
UPCommons 
Portal del coneixement obert de la UPC 

http://upcommons.upc.edu/e-prints 

Aquesta és una còpia de la versió author’s final draft d'un article 
publicat a Proceedings PIMRC 2016 

URL d'aquest document a UPCommons E-prints: 

http://hdl.handle.net/2117/101067 

Article publicat / Published paper: 

Rubio, J., Pascual Iserte, A., Perez-Palomar, D., Goldsmith, A. SWIPT 
techniques for multiuser MIMO broadcast systems. A: IEEE 
International Symposium on Personal, Indoor and Mobile Radio 
Communications. "Proceedings PIMRC 2016". Valencia: Institute of 
Electrical and Electronics Engineers (IEEE), 2016, p. 1-6 DOI 
10.1109/PIMRC.2016.7794639  

http://upcommonsdev.upc.edu/
http://upcommonsdev.upc.edu/
http://upcommons.upc.edu/e-prints
http://hdl.handle.net/2117/101067
http://hdl.handle.net/2117/101067
http://dx.doi.org/10.1109/PIMRC.2016.7794639


1

SWIPT Techniques for Multiuser MIMO

Broadcast Systems

Javier Rubio�, Antonio Pascual-Iserte�,

Daniel P. Palomar†, and Andrea Goldsmith‡
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Abstract—In this paper, we present an approach to solve the
nonconvex optimization problem that arises when designing the
transmit covariance matrices in multiuser multiple-input multiple-
output (MIMO) broadcast networks implementing simultaneous
wireless information and power transfer (SWIPT). The MIMO
SWIPT design is formulated as a nonconvex optimization problem in
which system sum rate is optimized considering per-user harvesting
constraints. Two different approaches are proposed. The first ap-
proach is based on a classical gradient-based method for constrained
optimization. The second approach is based on difference of convex
(DC) programming. The idea behind this approach is to obtain
a convex function that approximates the nonconvex objective and,
then, solve a series of convex subproblems that, eventually, will
provide a (locally) optimum solution of the general nonconvex
problem. The solution obtained from the proposed approach is
compared to the classical block-diagonalization (BD) strategy, typ-
ically used to solve the nonconvex multiuser MIMO network by
forcing no inter-user interference. Simulation results show that the
proposed approach improves both the system sum rate and the
power harvested by users simultaneously. In terms of computational
time, the proposed DC programming outperforms the classical
gradient methods.

I. INTRODUCTION

Simultaneous wireless information and power transfer

(SWIPT) is a technique by which a transmitter actively feeds

a receiver (or a set of receivers) with power that is sent through

radio frequency (RF) signals and, simultaneously, sends useful

information to the same or different receivers [1]. In this context,

battery-constrained devices are able to prolong their operation

time by means of recharging their batteries thanks to this energy

harvesting process [2].

The concept of SWIPT was first studied from a theoretical

point of view by Varshney [3]. He showed that, for the single-

antenna additive white Gaussian noise (AWGN) channel, there

exists a nontrivial trade-off in maximizing the data rate versus

the power transmission. In [4], authors considered a single

user multiple-input multiple-output (MIMO) scenario with one

The research leading to these results has received funding from the Spanish
Ministry of Economy and Competitiveness (Ministerio de Economı́a y Com-
petitividad) through the project TEC2011-29006-C03-02 (GRE3N-LINK-MAC),
project TEC2013-41315-R (DISNET), and FPI grant BES-2012-052850, from the
Catalan Government (AGAUR) through the grant 2014 SGR 60, and from the
Hong Kong Government through the research grant Hong Kong RGC 16207814.

