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Abstract. Differences among the channels that form an interferometric radiometer result in
amplitude and phase errors in the cross correlations measured from the signals collected by
each pair of antennas (visibility samples). Since point source calibration of a satellite-
embarked instrument operating in a radio astronomy protected band is, in principle, not
possible, and although separable phase errors can be corrected, the nonseparable ones
produce an irrecoverable loss of information and have to be kept below specified limits.
Preliminary work performed by the authors established basic requirements on the channel
transfer function so as to meet these strict specifications imposed by proper calibration and
inversion procedures. These requirements were set, from a simple filter model, in terms of
three basic parameters: center frequency, bandwidth, and overall group delay. The purpose

of this work is, for any kind of filter, to translate these requirements into a given insertion
loss mask that must be satisfied by all filters so as to keep nonseparable error terms under
certain specified bounds. The numerical results and computer simulations presented are
based on the specifications of MIRAS, a two-dimensional aperture synthesis radiometer
currently under study by the European Space Agency, and its proposed in-orbit calibration

procedure.

1. Introduction

The basic measurement of an interferometric
radiometer is the so-called visibility function V,, units
of Kelvin, given by the cross correlation of the analytic
voltage signals b,(¢) and b,(¢) collected by two antennas
1 and 2, located over the XY plane and spaced a
normalized distance (u;,,v;,) = (x;- X1, Y2- Y1) /Ay (A 18
the wavelength at the nominal center frequency), which
is called the baseline [Torres et al., 1997]:
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where k; is the Boltzmann constant, B, , and G, , are the
noise bandwidth and the power gain of the receiving
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chains, respectively, Tx(& 7) is the brightness
temperature of the scene, Q,, and F,,,(&, 7) are the
equivalent solid angle and the normalized radiation
voltage patterns of the antennas, respectively, (& 7) =
(sin dcos ¢ sin fsin ) are the director cosines with
respect to the X and Y axes, respectively, and 7 is the
so-called fringe-washing function, which accounts for
spatial decorrelation effects and depends on the
normalized channels' frequency response, H, ,(f),
through [Thomson et al., 1986; Torres et al., 1997]
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2. Basic Properties of a Channel
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It will be assumed that a "channel," that is, the
electronic circuits between the antenna output and the
input of an ideal, error-free complex correlator (Figure
1), is ideally formed by transmission lines or
waveguides, or even optical fibers, amplifiers, down-
converters, and narrowband band-pass filters such that
(1) the transmission lines, etc., are accurately described,
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Figure 1. Scheme of two receiving channels and a complex
correlator forming a baseline.

within the band, by constant attenuation and a phase
linear with frequency (constant group delay), (2) the
amplifiers and down-converters are also assumed to
have a flat response within the band so that assumption
1 applies, and (3), as pointed out above, the
nonidealities introduced by the correlator are not
accounted for.

Consequently, provided the filter is narrowband so
that the low-pass to band-pass transformation used in
the filter design can be approximated by a linear shift to
the band center frequency f;,
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the frequency response of the the th channel can be
expressed as
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where ¢ and 7, are the constant phase and group delay
as explained in assumptions 1 and 2 above, H,,(f) is the
normalized (max H,(f) = 1) low-pass prototype
frequency response, and H,(f) is the normalized channel
frequency response. Written in this form, and assuming
negligible losses in the filter itself, H,,(f) is known to be
an analytic signal in the frequency domain; that is, its
Fourier transform vanishes for negative time values.
(This is not to be confused with analytic function in a
given domain in the strict mathematical sense. Note also
that shifting a function in the vertical direction in the
complex frequency plane, s = o+ jw, does not change
its analytic signal character, linked to the values of the
real parts of its poles and zeroes.) This function can also
be expressed in terms of the ideal filter transfer function

H,[f)as:

H,(f)=H,(ND(f), ®)

where Dy(f) is a deviation function that can be
interpreted as another filter cascaded with the ideal one

(Figure 2).
For the most common kinds of pass-band filters
(Butterworth,  all-pole  Tchebycheff, inverse

Tchebycheff, and Cauer) the transfer function will either
have no zeroes or have them lying in the imaginary axis.

