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Abstract 

The denominated instant release fraction (IRF) is considered in performance assessment (PA) 

exercises to govern the dose that could arise from the repository. A conservative definition of 

IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain 

boundaries and, if present, in the high burn-up structure (HBS). The values calculated from 

this theoretical approach correspond to an upper limit that likely does not correspond to what 

it will be expected to be instantaneously released in the real system. Trying to ascertain this 

IRF from an experimental point of view, static leaching experiments have been carried out 

with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor 

(PWR), labelled PWR, with an average burn-up (BU) of 52 MWd·kgU
-1 and fission gas 

release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an 

average BU of and 53 MWd·kgU
-1 and FGR of 3.9 %. 

One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate 

water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The 

behaviour of the concentration measured in solution can be divided in two according to the 

release rate. All radionuclides presented an initial release rate that after some days levels 

down to a slower second one, which remains constant until the end of the experiment. 

Cummulative Fraction of Inventory in Aqueous Phase (FIAPC) values have been calculated. 

Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, 

Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, 

Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, 

being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for 

BWR fuel. 
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1. Introduction 

In nuclear waste management some countries favour final geological disposal as solution for 

safe storage of spent nuclear fuel (SNF) [1-4]. One risk that has to be assessed is a container 

failure followed by groundwater ingress into the disposal vault and subsequent contact with 

SNF. As a consequence the SNF is leached and will release a fraction of its radionuclides 

inventory [2,5]. 

Assessing the performance of SNF in a potential future geological disposal system requires 

the understanding and quantification of the radionuclide release. In the past, the radionuclide 

release was divided into contributions from the three SNF zones: gap, grain boundary and 

matrix grain [1]. 

Radionuclides in gap and grain boundary have been considered as instant release fraction 

(IRF) [6,7]. This fraction includes: fission gases, volatiles (129I, 137Cs, 135Cs, 36Cl, 79Se) and 

segregated metals (99Tc, 107Pd, 126Sn) [8]. Recently, the tendency of increasing fuel burn-up 

(BU) produces 239Pu by neutron capture of 238U generating an external layer with a higher 

local BU, which presents higher porosity and fuel grain subdivision, resulting on the 

formation of the so-called rim zone also known as high burn-up structure (HBS) [9, 10]. This 

layer is observed for BU’s higher than 40 MWd·kgU
-1 [9-16] and is a function of BU and the 

irradiation temperature, being the temperature threshold 1100ºC [13,15]. As a conservative 

approach for those SNF’s, the radionuclides located in the HBS were also included in the IRF 

[6, 8]. 

The contribution of HBS to the IRF has been studied in static experiments in oxidising 

conditions. The first results reported by Clarens et al. [17,18] and de Pablo et al.[19] show a 

decreased release for the periphery of SNF pellets compared to core samples. This finding 

suggests some kind of stabilization against oxidative dissolution. Recent studies have 

observed the same effect [20-25]. Several studies have been performed to determine the 



contribution of the gap and the grain boundaries contribution to IRF [26-37]. These studies 

were mainly focused on caesium, strontium and technetium in UOX [26-28,31,32,35-37], 

MOX [36] and CANDU [29-34] fuels. The gap contribution was obtained using cladded fuel 

segments meanwhile the grain boundary contribution was obtained by using powder samples.  

In this work, the dissolution of two 10 mm rod segments (cladding + fuel) from PWR and 

BWR SNF’s with similar BU’s (53 MWd·kgU
-1) but different irradiation histories have been 

studied. Actinides and fission products have been determined in order to identify 

congruencies in release and to distinguish between gap, grain boundary and matrix 

contributions. 

2. Experimental part 

2.1 UO2 SNF samples 

Two different commercial UO2 SNF’s from a pressurized water reactor (PWR) and a boiling 

water reactor (BWR) were used. The relevant irradiation data are summarised in Table 1. 

The cooling time period at the beginning of the experiments was 5 and 6 years, for PWR and 

BWR fuels, respectively. 

For the present study, pieces of cladded fuel were cut from the two SNF pins, see Fig. 1. The 

dry cutting was performed slowly without any cooling liquid in a hot cell under nitrogen 

atmosphere with typical oxygen content below 1%. A cutting machine equipped with a 

diamond wafering blade (Buehler Isomet ® series 15HC) was used during the cutting process. 

Once the segments were obtained, they were characterised. The weight and the geometric 

parameters (length and diameter) of the samples are reported in Table 2. 