transmitter capable of transmitting information and power si-

multaneously to one receiver. Later, in [5], authors extended the

work in [4] by considering that multiple users were present in

the broadcast MIMO system. However, the multi-stream transmit

covariance optimization that appears in broadcast MIMO systems

is a very difficult nonconvex optimization problem. In order

to overcome that difficulty, authors in [5] assumed a block-

diagonalization (BD) strategy [6], in which interference among

users is pre-canceled at the transmitter. The BD technique allows

for a simple solution but wastes some degrees of freedom and,

thus, degrades the overall performance. Paper [7], considered a

MIMO network consisting of k transmitter-receiver pairs with

co-channel interference. In [8], authors considered a MIMO

system with single-stream transmission. In contrast to previous

works where the system rate was optimized, their objective

was to minimize the overall power consumption with signal

to interference and noise ratio (SINR) constraints and per-user

harvesting constraints. Multiuser broadcast networks can also

be found under the framework of multiple-input single-output

(MISO) beamforming as in [9]. The main difference of our work

with respect to the previous works is that we assume a broadcast

multiuser multi-stream (not BD-based) MIMO SWIPT network,

which is a scenario not considered before.

The scope of this paper is to generalize all the previous works

(specially [4] and [5]). The approach followed in this paper is

the same as the one by the same authors in [10]. We consider a

multiuser multi-stream MIMO SWIPT network. We assume that

interference is not pre-canceled (that is, BD is not applied) and,

thus, both larger information transfer and harvested power can

be achieved simultaneously. The resulting problem is nonconvex

and very difficult to solve. In order to obtain local solutions,

we derive different methods based on gradient techniques and

on difference of convex (DC) programming [11]. The gradient

techniques developed in this paper are then used in the journal

version [10] as benchmarks. Additionally, in the journal version

we extend the DC method presented in this paper and consider

other problem formulations.

The remainder of this paper is organized as follows. In Section

II, we introduce the system model. Section III is devoted to

presenting the problem formulation. In Section IV, we derive

gradient-based techniques to solve the nonconvex SWIPT prob-

lem. In Section V, we develop an approach based on DC

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work 
in other works.
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Fig. 1: Schematic representation of the downlink broadcast multiuser commu-
nication system. Note that each user can switch from an information decoder
receiver to an energy harvester receiver.

programming to tackle the SWIPT problem. Section VI evaluates

numerically the performance of the previous approaches and,

finally, Section VII presents some conclusions.

II. SYSTEM MODEL

Let us consider a wireless broadcast multiuser system consist-

ing of one base station (BS) transmitter equipped with nT an-

tennas and a set of K receivers, denoted as UT = {1, 2, . . . ,K},

where the k-th receiver is equipped with nRk
antennas. The BS

transmits information signals to some receivers whereas other

receivers use those signals to recharge their batteries through

energy harvesting. We assume that a given user is not able

to decode information and to harvest energy simultaneously.

Thus, the set of users is partitioned into two disjoint subsets.

One that contains the information users, denoted as UI ⊆ UT

with |UI | = N , and the other subset that contains harvesting

users, denoted as UE ⊆ UT with |UE | = M . Therefore,

UI ∩ UE = ∅ and |UI |+ |UE | = N +M = K.1 Without loss of

generality (w.l.o.g.), let us index users as UI = {1, . . . , N} and

UE = {N +1, . . . , N +M}. The proposed system is depicted in

Fig. 1.

The equivalent baseband channel from the BS to the k-th

receiver is denoted by Hk ∈ C
nRk

×nT . It is also assumed that the

set of matrices {Hk} is known to the BS and to the corresponding

receivers (the case of imperfect CSI is out of the scope of the

paper).

