
Abstract

In current superscalar processors, all floating-point
resources are idle during the execution of integer programs.
As previous works show, this problem can be alleviated if
the floating-point cluster is extended to execute simple
integer instructions. With minor hardware modifications to
a conventional superscalarprocessor, the issue width can
potentially be doubled without increasing the hardware
complexity. In fact, the result is a clustered architecture with
two heterogeneous clusters.

In this paper, we propose to extend this architecture with
a dynamic steering logic that sends the instructions to either
cluster. The performance of clustered architectures depends
on the inter-cluster communication overhead and the
workload balance. We present a scheme that uses run-time
information to optimise the trade-off between these figures.
The evaluation shows that this scheme can achieve an
average speed-up of 35% over a conventional 8-way issue (4
int + 4 fp) machine and that it outperforms the previous
proposed one.

1. Introduction

It is well known that current superscalar organisations are
approaching a point of dimishing returns. It is not trivial to
change from a 4-way issue to an 8-way issue architecture
due to its hardware complexity and its implications in the
cycle time. Nevertheless, the instruction level parallelism
(ILP) that an 8-way issue processor can exploit is much
beyond that of a 4-way issue one. One of the solutions to this
challenge is clustering. Clustering offers the advantages of
the partitioned schemes where one can achieve high rates of
ILP and sustain a high clock rate. A partitioned architecture
tends to make the hardware simpler and its control and data
paths faster. For instance, it has fewer register file ports,
fewer data bus sources/destinations, and fewer alternatives
for many control decisions.

Current processors are partitioned into two subsystems
(the integer and the floating point one). As it has been shown
[14, 16], the FP subsystem can be easily extended to execute

simple integer and logical operations. For instance, both
register files nowadays hold 64-bit values, and simple
integer units (no multiplication and division) can be
embedded within a small hardware cost due to today's
transistor budgets. Furthermore, the hardware modifications
required of the existing architectures are minimal. This work
focuses on this type of clustered architecture with two
clusters, one for integer calculations and another one for
integer and floating-point calculations. The advantage of
this architecture is that now its floating-point registers, data
path and mainly, its issue logic are used 100% of the time in
any application.

There are two main issues concerning clustered
architectures. The first one is the communication overhead
between clusters. Since inter-cluster communications can
easily take one or more cycles, the higher the number of
communications the lower the performance will be due to
the delay introduced between dependent instructions. The
second issue is the workload balance. If the workload is not
optimally balanced, one of the clusters might have more
work than it can manage and the other might be less
productive than it can be. Thus, in order to achieve the
highest performance we have to balance the workload
optimally and, at the same time, minimise the number of
communications. The workload balance and the
communication overhead depend on the technique used to
distribute the program instructions between both clusters.
Programs can be partitioned either at compile-time
(statically) or at run-time (dynamically). The latter approach
relies on a steering logic that decides in which cluster each
decoded instruction will be executed. The steering logic is
responsible for maximising the trade-off between
communication and workload balance and therefore, it is a
key issue in the design. In this work, a new steering scheme
is proposed and its performance is evaluated. We show that
the proposed scheme outperforms a previously proposed
static approach for the same architecture [16]. Moreover,
compared to a conventional architecture, it achieves an
average speed-up of 35% for the SpecInt95 and two
Mediabench programs.

The rest of the paper is organised as follows. Section 2
presents the architecture and several approaches for the

A Cost-Effective Clustered Architecture

Ramon Canal, Joan-Manuel Parcerisa, Antonio González
Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya
Cr. Jordi Girona, 1-3 Mòdul D6

08034 Barcelona, Spain
{rcanal,jmanel,antonio}@ac.upc.es

steering logic. Section 3 describes the experimental
framework, the evaluation methodology, and it presents the
performance improvements resulting from the architecture
and steering logic described in Section 2. In Section 4 some
related work is presented and we conclude in Section 5.

2. Clustered architecture

Clustered architectures have shown to be very effective to
reach high issue rates with low hardware complexity and
therefore they can take advantage of the ILP of the
applications [2, 8, 13, 14]. Although integer programs seem
not to have much parallelism, there is a growing number of
integer applications with high ILP such as multimedia
workloads (i.e. real-time video and audio). At the same time,
cluster organisations can operate at a higher clock rate than
the superscalar designs with an equivalent issue-width. In
this work, we present a cost-effective clustered architecture
that requires minimal modifications of a conventional
superscalar organisation. This architecture is based on the
proposal made by Sastry et al. [16], which is extended with
dynamic steering of instructions

2.1.Microarchitecture

The processor consists of two clusters, each of which
contains a register file and some basic integer and logic
functional units (see Figure 1). Moreover, one cluster
contains complex integer functional units (multiplier and
divider) and the other contains the floating-point functional
units. Local bypasses within a cluster are responsible for
forwarding result values produced in the cluster to the inputs
of the functional units in the same cluster. Local bypassing
is accomplished in effective 0 cycles, so one output in cycle
i can be the input of a FU the following cycle (i+1). Inter-
cluster bypasses are responsible for forwarding values
between functional units residing in different clusters.