2.2 Experimental set-up and procedure 

The two experiments were performed in batch static conditions. The cladded SNF samples 

were put in a (50 ± 1) mL flask containing bicarbonate solution as a leachant, which 



composition was (1.9 ± 0.2)x 10-2 M NaCl and (1.0 ± 0.1)x 10-3 M NaHCO3. The solution of 

the experiment was equilibrated with air, leaving a head space gas of about 10 mL. In 

addition, to minimize the build-up of concentration gradients in the liquid phase the solution 

was daily shaken. 

The experiments were planned to measure the initial contribution of radionuclide release. For 

this reason, no annealing or washing of SNF samples was carried out prior to start the 

experiments even if that may have as a result a high initial dissolution rate due to the possible 

presence of either oxidised phases or fines in the surface sample [38,39]. During the 

experiments the solution was fully replaced twice at 0.75 and 3.73 days to avoid possible 

uranium saturation and subsequently secondary phase formation. Anyhow, the solution 

corresponding to the both completed replenishments was analysed because provides valuable 

information regarding the IRF. In the following, aliquots of (3.0 ± 0.1) mL were sampled at 

regular time intervals (5-6 samples during the first 20 days and 4-5 more samples during the 

one year test). The volume was kept constant, (50 ± 1) mL, by adding fresh solution (3.0 ± 

0.1) mL after each sampling. 

The samples were taken without filtration. Afterwards, they were acidified and diluted with 

1M HNO3 and measured by Sector Field-ICP-MS. All samples were analysed with the 

addition of internal standard (Co, In, Ho and Th). A multi-element calibration was made using 

certified standards (Agilent Life Sciences/Chemical Analysis GmbH, Germany) at the 

beginning of each measurement. Calibration standards with the concentrations 0, 20, 50, 200, 

600, 1000, 5000 and 20000 ppt were prepared.  

The concentrations were corrected for dilution during sample preparation. Corrections for 

mass interferences were made taking into account also the different sensitivity factors of the 

interfering isotopes. Elemental concentrations were determined for each element of interest. 



The detection limit for actinides was approximately 1.0×10−12 mol·L-1 whereas the transition 

elements and lanthanides had a limit of detection of 1.0×10−11 mol·L-1. 

The pH, Eh and temperature were measured with an Orion 525A+ pH-meter and a gel pH 

Triode L/M, (9107BN, Thermo-Electron, USA) and platinum Redox electrodes, (97-78-00, 

Thermo-Electron, USA), respectively. The pH electrode was calibrated with commercial pH 

buffer solutions (METLER TOLEDO Inc., USA; pH 4.01 (Ref. 501307069), pH 7.00 (Ref. 

51302047), pH 9.21 (Ref. 51302070)). Commercial pH 7.00 buffer solution was also used to 

calibrate the redox electrode. 

The α, β and γ dose rate coming from the cladded segments of SNF to a surrounding solution 

was calculated in both experiment following the method described in [40]. The results in both 

experiments were similar obtaining a dose rate value of: 0.18 Gys-1 for α, 0.07 Gys-1 for β and 

1.3x10-3 Gys-1 for γ. 

2.3 Inventory calculation 

The theoretical radionuclide inventory of the SNF’s was calculated with the ORIGEN-ARP 

code [41] taking into account the irradiation history previously explained in section 2.1. The 

results are collected in Table 3, no uncertainty was given. However, in the comparison 

between experimental and theoretical inventories done by [42], the uncertainty of the 

theoretical values was estimated to be about 15%. 

2.4. Solution analysis results 

The concentration in solution as a function of time of 16 elements including actinides (U, Pu, 

Np, Am and Cm), and fission products (Rb, Sr, Y, Zr, Mo, Tc, Ru, Rh, Cs, La and Nd) was 

measured. 

The fraction of inventory of an element i released into the aqueous phase, FIAPi, was 

calculated according to equation 1 [43, 44]: 
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where: mi,aq is the mass of element i in the aqueous phase and mi,SNF is the mass of element i in 

the SNF; ci corresponds to the concentration of element i in solution (g·mL-1); Vaq is the 

volume of solution (mL), mSNF is the initial mass of SNF sample (g) and Hi represents the 

fraction of the inventory in the SNF for the element i (g·g-1). 