As far as the signal model is concerned, the received signal at

the i-th information receiver can be modeled as

yi = HiBixi + Hi

∑
k∈UI
k �=i

Bkxk + ni, ∀i ∈ UI . (1)

In the previous notation, Bixi represents the transmitted signal

for user i ∈ UI , where Bi ∈ C
nT×nSi is the precoder matrix

and xi ∈ C
nSi

×1 represents the information symbol vector. It

is also assumed that the signals transmitted to different users

are independent and zero mean. nSi denotes the number of

streams assigned to user i ∈ UI and we assume that nSi =
min{nRi

, nT } ∀i ∈ UI . The transmit covariance matrix is Si =
BiBH

i if we assume w.l.o.g. that E
[
xixH

i

]
= InSi

. ni ∈ C
nRi

×1

denotes the receiver noise vector, which is considered Gaussian

with E
[
ninH

i

]
= InRi

2. Note that the middle term of (1) is an

1In this paper, we assume for simplicity in the formulation that a user belongs
to either the harvesting set or the information set and that both sets are known
and fixed.

2We assume that noise power σ2 = 1 w.l.o.g., otherwise we could simply
apply a scale factor at the receiver and re-scale the channels accordingly.

interference term. The covariance matrix of the interference plus

noise is written as

Ωi(S−i) = HiS−iHH
i + I, ∀i ∈ UI , (2)

where S−i =
∑

k∈UI
k �=i

Sk.

The total RF-band power harvested by the j-th user from all

receiving antennas, denoted by Q̄j , is proportional to that of the

equivalent baseband signal, i.e.,

Q̄j = ζjE
[∥∥∥Hj

∑
i∈UI

Bixi
∥∥∥2]

= ζj
∑
i∈UI

E[‖HjBixi‖2], ∀j ∈ UE , (3)

where ζj is a constant that accounts for the loss in the transducer

for converting the harvested RF power to electrical power to

charge the battery. Notice that, for simplicity, in (3) we have

omitted the harvested power due to the noise term since it can

be assumed negligible.

Let x̃ = Bx denote the signal vector transmitted by the

BS, where the joint precoding matrix is defined as B =
[B1 . . . BN ] ∈ C

nT×nS , being nS =
∑

i∈UI
nSi the total

number of streams of all information users, and the data vector

as x =
[
xT1 . . . xT

N

]T ∈ C
nS×1, that must satisfy the power

constraint formulated as E[‖x̃‖2] = ∑
i∈UI

Tr(Si) ≤ PT , where

PT represents the total available transmission power at the BS.

III. PROBLEM FORMULATION

In this section, we consider the design of the covariance

matrices {Si} based on the maximization of the sum-rate with in-

dividual power harvesting constraints. The optimization problem

can be written as

maximize
{Si}

∑
i∈UI

ωiRi(S) (4)

subject to C1 :
∑
i∈UI

Tr(HjSiHH
j ) ≥ Qj , ∀j ∈ UE

C2 :
∑
i∈UI

Tr(Si) ≤ PT

C3 : Si 
 0, ∀i ∈ UI ,

where Qj =
Q̄min

j

ζj
, being {Q̄min

j } the set of minimum power

harvesting constraints, ωi are some real non-negative weights,

S � (Si)∀i∈UI
, and the data rate expression, Ri(S), is given by

Ri(S) = log det
(
I + HiSiHH

i Ω−1
i (S−i)

)
(5)

= log det
(
I + HiS̄HH

i

)︸ ︷︷ ︸
� si(S)

− log det (Ωi(S−i))︸ ︷︷ ︸
� gi(Ωi(S−i))

, (6)

being S̄ =
∑

k∈UI
Sk.

The previous optimization problem in (4) is not convex due the

objective functions (in particular, due to Ωi(S−i)) and is difficult

to solve. Notice, in fact, that in the literature the interference in

(2) is generally assumed not to exist as the transmission strategy

cancels it out, thus, making the problem convex and easier to

solve [6]. If the problem is not convex, the KKT conditions

are generally neither necessary nor sufficient, so a local point

cannot be obtained directly by solving them [12]. In this sense,
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we propose two different methods to find local optima of (4).

The first method is based on applying a gradient-type approach

for constrained optimization problems. The second approach is

based on DC programming [11]. Note that function si(S) is

concave with respect to (w.r.t.) S whereas function −gi(Ωi(S−i))
is convex w.r.t. S. Hence, function Ri(S) is categorized as a DC

function. In this case, what we propose is to concavify the non-

concave function −gi(Ωi(S−i)) following the approach in [13],

in which the non-concave function is approximated by a linear

(and, thus, concave) function.