STEERING
LOGIC

C1

Instr.
Queue

C2

Instr.
Queue

 Register
File 1

 Register
File 2

INT FUs Simple INT
FP FUs

CLUSTER 1 CLUSTER 2

Figure 1: Processor architecture

Because inter-cluster bypasses require long wires, it is likely
that these bypasses will be relatively slower and take one
cycle or more in future technologies. With an adequate
steering logic, local bypasses are used much more frequently
than inter-cluster bypasses, and therefore the penalty of long
bypasses is reduced.

The processor implements dynamic register renaming by
means of a physical register file in each cluster and a single
register map table. In this architecture, most integer
instructions may be steered to either cluster, therefore their
destination may be mapped to either physical register file.
When a source operand of an instruction resides in the
remote cluster, the dispatch logic inserts a "copy"
instruction. This instruction will read the register when it is
available and it will send the value through one of the inter-
cluster bypasses. The forwarded value will be copied to a
physical register in the requesting cluster for future reuse.
Therefore, each time a copy instruction is dispatched, the
forwarded logical register becomes mapped in two physical
registers, one in each cluster, until it is remapped by a
subsequent instruction. This scheme maintains some degree
of register replication (on average, 3 registers per cycle)
which dynamically adapts to the program requirements and
is lower than replicating the whole integer register file [6].
Compared with a full replication scheme, it has also less
communication requirements, and thus, less bypass paths
and less register file write ports.

 The renaming table is managed as follows: when an
instruction is decoded, a new physical register is allocated
for its output (if any) in the cluster it is sent to, and the
register map table entry is updated accordingly. At the same
time, the instruction keeps the old value of the renaming
entry till it is committed. If the instruction is flushed from
the pipeline (it was mis-speculated) the old value of the
renaming entry is restored, and the allocated register is
released. On the other side, if the instruction is committed,
the old renaming physical register (or registers) is released.
One logical register will only have two physical registers if
its value has had to be copied from one cluster to the other.
This scheme ensures that both clusters do not have different
values of the same logic register.

Loads and stores are divided into two operations. One of
them calculates the effective-address and the other accesses
memory. The effective-address is computed in an adder and
then its value is forwarded to the disambiguation hardware.
Since both clusters have adders both clusters can execute
effective-address computations. In the common
disambiguation hardware, a load is issued when a memory
port is available and all prior stores know their effective-
address. If the effective address of a load matches the
address of a previous store, the store value is forwarded to
the load. Stores are issued at commit time.

2.2. Steering logic

There are two options on how to distribute the instructions
between the two clusters: at compile -time (statically) or at
run-time (dynamically). A static partitioning means that the
compiler tags each instruction according to the cluster in
which it will be executed. The main advantage is that it
requires minimal hardware support. The drawbacks of this
scheme are that the ISA of the processor has to be extended
(for example, with one bit that indicates the cluster in which
the instruction will be executed) and this implies that all the
applications that run on this processor have to be
recompiled. The second drawback is that deciding where an
instruction will be executed long before it is in the pipeline
is not as effective as taking this decision inside the
processor. In the dynamic scheme on the other side, the ISA
has not to be changed and therefore the clustering of a
processor is transparent to the applications running on it.
The dynamic scheme is also more adaptable to the state of
the pipeline since it can decide where an instruction will be
executed according to the actual state of the pipeline.
Therefore the dynamic approach can minimise the number
of communications and can balance the workload better than
the static approach since the information used to perform the
steering is obtained straight from the pipeline and not from
an estimation of the compiler.

Clustered architectures introduce a trade-off between
communication and workload balancing. On one side, we
would like to have all dependent instructions in the same
cluster in order to minimise the communications between
clusters. On the other, we would like to have the same
number of instructions in each cluster in order to maximise
the use of the functional units. A good steering algorithm has
to find the optimal trade-off between communication and
workload balance.