As explained above, two complete replenishments were done at the beginning of the 

experiment to avoid a likely precipitation of U. Nevertheless, these values have important 

information particularly about the IRF. Thereafter, the experiments were performed under 

pseudo-static conditions. The cumulative FIAP (FIAPc) was calculated taking the two initial 

replenishments into account by applying equation 2: 

i 

xCaqinsolaqiaqi
C

Hm

VVcVcVc
FIAP

SNF

sample

n

x
samplerptstrptstrptstrptst   )(i)(x,),(  ∑

1

0
2211







    [2]  

where ci1
st

rpt  and ci2
nd

rpt  correspond to the concentration in solution of element i in the 1st and 

2nd replenishment, respectively; csol(n,i) is the concentration in solution of element i in sample 

n (mol·L-1); csample(x,i)is the concentration of the sample x (mol·L-1); Vsample(x) corresponds to 

the volume of the aliquot x (L); and Vaq is the volume of solution in the static reactor (L). 

The fractional release rate for an element i, FRRi, in ( d-1) is given by equation 3 [24, 43]: 
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where t is the time (d). 

Finally, the fractional release normalised to uranium, FNU, is given by equation 4 [24]: 

U
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where FIAPi and FIAPU are the FIAP of element i and of uranium, respectively. 



3. Results and discussion 

3.1 Evolution of pH and Eh 

The pH values showed a slight acidification from 7.6 to 7.2 ± 0.1, whereas Eh values 

remained constant at values of (400 ± 50) mV (vs. NHE) in both experiments. The 

temperature was (25 ± 5) ºC, which corresponds to normal hot cell temperature conditions. 

3.2 Release of elements either congruent with or slower than matrix dissolution (U, Pu, Np, 
Am, Cm, Y, Zr, Ru and Rh). 

The concentration in solution of these elements as function of time for PWR and BWR SNF’s 

is plotted in Figs 2.a-3.b.  

The concentration in solution of the studied elements showed a constant release rate for the 

first 12 days for PWR and for the first 15 days for BWR samples (see Figs 2.a-3.b). After that, 

a change was detected and the release rate decreased. In some cases a small drop in 

concentration was noticed in the solution at change of release rate time, this effect may be 

partially explained by an “experimental artefact”. After each sampling the total volume of the 

solution was kept constant by adding the same amount of new solution as aliquot taken (3.0 ± 

0.1 mL). If the sampling time is short and the dissolution is very slow this may result in a 

dilution effect (the amount taken in an aliquot could be higher than the amount released 

during the following sampling). Alternatively, it may be an effect related to a reduction in the 

total SNF surface available to be leached. The gap cracks accessible to the solution present 

small volume compartments with higher surface to volume ratio (S/V). In these regions, 

mainly in the cracks, the local concentration released into the leachate is greater than in the 

total bulk solution. If the concentrations exceed the solubility of a solid phase, a local 

precipitation process may take place blocking the gap and cracks [2,5] and reducing the 

concentration in solution. In addition, as a result, the total SNF surface available to be leached 

would be slightly smaller and a decrease in the radionuclide release would be expected. 

No experimental evidence of an important secondary phase precipitation was observed. 



3.2.1. Fraction of inventory in aqueous phase 

The evolution of the FIAPc follows the same trend as the measured concentrations in solution. 

As examples, the FIAPc (%) of U as a function of time for PWR fuel is shown in Fig. 4. 

According to these figures, it is possible to distinguish, two stages: 

FIAP1: it is an initial rapid release that comprises the initial oxidation degree of the SNF 

surface [30,31] as well as the possible presence of fines and/or small particles. This stage 

ended after 12 and 15 days in PWR and BWR SNF´s, respectively. As explained in the 

previous section, after this stage, a decrease on FIAPc was observed. In order to compare both 

SNF’s a time of 10 days was chosen. The corresponding FIAP1 (%) values at this leaching 

time are given in Tables 4a-4b. 

Based on the data shown in Tables 4a-4b, the percentage of the U released into solution after 

10 days is (1.7 ± 0.3)x10-2 and (1.2 ± 0.2)x10-3 in PWR and BWR SNF’s. These values 

evidence a higher oxidation degree and/or presence of fines in PWR fuel than in BWR fuel.  

FIAP2: it is assumed to correspond to the matrix contribution (dissolution of grains). The 

value on this stage does not take FIAP1 into account. The FIAP2 (%) values at an arbitrary 

chosen time of 200 days are reported in Tables 4a-4b. After 200 days the percentage of matrix 

released into solution is (3.6 ± 0.7)x10-3 and (1.3 ± 0.3)x10 -3 in PWR and BWR SNF’s, 

respectively. 

This difference in matrix dissolution, between both SNF’s, can be explained in terms of 

different surface area. Although the samples used in this study have very similar physical 

dimensions, the PWR SNF was submitted to a higher average linear power rate in the reactor 

(309 W cm-1) than BWR SNF (191 W cm-1), this fact produces higher cracking of the fuel 

[50-52] and, consequently, higher surface available for corrosion. Therefore, the PWR SNF 

presents an "apparent" higher dissolution rate. The quantification of the matrix dissolution is 



necessary in order to obtain the instant release fraction as will be explained in detail in section 

3.4., although the matrix release contribution is, as expected, little significant. 