IV. GRADIENTS-BASED METHODS TO SOLVE (4)

A. Gradient Method for Constrained Optimization

Let us first consider a gradient method applied directly to the

problem in (4). The update equation based on the gradient for

constrained optimization problem reads as

S(q+1)
i = S(q)

i + α(q)T(q)
i , ∀i ∈ UI , (7)

where

T(q)
i =

⎧⎨⎩∇f0

(
S(q)

)
, If S(q) is feasible,

−∇fj

(
S(q)

)
, otherwise,

(8)

where ∇f0

(
S(q)

)
denotes the gradient of f0(·) at point S(q)

(being S(q) � (S(q)
i )∀i∈UI

), f0(·) is the objective function of

problem (4), i.e., f0(S) =
∑

i∈UI
ωisi(S) − ωigi(Ωi(S−i)), and

fj(·) corresponds to any violated constraint in problem (13),

and α(q) is the step size chosen such that the diminishing

conditions are fulfilled, i.e., limq→∞ α(q) = 0,
∑∞

q=1 α
(q) = ∞

[12]. In other words, if the current point is feasible, we use a

subgradient based on the objective function and if the current

point is infeasible, we choose any violated constraint and use

a subgradient of the associated constraint function. In the latter

case, we can choose any of the violated constraints, if there is

more than one. The gradients are calculated in the Appendix. The

overall algorithm is presented in Algorithm 1.

Algorithm 1 Algorithm for Solving Problem (4)

1: Repeat

2: Update: S(q+1)
i = S(q)

i + α(q)T(q)
i . Set q = q + 1

3: Until convergence of S(q)
i

One important remark to note is that the previous approach

does not need to provide feasible points S(k,q)
i at each iteration q,

that is, the procedure may give points that violate the constraints

at some intermediate iterations. That is not a problem since the

optimal point S�
i provided once the algorithm has converged will

satisfy all the constraints [12].

B. Projected Gradient Method for Constrained Optimization

Another approach is to apply a gradient method but assuring that

the new generated iterates S(q+1)
i fulfill the constraints at each

iteration q. To do this, we propose to use a projected gradient

method, which is given by

S(q+1)
i = Π

(
S(q)
i + α

(q)
i Z(q)

i

)
, ∀i ∈ UI , (9)

where Π is the projection on S and Z(q)
i = ∇f0

(
S(q)

)
. Let

Ŝ
(q)

i = S(q)
i + α(q)Z(q)

i , ∀i ∈ UI . Now, to obtain the projector

function we must solve the following optimization problem:

minimize{
S(q+1)
i

} max
i∈UI

∥∥∥∥S(q+1)
i − Ŝ

(q)

i

∥∥∥∥2
2

(10)

subject to C1 :
∑
i∈UI

Tr(HjSiHH
j ) ≥ Qj , ∀j ∈ UE

C2 :
∑
i∈UI

Tr(Si) ≤ PT

C3 : Si 
 0, ∀i ∈ UI ,

which can be reformulated as the following easy-to-solve

semidefinite programming (SDP):

minimize
t,
{

S(q+1)
i

} t (11)

subject to C1 :

[
tI S(q+1)

i − Ŝ
(q)

i

S(q+1)
i − Ŝ

(q)

i tI

]

 0

C2 :
∑
i∈UI

Tr(HjSiHH
j ) ≥ Qj , ∀j ∈ UE

C3 :
∑
i∈UI

Tr(Si) ≤ PT

C4 : Si 
 0, ∀i ∈ UI .

The overall algorithm is presented in Algorithm 2.