 All the communications are due to the fact that one of the
operands (or both) is in the other cluster than the one where
the instruction is executed. In order to minimise the
communications between clusters, the steering logic sends
dependent instructions to the same cluster. Furthermore,
some communications can be hidden if the instruction
waiting for it is not just waiting for this operand to arrive
from the other cluster (e.g. the other operand is still being
calculated or being loaded from memory).

Workload balancing should be performed with minimal
impact on the communication overhead. In the proposed
schemes, workload balance is achieved in many forms. The
first and naive approach consists of a random variable that
assigns the instructions to one of the clusters. Thus, the
instructions are steered to any of the clusters with the same
probability. The second approach assigns the instructions to
the least loaded cluster. This approach will tend to balance
the workload between both clusters and therefore, it can

potentially achieve a higher performance.
If the communication and the workload balance

considerations bring to a different steering for the same
instruction, the instruction is steered according to the criteria
the scheme things is the most adequate.

There are many alternatives on how the workload
balance is measured at run-time. Actually, there are two
parameters that define a balance figure: the workload figure
and the boundary between balance and imbalance.

An estimation of the workload of each cluster could be
the number of instructions in its instruction queue. However,
this measure does not take into account the parallelism
among these instructions. For instance, if one cluster has
many instructions but each depends on the previous one, it
will be quite idle and it could accept more workload. Thus,
a better estimation of the workload is the number of ready
instructions in each cluster, which depends on both the
number of instructions and the parallelism among them.

We will consider that the workload is balanced when
both clusters have the same number of ready instructions;
and thus, the difference in the number of ready instructions
will be used as a measure of the imbalance. Note however,
that when both clusters have more ready instructions than
their issue width, both can operate at the maximum rate and
thus, we will consider this scenario as balanced even though
the number of ready instructions is different.The same
happens when both clusters have less instruction than the
issue width.

The balance is computed every cycle and the average for
the last N cycles is used by the steering logic. Actually,
when implementing it, we just need the accumulated value
since comparing the average to a certain threshold is the
same as comparing the accumulated value to a threshold N
times bigger. Adequate values of N (number of cycles used
to average the balance figure) and the balance threshold are
empirically determined in Section 3.

2.2.1. Steering schemes

The first steering scheme we have considered is quite simple
(Simple Register Mapping Based Steering -RMBS). This
scheme tries to keep the communications to a minimum
since it sends the instructions to the cluster in which they
have their register source operands. No consideration of
balance is taken relying on the fact that the random steering
that is used when the communication overhead is the same
for both clusters is good enough to keep the balance steady.
The algorithm works as follows:

• If the instruction has no source operands it is randomly
assigned to a cluster.

• If the instruction has one source operand it is assigned
to the cluster in which the operand is mapped.

• If the instruction has two source operands and both are
in the same cluster it is sent to the same cluster,

otherwise it is randomly sent to one of the clusters.
This scheme tries to minimise the number of
communications since it always sends the instructions where
its operands are mapped. Communications are needed just in
the case when one instruction has one operand in each
cluster.

The second scheme (Balanced RMBS) includes some
balance considerations. Whenever there is no preferred
cluster from the point of view of communication overhead,
the balance is taken into account and the instruction is sent
to the least loaded cluster.

• If the instruction has no source operands it is assigned
to the least loaded cluster.

• If the instruction has one source operand it is assigned
to the cluster in which the operand is mapped.

• If the instruction has two source operands and both are
in the same cluster it is sent to the same cluster;
otherwise it is assigned to the least loaded cluster.

This scheme will improve significantly the workload
balance while trying to keep the communications to a
minimum since the balance is just taken into account
whenever both clusters are considered equally good from
the communications point of view.

The last steering scheme (Advanced RMBS) is the
Balanced RMBS with a higher emphasis in the workload
balance. This approach may decide that an instruction
executes in a different cluster from the one in which it has its
operands due to the poor balance at that moment. On one
hand, this scheme might increase the number of
communications between the clusters but on the other hand,
it improves the workload balance. The algorithm is the
following:

• If the there is significant imbalance the instruction is
assigned to the least balanced cluster.

• Otherwise, it does the same as the Balanced scheme.
This scheme checks whether the imbalance value has
exceeded a given threshold and in this case it sends the
instruction to the cluster that most favours the balance. This
scheme tries to achieve a higher workload balance at the cost
of some extra communications.

For comparison purposes we introduce the modulo
steering. This scheme consists of sending alternatively one
instruction to each cluster if the instruction can be executed
in both clusters. If it can just be executed in one of the
clusters (integer multiplication/division or a FP
computation) it is steered to that cluster. This scheme is
simple and very effective regarding workload balance, there

is also no consideration on communication so it might
enforce many communication overhead.