In these cases, D, will be also an analytic signal in the
frequency domain. If D,(f) is written as

D,(f) = exp[-4,(f) + jO, ()], (6)
with 4,(f) and @,(f) being real signals, then, if Ay0)=0,
the deviation phase @,(f) is the Hilbert transform of the
deviation attenuation A(f) [Van Valkenburg, 1955]:

Ak(f>=—d>k(f)*% & O,()- Ak<f>*;‘7,
™

where the star stands for convolution operator. The
notation can be shortened by defining

A=A+ o) = D(f)=expl-A(N]. (8)
Some properties of A,(f) that are used in later
developments are provided in appendix A.

3. Fringe-Washing Function and Phase
Separability

The interest is focused in the computation of the
fringe-washing (or decorrelation) function associated

with two channels as given by (2). Let us write it again
as

Splz-7,+1,)
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(the delta over equals symbol stands for equal by
definition). In the first place, it can be seen that the
phase information of the fringe-washing function resides
in S, apart from the ¢, - ¢ term (phases contributed by
amplifiers, transmission media, and down-converters).
Substituting (5) into (10),

Ho(f) Du(f)

Hox(f)

Figure 2. Representation of a nonideal filter as an ideal filter
cascaded with a deviation filter.
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with T(f) | H,(f)] . Note first that 7(f) is a symmetric

function, and in the case of ideal filters, (D, = D,=1)
S; = S(z) will be real. Furthermore, for an ideal high-
order filter (n > 5) S(z) will be very close to a sinc
function:

S(7)~ Bsinc(B7). (12)

Second, the delays 7 and 7 in (9) can be very
accurately controlled: to ~0.04 ns for 1 cm length error
in the transmission lines (solid Teflon coaxial cable) and
to ~1 ns for the amplifier and down-converter
contribution. It will be then assumed that these delays
are adjusted so that their net contribution to (9) is
negligible (this point leads, anyway, to a complex
process whose analysis is beyond the paper scope: The
reader may refer to Camps et al. [1999] for a discussion
of baseline fringe-washing function characterization).

Because of the characteristics of the calibration
procedures [Torres et al., 1996; Martin-Neira and
Goutoule, 1997] it is important to split the phase of the
fringe-washing function into its separable and non
separable parts:

7a(2) = 1R exp Uy, +y,typ)l . (13)

where ; and ¥, (separable terms) are contributed by
channels 1 and 2 independently. If the nonseparable
term i, vanishes for all possible baselines, the phase
information of the fringe-washing functions can be
recovered from the phase closure property of a set of
baselines that form a closed contour [Torres et al.,
1997], or by distributed noise injection calibration
techniques [Torres et al., 1996].

From (9) and (13) it is clear that ¢, and ¢, are
separable. To investigate the phase separability of S5,
the exponential within the integral in (I11) can be
expanded in a Taylor series, and by grouping those
terms comprising only A, or A, and those comprising
products of these functions, we obtain

e MA) (A7 +A2)+%(A,' +A,) +e
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+F(A™ A)) m+n23, (14)

from which S}, can be decomposed into its separable
and nonseparable parts:

Sp(7) = S(@)+AS,(2)+AS,(2) + AST (1) + ASV (7)
S(z) = F'[T(N)], AS(z) =F 7 (T(f)lexp(-A})-1]),
AS,(z) =F ™ (T(/)lexp(-A,) -11),

AS3(7) = ASP(2)+ASSV (z) =F "[T(f)ATA,]

+F [T(N)F(ATAD], m+n23. (15)
The notation emphasizes the fact that, while AS; are
terms of first order on A4,, the nonseparable part AS},”
has terms of second order and higher. The next step is

the evaluation of the phase of S;,. It is shown in
appendix B that if

1S(2)] 2 |AS,(D) | +]AS,(2) | +]AS (2) |+ ASSV (1),
(16)
then:

v (7) =arg[S(2) + AS,(7)] =arg [T()expl-Ale™ ",
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where only terms of first and second order have been
retained. It can be seen that the nonseparable phase error

is a second-order effect.

w,";mz-lm(

4, First- and Second-Order
Approximations

When the attenuation deviations are small enough to
neglect second-order terms, we have

AS,(7) AS(7)+AS,(7)

~— [T(OIAIN + A (NN df. a8)

Note that since e* ~ 1+x+x>/2!+x* /3!+---  ifan error

of a few units percent, say 5%, can be accepted, the
approximations implicit in (18) are valid for deviation
attenuations 4, up to 0.32 Np =2.78 dB.

