynamically allocates processor resources between a

primary and a future thread was proposed in [3]. The future

thread executes instructions when the primary thread is

limited by resource availability which therefore warms up

certain microarchitectural structures.

6. Conclusions

In this paper we propose a profile-guided analysis for

identifying highly predictable, large traces to be speculated

by a Trace-Level Speculative Multithreaded Architecture.

We propose three basic heuristics   to determine

opportunities for speculation. This analysis substitutes the

dynamic process of detecting speculative traces and their

corresponding live-output values, which considerably

reduces hardware complexity. Our simulation results show

that these techniques achieve an average speed-up of

almost 38%.

Future areas for investigation include generalising the

architecture to multiple threads in order to perform sub-

trace speculation during the validation of a trace that has

been speculated. The relatively low penalty of

misspeculations means that another area for future work is

to investigate more aggressive speculation schemes.
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