In the end, the FNU was also calculated for all elements in the different stages mentioned 

above. Those elements which have a FNU value close to 1 indicate congruent dissolution with 

the UO2 SNF matrix. That is the case, for both fuels, of the actinides and trivalent cations as 

Y, La and Nd. This behaviour is expected since the actinides and some fission products (Y, La 

and Nd) are located as solid solution within the UO2 grains [45]. These results are in 

agreement with previous studies [18, 22, 24, 46-47]. 

On the other hand, Zr, Rh and Ru, which are found within the SNF as metallic precipitates 

located at the grain boundaries [45, 48] and within the matrix [49], show a FNU below 1, 

between 0.2 and 0.6, indicating a non-congruent, as well as slower, dissolution with SNF 

matrix, see Tables 4a-4b. Under these conditions the dissolution of these metallic precipitates 

is difficult and slower than the matrix. 

3.3. Release of Rb, Sr, Mo, Tc and Cs. 

The concentration in solution of these elements as function of time for PWR and BWR SNF’s 

is plotted in Figs. 5.a-5.b.  

Initially, the concentration in solution of the studied elements shows a constant release rate 

until 12 days for PWR and accordingly 15 days for BWR samples. Afterwards, a second 

slower release rate was distinguished until the end of the experiment., see Figs. 6.a-6.b. At the 

end of the experiments, the concentration in solution in PWR fuel were (in mol·L-1): (1.1 ± 

0.2)x10-5 for Rb, (7.0 ± 1.4)x10-6 for Sr, (1.3± 0.3)x10-5 for Mo, (2.4± 0.5)x10-6 1 for Tc and 

1.1x10-4 for Cs. In the case of the BWR fuel the concentration in solution at the end of the 

experiment were (in mol·L-1): (1.0 ± 0.2)x10-6 for Rb, (1.1 ± 0.2)x10-6 for Sr, (3.4 ± 0.7)x10-6 

for Mo, (1.6 ± 0.3)x10-6 for Tc, (1.2 ± 0.2)x10-5 for Cs. 



3.3.1. Fraction of inventory in aqueous phase 

These fission products will be partly located at the gap and fractures and/or at the grain 

boundaries [45, 49]. A fraction of Mo and Tc will be present as ε-particles in the SNF [45, 

48]. These fission products dissolve faster than the UO2 SNF matrix (FNU > 1) and, therefore, 

comprise of the IRF. In Fig. 6 is plotted the FIAPC (%) of Cs as a function of time in PWR 

and BWR SNF’s. 

The FIAPc evolution of Rb, Sr, Mo, Tc and Cs as a function of time let to differentiate 

between 3 stages: 

FIAP1 corresponds to the intercept of the first FRR1 at time 0. This stage represents the 

release mainly due to the gap and fractures, in the following called gap contribution. In 

addition, a certain amount of Mo and Tc, sensitive redox elements, is released as a part of the 

oxidised layer present on the SNF surface. 

 FIAP2 corresponds to the FIAP contribution before the intersection of the two FRR 

regression lines subtracting the FIAP1. At this stage, the gap contribution still dominates the 

dissolution behaviour. The complete gap contribution is the sum of FIAP1 and FIAP2. 

However, at the same time the grain boundaries are also dissolving and it is not possible to 

distinguish between both contributions. In Tables 5a-5b, the FIAP2 values are reported at 10 

days. 

 FIAP3 corresponds mainly to the internal grain boundaries dissolution. The contribution was 

calculated at an arbitrary chosen time of 10 days. This value did not take the FIAP1 and FIAP2 

into account, see Tables 5a-5b.  

3.4 Determination of instant release fraction at time 10 and 200 days 



During the dissolution process three releases occurred at the same time coming from: matrix, 

grain boundaries and gap and fractures dissolution [1,6,7]. The quantification of the gap and 

grain boundaries contribution can be determined by subtracting the matrix dissolution release. 

According to the previous explanation given in section 3.3.2, the stages FIAP1 + FIAP2 will 

give the IRF that mainly represents the dissolution of the elements segregated to the gap 

between the SNF and the cladding and in the fractures of the SNF [36], and the grain 

boundaries more accessible to the leachate (external grain boundary). On the other hand, the 

FIAP3 previously explained, will describe a second constant release that is slower than the 

first one. This second release found afterwards might be associated with internal grain 

boundary contribution of these elements as a consequence of the water diffusion in this 

internal grain boundary. 