It is shown (appendix C) that for high-order filters
(n=5) and a given upper bound of the deviation
attenuation o, defined by

Iy

{14 df <Byoh (fy=13f0 Bu=21.).
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(19)
where £, is the ideal filter prototype cutoff frequency,
then
|AS,()|<22a Bo,, (20)
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with & being a constant close to unity, unknown so far,
but such that if f,, becomes large, then « tends to 1.

4.1. Phase Errors

For angles small enough to neglect second-order
terms, the separable phase term (first order in AS) can be
approximated by

AS] N AS]
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Therefore

AS
I—S‘2—152.2 Ja o, np T2d = 4.5 Ja o, 4 deg,
(22)
where we have introduced the units of each magnitude
(radians or degrees, nepers or decibels). For the
nonseparable terms, (17) can be rewritten as
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and y/,‘zs” can be bound as follows

(appendix C):
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(B' as defined by equation (D2)). At this point, in order
to avoid unduly large bounds, it seems reasonable to
take as overall bound the rms sum of both second-order
bounds (equations (24a) and (24b)):
lyh| < V4.8 +52% ao?, rad=54a0%,, deg.
25)
It has been shown by Torres et al. [1996] that with an
in-orbit calibration procedure based in a distributed
noise injection system the maximum allowed
nonseparable phase error value in order to achieve a
radiometric resolution compatible with MIRAS
objectives is 0.4° [ Torres et al., 1996; Martin-Neira and
Goutoule, 1997]. From (25), it can be seen that,
assuming = 1, a rms deviation attenuation bound of o
=(.27 dB will result in a nonseparable phase error value
below the required 0.4°. Under the same hypothesis the
first-order phase variation is bounded by 3.9° (equation

(22)).

4.2. Amplitude Errors

In the absence of errors the amplitude of the fringe-
washing function at 7= 0 takes the value 1 (equation
(2)). It is shown in appendix 5 that:
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It can be seen that amplitude errors are of second order
and, by expansion of (26), that the separable and
nonseparable parts are of the same order of magnitude,
which invalidates a priori any amplitude restoration

Table 1. Summary of Theoretical Bounds for Phase/Amplitude Error Terms

Magnitude Bound Target g (a=1)
Separable phase error lyhl<145Va o, 4 deg na na
Nonseparable phase error ~ |¥ Bl<54a0; , deg 0.4deg  027dB
Amplitude error |Al ]| < 028207 0003  0.10dB

Here, na, not applicable.
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algorithm. Note also that while the first term in (26) is
always negative, the second one may be positive or
negative. If we again compute the upper bound as the
rms sum of both amplitude error terms in (27) rather
than its direct sum, we obtain (with B'= 0.92B, B), =
1.3B; refer to appendix D)

A7, [|<2l.4a0” =028 0 4. (28)

Again, with the in-orbit calibration procedure based ina
distributed noise injection system mentioned in section
4.1[Torres et al., 1996], the maximum-allowed
amplitude error value in order to achieve the 1 K
radiometric resolution objective in MIRAS requires an
attenuation deviation o, of 0.10 dB or less: a stronger
requirement than that of 0.27 dB for the phase as found
in section 4.1. The theoretical bounds found so far are
summarized in Table 1, as well as the corresponding
values so as to make the calibration procedure
compatible with the radiometric resolution target.

5. Numerical Simulations

Although the allowed attenuation deviations are
adequately characterized through their norm or variance
in the band (-3, fi) = (-1.3 £, 1.3 f), as explained in
sections 4.1 and 4.2, from the point of view of the
system designer it would be useful to have an
attenuation mask (in an attenuation versus frequency
plot, a region bounded by two lines between which the
attenuation, or its deviation, has to lie) to accommodate
all the individual filter deviation attenuation responses.