3. Performance evaluation

3.1. Experimental framework

We have used a cycle-based timing simulator based on the
SimpleScalar tool set [1] for performance evaluation. We
extended the simulator to include register renaming through
a physical register file and the steering logic described in
Section 2. We used programs from the SpecInt95 [19] and
Mediabench [9] to conduct our evaluation (see Table 1 and
Table 2). All the benchmarks were compiled with the
Compaq-DEC C compiler for an AlphaStation with the -O5
optimization level. For each benchmark, 100 million
instructions were run after skipping the first 100 million; the
Mediabench programs were run till completition. Six
configurations have been simulated. First, the base
architecture in which there are two conventional 4-way issue
clusters where one executes integer operations and the other
just floating-point operations. The second is the clustered
architecture presented in this work with a modulo steering.
The next three configurations are also based on this
clustered architecture with the three proposed steering
schemes: Simple RMBS, Balanced RMBS and Advanced
RMBS. The main architectural parameters for these
architectures are shown in Table 3

Finally, as an upper bound of the performance that can
be achieved by the clustered architecture we consider an
architecture (UB architecture) that is the base architecture
with twice the issue width and twice the number of
functional units. That is 8-way issue for integer plus 8-way
issue for fp. This architecture will execute all integer
instructions in the 8-way issue integer datapath without
incurring in any communication penalty.

3.2. Results

In this section, we present results for the effectiveness of the
steering algorithms and the performance improvement over
the base architecture. In addition, we compare the results of
the proposed steering schemes to the ones of the upper-
bound architecture. The results are presented as follows:
first a general overview of the performance of the different
architectures except from the advanced RMBS is shown.

Benchmark go li gcc compress m88ksim vortex ijpeg perl

Input bigtest.in *.lsp insn-recog.i 50000 e 2231 ctl.raw, dcrand.lit vortex.raw pengin.ppm primes.pl

Table 1: Benchmark programs SpecInt95

Benchmark
adpcm epic

encode decode compresion decompresion
Input clinton.pcm clinton.adpcm test_image.pgm test_image.E

Table 2: Benchmark programs MediaBench

Then, the reasons for the different performance levels are
analysed. Afterwards, a motivation for the advanced
algorithm is presented and its performance is determined. At
the end, the performance of floating-point programs is
evaluated and the advanced RMBS is compared to a static
approach.

Figure 2 shows the IPC for each of the benchmarks and
the harmonic mean for the SpecInt95, Mediabench and both
together. The modulo scheme has no performance
improvement (2% average slow-down) although it has a
maximum speed-up of 17% in one of the benchmarks. In
contrast, the Simple RMBS has significant wins (22%
average speed-up) due to its much lower communication
overhead, as we will see in short. The Balanced RMBS
steering scheme reaches a 27% average speed-up due to its
balance considerations. However, the speed-up of this

Parameter Configuration
Fetch width 8-instructions

I-cache 64KB, 2-way set-associative. 32 byte lines, 1 cycle
hit time, 6 cycle miss penalty

Branch Predictor Combined predictor of 1K entries with a Gshare with
64K 2-bit counters, 16 bit global history, and a

bimodal predictor of 2K entries with 2-bit counters.

Decode/Rename width 8 instructions

Instruction queue size 64 64

Max. in-flight
instructions

64

Retire width 8 instructions

Functional units 3 intALU
+ 1 mul/div

3 intALU + 3 fpALU + 1
fp mul/div

1 comm/cycle to C2 1 comm/cycle to C1

Communications consume issue width

Issue mechanism 4 instructions 4 instructions

Out-of-order issue
Loads may execute when prior store addresses are

known

Physical registers 96 96

D-cache L1 64KB, 2-way set-associative. 32 byte lines, 1 cycle
hit time, 6 cycle miss penalty

3 R/W ports

I/D-cache L2 256 KB, 4-way set associative, 64 byte lines, 6 cycle
hit time.

16 bytes bus bandwidth to main memory, 16 cycles
first chunk, 2 cycles interchunk.

Table 3: Machine Parameters (separating cluster 1 and cluster 2 if not common)

scheme is significally under that of the UB architecture
(44% speed-up over the base architecture) since the UB
architecture does not have communication penalties. Below,
we analyse the factors that influence the performance of the
three steering schemes presented in Figure 2.