Algorithm 2 Algorithm for Solving Problem (4)

1: Repeat

2: Update: Ŝ
(q)

i = S(q)
i + α(q)Z(q)

i

3: Solve optimization problem (11) −→ S(q+1)
i

Set q = q + 1
4: Until convergence of S(q)

i

V. DC PROGRAMMING METHOD TO SOLVE (4)

Motivated by the work in [13], in this approach, we de-

rive a (linear) approximation for the non-concave function

−gi(Ωi(S−i)), in such a way that the modified problem is

convex3. To this end, we derive a simple local approximation

of f0(S) =
∑

i∈UI
ωisi(S) − ωigi(Ωi(S−i)). In order to find

a concave lower bound of f0(S), gi(·) can be upper bounded

linearly at point Ω
(0)
i =

∑
k∈UI
k �=i

HiS
(0)
k HH

i + I as

gi(Ωi(S−i)) ≤ gi

(
Ω

(0)
i

)
+Tr

((
Ω

(0)
i

)−1(
Ωi(S−i)−Ω

(0)
i

))
= constant +Tr

((
Ω

(0)
i

)−1

Ωi(S−i)

)
� ĝi(Ωi(S−i),Ω

(0)
i ). (12)

Note that the upper bound ĝi(Ωi(S−i),Ω
(0)
i ) can be used to build

a lower bound of f0({Si}). By applying a successive approxima-

tion of f0(·) through the application of the function f̂0(S, S(k)) =

3In fact, by applying the approximation, the overall objective function becomes
concave.
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∑
i∈UI

ωisi(S) − ωiĝi(Ωi(S−i),Ω
(k)
i ) − ρ

∥∥∥Si − S(k)
i

∥∥∥2
F

(where

S(k) � (S(k)
i )∀i∈UI

), we obtain an iterative algorithm based on the

approach presented in [13] that converges to a stationary point

(or local optimum) of the original problem (4). Note that we

have added a proximal quadratic term to the surrogate function

in which ρ is any non-negative constant that can be tuned by the

algorithm. This term provides more flexibility in the algorithm

design stage and may help to speed up the convergence. Given

this, the optimization problem to be solved is

maximize
{Si}

∑
i∈UI

ωisi(S)−ωiĝi(Ωi(S−i),Ω
(k)
i )−ρ

∥∥∥Si − S(k)
i

∥∥∥2
F

subject to C1 :
∑
i∈UI

Tr(HjSiHH
j ) ≥ Qj , ∀j ∈ UE (13)

C2 :
∑
i∈UI

Tr(Si) ≤ PT

C3 : Si 
 0, ∀i ∈ UI .

The previous optimization problem is convex and can be solved

using any standard convex optimization tools [12]. In order to

obtain a (local) solution of (4), we must proceed iteratively until

convergence of {S(k)
i } is reached. The procedure is presented in

Algorithm 3.

Algorithm 3 Algorithm for Solving Problem (4)

1: Initialize S(0). Set k = 0
2: Repeat

3: Generate (k + 1)-th tuple (S�
i )∀i∈UI

by solving (13)

4: Set S(k+1)
i = S�

i , ∀i ∈ UI , and set k = k + 1
5: Until convergence is reached

VI. NUMERICAL EVALUATION

In this section, we evaluate the performance of the previous

algorithms. In the first part of this section, we present some con-

vergence and computational time results. For this simulation, we

consider a system composed of 1 transmitter with 6 antennas, and

3 information users and 3 harvesting users with 2 antennas each.

In the second part of the section, we show the performance of

the proposed methods compared to the classical BD approach. In

this case, for the sake of simplicity and clarity in the presentation,

we assume a system composed of 1 transmitter with 4 antennas,

and 2 information users and 2 harvesting users with 2 antennas

each. The simulation parameters common to both scenarios are

the following. The maximum radiated power is PT = 1 W.

The channel matrices are generated randomly with i.i.d. entries

distributed according to CN (0, 1). The weights ωi are set to 14.