Insertion loss, L, versus frequency

L (dB)

100 . . : : . .
-40 -30 -20 -10 0 10 20
Frequency deviation, f-fo (MHz)

30 40

Figure 3. Filter mask as in conclusion 1 of section 5 and
frequency response of an eighth-order Butterworth filter, It
can be seen how the more strict mask requirement is imposed
by the jump to 25 dB attenuation. Were it not for this, a
seventh-order filter would meet the requirements.
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Figure 4. Frequency response of a seventh-order elliptic
{Cauer) filter. Here r,=0.043 dB and r, = 100 dB.

Also, the expressions found above are upper bounds
that, as such, guarantee specification fulfillment, but the
actual requirements may be less strict. To overcome
those limitations, computer simulations have been
performed in the following manner: (1) Filter
specifications have been selected. Those used for
MIRAS receiver development have been chosen. They
require a 19 MHz bandwidth, >20 dB in-band return
loss (< 0.0436 dB attenuation ripple), and an atienuation
in the rejection band represented graphically in Figures
3 and 4 together with the theoretical response of
different filter types. (2) A suitable filter prototype
meeting the specifications (Butterworth, Tchebycheff,
inverse Tchebycheff, and elliptic or Cauer) has been
defined. (3) Errors have been introduced by means of
normally distributed random shifts of the poles in the
left complex plane and of the zeroes in the imaginary
axis (these latter only for inverse Tchebycheff and
Cauer filters). (4) For the filter with errors all the
relevant phase and amplitude errors and the amplitude
deviation rms value o, in the range (-1.3f,, 1.3f,) have
been computed. At this point it is important to recall that
the amplitude deviation 4, (f) is defined so as to have
zero average value in the quoted frequency interval
(appendix A, paragraph 3). This is a weak form of the
stronger, but experimentally difficult to test, underlying
mathematical condition (equation A3)

[4(ndr=o. (29)

Pole and zero relative error variances have been
experimentally chosen so that in accordance with Table
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) Attenuation deviation. dr12(mean = 0.0036, std = 0.0033)

At
-1.5¢
2t

25 n ) L ' s
-15 -10 -5 0 5 10 15
Frequency deviation, f-fo ( MHz)

N-filt = 200, dprel = 0.025

Figure 5. Attenuation deviation mask for an eigth-order
Butterworth filter. Outer lines: all filters. Inner lines: 2/3 of the
filters comprised. N-filt, number of filters used in the
simulation; dprel, zero and pole random shifts variance.

1 the amplitude error standard value is approximately
0.03. Statistical variables are estimated from an
ensemble of 200 filters. The following results were
found.

1. The rms amplitude deviation attenuation G, is a
random variable with mean close to 0.40 dB and
standard deviation of 0.16 dB.

2. For separable phase errors, if we define the
constant C( i) such that for each filter,

= CW) oy deg, (30)
it is found that y is a zero-mean random variable with
standard deviation between 1.5° and 3.5°, depending on
the filter type, and C(y4) is also a zero mean random
variable with stdandard deviation between 2.0 and 3.5.
This value is compatible with the theoretical upper
bound given in Table 1 if we assume it to be,
approximately, 3 standard deviations and take o= 1.

3. For nonseparable phase errors, let us define now
the constant C(4,™) such that for each filter,

V= C (Y1) Oy gp deg. (€2))
Again, y4," is a zero-mean random variable with
standard deviation near 0.1°, and C(,") is also a zero-
mean random variable with standard deviation between
0.45 and 0.65. This value is somewhat below the
theoretical upper bound given in Table 1 under the 3
standard-deviations assumption.

4. For the amplitude error, defining again a constant
C(A,,) such that for each filter,

AR, =C (D) 04 > (32)

now A7, is a random variable with mean close to -0.003/

-0.004 and standard deviation of approximately 0.0025/
0.0035, while C(A,,) has mean -0.03/-0.04 and standard
deviation 0.035/0.045. As with the case of nonseparable
phase error, these values are somewhat below the upper
bound given in Table 1.