The IRF values obtained for these two regions at time 10 and 200 days are given in Table 6. 

The first value corresponds to the IRF due to gap + grain boundaries (external and internal) 

contribution, whereas values given in brackets correspond only to the internal grain boundary 

contribution. 

As can be seen, higher gap release is obtained in the case of PWR despite both fuels have a 

similar BU. This effect can be associated with the difference in irradiation history. The higher 

the linear power rate, the higher is the fission gas release [53] and therefore the higher is the 

accumulation of volatiles, like Cs and Rb in the gap. It seems that the fission gas release as 

well as the release of volatiles radionuclides is more related to the linear power rate than to 

the burn-up. 

Finally, after 200 days the release of the gap and the external grain boundaries is still the main 

release in the case of Rb and Cs. In the case of Cs the IRF after 10 and 200 days was (3.10 ± 

0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel. 

According to former data and assuming that diffusion under reactor operating conditions is a 



key factor to determine the amount of Cs available for release during leaching [23], the ratio 

between the FGR and Cs release is 1:3 [8, 54], in the present work the ratio between the FGR 

and Cs release after 200 days is 1:7 for PWR fuel and 1:12 for BWR fuel, this fact suggests 

that other factor affect the aqueous Cs release [23]. On the other, the release due to the 

internal grain boundaries becomes higher as a function of time in the case of Sr, Mo and Tc. It 

can be conclude that these three elements are more segregated into the grain boundaries than 

in the gap and/or fractures. 



4. Conclusions 

Static leaching experiments have been carried out with two SNF’s, labelled PWR and BWR, 

with similar BU but different irradiation history. 

After an initial increase in concentration followed by all elements in both SNF’s, two different 

concentration behaviours have been observed depending on the studied element. The first 

group: U, Np, Pu, Am, Cm, Zr, Y, Ru, Rh, La and Nd, showed a slight decrease of 

concentration in solution that could be associated to an experimental artefact or a local 

precipitation and finally, an increase of concentrations in solution but at lower dissolution 

rates than at the beginning of the experiment was observed. The second group, composed by 

Rb, Sr, Tc, Mo and Cs, showed an increase in concentration during all the experiment but 

with a decrease in dissolution rate after the first two weeks. 

The FIAP and FNU values indicated matrix congruency dissolution of Np, Pu, Am, Cm, Y, 

La and Nd, while Zr, Ru an Rh dissolved slower than the matrix. On the other hand, Rb, Cs, 

Mo, Tc and Sr, presented a faster dissolution rate than the matrix. These elements constitute 

part of the so-called IRF. 

The matrix dissolution rate was higher for PWR than BWR SNF. This might be explained by 

the different irradiation history. The PWR SNF was submitted to a higher average linear 

power rate in the reactor than BWR SNF, this fact produces higher cracking of the fuel and, 

consequently, higher surface available for corrosion.  

The IRF at 10 and 200 days has been calculated. Higher gap release is obtained in the case of 

PWR than in BWR fuel, despite both fuels have a similar BU. This effect can be associated 

with the difference in irradiation history. The higher the linear power rate, the higher the 

temperature gradient during irradiation and the higher is the fission gas release and therefore 

the higher is the accumulation of volatiles, like Cs and Rb in the gap. It seems that the fission 



gas release as well as the release of volatiles radionuclides is more related to the linear power 

rate than to the burn-up. 
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Table 1. Fuel irradiation history of PWR and BWR spent nuclear fuels. 

SNF 
Average BU 
(MWd/kgU) 

Irradiation time 
(days) 

Number of 
cycles 

Average linear power 
(W cm-1) 

FGR 
(%) 

PWR 52 975 3 309 23.1 

BWR 53 1368 5 191 3.9 



Table 2.Summary of physical characterisation of cladded segment samples (PWR and BWR). 

SNF PWR BWR 

Weight (g) 8.4296 ± 0.0001 7.5911± 0.0001 

Length (mm) 10.4 ± 0.1 10.2 ± 0.1 

Diameter (mm) 10.0 ± 0.1 10.0 ± 0.1 



 Table 3. Calculated inventory in (μg g· gSNF
-1), using ORIGEN-ARP code, for PWR and BWR SNF’s, 

Element PWR (μgelement·gSNF
-1) BWR (μgelement·gSNF

-1) 

Rb 500 510 

Sr 1190 1170 

Y 660 660 

Zr 5100 5200 

Mo 4700 4800 

Tc 1100 1100 

Ru 2900 2900 

Rh 600 580 

Cs 3500 3530 

La 1700 1700 

Nd 5500 5600 

U 823000 824000 

Np 700 600 

Pu 9700 8600 

Am 400 500 

Cm 60 70 

 



Table 4a Elemental FIAP (%) and FNU for transuranium elements in PWR SNF. FIAPat time 0, FIAP1 and FNU1 
at 10 days; FIAP2 and FNU2 at 200 days. 