A. Convergence Evaluation

In this subsection, we evaluate the convergence behavior and

the computational time of the methods presented in Sections IV

and V. In the figures, the legend is interpreted as follows: ’GDC’

refers to the method in Section IV-A, ’GDP’ to the method in

Section IV-B, and ’DCP’ to the method in Section V. We set

4The weights could be adjusted to assign different priorities to users [14],
although this is out of the scope of this paper.
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Fig. 3: Convergence of the system sum rate vs number of iterations of gradient
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the values of Qj for the three users as Q = [3.8, 7.2, 6.4] power

units. Software package CVX is used to solve problem 13 [15].

Fig. 2 presents the sum rate convergence as a function of

computational time. The three approaches converge to the same

sum rate value but requiring a different execution time. As we can

see, the DC programming approach is faster than the gradient-

based approaches and, in particular, much faster than the GDP

approach. The GDP approach yields intermediate feasible solu-

tions but at a expense of solving a convex problem. This involves

many operations and this is reflected in the large computational

time GDP requires to converge.

Fig. 3 shows the convergence behavior as a function of

iterations. The DCP approach is not shown in this plot, but taking

a look at Fig. 2, we see that DCP only requires 5 iterations to

converge. We also see that GDP requires a lot fewer iterations

than GDC but each iteration involves solving an optimization

problem and, thus, the overall computational time increases a lot

(see Fig. 2).
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B. Performance Evaluation

In this section, we evaluate the performance of the proposed

approaches as compared to the classical BD strategy considered

in the literature (see for example [5], [16]). In order to show how

harvesting users at different distances affect the performance,

we have generated channel matrices with different norms. The

gradient-based approach and the DC programming approach

generate the same result so both of them can be used to generate

the next figures. We would like to emphasize that, as the noise and

channels are normalized, we will refer to the powers harvested

by the receivers in terms of power units instead of Watts.

Fig. 4 and Fig. 5 show the Rate-Power region, that is, the

multidimensional trade-off between the system sum rate and

the power to be collected by harvesting users (see [4] for a

formal definition of the Rate-Power region). As we see, the

proposed approach outperforms the BD strategy in both terms,

system sum rate and harvested power. The maximum system

sum rate obtained with the proposed approach when Q1 and Q2

are set to 0 is 4.5 bit/s/Hz, whereas the sum rate obtained with

the BD approach is 2.75 bit/s/Hz. The Rate-Power surfaces are

Q1 (Power units)
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Q
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u
n
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Fig. 6: Contour of Rate-Power curve for the BD method.
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Fig. 7: Contour of Rate-Power curve for the proposed method.

generated by varying the {Qj} in problem (4). Note, however,

that the whole Rate-Power curve need not be generated for each

transmission, it is just the representation of the existing rate-

power tradeoff. In order to clearly see the benefits in terms of

collected power, Fig. 6 and Fig. 7 show the contour plots of the

previous 3D plots. We observe that the users in the DC approach

collect roughly 50% more power than the one collected by users

following the BD strategy.

VII. CONCLUSIONS

In this paper, we have presented a method to solve the

difficult nonconvex problem that arises in multiuser multi-stream

broadcast MIMO SWIPT networks. We have formulated the

general SWIPT problem as an optimization problem, in which

the system weighted sum rate is optimized considering per-user

harvested constraints. We have proposed two different approaches

to solve the previous nonconvex problem. The first approach

is based on a classical gradient-based method for constrained

optimization and the second approach is based on a DC approach

in which we have derived a convex approximation for the

nonconvex objective. Simulation results have shown that the

proposed method outperforms the classical BD in terms of both

system sum rate and power collected by users by a factor of

approximately 50%. Moreover, the computational time of the

DC approach required for convergence has been shown to be

really low, around one to two orders of magnitude lower than

the gradient-based approaches.
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APPENDIX

Let us start with the gradient of the objective function. As

the covariance matrices Si have a particular structure (they are

positive semidefinite matrices, i.e., Si 
 0, we have to follow the

steps presented in [17] to obtain the desired gradient. We will first

consider that matrices Si are unpatterned matrices denoted by S̃i.