5. For the deviation attenuation mask, for each
ensemble of 200 filters leading to the 0.003/0.004
amplitude error, a mask of the allowed filter deviation
attenuation has been plotted in the following way
(Figures 5 and 6): For each frequency the ensemble
maximum and minimum values were first plotted (outer
lines). Then, at each frequency the values corresponding
to the standard deviations of the positive and negative
attenuation deviation values have been also plotted
(inner lines). In this way, the similarity requirement
between different filters (channels) can be stated such
that for all of them, their attenuation deviations are kept
within the outer lines, and most of them are kept within
the inner ones. (Probably two thirds of the filters should
lie between the inner lines, although more precision
cannot be given, since the probability distribution
function is not known.)

Computer simulations have shown that these masks
are critical; that is, small widenings tend to increase
sharply the fringe-washing function amplitude error.
Therefore a conservative mask should be adopted.
Differences among the masks for different filter
prototypes and changes in order by +1 are difficult to

Attenuation deviation. dr12(mean=0.0043; std=0.0034)

3
2 b
1 -
Bo
“1F
2F
Nt = 200, dprel = 0.015
-3 ' i ) i n
-15 -10 5 0 5 10 15

Frequency deviation, f-fo (MHz)

Figure 6. Attenuation deviation mask for filter shown in
Figure 5. Outer lines: all filters. Inner lines: 2/3 of the filters
comprised. The differences between this mask and those for
other filters are difficult to discern, although the reduced zero
and pole random shifts variance as compared to Butterworth
(0.015 versus 0.032) indicate more critical filter repeatability.
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Insertion loss, L, versus frequency
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Figure 7. Filter mask as in conclusion 1 of section 5 and
frequency response of a fifth-order, 10 MHz Butterworth
filter.

observe, although the zero/pole error tolerance becomes
stricter as we go from Butterworth (0.025) to
Tchebycheff and to Cauer (0.015).

For reasons that concern correlator performance it
could be interesting to use narrower filters, e.g., 10 MHz
bandwidth, with the same filter mask as before (Figures
7 and 8). In this case, the following conclusions can be
drawn: (1) The required Butterworth filter order is
reduced from 8 to 5, and the Cauer one is reduced from
7 to 5 or 4 (see conclusion 2) with the consequent filter
fabrication and adjustment simplification. (2) The

Insertion loss, L, versus frequency

T T T T

.80 . . . L " L
-40 -30 -20 -10 0 10 20 30 40

Frequency deviation, f-fo (MHz)
Figure 8. Filter mask as in conclusion 1 of section 5 and

frequency response of a fourth-order, 10 MHz, 0.043 dB
ripple elliptic filter.

Attenuation deviation. drl2(mean=0.0029, std=0.0029)
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Figure 9. Attenuation deviation mask for filter shown in
Figure 7. Outer lines: all filters. Inner lines: 2/3 of the filters
comprised.

critical mask corner is now that going from -80 to -100
dB. If this could be relaxed, a fourth-order Butterworth
or Cauer filter would also meet the specifications. (3)
With regard to the inner mask it can now be clearly seen
how the Butterworth one is wider (Figures 5 and 9), and
it is also wider than the one corresponding to Cauer
filters (Figures 9 and 10). This may indicate a better
tolerance to the Butterworth filter's attenuation
deviation, and since, on the other hand, their fabrication
and adjustment are also less critical than in the other

Attenuation deviation. dr12(mean=0.0033, std=0.0035)
25 T T T T ¥ T .

ASE N-filt = 200, dprel = 0.032 i

2 . . .
) 6 4 2 0 2 4 6 8

Frequency deviation, f-fo (MHz)

Figure 10. Attenuation deviation mask for filter shown in
Figure 9. Outer lines: all filters. Inner lines: 2/3 of the filters
comprised.
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filter types, this filter is probably the best choice for
MIRAS.

6. Conclusions

It has been shown that because of the powerful
mathematical properties of the filters' transfer functions
(analytic signals in the frequency domain) the
requirements on the nonseparable phase errors and
amplitude errors produced by deviations of the filters
from their ideal model can be translated into
requirements on the attenuation deviations only. It has
also been proved that the effects of filter errors on the
fringe-washing function amplitude error (fixed in
previous studies, for in-orbit distributed noise injection
calibration, as 0.3% for the tight 1 K sensitivity
requirement) are more severe than on the phase ones.