3.2.1. Inter-cluster communication

Figure 3 shows the average number of communications per
executed instruction. As expected, we can see that the
modulo scheme has a much larger number of
communications than the other schemes (almost 23% of the
instructions executed require inter-cluster communications),
because it does not have any communication locality
criterion. This huge communication overhead explains why
it performs worse than the other schemes (see Figure 2). The
other two schemes produce a similar number of
communications since they use very similar communication
criteria. We conclude that it is important to reduce the
number of communications, since they cause overheads
which significantly reduce performance, even for a 1-cycle
communication latency.

The communication overhead depends also on the
number of buses between the clusters. This paper shows the
results for one bus each way (one from C1 to C2, and one
from C2 to C1). We have also simulated the same
architecture with 3 busses each way. The results show that
the modulo scheme achieves an average speed-up of 5%
over the base architecture, and that the other schemes do not
change their performance (due to the low number of
communications).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

co
m

m
. /

 in
st

r
Modulo
Simple RMBS
Balanced RMBS

Figure 3: Average number of communications per dynamic instruction

Figure 2: Performance results

go

gc
c

co
m

pr
es

s li

pe
rl

vo
rte

x

ijp
eg

m
88

ks
im

ad
pc

m

ep
ic

A
vg

. S
pe

cI
nt

95

A
vg

. M
ed

ia
Be

nc
h

A
vg

. b
en

ch
m

ar
ks

1

2

3

4

5

IP
C

Base Arch.
Modulo
Simple RMBS
Balanced RMBS
UB Arch.

3.2.2. Workload balance

Figure 4 presents the distribution function of the workload
balance figure for a particular program (ijpeg). Remember
that the figure is an average and that it only considers
imbalance as the situation where one cluster has more ready
instructions than the issue width and the other has fewer.
The peak at zero is the percentage of cycles that there was
not imbalance and the rest is the distribution of the figure for
the remaining cycles. This distribution is similar in all the
benchmarks examined. We can see that the least balanced is
the Simple RMBS since it does not implement any balance
policy. The Balanced RMBS has a better workload balance
due to the balance considerations it implements. The most
balanced scheme is the modulo, since it sends one
instruction to each cluster alternatively (see Section 2), and
this policy produces a near optimal balance.

Figure 5 shows the average IPC of the three steering
schemes plus the base and UB architectures for a 0-cycle
communication latency. Since there is no communication
overhead in this scenario, this Figure illustrates the impact
on performance of the workload balance. In accordance with
the results in Figure 4, the Simple RMBS has the lowest
performance (13% lower than the UB architecture), the
Balanced RMBS performs better (just 7% lower than the UB
architecture), and the modulo scheme achieves the best
performance (just 4% lower than the UB architecture).

Overall, we can conclude that the modulo scheme performs
worse than the others (see Figure 2) because, although it has
a better workload balance, it enforces many more
communications. At the same time, the Balance scheme

-1
0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

FP - INT

0

5

10

%
 of

 cy
cle

s

Modulo
Simple RMBS
Balanced RMBS

Modulo: 77.16%
Simple: 46.85%
Balanced: 54.87%

<=

>=

Figure 4: Workload balance figure distribution (ijpeg)

1

2

3

4

IP
C

Base Arch.
Modulo
Simple RMBS
Balanced RMBS
UB Arch.

Figure 5: IPC for a 0-cycle communication latency

performs better than the Simple one (see Figure 2) because
it has a better workload balance while having a similar
number of communications. We can conclude that this
scheme achieves the best trade-off between communication
and workload balance.

3.2.3. Improving the workload balance

In Figure 2, we can see that the speed-up of the Balance
RMBS is 27% while that of the UB architecture is 44%,
which suggests that there is still some potential
improvement. This figure motivated the proposal of a new
scheme (Advanced RMBS, see Section 2) that tries to
improve the workload balance. This scheme tries to avoid
strong imbalances. In consequence, when the balance
exceeds a certain threshold, the scheme will give priority to
optimising the balance rather than the communications.

Some experiments have been conducted in order to find
out the best parameters that define the workbalance
measure. As explained in Section 2, the workload balance is
measured as the average imbalance for the last N cycles
(history size). We have tried several configurations with
different thresholds and history sizes. Experimentally, it has
been found that mid-range (6 to 10) thresholds perform
better since low boundaries (below 6) tend to increase the
number of communications and high thresholds (above 10)
tend to diminish the effect of the technique. Consequently,
the threshold for the rest of the experiments is assumed to be
eight instructions. This experiments also shows that the
performance mainly varies with the history size. Figure 6
shows the performance of the Advanced scheme compared
to the Balanced scheme for several history sizes. From
Figure 6, we can observe that having extra balance

considerations, as the Advanced scheme does, improves
performance. We can also see that the longer the history the
better the performance, for the range considered. This is due
to the fact that long histories minimise the effect of eventual
imbalances.