Then, we will particularize the results for the specific pattern they

have. Given this, differential of f0(S̃) (being S̃ � (S̃i)i∈UI
) with

respect to S̃� is

df0(S̃) =
∑
i∈UI

ωi Tr

⎛⎝(
Hi

∑
k∈UI

S̃kHH
i + I

)−1

HidS̃�HH
i

⎞⎠
−

∑
i∈UI
i �=�

ωi Tr
(
(Ωi)

−1 HidS̃�HH
i

)
, (14)

where we have used d log det(X) = Tr(X−1dX) [17], and the

gradient with respect to S̃� and S̃
∗
� are given, thus, by

∇S̃�
f0(S̃) =

∑
i∈UI

ωiHT
i

(
Hi

∑
k∈UI

S̃kHH
i + I

)−T

H∗
i

−
∑
i∈UI
i �=�

ωiHT
i (Ωi)

−T H∗
i . (15)

∇S̃∗
�
f0(S̃) = 0. (16)

Now, for the particular case of having Hermitian matrices, the

following relation holds

∇S�
f0 (S) =

[
∇S̃�

f0

(
S̃
)
+
(
∇S̃∗

�
f0

(
S̃
))T

]
S̃�=S�

, (17)

and, since S∗
� = ST

� , it follows that

∇S∗
�
f0 (S) = ∇ST

�
f0 (S) = (∇S�

f0 (S))
T

(18)

=

[
∇S̃∗

�
f0

(
S̃i

)
+
(
∇S̃�

f0

(
S̃i

))T
]

S̃�=S�

. (19)

Finally, from (15), (16), and (19), it follows that the gradient of

f0 (S) with respect to S∗
� is given by

∇S∗
�
f0 (S) =

∑
i∈UI

ωiHH
i

(
Hi

∑
k∈UI

SkHH
i + I

)−1

Hi

−
∑
i∈UI
i �=�

ωiHH
i (Ωi)

−1 Hi. (20)

Now we follow the same procedure for the constraints. Note that

imposing that matrix Si is positive semidefinite is the same as

imposing that the eigenvalues of Si are all non-negative. Given

this, the differentials of constraints C1, C2, and C3 with respect

to the unpatterned matrix S̃� are given by

dC1 = −Tr
(

HjdS̃�HH
j

)
, ∀j ∈ UE (21)

dC2 = Tr
(

dS̃�

)
(22)

dC3 = dλ
(k)
�

(
S̃�

)
= −vH(k)

� dS̃�v
(k)
� , ∀� ∈ UI , ∀k, (23)

where λ
(k)
� (·) is the k-th eigenvalue of the �-th covariance matrix

and v(k)� is the eigenvector associated with the k-th eigenvalue.

Note that we have used the identity dλi = vH
i dXvi [17]. The

gradients with respect to S̃� and S̃
∗
� are:

∇S̃�
C1 = −HT

j H∗
j , ∀j ∈ UE (24)

∇S̃�
C2 = I (25)

∇S̃�
λ
(k)
� (S�) = −v∗(k)

� vT (k)
� , ∀� ∈ UI , ∀k (26)

∇S̃∗
�
C1 = 0, ∀j ∈ UE (27)

∇S̃∗
�
C2 = 0 (28)

∇S̃∗
�
λ
(k)
� (S�) = 0, ∀� ∈ UI , ∀k (29)

Finally, from (25)-(29), and (19) it follows that the gradients with

respect to S∗
� are given by

∇S∗
�
C1 = −HH

j Hj , ∀j ∈ UE (30)

∇S∗
�
C2 = I (31)

∇S∗
�
λ
(k)
� (S�) = −v(k)

� vH(k)
� , ∀� ∈ UI , ∀k (32)
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