For the filter specifications given in Conclusion 1,
section 5, for MIRAS, these requirements are (1) that
the rms attenuation deviation defined in the interval (-
1.31., 1.3f.), /. being the ideal low-pass prototype cutoff
frequency, does not exceed an average value 0.4 dB
with a standard deviation of 0.16 dB or less and (2)
alternatively, that every filter attenuation deviation lies
between the outer lines of the corresponding masks in
Figures 5, 6, and 9 and that two thirds of them lie
between the inner ones.

Appendix A: Amplitude and Phase
Relationships

1. Relationships between the deviation attenuation 4,
and deviation phase @, as defined by equations (5) and
(6) are considered. Let ay(7) be the inverse Fourier
transform of the deviation attenuation A(f):

a(D)= [4(Nd =F 4N A

Then, (1)

#(0)=F " (N]= jsgn() a,(2), (A2)
with the sign function, sgn (7), defined such that sgn (0)
=(. (2) Hermitian property: a,(- 0 = a, (2). 3) If 4, (f) is
an even function, ®@(f) is odd, and vice versa. It can also
be shown that:

AN =2fa, (e dz, [ouf)df
= jsgn(0)a,(0) =0,

[4x(Ndf=—jsgn (@)@, (0)=0, [4x(1)®,(F)df

=j [sgn(@la(rVdz=o0,

4l [ nar =lol Jad =24f . @3

2. As for filter response frequency shifts, the
deviation function D,(f) defined by (5), (6), and (8) is
evidently useful for frequencies within the passband, but
when the actual filter response is the ideal response
shifted in frequency, the deviation attenuation A,(f) will
tend to become very large as one approaches and
trespasses the ideal filter cutoff frequencies. It is easy to
see, for instance, that in the case of a theoretical
rectangular ideal filter response, a frequency shift or
bandwidth change results in infinite values for 4,(f) in
the frequency margin between the old and new (shifted)
cutoff frequencies. In spite of this, it has been found that
for the filters required for an actual radiometer like
MIRAS these situations do not bring the values of the
deviation attenuation beyond the limits permitted by the
approximations used in the theoretical developments.

3. One point that deserves additional discussion is the
hypothesis 4, («0) = 0, which amounts to a proper choice
of attenuation reference level for each deviation
function. In experimental work, with an upper frequency
limit, this condition cannot be checked. In practice, if
we are able to measure in a frequency range (f,o, frax)s
we can approximately require that

oy
[4.(n=0,
Fun
which is a weak version of the corresponding equation
(A3). Note that this condition is actually a definition of
the zero level for the attenuation deviation.

(A4)

Appendix B: Evaluation of the Phase of S,

Let us consider the complex number z given by

N
A2Y|B|.

i=}

N
z=A+Y B (BD)
i=t

Its phase can be computed by taking the imaginary part
of its logarithm:

N
Inz=1In A+ln(l+2x,.)= InA4+3x, —%(Zx,.)z
i=l

+§(in)3+...=ln A+2x’. ——%Zx’,z —Zinxj

i j#i
1 N
+§Zx,.3 +:+G(BfB%...B¥)=In 4+ In(1+x;)
i=1

=33 xx; +G(B!BY,.... BL)

i =i

;=B /4 p+q+--+123 (B2)
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Therefore, if 4 is assumed to be real,

arg(z) = Zarg(A +B)-1Im ZZ

i i#j

5 — T28(023)

(B3)
where O is the order. Note that the separable terms are
of first order on B; while the nonseparable part has terms
of second and higher order. Application of this equality
to the expression of S}, given by (15) results, neglecting
terms of third order or higher, in (17).