Element FIAPat time 0 FIAP1 (%) FIAP2 (%) FNU1 FNU2 

Y (1.2 ± 0.2) x10-2 (1.8 ± 0.4) x10-2 (4.9 ± 1.0)x10-3 1.0 ± 0.4 1.4 ± 0.6 

Zr (6.2 ± 1.2)x10-3 (9.7 ± 1.9)x10-3 (5.8 ± 1.2)x10-4 0.6 ± 0.2 0.2 ± 0.1 

Ru (2.1 ± 0.4)x10-3 (2.5 ± 0.5)x10-3 (7.6± 1.5)x10-4 0.1 ± 0.06 0.2 ± 0.1 

Rh (3.0 ± 0.6)x10-3 (3.9 ± 0.8)x10-3 (7.3 ± 1.5)x10-4 0.2 ± 0.1 0.2 ± 0.1 

La (1.2 ± 0.2)x10-2 (1.9 ± 0.4)x10-2 (3.5 ± 0.7)x10-3 1.1 ± 0.4 1.0 ± 0.4 

Nd (1.4 ± 0.3)x10-2 (2.0 ± 0.4)x10-2 (5.1 ± 1.0)x10-3 1.2 ± 0.5 1.4 ± 0.6 

U (1.3 ± 0.3)x10-2 (1.7 ± 0.3)x10-2 (3.6 ± 0.7)x10-3 1.0 ± 0.4 1.0 ± 0.4 

Np (1.3 ± 0.3)x10-2 (1.9 ± 0.4)x10-2 (2.4 ± 0.5)x10-3 1.1 ± 0.5 0.7 ± 0.3 

Pu (1.4 ± 0.3)x10-2 (2.0 ± 0.4)x10-2 (2.3 ± 0.5)x10-3 1.2 ± 0.5 0.6 ± 0.3 

Am (2.0 ± 0.4)x10-2 (2.8 ± 0.6)x10-2 (3.5 ± 0.7)x10-3 1.6 ± 0.6 1.0 ± 0.4 

Cm (2.9 ± 0.6)x10-2 (3.8 ± 0.8)x10-2 (4.5 ± 0.9)x10-3 2.2 ± 0.9 1.3 ± 0.5 

 
Table 4b Elemental FIAP (%) and FNU for transuranium elements in BWR SNF. FIAPat time 0, FIAP1 and FNU1 
at 10 days; FIAP2 and FNU2 at 200 days. 

Element FIAPat time 0 FIAP1 (%) FIAP2 (%) FNU1 FNU2 

Y (1.9 ± 0.4)x10-4 (4.7 ± 0.9)x103 (2.9 ± 0.3)x10-3 3.9 ± 1.5 2.2 ± 0.9 

Zr (4.2 ± 0.9)x10-4 (1.2 ± 1.2)x10-3 (7.9 ± 0.8)x10-4 1.0 ± 0.4 0.6 ± 0.2 

Ru (3.0 ± 0.6)x10-5 (2.2 ± 0.4)x10-4 (2.0 ± 0.3)x10-4 0.2 ± 0.1 0.2 ± 0.1 

Rh (6.2 ± 1.2)x10-5 (4.8 ± 0.9)x10-4 (2.1 ± 0.2)x10-4 0.4 ± 0.2 0.2 ± 0.1 

La (2.8 ± 0.6)x10-4 (3.5 ± 0.7)x10-3 (2.6 ± 0.3)x10-3 2.8 ± 1.1 1.9 ± 0.8 

Nd (2.3 ± 0.5)x10-4 (2.4 ± 0.5)x10-3 (2.6 ± 0.3)x10-3 1.9  ± 0.8 1.9 ± 0.8 

U (3.2 ± 0.6)x10-4 (1.2 ± 0.2)x10-3 (1.3 ± 1.3)x10-3 1.0 ± 0.4 1.0 ± 0.4 

Np (4.0 ± 0.8)x10-4 (1.9 ± 0.4)x10-3 (1.3± 1.3)x10-3 1.6 ± 0.6 1.0 ± 0.4 

Pu (4.1 ± 0.8)x10-4 (1.8 ± 0.4)x10-3 (6.0 ± 0.9)x10-4 1.4 ± 0.6 0.7 ± 0.3 

Am (5.9 ± 1.2)x10-4 (2.5 ± 0.5)x10-3 (2.0 ± 2.0)x10-3 2.0 ± 0.8 1.5 ± 0.6 

Cm (5.9 ± 1.2)x10-4 (3.2 ± 0.6)x10-3 (2.3 ± 0.2)x10-3 2.6 ± 1.1 1.7 ± 0.7 



Table 5a. Elemental FIAP (%)and FNU for Rb, Sr, Mo, Tc and Cs in PWR SNF. 