Figure 7 shows the performance of the Advanced RBMS
compared to the other schemes. This scheme shows the best
performance (35% average speed-up) of the steering
schemes presented. Its speed-up is very close to that of the
upper bound architecture (44% average), even though the
Advanced RMBS has one cycle penalty for each
communication.

2 4 8 16

History Size (cycles)

2

3

IP
C Balanced RMBS

Advanced RMBS (threshold=8)

Figure 6: Performance of the Advanced RMBS(average)

3.2.4. Impact of the communication latency

In future architectures, communications latencies will likely
be longer than 1 cycle [11]. Therefore, we have analysed the
impact of the communication latency on the performance.
Figure 8 shows the performance of the schemes presented in

this work for a range of communication latencies between 0
and 10 cycles. The results for a 0 cycle latency and 1 cycle
latency are the same as those in Figure 5 and Figure 7
respectively.

First, we can observe that as latency increases there is a
growing performance loss and this loss is much greater for
the modulo scheme than for the others since it does not take
into account the communications. This behaviour stresses
the increasing importance of minimising the number of
communications. On the other side, the impact of a higher
latency in the other three schemes is very similar since they
have similar criteria to avoid communication. However, we
can see significant differences among them for small
latencies due to the different balance considerations they
implement (as shown in the previous section).

For high latencies, the performance of all the schemes
presented in this work is quite below the UB architecture. In
this scenario, the steering schemes should make more

0 1 5 10

latency of communications

0

1

2

3

IP
C

Modulo
Simple RMBS
Balanced RMBS
Advanced RMBS

Base Arch.

UB Arch.

Figure 8: Performance for different communication latencies (average)

emphasis in reducing the number of communications, even
at the expense of a worse workload balance. In the future, we
plan to investigate steering schemes oriented to this
scenario.

3.2.5. Applicability to floating-point programs

We have evaluated whether sending integer instructions to
the FP cluster might degrade the performance of floating-
point programs due to the sharing of resources in that
cluster. We have measured the performance of the
Advanced RMBS and the base architecture for several
SpecFP95 [19] benchmarks. Figure 9 shows the speed-ups
relative to the base architecture.

We can see that none of the programs is slowed down
and even in some of them the speed up is significant (7% in
turb3d). On average, floating point programs perform a
3.2% better. When the FP cluster has a high workload (its
resources are heavily demanded by FP instructions), the
balance mechanism will refrain the steering logic from
sending integer instructions to that cluster, so that they do
not compete for the FP resources. On the other hand, in
periods of few FP calculations, the balance mechanism will
send some integer instructions to the FP cluster and we could
expect some speed-ups in this case.

sw
im

m
gr

id

ap
pl

u

ap
si

tu
rb

3d

A
vg

. b
m

ar
ks

0

1

2

3

4

5

6

7

8

9

10

P
er

f.
 I

m
p

ro
ve

m
en

t(
%

)

Advanced RMBS

Figure 9: Performance of the SpecFP95

go

gc
c

co
m

pr
es

s li

pe
rl

vo
rte

x

ijp
eg

m
88

ks
im

ad
pc

m

ep
ic

A
vg

. S
pe

cI
nt

95

A
vg

. M
ed

ia
B

en
ch

A
vg

. b
en

ch
m

ar
ks

1

2

3

4

5

IP
C

Base Arch.
Simple RMBS
Balanced RMBS
Advanced RMBS
UB Arch.

Figure 7: Performance of the Advanced RMBS

3.2.6. Dynamic versus static steering

In Figure 10, the performance of the Advanced RMBS is
compared with the results presented by Sastry, Palacharla
and Smith [16]. In that work, the authors presented a
compile-time partitioning algorithm for a similar
architecture to the one of this paper. The results have been
obtained with the same experimental framework described
in that paper (SimpleScalar based simulator with the same
architectural parameters, benchmarks, compiler and inputs).
Figure 10 depicts the speed-ups of both architectures..

In this case, the dynamic approach is much more
effective than the static one (the improvement achieved over
the base architecture is 10 times bigger) for several reasons.
First, because the dynamic approach not only tries to reduce
inter-cluster communication but also workload imbalance,
which was already reported by Sastry, Palacharla and Smith
to be one of the main drawbacks of their approach. Second,
since the Advanced RMBS steers instructions dynamically,
it adapts more accurately to many run-time conditions that
are difficult to estimate at compile time.