Appendix C: Evaluation of Upper Bounds
for Small Deviations

This appendix is concerned with the evaluation of an
upper bound for the magnitude defined by (18) in the
main text. Since

“ 0
Al(N)=2 .f a(-7)e”*”"dr=2 _'. a(r)e ™ *dr,
0 —0
A (=2 _“az(r)e‘fz”ffdr,
0

AN+ AL A()=2 [ay(De " dr

ap(7)  a(Du(=0)+a,(Du(7) ChH
In the last equation u(7) stands for the step function.
The norm of A ,(f) can be computed as follows:

lAOF = [IALONf df =4 flan (o) dz

=4 j |a, (2| arz+4?|az(r)|2 dr. (C2)

Then, if the norms of the attenuation deviations are
bounded |4, (/)| <N, - |A()|<2N,, (18) can be
found:

AS, (1) =~ j T(f) AN df = |AS, (N

<JAL (NI j T*(f)df <4N3B'

with B” given by equation (D2). However, since T(f)
tends rapidly to zero outside its nominal passband (-f,
[.), the infinite range of integration can be replaced by (-

S ), With fi, = yf,, 1.2 < y < 1.3 (see appendix D).
That is,

Sy
AS (D~ [T(NHAL(f)df
_fM

(C3)

Sy
IAs. @ <B' [ 14,0 (C4)
'fM

In order to find a suitable upper bound to the last
integral a bound for the rms value of the attenuation
deviation of each filter in (-fy, f}/), 0y, in nepers, is
introduced:

j|Am<f>fdf B, 072 < By o3,

j |A,ldf <4aB,c> By=2f,,,
Fu
where «is an unknown constant; however, since when
Ju—> o, & —> 1, it is expected that & be close to unity.
Taking into account that B’ ~ 0.92B, B, =~ 1.3B
(appendix D), it can finally be written:

(C5)

|AS (0| < 2JaBB, o, ~2.2VaBo,. (C6)
Appendix D: Estimation of Bandwidths
and Deviation Attenuation

An estimation of the bandwidths B'and B,, appearing

in the analysis can be performed in the analytically
simple case of an nth-order Butterworth band-pass filter:

1
H? =T(f)y=—-—. D1
DTN =y @D
It has been shown that the order required for MIRAS is
n 2 5. If we take n =5, it can be computed that:

B= TT(f)df =1.02(2f), B'= ?Tz(f)df=0.9lB,

=0.98; r,

» =l

Sy ©
j T(f)df =r j T(f)df =0.99.

fu

Tpaty =

(D2)
Of course, both B’ and 2f,, approach 2f; as n increases,
since, when #n — oo, the filter approaches an ideal
rectangular function. From (C2) it can be seen that if the
actual filter cutoff frequencies f;,; and £, are restricted to
deviate from the ideal ones (-f, f,) by not more than
10% (0.10), then for any two filters labeled 1 and 2,

(1]}
{11}

-12f,  w
( |+ j)|H (f)| df =0.02B

—0 12f,

H o (NH(f)|df

H (HHL(f)|df

(D3)

and replacement of the infinite limits by the finite limits
(-1.31,, 1.3f.) produces a relative error of less than 2%.
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This filter response can also be used to estimate the
values of the deviation attenuation A4,(f) in case of a
frequency shift, mentioned in appendix A. For fifth- and
seventh-order Butterworth filters, a 5% shift, which for
a bandwidth of 20 MHz (as in MIRAS) results in an
absolute deviation of 1.0 MHz, the peak value of 4,()
increases with the filter order but remains below 0.27
Np = 2.34 dB. It also turns out that the rms attenuation
deviation (computed with f;,= 1.3f)) is g,=0.75 dB for
n=>5 and o, = 1.10 dB for n = 7. Therefore it can be
said that for the requirements of a radiometric
interferometer like MIRAS the formulation of the
problem in terms of the deviation function D(f) is
adequate.

Appendix E: Evaluation of the Amplitude

Error (Equation (26))
Since
In(z) = In(|z]e” ) =In|z| 4y, (E1)
examination of (B2) leads, to second-order

approximation, to

[N B;
Injz|=Re(lnz)=In A+Re ;ln (1+-—A—)
B, B;
- iy E2
Z;AA] E2)

To arrive at (26), it has just to be considered, together
with (E2), that

ln(r:z)=ln(Su)—%ln(s,.)—%ln(&z),

i = S+AS, +AS, +ASD, Sy =S8 +2A8, +ASY

Sy, =8+2AS, +ASY. (E3)
From these equations we obtain

Inff,| = In(L+ AJFy)) = AJF, | ~ %m (2852 - AS®

1
~AS§§’)+Z,7Re<As, -AS,)?, (E4)

and (26) immediately follows.
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