Element FIAP1 (%) FIAP2 (%) FIAP3 (%) FNU1 FNU2 FNU3 

Rb (7 ± 1)x 10-1 (2.1 ± 0.4)x 10-1 (1.2 ± 0.2)x 10-2 52 ± 21 48 ± 19 64 ± 26 

Sr (7 ± 1)x 10-1 (9 ± 2)x 10-2 (5 ± 1)x 10-3 0.6 ± 0.2 21 ± 8 28 ± 11 

Mo (3.3 ± 0.7)x 10-2 (1.3 ± 0.3)x 10-2 (1.9 ± 0.4)x 10-3 3 ± 1 3 ± 1 11 ± 4 

Tc (2.2 ± 0.4)x 10-2 (5± 1)x 10-3 (1.3 ± 0.3)x 10-3 1.7 ± 0.7 1.2 ± 0.5 7 ± 3 

Cs 2.6 ± 0.5 0.6 ± 0.1 (2.3 ± 0.5)x 10-2 203 ± 81 148 ± 59 129 ± 52 

 
Table 5b. Elemental FIAP (%) and FNU for Rb, Sr, Mo, Tc and Cs in BWR SNF. 

Element FIAP1 (%) FIAP2 (%) FIAP3 (%) FNU1 FNU2 FNU3 

Rb (1.5 ± 0.3)x 10-3 (6 ± 1)x 10-2 (2.3 ± 0.5)x 10-3 46 ± 18 37 ± 15 35 ± 14 

Sr (1.7 ± 0.3)x 10-4 (2.4 ± 0.5)x 10-3 (1.7 ± 0.3)x 10-3 5 ± 2 15 ± 6 26 ± 10 

Mo (3.2 ± 0.6)x 10-3 (2.5 ± 0.5)x 10-4 (1.6 ± 0.3)x 10-3 10 ± 4 2 ± 1 23 ± 9 

Tc (1.2 ± 0.2)x 10-4 (2.0 ± 0.4)x 10-4 (3.0 ± 0.6)x 10-3 4 ± 2 1.2 ± 0.5 45 ± 18 

Cs (2.4 ± 0.5)x 10-2 (1.7 ± 0.3)x 10-1 (7 ± 1)x 10-3 741 ± 296 106 ± 42 105 ± 42 



Table 6. IRF at 10 and 200 days of Rb, Sr, Mo, Tc and Cs, for PWR and BWR SNF’s. The first value represents 
the total IRF that includes gap + grain boundaries (external and internal) contribution at 10 and 200 days. Values 
in brackets correspond only to the internal grain boundary contribution. 

SNF PWR BWR  

BU 52 53  

Element IRF (%) at 10 days IRF (%) at 200days IRF (%) at 10 days IRF (%) at 200days  

Rb 
0.82 ± 0.17 

(1.1 ± 0.2)x10-3 
1.08 ± 0.22 

(2.3 ± 0.5)x10-1 
0.05 ± 0.01 

(2.3 ± 0.5)x10-3 

0.12 ± 0.02 

(4.6 ± 0.9)x10-2 

 

Sr 
0.07 ± 0.01 

(4.8 ± 0.9)x10-3 
0.18 ± 0.04 

(9.9 ± 2.0)x10-2 
0.017 ± 0.003 

(1.7 ± 0.3)x10-3 

0.06 ± 0.01 

(3.5 ± 0.7)x10-2 

 

Mo 
0.03 ± 0.01 

(1.8 ± 0.4)x10-3 
0.07 ± 0.01 

(3.9 ± 0.8)x10-2 
0.004 ± 0.001 

(1.5 ± 0.3)x10-3 

0.033 ± 0.007 

(3.1 ± 0.6)x10-2 

 

Tc 
0.010 ± 0.002 

(1.1 ± 0.2)x10-3 
0.03 ± 0.001 

(2.5 ± 0.5)x10-2 
0.0012 ± 0.0002 

(3.0 ± 0.6)x10-3 

0.06 ± 0.01 

(6.1 ± 1.2)x10-2 

 

Cs 
3.10 ± 0.62 

(2.3 ± 0.5)x 10-2 
3.66 ± 0.73 

(4.6 ± 0.9)x 10-1 
0.35 ± 0.07 

(7.0 ± 1.4)x 10-3 

0. 51 ± 0.10 

(1.4 ± 0.3)x10-1 

 



Figure Captions 

Figure 1. Cross section of the PWR (right) and BWR (left) cladded segments. 