4. Related work

The steering schemes presented in this paper are targeted for
a specific superscalar microarchitecture inspired in the
proposal of Sastry, Palacharla and Smith [16]. Our work
differs in that they proposed a static partitioning scheme,
based on an extension of the concept of the “load/store slice”
(which consists of all the instructions that compute
addresses, and their predecessors in the data dependence
graph [14]). Another difference is that our architecture does
not constrain address computations to be dispatched to a
specific cluster, so it allows a more flexible partitioning.
While borrowing the main advantages of their architecture,
our steering scheme largely outperforms their partitioning
approach.

Other closely related approaches are the Dependence-
based [13], the Pews [8] and the Multicluster [2]
architectures. In these proposals, the microarchitecture

p
er

l g
o

g
cc li

co
m

p
re

ss

ij
p
eg

m
8
8
k
si

m

A
v
g
.

0

10

20

30

40

50

60

70

80

P
er

f.
 i

m
p

ro
ve

m
en

t
(%

)

Adv. Sch Sastry et al.
Advanced RMBS

Figure 10: Speed-up over the base architecture

partitions datapaths, functional units, issue logic and register
files into symmetrical clusters. Our work, instead, is based
on a slight modification of a conventional architecture that
converts the FP unit in a second cluster available for integer
computations. Their steering schemes are also different as
outlined below.

In the Dependence-based paradigm, instructions are
steered to several instruction FIFO queues instead of a
conventional issue window, according to a heuristic that
ensures that two dependent instructions are only queued in
the same FIFO if there is no other instruction in between.
This heuristic lacks of any explicit mechanism to balance the
workload, which is instead adjusted implicitly by the
availability of free FIFO queues.

In the Pews architecture, the steering scheme is quite
simple, since it always places an instruction in the cluster
where the source operand is to be produced, except if the
operands are to be produced in different clusters, in which
case the algorithm tries to minimize the communication
overhead (which is a function of the forwarding distance of
the operands, in this ring-interconnected architecture). This
algorithm also lacks of a workload balance mechanism.

In the Multicluster architecture, the register name space
is also partitioned into two subsets, and program partitioning
is done at compile time without any ISA modification, by
the appropiate logical register assignment of the result of
each instruction. Both the workload balance and inter-
cluster communication are estimated at compile time. The
same authors proposed a dynamic scheme [3] that adjusts
run-time excess workload by re-mapping logical registers.
However, they found most heuristics to be little effective
since the re-mapping introduces communication overheads
that offset almost any balance benefit.

Another related architecture is the decoupled one [17].
In this case, the partitioning is based on sending the effective
address calculation of the memory accesses to a cluster and
the remaining instructions to the other. This partitioning is
similar to the load/store slice proposed by Palacharla et al.
[14].

Clustering is also present in some multithreading
architectures. These architectures execute threads that are
generated either at compile-time (Multiscalar processors [5,
18] among others) or at run-time (Trace Processors [15,
20]), Clustered Speculative Multithreaded Processors [10]).
The criteria used to partition programs is based on control-
dependences instead of data dependences. Besides, they
make extensive use of data speculation techniques.
Clustering can also be applied to VLIW architectures [4,
12], but they perform cluster assignment at compile-time.

There are several techniques to improve the
performance of multimedia programs. The architecture
presented in this article is not targeted especially to this kind
of programs but to general purpose ones. Nevertheless, the
performance improvement achieved with this architecture is

significant in this kind of applications and has the advantage
of improving the performance in any program, not just in the
multimedia ones (as multimedia extensions do). There is
also a parallelism between some early MMX extensions [7]
and the presented architecture since the fp cluster is
extended with integer instructions in both clusters.
Nevertheless, MMX extensions include a SIMD execution
model that is applied to vectorizable code.

5. Conclusions

In current superscalar processors, all floating-point
resources are idle during the execution of integer programs.
This problem can be alleviated if the floating-point cluster is
extended to execute integer instructions and these are
dynamically sent to one cluster or the other. The required
modifications are minor and the resultant microarchitecture
stays very similar to a conventional one. Furthermore, no
change in the ISA is required. However, in this architecture
there is a trade-off between workload balance and inter-
cluster communication overhead and the steering logic is
responsible for optimising it. We presented three steering
schemes and evaluated them. The performance figures
showed an average speed-up of 35% over a conventional 8-
way issue (4 int + 4 fp) machine. Hence, with minimal
hardware support and no ISA change, idle floating-point
resources on current superscalar processors can be
profitably exploited to speed-up integer programs.