Figure 2a. Concentration in solution of actinides as a function of time for PWR fuel. The 

vertical lines at 0.75 and 3.73 days correspond to the 1st and 2nd replenishment. The error 

bars for some elements are smaller than the symbols: the uncertainty in all cases is 20 % 

Figure 2b. Concentration in solution of actinides as a function of time for BWR fuel. The 

vertical lines at 0.75 and 3.73 days correspond to the 1st and 2nd replenishment. The error 

bars for some elements are smaller than the symbols: the uncertainty in all cases is 20 %. 

Figure 3a. Concentration in solution of: Y, Zr, Ru, Rh, La and Nd as a function of time for 

PWR fuel. The vertical lines at 0.75 and 3.73 days correspond to the 1st and 2nd 

replenishment. The error bars for some elements are smaller than the symbols: the uncertainty 

in all cases is 20 %. 

Figure 3b. Concentration of: Y, Zr, Ru, Rh, La and Nd as a function of time for BWR fuel. 

The vertical lines at 0.75 and 3.73 days correspond to the 1st and 2nd replenishment. The error 

bars for some elements are smaller than the symbols: the uncertainty in all cases is 20 %. 

Figure 4. Evolution of FIAPc (%) for U as a function of time in for PWR fuel 

Figure 5a. Concentration in solution of: Rb, Sr, Mo, Tc and Cs as a function of time for PWR 

fuel. The vertical lines at 0.75 and 3.73 days correspond to the 1st and 2nd replenishment. The 

error bars for some elements are smaller than the symbols: the uncertainty in all cases is 20 %. 

Figure 5b. Concentration in solution of: Rb, Sr, Mo, Tc and Cs as a function of time for PWR 

fuel. The vertical lines at 0.75 and 3.73 days correspond to the 1st and 2nd replenishment. The 

error bars for some elements are smaller than the symbols: the uncertainty in all cases is 20 %. 



Figure 6. Evolution of FIAPc (%) for Cs as a function of time in for PWR fuel 



 

Figure 1. Cross section of the PWR (right) and BWR (left) cladded segments. 
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Figure 2a. Concentration in solution of actinides as a function of time for PWR fuel. The 

vertical lines at 0.75 and 3.73 days correspond to the 1st and 2nd replenishment. The error 

bars for some elements are smaller than the symbols: the uncertainty in all cases is 20 % 
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Figure 2b. Concentration in solution of actinides as a function of time for BWR fuel. The 

vertical lines at 0.75 and 3.73 days correspond to the 1st and 2nd replenishment. The error 

bars for some elements are smaller than the symbols: the uncertainty in all cases is 20 %. 
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Figure 3a. Concentration in solution of: Y, Zr, Ru, Rh, La and Nd as a function of time for 

PWR fuel. The vertical lines at 0.75 and 3.73 days correspond to the 1st and 2nd 

replenishment. The error bars for some elements are smaller than the symbols: the uncertainty 

in all cases is 20 %. 
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Figure 3b. Concentration of: Y, Zr, Ru, Rh, La and Nd as a function of time for BWR fuel. 

The vertical lines at 0.75 and 3.73 days correspond to the 1st and 2nd replenishment. The error 

bars for some elements are smaller than the symbols: the uncertainty in all cases is 20 %. 
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Figure 4. Evolution of FIAPc (%) for U as a function of time in for PWR fuel. 
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Figure 5a. Concentration in solution of: Rb, Sr, Mo, Tc and Cs as a function of time for PWR 

fuel. The vertical lines at 0.75 and 3.73 days correspond to the 1st and 2nd replenishment. The 

error bars for some elements are smaller than the symbols: the uncertainty in all cases is 20 %. 
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 Figure 5b. Concentration in solution of: Rb, Sr, Mo, Tc and Cs as a function of time for 

PWR fuel. The vertical lines at 0.75 and 3.73 days correspond to the 1st and 2nd 

replenishment. The error bars for some elements are smaller than the symbols: the uncertainty 

in all cases is 20 %.
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Figure 6. Evolution of FIAPc (%) for Cs as a function of time in for PWR fuel 

 