Acknowledgments

This work has been supported by the Ministry of Education
of Spain under contract CYCIT TIC98-0511-C02-01 and by
the European Union through the ESPRIT program under the
MHAOTEU (EP 24942) project. The research described in
this paper has been developed using the resources of the
CEPBA. Ramon Canal would like to thank his fellow PBCs
for their patience and precious help.

References

[1] D. Burger, T.M. Austin, S. Bennett. “Evaluating Future
Microprocessors: The SimpleScalar Tool Set”,Technical
Report CS-TR-96-1308, University of Wisconsin-
Madison, 1996.

[2] K.I.Farkas, P.Chow, N.P.Jouppi, Z.Vranesic. “The
Multicluster Architecture: Reducing Cycle Time
Through Partitioning”, inProc of the 30th. Ann. Symp.
on Microarchitecture, December 1997, pp. 149-159.

[3] K.I.Farkas. “Memory-system Design Considerations for
Dynamically-scheduled Microprocessors”,PhD thesis,
Department of Electrical and Computer Engineering,
Univ. of Toronto, Canada, January 1997.

[4] M.M. Fernandes, J.Llosa and N.Topham, “Distributed
Modulo Scheduling”, inProc of the 5th. Int. Symp. on
High Performance Comp. Arch., January 1999, pp. 130-
134.

[5] M. Franklin, “The Multiscalar Architecture”,Ph.D.
Thesis, Technical Report TR 1196, Computer Sciences
Department, Univ. of Wisconsin-Madison, 1993.

[6] L. Gwennap. “Digital 21264 Sets New Standard”,
Microprocessor Report, 10 (14), Oct. 1996.

[7] L. Gwennap. “Intel’s MMX Speeds Multimedia
Instructions”, Microprocessor Report, 10(3), March
1996.

[8] G.A.Kemp, M.Franklin, “PEWs: A Decentralized
Dynamic Scheduler for ILP Processing”, inProc. of the
Int. Conf. on Parallel Processing, August 1996, pp. 239-
246.

[9] C. Lee, M. Potkonjak and W. H. Mangione-Smith,
“Mediabench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems”,Proc. of the
IEEE/ACM Int. Symposium on Microarchitecture (Micro
30), December 1997, pp. 330-335.

[10] P. Marcuello and A. González, “Clustered Speculative
Multithreaded Processors”,Proc of the 13th ACM Int.
Conf. on Supercomputing, June 1999, pp. 365-372.

[11] D.Matzke, "Will Physical Scalability Sabotage
Performance Gains",IEEE Computer Vol. 30, num. 9,
September 1997, pp. 37-39.

[12] E.Nystrom and A.E.Eichenberger, “Effective Cluster
Assignment for Modulo Scheduling”, inProc of the 31st.
Ann. Symp. on Microarchitecture, pp. 103-114.

[13] S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity-
Effective Superscalar Processors” inProc of the 24th.
Int. Symp. on Comp. Architecture, June 1997, pp. 1-13.

[14] S.Palacharla, J.E.Smith “Decoupling Integer Execution
in Superscalar Processors”, inProc. of the 28th. Ann.
Symp. on Microarchitecture, November 1995, pp. 285-
290.

[15] E.Rotenberg, Q.Jacobson, Y.Sazeides and J.E.Smith,
“Trace Processors”, inProc of the 30th. Ann. Symp. on
Microarchitecture, December 1997, pp. 138-148.

[16] S.S.Sastry, S.Palacharla, J.E.Smith, “Exploiting Idle
Floating-Point Resources For Integer Execution”, in
Proc. of the Int. Conf. on Programming Lang. Design
and Implementation, June 1998, pp. 118-129.

[17] J.E. Smith, “Decoupled Acces/Execute Computer
Architectures”, ACM Transactions on Computer
Systems, 2(4), November 1984, pp. 289-308.

[18] G.S.Sohi, S.E.Breach, and T.N.Vijaykumar,
“Multiscalar Processors”, inProc. of the 22nd Int. Symp.
on Computer Architecture, June 1995, pp. 414-425.

[19] Standard Performance Evaluation Corporation,SPEC
Newsletter, September 1995.

[20] S. Vajapeyam and T. Mitra, “Improving Superscalar
Instruction Dispatch and Issue by Exploiting Dynamic
Code Sequences”, inProc. of the Int. Symp. on
Computer Architecture,June 1997, pp. 1-12.

